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Abstract Temporal functional dependencies (TFDs) add valid time to classical
functional dependencies (FDs) in order to express data integrity constraints over
the flow of time. If the temporal dimension adopted is an interval, we have to deal
with interval-based temporal functional dependencies (ITFDs for short), which
consider different interval relations between tuple valid times. The related approx-
imate problem is when we want to check wheter our data satisfy, without any
constraint for the schema, a given ITFD under a given error threshold 0 ď ε ď 1.
This can be rephrased as: given a relation instance r, is it possible to delete at
most ε ¨ |r| tuples from it in such a way that the resulting instance satisfies the
given ITFD? This optimization problem, ITFD-Approx for short, may represent
a way to discover (i.e., mine) important dependencies among attribute values in
a database. In this paper we analyze the complexity of problem ITFD-Approx re-
stricting ourselves to Allen’s interval relations: we shall see how the complexity
of such a problem may significantly change, depending on the considered interval
relation.

Keywords Temporal Database ¨ Functional Dependencies ¨ Interval Relations

1 Introduction

Temporal databases allow the description of the temporal evolution of information
by associating one or more temporal dimensions with stored data [20]. The fun-
damental temporal dimension, we shall consider in this paper, associated with
any stored fact is valid time, which describes the time when the fact is true in the
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modeled reality. Several different kinds of (temporal) constraints may be expressed
on temporal data: temporal constraints are usually expressed through languages
based on first-order logic [35]. Among temporal integrity constraints for temporal
data, a special kind of constraints, namely temporal functional dependencies, has
been introduced [34]. Temporal functional dependencies (TFDs) add a temporal
dimension to classical functional dependencies (FDs), to deal with temporal data.
As an example, while FDs model constraints like “professors with the same role

get the same salary”, TFDs can represent constraints like “for any given month,

professors with the same role have the same salary, but their salary may change from

one month to the next one” or “current salaries of professors uniquely depend on their

current and previous roles” [11].

Most TFDs proposed in literature rely on some point-based semantics, possi-
bly extended to consider some fixed point-based temporal grouping when different
temporal granularities, i.e., time partitions, are considered [3,11,34]. Recently,
in [13,14] we focused on interval-based temporal constraints expressed through
interval-based temporal functional dependencies (ITFDs), considering the well
known Allen’s interval relations to constrain data valid times. ITFDs allow us
to express constraints as “Salaries of professors hired the same day with the same

role are the same (but professors hired with the same role in different days may have

different salaries)”, which cannot be expressed through point-based TFDs. We al-
ready showed how to efficiently manage the incremental verification of different
ITFDs, by proposing suitable data structures based on B-trees for interval-based
indexing of data [13,14].

On the other hand, functional dependencies may be viewed, instead of con-
straints, as a way of representing some (possibly) unknown features of collected
data. In this case, we do not impose any constraint on temporal data, as we are
interested in mining some specific (temporal) features highlighted in most (but
not all) data. Some thresholds are usually given on the number of data items that
do not satisfy the considered feature. The concept of approximate functional de-
pendency (AFD) is defined upon the concept of plain FD: given some data where
an FD holds for most of data, we may identify the remaining data items, for which
that FD does not hold. Consequently, we can define different measures to quantify
the error we make in considering the FD to hold on the given data set [18,19].

Recently, approximate functional dependencies have been extended to consider
different kinds of point-based temporal functional dependencies, which can be
expressed according to the framework proposed in [11], and have been applied in
some clinical domains, to allow physicians to mine new knowledge from data [9,
12]. At the best of our knowledge, the issue of dealing with approximate interval-
based temporal functional dependencies has been previously dealt with only in
[29], which is a preliminary short version of this paper.

In this paper we shall specifically focus on the discovery of interval-based tem-
poral functional dependencies (ITFDs), according to their definition proposed in
[13,14]. More precisely, even according to the previously cited contributions, we
shall use the relational model extended to consider the temporal data dimension
as the theoretical framework for representing and reasoning on (temporal) data.

The main original aspects of this paper may be summarized as in the following.

– We formally introduce the concept of Approximate Interval-Based Temporal Func-

tional Dependency (AITFD) within the relational framework and discuss its
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meaning by explicitly considering Allen’s interval relations. A general clinical
scenario related to patient therapies will be discussed to motivate and exem-
plify our approach.

– We address the complexity for the problem of deriving AITFDs given a (rela-
tional) dataset, namely ITFD-Approx. More specifically we focus on the data
complexity of the Maximal Consistency problem. Such a problem consists of
determining the maximum cardinality of the subsets of a (data) relation that
satisfy a given ITFD. For each Allen’s interval relation we provide the class of
computational complexity for the related problem. For each result, we provide
detailed proofs and, in some cases, we introduce and discuss some auxiliary
data structures, we shall use to build proofs.

In the following, Section 2 introduces related work dealing with temporal func-
tional dependencies and approximate functional dependencies. Section 3 discusses
a motivating scenario, we shall use throughout the paper to motivate and exem-
plify our proposal. Section 4 introduces the basic definitions regarding approximate
ITFDs and then introduces the formalization of the Maximal Consistency problem
that will be analyzed in the remainder of the paper. Section 5 deals with the Max-
imal Consistency problems for approximate ITFDs restricted to the equal, starts,
and finishes Allen’s interval relations, for which solutions are similar and straight-
forward. Section 6 deals with the Maximal Consistency problem restricted to the
before interval relation: it is less straightforward than the problems discussed for
the previous relations, but still simple. In Section 7 we provide a polynomial-time
algorithm for the problem considering the during interval relation. This is one of
the main results of this paper: the during relation has been extensively studied in
literature and both positive and negative results from the point of view of decid-
ability have been provided [4,5,27]. Here we give a positive result from the point
of view of complexity, showing that the problem involving the during relation is
polynomially tractable. Section 8 completes the analysis by dealing with interval
relations meets and overlaps: this is the second important result of the paper and it
shows that the problem for these two cases is NP-complete, by means of two closely
related reductions from the classical Max2Sat decision problem. Section 9 intro-
duces and discusses some analogies between AITFD discovery and the theoretical
research topic on database repairing. Finally, Section 10 draws some conclusions
and sketches out some possible directions for future research.

2 Background and Related Work

We recall here the definition of functional dependency (FD), and then introduce
its extensions: point-based and interval-based temporal functional dependencies
(TFD) and approximate functional dependency (AFD). Such concepts will lead to
the definition of approximate interval temporal functional dependency (AITFD)
of Section 4, where AITFD inherits the properties both from AFD and from
interval-based TFDs.

The concept of functional dependency (FD) comes from the relational database
theory and is defined as follows [7]:

Definition 1 (Functional Dependency) Let r be a relation over the relational
schema R: let X,Y Ď R be attributes of R. We assert that r satisfies functional



4 Carlo Combi, Pietro Sala

dependency X Ñ Y (written as r ( X Ñ Y ) if the following condition holds:
@t, t1 P rptrXs “ t1rXs ñ trY s “ t1rY sq.

Informally, for all the couples of tuples t and t1 showing the same value(s) on
X, the corresponding value(s) on Y for those tuples are identical.

2.1 Temporal Functional Dependencies

Moving closer to the main kind of temporal features we shall consider here, several
kinds of temporal functional dependencies (TFDs) have been proposed in the lit-
erature, usually as temporal extensions of the widely know (atemporal) functional
dependencies [34].

In the following, we provide a short overview of the main formalisms for TFDs
proposed in the literature. All the introduced temporal data models consider some
kind of (temporal) extensions to the classical relational model. Jensen et al. pro-
pose a bitemporal data model that allows one to associate both valid and transac-
tion times with data [21]. They define TFDs as FDs that must be satisfied at any
bitemporal point (i.e., representing both valid and transaction times: chronon in
the authors’ terminology). As an example, let Profs be a temporal relation schema
with the set of atemporal attributes U “ tprofId , salary , role, projectu. The con-
dition “at any time, the salary of a professor uniquely depends on his role” can be
expressed by TFD role ÑT salary.

Bettini, Jajodia, and Wang’s notion of TFD takes advantage of time granular-
ity [32]: time granularity is a partition of a time domain in groups of indivisible
units called granules. Bettini, Jajodia, and Wang’s TFDs allow one to specify
conditions on tuples associated with granules of a given granularity and grouped
according to a coarser granularity. As an example, if we consider the temporal
relation schema Profs with attributes tprofId , salary , role, projectu and associated
with granularity Month, the constraint “for any given year, professor with the same

role cannot have different salaries the same year; however, their salary may change

from one year to the next one” is captured by TFD role ÑYear salary.

A general formalism for TFDs on complex (temporal) objects has been pro-
posed by Wijsen [33]. It is based on a data model that extends the relational model
with the notion of object identity, which is preserved through updates, and with
the ability of dealing with complex objects, that is, objects that may have other
objects as components. It has been shown that the class of Wijsen’s TFDs sub-
sumes the class of Bettini et al.’s TFDs [33]. More precisely, Bettini et al.’s TFDs
are exactly TFDs on chronologies (i.e.time relationships between time points rep-
resenting granularities). As an example, it is possible to express the condition
“professors cannot have different salaries over two consecutive time points if their role

does not change” by means of TFD Emp : profId , role N salary.

Vianu proposes a simple extension to the relational model in order to describe
the evolution of a database over time [31]. According to it, a temporal database
is viewed as a sequence of instances (states) over time. A change in the state
of the database is produced by the execution of an update, an insertion or a
deletion. A database sequence is a sequence of consecutive instances of the database,
together with “update mappings” from one instance (the “old” one, with attributes

Y denoted as
_

Y ) to the next instance (the “new” one, with attributes Y denoted as
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^

Y ). Tuples are viewed as representations of domain objects. Since a tuple and its
updated version represent the same object, tuples preserve their identity through
updates. As an example, condition: “new salaries of professors depend uniquely on

their current and previous roles” is captured by the DFD
_

role
^

role Ñ
^

salary over the
set of attributes U “ tprofId , salary , roleu.

Recently, Combi et al. proposed a framework for TFDs that subsumes and
extends the considered previous proposals [11]. The proposed framework is based
on a simple temporal relational data model based on the notion of temporal relation,
i.e. a relation extended with a timestamping temporal attribute VT, representing
valid time, i.e. the time when the fact is true in the represented real world [10].

Two temporal views have been introduced: they allow one to join tuples that
represent relevant cases of (temporal) evolution. On the base of the introduced data
model, and leveraging the introduced temporal views, TFDs may be expressed by
the syntax rE-ExppRq, t-GroupsX Ñ Y where E-ExppRq is a relational expression
on R, called evolution expression, t-Group is a mapping N Ñ 2N, called temporal

grouping, and X Ñ Y is a functional dependency. As for the semantics, similarly
to the case of standard FDs, a TFD is a statement about admissible temporal
relations on a temporal relation schema R with attributes UYtV T u. Four different
classes of TFD have been identified in [11]:

– Pure temporally grouping TFD: E-ExppRq returns the original temporal relation
r. Rules of this class force the FD X Ñ Y , where X,Y Ď U , to hold over all
sets which include all tuples whose VT belongs to the same temporal group;

– Pure temporally evolving TFD: E-ExppRq collects all the tuples modelling the
evolution of an object. No temporal grouping exists: that is, the temporal
grouping collects all the tuples of r in one unique set;

– Temporally mixed TFD: the expression E-ExppRq collects all the tuples mod-
elling the evolution of the object. The temporal grouping is applied to the set
of tuples generated by E-ExppRq;

– Temporally hybrid TFDs. First, the evolution expression E-ExppRq selects those
tuples of the given temporal relation that contribute to the modelling of the
evolution of a real-world object (that is, it removes isolated tuples); then,
temporal grouping is applied to the resulting set of tuples.

2.2 Interval-based Temporal Functional Dependencies

Let us now introduce the concept of Interval-based Functional Dependency and
its underlying relational data model, we proposed in [14]. Given a linear order
O “ xO,ăy, i.e. the time domain, an interval I over O is a pair I “ rb, es where
b, e P O and b ď e. While the possible distinct relations between two points con-
sidering only the linear order are reduced to three (equality, successor, and pre-
decessor), considering the order among two endpoints of two intervals leads us to
have thirteen possible relations. Such a number is given by the possible ways one
could arrange points of two distinct intervals rb, es and rb1, e1s (b ‰ b1 _ e ‰ e1) on
a total linear order, which are 6, plus their respective inverses and the equality
relation (b “ b1 ^ e “ e1) for a total of thirteen distinct interval relations. Figure
1 depicts these relations, according to the notation proposed by Allen in [2]. It is
worth to note that every relation has its dual, which is obtained by switching the
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b1 e1

b2 e2I1 S I2

I2 S I1

Starts

b1 e1

b2 e2
I1 F I2

I2 F I1

Finishes

b1 e1

b2 e2

I1 B I2

I2 B I1

Before

b1 e1

b2 e2
I1 D I2

I2 D I1

During

b1
e1

b2 e2

I1 M I2

I2 M I1

Meets

b1 e1

b2 e2

I1 O I2

I2 O I1

Overlaps

b1 e1

b2 e2

I1 E I2

Equals

Fig. 1 The thirteen Allen’s relations between intervals.

position of the two intervals. More precisely, given two intervals I1 “ rb1, e1s and
I2 “ rb2, e2s we say that:

(1) I1 E I2 iff b1 “ b2 and e1 “ e2;
(2) I1 M I2 iff e1 “ b2;
(3) I1 S I2 iff b1 “ b2 and e1 ă e2;
(4) I1 F I2 iff b1 ą b2 and e1 “ e2;
(5) I1 O I2 iff b1 ă b2 and b2 ă e1 ă e2;
(6) I1 D I2 iff b2 ă b1 and e1 ă e2;
(7) I1 B I2 iff e1 ă b2.

The adopted data model is a simple temporal (relational) data model based on
the concept of temporal relation. A temporal relation r is a relation on a temporal
relation schema R defined on attributes U Y tB,Eu, where U represents a set of
atemporal attributes and B,E are the temporal attributes describing the valid
interval of a tuple. We assume that the domain of both attributes B and E is a
totally ordered set O. Clearly, a tuple t P r satisfies trBs ď trEs. To avoid ambigu-
ities in the used terminology, we use (temporal) instance for “(temporal) relation”
and relation for Allen’s interval relations. Let us now consider the basic definition
of Interval-based Temporal Functional Dependency (ITFD). We can consider only
interval relations in the set A “ tE,S, F,B,D,M,Ou. Indeed, in this case it is not
meaningful to distinguish between a relation and its dual, as it will be clear from
the following definition of interval-based temporal functional dependency.

Definition 2 Let X and Y be sets of atemporal attributes of a temporal rela-
tion schema R “ RpU,B,Eq and „ an Allen’s Interval relation. An instance r

of R satisfies an ITFD X Ñ„ Y iff for each pair of tuples t1 and t2 such that
rt1rBs, t1rEss „ rt2rBs, t2rEss and t1rXs “ t2rXs, it is also true that t1rY s “ t2rY s
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For sake of brevity, when an instance r satisfies an ITFD X Ñ„ Y , we write
r |ù X Ñ„ Y . Basically, ITFDs group tuples whose B and E attribute values satisfy
interval relation „. In the above definition all the possible tuples having as valid
interval either rb, es or rb1, e1s, where rb, es „ rb1, e1s, are considered together. If there
exist two tuples where the B and E attribute values, match exactly points b, e, b1,
and e1, respectively, and both tuples agree on the values of atemporal attributes
X, then the ITFD imposes that both tuples must agree on the values of atemporal
attributes Y .

2.3 Approximate Functional Dependencies

The concept of approximate functional dependency (AFD) derives from the con-
cept of plain FD. Given an instance r where an FD holds for most of the tuples in
r, we may identify some tuples, for which that FD does not hold. Consequently,
we define some measurements over the error we make in considering the FD to
hold on r. One measurement [22] is known as G1 and considers the number of
violating couples of tuples. Another measurement [22], known as G2, considers
the number of tuples which violate the functional dependency. In other words,
G1 counts the number of violations in the whole instance r with respect to the
given FD, while G2 counts the number of tuples, who participate in at least one
violation of the given FD in r. It is easy to see that G1 is bounded by |r|2 while G2

is bounded by |r|. The most common measurement [22], known as G3, considers
the minimum number of tuples in r to be deleted for the FD to hold. Formally,
G3pX Ñ Y, rq “ |r| ´maxt|s| | s Ď r ^ s ( X Ñ Y u.

The related scaled measurement g3 is defined as g3pX Ñ Y, rq “ G3pX Ñ

Y, rq{|r|.

We can now introduce here the definition of approximate functional depen-
dency AFD as:

Definition 3 (Approximate Functional Dependency) Let r be an instance over
the relational schema R: let X,Y Ď R be attributes of R. Instance r fulfills an
approximate functional dependency X

ε
ÝÑ Y (written as r ( X

ε
ÝÑ Y ) if g3pX Ñ

Y, rq ď ε, where ε is the maximum acceptable error defined by the user.

Among the several AFDs that can be identified over an instance r, the minimal
AFD is of particular interest, as many other AFDs can then be derived from the
minimal one. We thus define the minimal AFD as follows:

Definition 4 (Minimal AFD) Given an AFD over r, we define X
ε
ÝÑ Y to be

minimal for r if r ( X
ε
ÝÑ Y and @X 1 Ă X we have that r * X 1

ε
ÝÑ Y .

2.4 Approximate Temporal Functional Dependencies

According the the taxonomy proposed in [11] and discussed in Section 2.1, Combi
et al. in [9] proposed approximate pure temporally grouping TFDs, where grouping
is based either on granularities or on sliding windows (SW).
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Definition 5 (ATFD with Gran grouping) Let r be an instance over the re-
lational schema R with attributes U Y tV T u: let X,Y Ď U be attributes of R.
Let Gran be the reference granularity. Instance r satisfies the approximate tem-
poral functional dependency on X and Y (written as r ( rr,GransX

ε
ÝÑ Y ) iff

g3prr,GransX Ñ Y, rq ď ε.

That is, the percentage of tuples in the entire instance r to be deleted for an
ATFD to hold on all the tuples of r is less than ε; tuples of r are then grouped
according to the granule of Gran their VT value belongs to, to evaluate the con-
sidered ATFD. We recall that the count of tuples in r to be deleted refers to the
entire instance r, and not to a sigle group - and one tuple may belong to one group
only, if we use a Gran grouping.

Definition 6 (ATFD with SW grouping) Let r be an instance over the relational
schema R with attributes U Y tV T u: let X,Y Ď U be attributes of R. Let ti . . . i`
k ´ 1u be a sliding window (SW) of length k. Instance r satisfies an approximate
temporal functional dependency on X and Y (written as r ( rr, ti . . . i`k´1usX

ε
ÝÑ

Y ) iff g3prr, ti . . . i` k ´ 1usX Ñ Y, rq ď ε.

In [9] the authors considered as many SWs as possible, every SW sizing k

elements: thus, the first considered sliding window is i . . . i ` k ´ 1, the second
considered sliding window is i ` 1 . . . i ` k, the third considered sliding window
is i ` 2 . . . i ` k ` 1, and so on. Every SW sets up a group (or chain) over which
the ATFD is checked. The ATFD must hold, with an acceptable amount of error
smaller than ε, over the entire database: we recall that, if we delete a tuple inside
a SW, that tuple will remain deleted in all the SWs (either preceding or following
the current SW) which include that tuple.

As for plain AFD, the concept of minimality has been introduced also for
ATFDs [9].

3 A motivating scenario

In this section, we briefly introduce a real-world, yet general, example taken from
clinical medicine, namely that of patient therapies, in order to provide a little
insight on understanding both ITFDs and AITFDs. Most health care institutions
collect a large quantity of clinical information about patient and physician actions,
such as therapies and surgeries, as well as about health care processes, such as
admissions, discharges, and exam requests. All these pieces of information are
temporal in nature and the associated temporal dimension needs to be carefully
considered in order to be able to properly represent clinical data and to reason
about them [8].

Suppose we have patients who undergo several different therapies: each therapy
can be supervised by a physician, and consists of the administration of some drug
to the patient. Information about patients and therapies is stored in an instance
according to the schema PatTherapiespTherType, PatId ,DrugCode, Qty , Phys,B ,Eq,
where TherType identifies a type of pharmacological therapy, PatId represents a
patient ID, DrugCode and Qty the prescribed drug and its quantity, respectively,
and Phys the physician who made the prescription (and is responsible for the
therapy). Finally, attributes B and E represent the beginning and end time points
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# TherType PatId Phys DrugCode Qty B E
1 antiviral 1 House 0458 300 2 16
2 analgesics 1 Wilson 0976 200 3 11
3 cardiovascular 1 Wilson 0118 100 4 8
4 antipyretics 1 Wilson 0976 100 10 12
5 sedative 1 Foreman 0345 10 14 15
6 anxiolytic 1 House 0345 10 18 20
7 antiviral 2 Chase 0458 200 1 12
8 cardiovascular 2 Chase 0118 100 4 8
9 analgesics 2 Cameron 0976 150 6 11
10 antiviral 2 Cameron 0458 300 10 15
11 antiviral 1 House 0789 200 2 19

PatId “ 1

House
11

House
6

House
1

Wilson
2

Wilson
4

Foreman
5

Wilson
3

Chase
7

Chase
8

Cameron
9

Cameron
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PatId “ 2

Fig. 2 An instance of relational schema PatTherapies, storing data about patient therapies,
and its representation on the time line with values for attribute Phys (for each tuple its id is
reported at the end of the interval).

of the tuple valid interval, respectively: they represent the bounds of the interval
specified by the physician for each therapy. An instance of PatTherapies is provided
in Figure 2.

A patient may have several drug administrations in the same period prescribed
by different physicians. One may be interested in discovering some qualitative
behaviour of such data. As an example, it may be asked if in general therapies
occurring within the same period for the same patient are administered by the
same physician. This is not a strict constraint for our instance but simply one
possible behaviour that can be expressed by the ITFD PatId ÑD Phys. Thus,
we are interested in finding the largest possible portion r1 Ď r such that r1 |ù

PatId ÑD Phys. In the example of Figure 2 this may be achieved by taking
r1 “ tt2, t3, t4, t5, t6, t8, t9, t10u. In this case, we may say that PatIdÑD Phys holds
on the 8{11 of the given instance. Another behaviour we may want to discover
could be whether patient therapies are extended by the same physician. Such a
behaviour is captured by the ITFD PatId ÑO Phys. This is a trickier behaviour
than the one shown before, because a physician may extend a therapy that he/she
has given to a patient but, implicitly, he/she cannot exceed the duration of a
therapy given by another physician in the same period to the same patient. In
Figure 2 we have that therapies concerning the first patient (PatId “ 1) satisfy
ITFD PatId ÑO Phys without any error. On the contrary, therapies concerning
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the second patient (PatId “ 2) violate ITFD PatIdÑO Phys because of the pair
of tuples pt7, t10q and pt8, t9q (i.e Dr. Cameron is actually extending a therapy of
Dr. Chase in both cases). Clearly both instances r1 “ tt1, t2, t3, t4, t5, t6, t9, t10, t11u

and r1 “ tt1, t2, t3, t4, t5, t6, t7, t8, t11u satisfy ITFD PatId ÑO Phys (solutions are
not unique in general) and thus we may say that PatIdÑO Phys holds on the 9{11
of the given instance. Even if the examples shown here use only one attribute in
the set X for ITFD X Ñ„ Y , it does make no difference if |X| ą 1. As a matter of
fact, by Definition 2, tuples are grouped at the beginning according to their value
on X and then each group is considered separately. For instance if one considers
ITFD TherType, PatId Ñ„ Y , we have that tuples in Figure 2 are partitioned
into 10 groups instead of two (i.e. we have then distinct values for the pair of
attributes TherType, PatId). The rest of the paper is devoted to the study of such
approximate ITFDs that we have seen here in an informal way, and especially to
the study of the computational complexity involved in their calculation.

4 Approximate Interval-based Temporal Functional Dependencies

The following definition introduces the concept of Approximate ITFD (AITFD).

Definition 7 Let X and Y be sets of atemporal attributes of a temporal relation
schema R “ RpU,B,Eq, „ an Allen’s Interval relation, and ε a real number 0 ď
ε ď 1. An instance r of R satisfies an ITFD X Ñ„ Y with approximation ε iff
there exists a subset r1 Ď r for which rzr1 |ù X Ñ„ Y and |r1| ď ε ¨ |r|.

As for ITFDs, we write r |ùε X Ñ„ Y when r satisfies X Ñ„ Y with approxi-
mation ε.

Given an instance r, an ITFD X Ñ„ Y , and a real number 0 ď ε ď 1, we say
that ITFD X Ñ„ Y is ε-maximal on r iff r |ùε X Ñ„ Y and, for every X 1 Ñ„ Y 1

such that r |ùε X
1
Ñ„ Y 1, we have either X Ę X 1 or Y Ę Y 1.

Given a set of Allen’s interval relations A1 Ď A, an instance r, and a real
number 0 ď ε ď 1, we define the set ITFDpA1, r, εq “ tX Ñ„ Y : „ P A1 and r |ùε
X Ñ„ Y and X Ñ„ Y is ε-maximal on ru. When A1 “ A “ tE,S, F,B,D,M,Ou

we simply omit it and we write ITFDpr, εq.
Clearly, for every A1,A2 Ď A, for every instance r, and for a every real number

0 ď ε ď 1, it holds that ITFDpA1, r, εqY ITFDpA2, r, εq “ ITFDpA1YA2, r, εq (e.g.
ITFDptS, F u, r, εq Y ITFDptS,D,Mu, r, εq “ ITFDptS, F,D, Mu, r, εq).

It is worth to point out a crucial difference that holds in general between FDs

and AFDs, and in particular between ITFDs and AITFDs. Given an instance r

of a schema RpUq and two non-empty set of attributes X,Y Ď U , it is easy to see
that r |ù X Ñ Y holds over r if and only if r |ù X Ñ tAu for each attribute A P Y .
This does not hold in general if we move to AFDs. Suppose now that r |ùε X Ñ Y

for some real number 0 ď ε ď 1. It implies that r |ù X Ñε tAu for each A P Y .
However the opposite direction is not true in general. Indeed, for each A P Y let
rA be a set for which rzrA |ù X Ñ tAu and |rA| ď ε ¨ |r|. It may be the case that
rA ‰ rA1 for each A,A1 P Y with A ‰ A1 and thus |

Ť

APY rA| ą ε ¨ |r|.
To better explain this crucial difference, we may consider instance r “ tp1, 2, 3q,

p1, 1, 3q, p1, 2, 1qu over schema RptA1, A2, A3uq. It is easy to verify that both r |ù1{3

tA1u Ñ tA2u (rA2
“ tp1, 1, 3qu) and r |ù1{3 tA1u Ñ tA3u (rA3

“ tp1, 2, 1qu) hold,
but r |ù1{3 tA1u Ñ tA2, A3u does not hold (i.e. you can keep only one tuple if you
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want to satisfy such an FD and this means ε ě 2{3). Obviously, this distinction
holds between ITFDs and AITFDs as well. For the sake of simplicity, in the
following we will consider only pAqITFDs X Ñ„ Y where Y is a singleton set (e.g.
Y “ tAu) and for the sake of readability we shall omit the curly brackets around
sets when writing an AITFD.

4.1 Inferring AITFDs

In this section we introduce the problem of inferring approximate ITFDs and some
closely related problems.

Problem 1 Given an instance r of some temporal relation schema R “ RpU,B,Eq

and a real number 0 ď ε ď 1, the problem ITFD-Inferpr, εq consists of determining
the set ITFDpr, εq.

Given a set of interval relations A1 P A, the A1-restricted version of the ITFD-
Inferpr, εq problem is addressed as A1-ITFD-Inferpr, εq. For instance, the prob-
lem tE,S, F u-ITFD-Inferpr, εq takes as input an instance r for a temporal rela-
tion schema R “ RpU,B,Eq and a real number 0 ď ε ď 1, and returns the set
ITFDptE,S, F u, r, εq. By means of a straightforward adaptation of results given
by Mannila et al. in [25], we can give the following result.

Theorem 1 For every temporal relational schema R “ RpU,B,Eq, there exists an

instance r of it and a real number 0 ď ε ď 1 for which |ITFDpr, εq| “ Ωp2
|U|
2 q.

Theorem 1 states that there exists k P R`, for which, for every temporal
relational schema R “ RpU,B,Eq we may build an instance r of R and determine

a real number 0 ď ε ď 1 for which |ITFDpr, εq| ě k ¨ 2
|U|
2 .

Theorem 1 has serious implications when searching for ITFDpr, εq. Indeed, due
to this result, we know that the worst case complexity of determining ITFDpr, εq
cannot be less than exponential in the number of attributes of relational schema R.
As a consequence of this result, we have that every algorithm that solves ITFD-
Inferpr, εq cannot avoid to test an exponential number of ITFDs. However, reason-
able temporal relational schemata R “ RpU,B,Eq feature a small number of atem-
poral attributes: usually |U | ď 100. Moreover, several heuristics have been studied
to keep the number of tested dependencies feasible in the context of standard FDs
[18,26] and such methods can be directly applied in solving ITFD-Inferpr, εq.

To the best of our knowledge, every approach proposed in literature progres-
sively sharpens the set of dependencies to be tested by pruning it on the base of
results of some already tested dependencies. Indeed, testing a given dependency
(approximate or not) is assumed to be an easier task w.r.t. to the asymptotic
(data) complexity. This is true for FDs (approximate or not) [19,22] and even for
non-approximate ITFDs [14], but, as we shall see, it is not true in general for ap-
proximate ITFDs. Since it is hopeless to avoid the test of an exponential number
of ITFDs, our attention moves on assessing the (data) complexity of the following
problem.

Problem 2 Given an instance r of some temporal relation schema R “ RpU,B,

Eq, a real number 0 ď ε ď 1, and an ITFD X Ñ„ Y , problem ITFD-ApproxpX
Ñ„ Y, r, εq consists of determining if r |ùε X Ñ„ Y .
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We shall see that the chosen interval relation „ plays a crucial role for the
complexity of problem ITFD-ApproxpX Ñ„ Y, r, εq.

Given a temporal relation schema R “ RpU,B,Eq, a singleton set of atemporal
attributes Y P U and an interval relation „ P A, an instance r is „-consistent

with respect to Y iff for every pair of tuples t, t1 P r we have Iptq „ Ipt1q implies
trY s “ t1rY s. Given an instance r of a temporal relation schema R “ RpU,B,Eq

and a (singleton) set of atemporal attributes Y P U , we say that a subset r1 Ă r is
monochromatic with respect to Y if and only if for every pair of tuples t, t1 P r1 we
have trY s “ t1rY s. Monochromatic property of sets will appear often in the result
given in the rest of the paper. In order to simplify the problem and reduce it to a
simplest representation to deal with we introduce the following definition.

Definition 8 Given a singleton set of atemporal attributes Y Ď U , an interval
relation „ P A, and an instance r, we define the set of all the „-consistent subsets
of r w.r.t. Y as Sr

„,Y “ tr
1 : r1 Ď r and r1is „ ´consistent w .r .t . Y u. The following

problem is closely related to Problem 2.

Problem 3 Given an instance r of some temporal relation schema R “ RpU,B,

Eq, an interval relation „ P A, and a singleton set Y Ď U , problem „-Max-
ConsistentpY, rq consists of determining the value of max

r1PSr
„,Y

|r1|.

Basically, considering all the possible „-consistent subsets r1 of r w.r.t. Y , we
are looking for the ones with maximum cardinality |r1|, and in particular we are
interested in determining such value. A simpler problem than Problem 3 is the
problem „-Consistent.

Problem 4 Given an instance r of some temporal relation schema R “ RpU,B,

Eq, an interval relation „ P A, and a singleton set Y Ď U , problem „-Consistentp
Y, rq consists of determining whether r P Sr

„,Y holds.

Problem 4 consists of verifying if the whole instance is „-consistent w.r.t. Y . A
simple algorithm to solve such a problem consists of comparing each pair of tuples
t, t1 with Iptq „ Ipt1q. If a pair with trY s ‰ t1rY s is found, the algorithm returns
NO otherwise it returns Y ES. Such an algorithm has Op|r|2q complexity. However,
for this and some related problems, faster algorithms have been proposed (see, for
example, [14]) and the resulting complexity is Opn ¨ log nq. The strong connection
between Problem 2 and Problem 3 is provided by the following theorem.

Theorem 2 For every temporal relation schema R “ RpU,B,Eq, every instance r of

R, every real number 0 ď ε ď 1, and every ITFD X Ñ„ Y , given a super-additive1

function f : NÑ N, we have that the following two properties hold:

1. if „-MaxConsistent pY, rq is decidable with complexity Opfp|r|qq, then ITFD-

ApproxpX Ñ„ Y, r, εq is decidable with complexity Opfp|r|qq;
2. if ITFD-ApproxpX Ñ„ Y, r, εq is decidable with complexity Opfp|r|qq, then „-

MaxConsistent pY, rq is decidable with complexity Oplogp|r|q ¨ fp|r|qq.

1 A function f : NÑ N is super-additive if for every pair of elements x, y P N we have that
fpx` yq ě fpxq ` fpyq
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Proof The proof of both properties is straightforward. For property 1 suppose
that we have a function F„ that takes as input an instance r of R “ RpU,B,Eq

and a singleton set of attributes Y Ď U and returns maxr1PSr
„,Y

|r1|. Moreover the

complexity of F„ is Opfp|r|qq.
Consider the following algorithm:

1. let x1, . . . , xn be all the distinct values of attributes in X and let r “ rx1 Y . . .Y

rxn be the partition of r into n instances, for which for each 1 ď i ď n we have
that πXprxiq “ xi (i.e tuples are partitioned according to their values for the
attributes in X);

2. let N “ Σ1ďiďnF„prxi , Y q;
3. if |r| ´N ď ε ¨ |r| the answer to ITFD-ApproxpX Ñ„ Y, r, εq is Y ES, otherwise

the answer is NO.

It is easy to see that the above procedure solves correctly the problem ITFD-
ApproxpX Ñ„ Y, r, εq. The complexities of each step are:
1. Op|r|q for step 1;
2. Σ1ďiďn Opfp|rxi |qq for step 2, which is equal to Opfp|r|qq since f is super-

additive;
3. Op1q for step 3.
Summing up, the total complexity is Op|r|`fp|r|qq which turns out to be Opfp|r|qq
since f is super-additive.

For property 2, suppose that we have a function G„ that takes as input an
instance r of R “ RpU,B,Eq, an ITFD X Ñ„ Y , and a real value ε, and answers
correctly to the problem ITFD-ApproxpX Ñ„ Y, r, εq. Moreover, the complexity
of G„ is Opfp|r|qq.

Suppose now that, given an instance r of R “ RpU,B,Eq and Y Ď U , we want
to solve the problem „-MaxConsistent pY, rq.

Consider the following algorithm:

1. let r1 the instance of relation R “ RpU YtX 1u, B,Eq where X 1 R U and for each
t P r1 we have trU,B,Es P r and trX 1s “ 0;

2. set min “ 0 and max “ |r|;
3. if max “ min return max;
4. if G„pX

1
Ñ„ Y, r1, prpmax`minq{2sq{|r1|q “ Y ES, put min “ rpmax`minq{2s,

otherwise putmax “ rpmax`minq{2s;
5. goto step 3.

It is easy to prove that such an algorithm solves the problem „-MaxConsistent

pY, rq. This procedure basically applies a dichotomic search of the maximal value
ε, for which G„pX

1
Ñ„ Y, r1, εq holds. Once the desired ε is found, it is easy to

provide the answer to the problem „-MaxConsistent pY, rq by means of a simple
calculation. For the complexity evaluation we have that the dichotomic search
implies the application of the function G„ a number of times which is logarithmic
in the size of |r|. Thus the overall complexity turns out to be Oplogp|r|q ¨ fp|r|qq.

Such result allows us to focus on properties and computational complexity of
Problem 3, knowing in advance that they hold also for Problem 2.

Theorem 3 For every temporal relation schema R “ RpU,B,Eq, every instance r of

it, every interval relation „ P A, and every set Y Ď U , problem „-MaxConsistentpY, rq

belongs to the complexity class NP .
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Proof It is sufficient to provide a non deterministic polynomial algorithm that,
given „ P A, solves the problem „-MaxConsistentpY, rq, for every instance r of a
relation R “ RpU,B,Eq with Y P U . Recall that we have for free from [14] that
„-ConsistentpY, rq can be checked in Op|r| ¨ logp|r|qq for every „ P A. Then we can
claim that there exists a function F„ in NP that takes as input an instance r of
relation R “ RpU,B,Eq, an attribute Y P U , and a number k, and answers correctly
whether there exists a subset r1 Ă r which is „-Consistent w.r.t. Y and |r1| ě k.
To prove this it suffices to consider the following non-deterministic algorithm for
calculating F„: (i) guess a subset r1 Ă r with |r1| ě k (ii) if „-Consistency holds
for r1 the answer is Y ES, otherwise the answer is NO. It is easy to see that step (i)
works in polynomial-time in |r|, while step (ii) works in deterministic polynomial-
time in |r|. Using a dichotomic search, we can thus provide the following algorithm:

1. set min “ 0 and max “ |r|;
2. if max “ min return max;
3. if F„pr, Y, rpmax`minq{2sq “ Y ES put min “ rpmax`minq{2s; otherwise, put

max “ rpmax`minq{2s;
4. goto step 2.

Such a procedure applies logp|r|q times function F„ and thus its complexity turns
out to belong to the NP class.

For our purposes it is better to focus on the evaluation version of problem „-
MaxConsistent, while in classical complexity theory usually problems are given in
their recognition version [28]. The recognition version of „-MaxConsistent adds a
natural number L ě 0 to the input of the problem and consists of simply answering
Y ES or NO to the following question:“Does a „-consistent w.r.t. Y subset r1 Ď r

exist, such that |r1| ě L?”. Under the assumption that the solution of the evaluation

version can be logarithmically encoded, then both the evaluation and the recogni-
tion versions belong to the same complexity class and one of them is NP -complete
if and only if even the other one is NP -complete [28]. It is straightforward to
show that the logarithmic representation of the solution of „-MaxConsistent is
bounded by the size of input (i.e., it is bounded by tlog |r|u`1 which is better than
polynomial). As the previous statement directly applies, from now on we can focus
only on the evaluation version of problem „-MaxConsistent. In the following, we
shall see that the tractability of problem „-MaxConsistent depends on the chosen
interval relation „.

We shall see that for interval relations S,E and F the „-MaxConsistent prob-
lem turns out to be polynomial in the size of the input instance r. The pro-
posed algorithms for solving problem „-MaxConsistent with „ P tS,E, F u are
given in Section 5, and each of them has complexity Op|r| ¨ log |r|q. In Section 6
we deal with problem B-MaxConsistent which has still polynomial complexity
but requires a more involved treatment. The proposed algorithm for solving the
problem B-MaxConsistent turns out to have complexity Op|r|4q. In Section 7 we
deal with problem D-MaxConsistent. Such a problem turns out to be polyno-
mially solvable and we provide an algorithm that works in Op|r|10q deterministic
time. This is the most extended section of the paper since proving the under-
lying ideas and the soundness and completeness of the proposed algorithm for
D-MaxConsistent requires the introduction of a spatial representation of inter-
vals as well as some preliminary results. Finally, in Section 8 we deal with the
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Algorithm 5.1: E-MaxConsistency(Y, r)
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rÐ r lexicographically ordered on B,E, Y
MaxÐ 0
Y CountÐ 1
MaxY CountÐ 0
for i “ 2, . . . , |r|
do
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if Iptiq ‰ Ipti´1q

then
$

’

’

’

&

’

’

’

%

if Y Count ąMaxY Count
then MaxÐMax` Y Count
else MaxÐMax`MaxY Count

Y CountÐ 1
MaxY CountÐ 0

else
$

’

’

’

’

’

&

’

’

’

’

’

%

if tirY s ‰ ti´1rY s
then
$

&

%

if MaxY Count ă Y Count
then MaxY CountÐ Y Count

Y CountÐ 1
else Y CountÐ Y Count` 1

if Y Count ąMaxY Count
then MaxÐMax` Y Count
else MaxÐMax`MaxY Count

return pMaxq

complexity of „-MaxConsistent problem when „ P tM,Ou. With two very similar
reductions to Max2Sat we prove that both the problems are NP-Complete.

5 Maximal Consistency for E, S, and F cases

In this section we deal with (the complexity of) problem „–MaxConsistent when
„ P tE,S, F u. These three cases are dealt with in the very same way and allow
us to introduce some basic concepts concerning the verification of approximate
functional dependencies in a gentle way.

Let us consider interval relation E. The key ingredient for the low-complexity
of such problem consists of considering a partition for r as r “ rx1,y1 Y . . .Yrxn,yn ,
where, for each 1 ď i ď n and each tuple t P ri, we have ptrBs, trEsq “ pxi, yiq. It
is easy to observe that, according to Definition 2, E-Consistency may be violated
only by pairs of tuples t, t1 inside the same partition ri with trY s ‰ t1rY s. Then it is
sufficient to select for each partition the value Mi “ maxyPDompY q |tt P ri : trY s “
yu|, and thus E-MaxConsistentpY, rq “ Σ1ďiďnMi. For the S and F cases it suffices
to build the partition taking into account values trBs and trEs, respectively, instead
of pair ptrBs, trEsq used for interval relation E. More precisely, let r “ rx1Y. . .Yrxn ,
where for each 1 ď i ď n and each tuple in t P ri, we have trBs “ xi, for interval
relation S. For interval relation F , r “ ry1 Y . . . Y ryn and for each 1 ď i ď n and
each tuple in t P ri, we have trEs “ yi.

The algorithm for E-MaxConsistent is described through the pseudocode of
Algorithm 5.1. The algorithm first sorts the input instance r lexicographically
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on attributes B,E, Y (for attributes B and E we make use of the order O, for
attribute Y any order will be suitable). Instance r keeps the result of such sorting
operation: its tuples t1, . . . , t|r| are sorted lexicographically on B,E, Y . Then, we
perform a linear parsing of r, collecting for each interval rb, es P Intervalsprq the
cardinality of a maximal subset of r, for which all its tuples t have Iptq “ rb, es and
feature the same value for attributes in Y . It is easy to see that the sum of all these
values represents the solution for problem E-MaxConsistentpY, rq. The algorithm
for problem S-MaxConsistentpY, rq (resp. F -MaxConsistentpY, rq) is similar. It
is enough to lexicographically sort r on B, Y (resp. E, Y ) and to replace the test
Iptiq ‰ Ipti´1q with tirBs ‰ ti´1rBs (resp. tirEs ‰ ti´1rEs) in Algorithm 5.1. We
conclude this section with the following result.

Theorem 4 For any temporal relation schema R “ RpU,B,Eq, any attribute Y P U ,

and any instance r of R, the complexity of problem „-MaxConsistentpY, rq with „ P

tE,S, F u is Op|r| ¨ log |r|q.

Proof Consider Algorithm 5.1, which solves the problem of E-MaxConsistentpY,

rq. The S and F cases are dealt with by algorithms that behave in a similar way,
leaving the complexity unchanged. The algorithm features one cycle that iterates
|r| ´ 1 times on r, where r is the lexicographically ordered counterpart of r on
attributes B,E, Y . Such an ordering requires Op|r| ¨ logp|r|qq steps and thus its
complexity dominates the linear complexity of the rest of the algorithm.

6 Maximal Consistency for the B case

In this section we deal with the complexity of problem B-MaxConsistency. Let
rB “ tt : t P r ^ Dt1 P r such that Iptq B Ipt1q _ Iptq B Ipt1qu be the set of
all tuples t in r such that there exists a tuple t1 for which either Iptq B Ipt1q or
Iptq B Ipt1q. Instance rB turns out to be crucial for verifying if the whole instance
r is B ´ Consistent as pointed out by the following lemma.

Lemma 1 For any temporal relation schema R “ RpU,B,Eq and any instance r of

R, we have that r is B-consistent with respect to an attribute Y P U if and only if for

each pair of tuples t, t1 P rB we have trY s “ t1rY s.

Proof We begin with the left to right direction. Suppose by contradiction that
there exists a pair of tuples t, t1 P rB with trY s ‰ t1rY s. Since r is B-consistent, we
have that neither Iptq B Ipt1q nor IptqB Ipt1q hold. Thus, the following cases may
arise (for a graphical account of them, refer to Figure 3):

– Iptq “ Ipt1q. By definition of rB we have that there exists a tuple t2 with
either Ipt2q B Iptq or Iptq B Ipt2q and for B-Consistency it holds t2rY s “ trY s.
However we have that either Ipt2q B Ipt1q or Ipt1q B Ipt2q, since Iptq “ Ipt1q.
Being t2rY s “ trY s ‰ t1rY s, it contradicts the B-Consistency assumption;

– Iptq S Ipt1q. By definition of rB we have that there exists a tuple t2 with either
Ipt2q B Iptq or Iptq B Ipt2q and from B-Consistency we know that t2rY s “
trY s holds. If Ipt2q B Iptq, we have that Ipt2q B Ipt1q and thus t2rY s ‰ trY s,
which contradicts the B-Consistency assumption. If Ipt1q B Ipt2q, then we have
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Algorithm 6.1: B-MaxConsistency(Y, r)
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MaxÐ SingleV alueMaxConsistencyBpY, rq
NoBeforeÐ NoBeforeMaxConsistencypY, rq
if Max ă NoBefore
then MaxÐ NoBefore

EndpointsÐ πBprq Y πEprq
PairsÐ tpb, eq ; b, e P Endpoints^ b ď eu
for each pb, eq P Pairs
do
$
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%

MaxBeforeV alueÐMaxBeforepY, r, b, eq
DuringV alueÐ DuringOrEqualpr, b, eq
if Max ăMaxBeforeV alue`DuringV alue
then
MaxÐMaxBeforeV alue`DuringV alue

return pMaxq

procedure SingleValueMaxConsistencyBpY, rq
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rÐ r lexicographically ordered on Y
MaxÐ 0
CurrentÐ 1
for i “ 2, . . . , |r|
do
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if tirY s ‰ ti´1rY s
then
$

&

%

if Current ąMax
then MaxÐ Current

CurrentÐ 1
else CurrentÐ Current` 1

if Current ąMax
then MaxÐ Current

return pMaxq

procedure MaxBeforepY, r, b, eq
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MaxÐ 0
Y valuesÐ πY prq
for each v P Y values
do
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CurrentÐ 0
for each t P r
do
$
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if

ˆ

trY s “ v ^ trBs ď e
^trEs ě b

˙

then
CurrentÐ Current` 1

if Max ă Current
then MaxÐ Current

return pMaxq

procedure DuringOrEqualpr, b, eq
$
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V alueÐ 0
for each t P r
do
"

if trBs ď b^ e ď trEs
then V alueÐ V alue` 1

return pV alueq

procedure
NoBeforeMaxConsistencypY, rq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

EndpointsÐ πBprq Y πEprq
MaxÐ 0
for each e P Endpoints
do
$
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CurrentÐ 0
for each t P r
do
$

&

%

if trBs ď e ď trEs
then
CurrentÐ Current` 1

if Max ă Count
then MaxÐ Current

return pMaxq

Iptq B Ipt2q and thus t2rY s ‰ trY s, which again contradicts the B-Consistency
assumption.
The F case is completely symmetric and thus omitted;

– Iptq D Ipt1q. As for the S case we have that there exists a tuple t2 with either
Ipt2q B Ipt1q or Ipt1q B Ipt2q and from B-Consistency we know that t2rY s “ t1rY s

holds. Since Ipt1q contains Iptq, we have that if Ipt2q B Ipt1q then Ipt2q B Iptq

and if Ipt1q B Ipt2q then Iptq B Ipt2q. Since t2rY s ‰ trY s, we have a contradiction
with respect to the B-Consistency assumption;

– Iptq M Ipt1q. Since both t and t1 belong to rB , there exists a pair of tuples t2

and t3, for which either Ipt2q B Iptq or Iptq B Ipt2q and either Ipt3q B Ipt1q or
Ipt1q B Ipt3q hold. From B-Consistency we have that both t2rY s “ trY s and
t3rY s “ t1rY s hold. Two main cases may arise: i) Ipt2q B Iptq or Ipt1q B Ipt3q;
ii) Iptq B Ipt2q and Ipt3q B Ipt1q. Suppose that Ipt2q B Iptq (the case where
Ipt1q B Ipt3q is symmetric and thus omitted). The case is depicted in Fig-
ure 3 M-case i). In such a case we have Ipt2q B Ipt1q and t2rY s ‰ t1rY s,
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Fig. 3 A graphical account of the five cases of Lemma 1.

which contradicts the B-Consistency assumption. Let us consider now the
case where Iptq B Ipt2q and Ipt3q B Ipt1q (depicted in Figure 3 M-case ii)).
Since Iptq M Ipt1q, we have Ipt3q B Ipt2q. Thus, since t3rY s ‰ t2rY s, the B-
Consistency assumption is contradicted;

– Iptq O Ipt1q (very similar to the M case). Since both t and t1 belong to rB , there
exists a pair of tuples t2 and t3 for which either Ipt2q B Iptq or Iptq B Ipt2q

and either Ipt3q B Ipt1q or Ipt1q B Ipt3q hold. From B-Consistency we have
both t2rY s “ trY s and t3rY s “ t1rY s. Two cases may arise: i) Ipt2q B Iptq or
Ipt1q B Ipt3q; ii) Iptq B Ipt2q and Ipt3q B Ipt1q. Suppose that Ipt2q B Iptq (the
case where Ipt1q B Ipt3q is symmetric and thus omitted). The case is depicted
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0 1 4 5 9 11 14

erB “ maxtPrB trBs

3 7 8 10 12 15 18 19 20

brB “ mintPrB trEs

brB erB

Fig. 4 An example of how interval rbrB , erB s is drawn from a set rB (for the sake of readability
the flow of time is reported on the top and on the bottom of the picture).

brB
erB

trBs ď brB ď erB ď trEs

brB ď trBs ď trEs ď erBtrBs ď brB ď trEs ď erB

trEs ă brB erB ď trBs ď trEs ď brB
^

rtrBs, trEss ‰ rbrB , erB s

trBs ą erB

tuples in rB tuples t with trY s ‰ vrB

Y B-consistent Y not B-consistent

Fig. 5 A graphical account of the constraints on intervals in a B-consistent instance.

in Figure 3 O-case i). In such a case we have Ipt2q B Ipt1q and t2rY s ‰ t1rY s,
which contradicts the B-Consistency assumption. Let us consider now the case
where Iptq B Ipt2q and Ipt3q B Ipt1q (depicted in Figure 3 O-case ii)). Since
Iptq O Ipt1q, we have Ipt3q B Ipt2q. Moreover, since t3rY s ‰ t2rY s, the B-
Consistency assumption is contradicted.

Since we have reached a contradiction in each case, we can consider the left to
right direction proved. For the right to left direction, suppose by contradiction
that for every pair of tuples t, t1 P rB we have trY s “ t1rY s and r is not B-
Consistent. This means that there exists two tuples t, t1 P r with either Iptq B Ipt1q

or Ipt1q B Iptq and trY s ‰ t1rY s. By the definition of rB , we have that t, t1 P rB and
thus trY s “ t1rY s (contradiction).

Given a B-consistent instance r w.r.t. Y , if rB ‰ H, we define vrB as the
value vrB “ trY s for some t P rB (this definition is correct since such a value is
unique for Lemma 1). Moreover, we define brB “ min

tPrB
trEs and erB “ max

tPrB
trBs. In

Figure 4 we provide a graphical account of interval rbrB , erB s. Lemma 1 is used to
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proved the following result which basically constrains the arrangement of intervals
of B-consistent instances.

Lemma 2 For every temporal relation schema R “ RpU,B,Eq and every instance r

of R, if rB is monochromatic and rB ‰ H, then for every tuple t P r with trY s ‰ vrB
we have trBs ď brB ď erB ď trEs.

Proof Suppose by contradiction that there exists a tuple t P r with trY s ‰ vrB and
either trBs ą brB or erB ą trEs. Since brB “ min

tPrB
trEs by definition, we have that

there exists a tuple t1 P rB with t1rEs “ brB . Thus we have Ipt1q B Iptq, which means
that r is not B-Consistent. This is a contradiction since rB is monochromatic and,
for Lemma 1, we have that r is B-Consistent. Analogously, we have that erB “

max
tPrB

trBs by definition and thus there exists a tuple t1 P rB with t1rBs “ erB . We

have Iptq B Ipt1q, which means that r is not B-Consistent. This is a contradiction,
since rB is monochromatic and, for Lemma 1, we have that r is B-Consistent.

Lemma 2 gives the following property on B-consistent instances w.r.t. Y . If
rB ‰ H, then every tuple t P r with trY s ‰ vrB must satisfy either rbrB , erB s D Iptq,
or rbrB , erB s S Iptq, or rbrB , erB s F Iptq, or Iptq “ rbrB , erB s. Figure 5 provides a
graphical account of a set of intervals associated with tuples that either satisfy
(dashed intervals) or violate (dotted intervals) conditions of Lemma 2.

Algorithm 6.1 makes use of Lemma 2 to solve problem B-MaxConsistent in
polynomial time. It takes as input an instance r and an atemporal attribute Y , and
selects the maximum value among three values, which represent an equal number
of cases. The first value is calculated by procedure SingleV alueMaxConsistency,
which basically returns the maximum cardinality among the subsets of r that
share the same value for attribute Y . The second value is calculated by procedure
NoBeforeMaxConsistency: it returns the maximum cardinality among the subsets
of r that do not feature two or more tuples t, t1 with Iptq B Ipt1q. Then, the main
procedure considers every pair of values pb, eq with b ď e and b, e P πBprq Y πEprq.
First, by means of procedure MaxBefore, it computes the maximum cardinality
of a subset r1 P r, such that, for each tuple t P r1, it holds b ď trBs ď trEs ď e and
for each pair of tuples t, t1 P r1 it holds trY s “ t1rY s. Second, by means of procedure
DuringOrEqual, it computes how many tuples t, regardless of value trY s, satisfy
trBs ď b ď e ď trEs. The sum of these two values is chosen and its value is com-
pared with the values obtained from the previous two cases: then, the maximum
over such values is returned. It is easy to see that the complexity function of the
loop in the main procedure asymptotically dominates the complexities of the two
procedures MaxBefore and DuringOrEqual. In particular, the main procedure
iterates the function MaxBefore, which is quadratic, a quadratic number of times
(the worst case for the cardinality of the set Pairs). The resulting (data) complex-
ity of procedure B-MaxConsistency is Op|r|4q. This analysis basically proves the
following result.

Theorem 5 For every temporal relation schema R “ RpU,B,Eq, every attribute Y P

U , and every instance r of R, the complexity of problem B-MaxConsistentpY, rq is

Op|r|4q.
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u11 v11 7 14
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Fig. 6 A spatial representation of (D-clusters of) intervals.

7 Maximal Consistency for the D case

In this section we deal with the complexity of problem D-MaxConsistency. In
order to make the explanation easier, let us introduce a spatial representation of
intervals called compass structure [30]. Basically intervals rb, es are interpreted as
points in the euclidean plane and, since b ď e, all points/intervals belong to the
half plane y ě x. Figure 6 depicts an example of compass structure. It is easy to
see that relations between intervals can be directly translated into spatial relations
between their respective representations as points in the compass structure. For
our purposes we need only to describe how interval relation D is mapped into the
compass structure.

As an example, let us consider tuple t6 in Figure 6. We have that, if a tuple t
features an interval Iptq such that Iptq D Ipt6q, the corresponding point of t must
belong to the shaded triangle below Ipt6q in the compass structure. On the other
hand, if a tuple t features an interval Iptq such that Ipt6q D Iptq, the corresponding
point of t must belong to the shaded rectangle above Ipt6q in the compass structure.
Given a temporal relation schema R “ RpU,B,Eq and an instance r of it, we define

the binary relation
D
Ñ: rˆ r among tuples of r. For every pair of tuples t, t1 P r we
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Fig. 7 An example of relation
D˚
Ñ .

have t
D
Ñ t1 if and only if either Iptq D Ipt1q or Ipt1q D Iptq. It is easy to see that

relation
D
Ñ is symmetric.

Let
D˚
Ñ be the transitive and reflexive closure of relation

D
Ñ. We have that

D˚
Ñ

is an equivalence relation over r. Figure 7 depicts an example of relation
D˚
Ñ . It

is easy to observe that we may have Iptq
D˚
Ñ Ipt1q, when neither Iptq D Ipt1q nor

Ipt1q D Iptq hold. For instance, it is the case of tuples t1 and t3 in Figure 7. In such

example, the existence of t2 determines that t1
D˚
Ñ t3, since t1

D
Ñ t2

D
Ñ t3. Let us

now consider set tt6, t7, t8u, containing only tuples which share the same interval.

Clearly, we have that ti
D
Ñ tj does not hold for every i, j P t6, 7, 8u. As a matter of

fact, t6
D˚
Ñ t7, t7

D˚
Ñ t8, and t8

D˚
Ñ t6 hold thanks to the reflexivity of relation

D˚
Ñ .

A subset r1 Ď r is a D-closed set of r, if for every couple of tuples t, t1 P r1, we

have t
D˚
Ñ t1. Given a temporal relation schema R “ RpU,B,Eq and an instance

r of it, a subset rc Ď r is a D-cluster of r if it is a maximal non-empty D-closed
set of r. In other words, a D-cluster of r is an equivalence class with respect to

relation
D˚
Ñ . Given an instance r, let Cr “ tr1 : r1 Ď r and r1 is a D-clusteru be

the set of all the D-clusters in r. For example, in Figure 6 we have three clusters
rc1 “ tt1, . . . , t5u, rc2 “ tt6, t7, t8u, and rc3 “ tt9, . . . , t12u, respectively. We would
like to point out the advantage of the compass representation (Figure 6 below)
with respect to the interval one (Figure 6 above). In fact, it turns out difficult
to see immediately D-clusters drawing them in the standard way, because it may
happen that many intervals belonging to different D-clusters overlap. If we look
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at the compass representation, things appear clearer. In compass structures, D-
clusters are represented either by boxes or by isolated points, which are pairwise
disjoint, as stated more formally by the following result.

Lemma 3 For any temporal relation schema R “ RpU,B,Eq and any instance r of

it, the set Cr is a partition of r.

Proof Directly follows from the fact that
D˚
Ñ is an equivalence relation over r and

any D-cluster represents an equivalence class of
D˚
Ñ .

Given a non empty D-closed set r1 of r, we define the following four elements
drawn from πBprq Y πEprq: bminpr

c
q “ min

tPrc
trBs, eminpr

c
q “ min

tPrc
trEs, bmaxpr

c
q “

max
tPrc

trBs, and emaxpr
c
q “ max

tPrc
trEs.

Since D-clusters are specializations of D-closed sets, the definitions of bminpr
c
q,

eminpr
c
q, bmaxpr

c
q and emaxpr

c
q hold for them as well. Once more, it is useful to

look at the compass representation of intervals to have a better intuition of these
four points. Basically, points pbminpr

c
q, eminpr

c
qq and pbmaxpr

c
q, emaxpr

c
qq are

the low left corner and the top right corner of the box representing D-cluster rc, re-
spectively. In Figure 6 we have pbminpr

c
1q, eminpr

c
1qq “ p1, 6q, pbmaxpr

c
1q, emaxpr

c
1qq “

p4, 9q, pbminpr
c
2q, eminpr

c
2qq “ pbmaxpr

c
2q, emaxpr

c
2qq “ p5, 11q (clearly for isolated

points the two corners coincide), pbminpr
c
3q, eminpr

c
3qq “ p7, 12q, and pbmaxpr

c
3q,

emaxpr
c
3qq “ p9, 15q. The following result provides a sufficient and necessary prop-

erty for determining whether two non-empty D-closed sets belong or not to the
same D-cluster.

Lemma 4 For any temporal relation schema R “ RpU,B,Eq and any instance r of

it, given two non-empty D-closed sets r1 and r2, if there exist two intervals rb1, e1s and

rb2, e2s with b1 P tbminpr
1
q, bmaxpr

1
qu, e1 P teminpr

1
q, emaxpr

1
qu, b2 P tbminpr

2
q, bmaxp

r2qu and e2 P teminpr
2
q, emaxpr

2
qu, such that rb1, e1s D rb2, e2s or rb2, e2s D rb1, e1s,

then there exists a cluster rc of r with pr1 Y r2q Ď rc.

Proof We prove one among the 16 possible cases (Figure 8). The remaining 15
cases may be proved in an analogous way. In order to prove the claim, it suffices

to find two tuples t P r1 and t1 P r2 such that t
D˚
Ñ t1. Then, the

D˚
Ñ -maximality

property of D-cluster will do the rest. Let us consider the case where rb2, e2s “
rbmaxpr

2
q, eminpr

2
qs and rb1, e1s “ rbminpr

1
q, eminpr

1
qs (case 3 in Figure 8). The other

cases may be dealt with similarly. By hypothesis, we have either rb1, e1s D rb2, e2s

or rb2, e2s D rb1, e1s. Suppose that rb1, e1s D rb2, e2s (the other case is completely
symmetric). From the definitions of bmaxprq and bminprq we have that there exist
two tuples t P r2 and t1 P r1 for which Iptq “ rbt, eminpr

2
qs for some bt ď bmaxpr

2
q,

Ipt1q “ rbt1 , eminpr
1
qs for some bt1 ě bminpr

1
q. From rb1, e1s D rb2, e2s we have bt ď

bmaxpr
2
q ă bminpr

1
q ď bt1 ď eminpr

1
q ă eminpr

2
q and thus Ipt1q D Iptq.

A D-cluster rc of r is interval-uniform iff pbmaxpr
c
q, emaxp rcqq “ pbminpr

c
q, eminp

rcqq. It is easy to see that in the compass representation interval-uniform D-clusters
are represented only by isolated points. In the example of Figure 6, we have that
cluster rc2 “ tt6, t7, t8u is interval-uniform. By means of the four elements bmin,
emin, bmax, and emax of O, we give a relation ďc over Cr. For every pair rc1, r

c
2 P Cr,

we have that rc1 ăc rc2 if and only if rc1 ‰ rc2, bmaxpr
c
1q ď bminpr

c
2q and emaxpr

c
1q ď

eminpr
c
2q.
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Fig. 8 The sixteen cases of Lemma 3.
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(i) bmaxpr
c
1qąbminpr

c
2q ^ bmaxpr

c
2qąbminpr

c
1q

bminpr
c
1q bmaxpr

c
1q

(ii) bmaxpr
c
1qąbminpr

c
2q^emaxpr

c
2qąeminpr

c
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eminpr
c
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c
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c
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c
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Fig. 9 An example of the four cases of Lemma 5.

Lemma 5 For any temporal relation schema R “ RpU,B,Eq and any instance r of

it, relation ăc is a total order relation over Cr.

Proof Suppose by contradiction that there exist two clusters rc1, r
c
2 P Cr with

rc1 ‰ rc2, such that neither rc1 ăc rc2 nor rc2 ăc rc1 hold. We have four cases to
consider: (i) bmaxpr

c
1q ą bminpr

c
2q and bmaxpr

c
2q ą bminpr

c
1q; (ii) bmaxpr

c
1q ą bminpr

c
2q

and emaxpr
c
2q ą eminpr

c
1q; (iii) emaxpr

c
1q ą eminpr

c
2q and bmaxpr

c
2q ą bminpr

c
1q; (iv)

emaxpr
c
1q ą eminpr

c
2q and emaxpr

c
2q ą eminpr

c
1q. Each case is depicted in Figure 9:

cluster rc1 is denoted by thick black lines and has fixed position. Cluster rc2 is drawn
in dashed, dotted and thinner lines and may assume any size or position under the
constraint that both their dashed/dotted lines maintain the same relative position
with respect to the long dashed/dotted line departing from rc1 . As an example,
consider case (i) in Figure 9. We can move and resize cluster rc2 as we want, as long
as the dashed line stays on the left of the long dashed line labelled with bmaxpr

c
1q

line, and the dotted line stays on the right of the long dotted line labelled with
bminpr

c
1q.

We shall show only the contradiction for case (i), as for the remaining cases con-
tradiction may be achieved in a similar way. If bmaxpr

c
1q ą bminpr

c
2q and bmaxpr

c
2q ą

bminpr
c
1q hold, then we may have two sub-cases.
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i.a) bminpr
c
1q ă bmaxpr

c
2q ă bmaxpr

c
1q. If eminpr

c
2q ă emaxpr

c
1q, we have rbmaxpr

c
2q,

eminpr
c
2qs Drbmaxpr

c
1q, emaxp rc1qs; otherwise, we have rbmaxpr

c
1q, eminp rc1qs D

rbmaxpr
c
2q, eminp rc2qs. In both cases Lemma 4 is applicable and we have that

rc1 “ rc2 (contradiction);
i.b) bminpr

c
1q ă bmaxpr

c
1q ď bmaxpr

c
2q. Since bmaxpr

c
1q ą bminpr

c
2q, we may have

bminpr
c
1q ď bminpr

c
2q and thus either rbmaxpr2q, eminpr2qs D rbminpr1q, emaxpr1qs

or rbmaxpr1q, eminpr1qs D rbminp r2q, emaxpr2qs holds. On the other hand, we
may have bminpr

c
2q ă bminpr

c
1q and thus either rbminpr1q, eminpr1qs D rbminp

r2q, emaxpr2qs or rbmaxpr2q, eminpr2qs D rbminp r1q, emaxpr1qs hold. In both cases
Lemma 4 is applicable and we have that rc1 “ rc2 (contradiction).

In Figure 6 we have that rc1 ăc rc2 ăc rc3. The following result connects D-
consistent instances r with a property of clusters in Cr.

Theorem 6 For any temporal relation schema R “ RpU,B,Eq, any attribute Y P U

and any instance r of R, r is D-consistent w.r.t. Y if and only if for each rc P Cr,

either rc is interval-uniform or for all pairs of tuples t, t1 P rc it holds trY s “ t1rY s.

Proof We prove the left-to-right direction by contradiction. We have that there
exists a cluster rc which is not interval uniform and there exists two tuples t, t1 P rc,
for which trY s ‰ t1rY s. Since both t and t1 belong to the same cluster, we have

t
D˚
Ñ t1 and we prove by induction on the length of the chain t

D
Ñ t1

D
Ñ . . .

D
Ñ tn

D
Ñ t1

that a contradiction always arises. If n “ 0 we have that Iptq “ Ipt1q. Since rc is not
interval-uniform, there exists a tuple t2, for which either Ipt2q D Iptq or Iptq D Ipt2q

hold. Since r is D-consistent, we have t2rY s “ trY s. Since either Ipt2q D Ipt1q or
Ipt1q D Ipt2q hold and t2rY s ‰ t1rY s, it contradicts the D-consistency hypothesis.

If n ą 0, let us consider t
D
Ñ t1. We may have either Ipt1q D Iptq or Iptq D Ipt1q.

In both cases the D-consistency condition requires trY s “ t1rY s. Thus, we have

a chain t1
D
Ñ . . .

D
Ñ tn

D
Ñ t1 with t1rY s ‰ t1rY s and, by inductive hypothesis, a

contradiction arises for chain of length less than n. The right-to-left direction is
straightforward. Let us take any pair of tuples t, t1 P r such that either Iptq D Ipt1q

or Ipt1q D Iptq. We have that there exists a D-cluster rc, such that t, t1 P rc and rc

is not interval-uniform. Thus, by hypothesis we have trY s “ t1rY s. We have that r

is D-consistent with respect to Y .

Theorem 6 allows us to define, only for all non interval-uniform clusters rc

in a D-consistent instance r, the value vY pr
c
q, such that for every tuple in rc

we have trY s “ vY pr
c
q. Value vY pr

c
q is well defined if we assume that instance r

is D-consistent and cluster rc is not interval-uniform. Let us consider instance r

represented in Figure 6. Theorem 6 says that r is D-consistent w.r.t. Y if and only
if v1 “ . . . “ v5 and v9 “ . . . “ v12. It is worth to notice that D-consistency does
not impose any constraint on cluster rc2, since it is interval-uniform. It implies that
there exists a unique interval associated with tuples in rc2 and we have that their
value for attribute Y may differ.

Given a D-consistent instance r of some temporal relation schema R “ RpU,B,

Eq and a tuple t on attributes U,B, and E, we say that t is covered in r with respect
to Y if there exists a cluster rc Ď r, for which one of the following conditions
holds: (i) rc is interval-uniform, bminpr

c
q “ trBs and eminpr

c
q “ trEs; (ii) rc is

not interval-uniform, bminpr
c
q ď trBs ď bmaxpr

c
q, eminpr

c
q ď trEs ď emaxpr

c
q, and
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vY pr
c
q “ trY s. In the example in Figure 6 we have that tuple t3 is covered w.r.t.

Y by every instance containing r1 “ tt1, t2, t4u assuming v1 “ . . . “ v4.

Lemma 6 For any temporal relation schema R “ RpU,B,Eq, any (singleton) subset

Y Ď U , any D-consistent instance r of R w.r.t. Y , and any tuple t on attributes U,B,

and E, we have that if t is covered in r w.r.t. Y then r1 “ rY ttu is D-consistent.

Proof Since t is covered, we may have two cases. If there exists a D-cluster rc in
r that is interval-uniform and bminpr

c
q “ trBs and eminpr

c
q “ trEs, we have that

for each tuple t1 P r neither Iptq D Ipt1q nor Ipt1q D Iptq holds and thus r Y ttu

is still D-consistent. If there exists a not interval-uniform D-cluster rc in r with
bminpr

c
q ď trBs ď bmaxpr

c
q, eminpr

c
q ď trEs ď emaxpr

c
q, and vY pr

c
q “ trY s, then

from Lemma 4 we have that ttu Y rc is a D-cluster in r Y ttu. By definition of
D-cluster we have that for each t1 P r, if either Iptq D Ipt1q or Ipt1q D Iptq, then
t1 P rc. Since r is D-consistent, we have that t1rY s “ vY pr

c
q and, by definition of

covered tuple, trY s “ vY pr
c
q. Thus, we can conclude that rY ttu is D-Consistent.

As a consequence of the above lemma we have that D-consistency is preserved
under the insertion of covered tuples in r.

Corollary 1 For any temporal relation schema R “ RpU,B,Eq, any (singleton) sub-

set Y Ď U , any D-consistent instance r of R w.r.t. Y , any set of tuples r1 on attributes

U,B and E, which are covered in r w.r.t. Y , we have that for any tuple t1, if it is covered

in r w.r.t. Y , then t1 is covered w.r.t. Y in r2 “ rY r1 and r2 is still D-Consistent.

Basically Lemma 6 says that, given a D-consistent instance r, any covered tuple
t in r can be safely added to r, preserving D-consistency. In addition, Lemma 1 says
that the property of being covered is preserved under the operation of introducing
covered tuples in D-consistent instances.

Given an instance r and a D-closed set r Ď r, we say that r is a candidate

D-cluster w.r.t. Y for r, if r is D-consistent w.r.t. Y and any tuple t P rzr is not
covered w.r.t. Y in r. The following result provides a polynomial bound on the
number of candidate D-clusters.

Lemma 7 For any temporal relation schema R “ RpU,B,Eq, any (singleton) subset

Y Ď U , and any instance r of R, it holds |tr Ď r : r is a candidate D-cluster w.r.t. Y

u| ď |r|5q.

Proof Suppose by contradiction that there exist two distinct candidate D-clusters
r1, r2 Ď r, such that r1 ‰ r2,bminpr

1
q “ bminpr

2
q, eminpr

1
q “ eminpr

2
q, bmaxpr

1
q “

bmaxpr
2
q, emaxpr

1
q “ emaxpr

2
q and vY pr

1
q “ vY pr

2
q, if both of them are not interval-

uniform.
We have that three cases may arise. Suppose that r1 is interval-uniform and r2

is not interval-uniform (the inverse case is symmetric and thus omitted). Then,
we have by definition of interval-uniform that bminpr

1
q “ bmaxpr

1
q and eminpr

1
q “

emaxpr
1
q and, since r2 is not interval-uniform, we have bminpr

2
q ‰ bmaxpr

2
q or

eminpr
2
q ‰ emaxpr

2
q. This leads immediately to a contradiction. For the second

case we have that both r1 and r2 are interval-uniform. Thus, since r1 ‰ r2, we
can assume that there exists a tuple t P r2zr1 (again the inverse case is symmetric
and thus omitted). Since r2 Ď r, we have that t P r. Thus, t is covered in r1 since
trBs “ bminpr

1
q “ bmaxpr

1
q “ bminpr

2
q “ bmaxpr

2
q and trEs “ eminpr

1
q “ emaxpr

1
q “
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eminpr
2
q “ emaxpr

2
q hold, by definition of interval-uniformity. We have that r1 is

not a candidate D-Cluster (contradiction).
For the last case, we have that both r1 and r2 are not interval-uniform. Then,
since r1 ‰ r2, we can assume that there exists a tuple t P r2zr1 (again the inverse
case is symmetric and thus omitted). Since t P r2 and by hypothesis we have
that bminpr

1
q “ bminpr

2
q ď trBs ď bmaxpr

2
q “ bmaxpr

1
q, eminpr

1
q “ eminpr

2
q ď trEs ď

emaxpr
2
q “ emaxpr

1
q and trY s “ vY pr

2
q “ vY pr

1
q implying that t is covered in r1 and

thus r1 is not a candidate D-Cluster (contradiction). Thus, we have that a candi-
date D-Cluster r may be identified uniquely by the tuple pbminprq, eminprq, bmaxprq,

emaxprq, vY prqq if either bminprq ‰ bmaxprq or eminprq ‰ emaxprq (r is not interval-
uniform) and by pbminprq, eminprq, bmaxprq, otherwise (r is interval-uniform). Since
every element tbminprq, eminprq, bmaxprq, emaxprq, vY prqu may assume at most |r| dif-
ferent values, we have that the number of candidate D-Clusters w.r.t. Y in an
instance r is roughly bounded by |r|5.

The idea behind the proof is that a candidate D-cluster may be identified
uniquely by values bminprq, eminprq, bmaxprq, emaxprq and vY prq, if r is not interval-
uniform. In the other case, r is interval-uniform and thus it suffices to take only
the pair trBs, trEs for any tuple t P r to identify it (all the tuples in r share the
same interval by definition). Such a fixed representation of candidate D-cluters
leads to the following corollary.

Corollary 2 For every temporal relation schema R “ RpU,B,Eq, every subset Y Ď

U , and every instance r of R, let n be the solution of problem D-MaxConsistent on

r w.r.t. Y : for every D-consistent subset r1 Ď r with |r1| “ n, we have that every

D-cluster rc of r1 is a candidate D-cluster for r.

Corollary 2 restricts the number of D-consistent instances r1 Ď r to be consid-
ered in order to solve D-MaxConsistent. Let r1 be a D-consistent subset of r, for
which |r1| is the solution of problem D-MaxConsistent on r w.r.t. Y . Corollary 2
says that every D-cluster of r1 must be a candidate D-cluster for r w.r.t. Y . More-
over, from Lemma 5 we have that D-clusters of r1 must be totally ordered with
respect to relation ăc and thus two incomparable candidate D-clusters cannot
both belong to r1. The previous results guarantee the soundness and complete-
ness of Algorithm 7.1. The algorithm builds a weighted DAG, whose nodes are all
candidate D-clusters w.r.t. Y , plus two nodes, a source node s and a sink node f .

The edges of such a DAG represent relation ăc; more formally, for every pair
r, r1 of candidate D-clusters, we have edge pr, r1q in the DAG if and only if r ăc r1.
Moreover, there is an edge from node s (resp. to node f) to (resp. from) each candi-
date D-cluster r. For every edge pr, r1q, its weight is calculated as the number of tu-
ples t R rYr1, for which Iptq is “between” pbmaxprq, emaxprqq and pbmaxpr

1
q, emaxpr

1
qq,

paying particular attention to count every tuple once.
It is easy to see that every path from s to f represents a D-consistent subset of

r made by candidate D-clusters and, on the other side, any D-consistent subset of
r made by candidate D-clusters may be represented as a path from s to f in the
DAG. Moreover, the weight of the overall path is the number of tuples to delete
from r, in order to obtain r1 (i.e |rzr1|). In conclusion, finding the value w of the
minimum weighted path from s to f using any well known algorithm on weighted
DAGs leads to the solution of D-MaxConsistency w.r.t. Y on r, which is |r|´w. An
example of such a weighted DAG for a small instance r is shown in Figure 10: for
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Algorithm 7.1: D-MaxConsistency(Y, r)

EndpointsÐ πBprq Y πEprq

BoundsÐ
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’

’

’

%

pbmin, emin, bmax, emaxq :
bmin, emin, bmax, emax P Endpoints^
bmin ď emin ^ bmax ď emax^

ppbmin, eminq “ pbmax, emaxq_

pbmin, eminq ă pbmax, emaxqq
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/

/
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ˆ

pbmin, eminq “ pbmax, emaxq^

Dt P r s.t. trBs “ bmin ^ trEs “ emin

˙

then
"

rc Ð tt P r : trBs “ bmin ^ trEs “ eminu

ClustersÐ ClustersY trcu
else
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for each v P πY prq
do
$
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¨

˚

˚

˚

˚

˚

˝

Dt1, t2, t3, t4 P r s.t. ^
t1rBs “ bmin ^ t1rEs ď emax^

t2rEs “ emin ^ t2rBs ě bmin^

t3rBs “ bmax ^ t3rEs ď emax^

t4rEs “ emax ^ t4rBs ě bmin^

t1rY s “ t2rY s “ t3rY s “ t4rY s “ v

˛

‹

‹
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‹

‚
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$

’

’

&

’

’

%

rc Ð

$

&

%

t P r :
bmin ď trBs ď bmax^

emax ď trEs ď emax

^trY s “ v

,

.

-

ClustersÐ ClustersY trcu
V Ð ClustersY ts, fu
Es Ð tps, rcq : rc P Clustersu
Et Ð tprc, fq : rc P Clustersu
Ec Ð tprc1, r

c
2q : rc1, r

c
2 P Clusters^ rc1 ă rc2u

for each rc P Clusters
do
$
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’

%
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ˇ
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ˇ

"
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MinÐ SingleSourceSP pV,Es Y Ef Y Ec,W, sq
return p|r| ´Minq
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the sake of readability we omitted transitive closure edges (edges pr, r1q for which
exists r2 such that edges pr, r2q and pr2, r1q belong to the DAG). Moreover in Figure
11 we provide the DAGs for the motivational scenario proposed in Section 3. There
are several improvements that can be done to reduce the asymptotic complexity
of Algorithm 7.1, but here we are interested in addressing the complexity class of
D-MaxConsistent which is P -time. For instance, it can be proved that the way in
which weights are assigned in the DAG forbids any transitive closure edge to be
part of a minimum weighted path from s to f and thus such edges can be removed
from the DAG. On the basis of the previous result we can claim the soundness
and completeness of Algorithm 7.1 and give the following result.

Theorem 7 For every temporal relation schema R “ RpU,B,Eq, every (singleton)

subset Y Ď U , and every instance r of R, the complexity of problem D-MaxConsistentpY, rq

is Op|r|10q.

The proof is simple, it suffices to observe how Algorithm 7.1 works. Both its
soundness and completeness rely on the results given in this section. In particular,
according to Lemma 5, we have that the clusters must be totally ordered in the final
solution. Moreover we have from Lemma 7 that the number of candidate clusters
is bounded by Op|r|5q. The idea behind Algorithm 7.1 is to retrieve the solution
of D-MaxConsistentpY, rq as a shortest path between two special nodes, a source
s and a sink f respectively, in a weighted DAG. The other nodes of such DAG are
all the possible Op|r|5q candidate clusters (Lemma 5). There exists an edge from r

to r1 if and only if we have r ă r1. The weight of such edge is exactly the number of
tuples that need to be deleted in order to make r and r1 two consecutive clusters.
There exists an edge from the source node s to each cluster r and its associated
weight is the number of tuples that need to be deleted in order to make r the first
cluster w.r.t. the order ă. In a completely symmetric way, there exists an edge
from each cluster r to the sink node f and its associated weight is the number of
tuples that need to be deleted in order to make r the last cluster w.r.t. the order
ă. It is easy to see that each path from s to f represents a D-consistent subset
r1 of r. The weight of such path represents the number of tuples that has to be
deleted from r in order to obtain r1 (i.e., |rzr1|). We can conclude that the result
can be obtained via any shortest path procedure for DAGs, some of them have
complexity OpV ` Eq where V is the number of nodes and E is the number of
edges in the input DAG. Finally the complexity is Op|r|10q.

8 Maximal Consistency for M and O cases

Complexity analysis for M and O cases is done via a reduction from the classical
NP -Complete problem Max2Sat. Let us now introduce the related basic concepts
and notations. A literal l is a propositional variable p or its negation  p, and a
clause Cl is a set of literals. Given a set of clauses CL, the set of all propositional
variables in CL is denoted by proppCLq “ tp : DCl P CLpp P Cl _  p P Clqu. An
assignment V is a set of literals such that for every propositional variable p we
have t p, pu Ę V. An assignment V satisfies a set of clauses CL if and only if for
each Cl P CL we have that V X Cl ‰ H.
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Fig. 10 An example of the weighted DAG for solving D-MaxConsistency on an instance r
(edges with weight equal to zero are brighter and without label).

Problem 5 Given a set of clauses CL “ tCl0, . . . , Cln´1u, each of them containing
exactly two literals, problem Max2SatpCLq consists of determining the maximum
natural number k ď n, for which there exists a subset CL1 Ď CL with |CL1| “ k and
there exists an assignment V that satisfies CL1.

This formulation of the problem is slightly different from the original one [17], but
it is not difficult to show that it is equivalent from the complexity point of view2.

2 This is the formulation of the problem in its evaluation version and the same assumption
made in Section 2.2 for „-MaxConsistent holds for Max2Sat too.
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Fig. 11 The two DAGs built on the relation PatTherapies of Figure 2 for the ITFD PatIdÑD

Phys. The DAG on the left is built on the tuples with PatId “ 1 while the one on the right
on the tuple with PatId “ 2.

Theorem 8 Max2Sat is NP -Complete

In the following we provide two closely related polynomial time reductions from
the problem Max2Sat to the problems M-MaxConsistent and O-MaxConsistent

respectively. By means of such reductions and Theorem 8 we can conclude that
M-MaxConsistent and O-MaxConsistent are NP -Complete problems as well.

Let CL “ tCl0, . . . , Cln´1u be a set of clauses. First we fix an arbitrary total
order ăp over ProppCLq. We assume without loss of generality that for every
propositional variable p we have that the clause containing both p and  p does
not belong to CL, otherwise it suffices to remove such a clause from CL. Under the
previous assumption together with the fact that all clauses in CL feature exactly
two distinct literals, for every clause Clj P CL with 1 ď j ď n we can identify
pi ăp pi as two propositional variables which appear in Clj . We define set SatpCljq
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Fig. 12 Encoding in M -MaxConsistent (right) and O-MaxConsistent (left) for the Max2Sat
problem with input formula pp_ qq^ p p_ qq^ pq_ rq^ pq_ rq (the different time flows
are reported on their relative sides in order to improve readability).

as the set of all assignments that may contain only literals pi, pi, pi and  pi, which
satisfy clause Clj : SatpCljq “ tp˚1, ˚2q |˚1 P tpi, piu, ˚2 P tpi, piu s.t. t˚1, ˚2u X
Clj ‰ Hu. It is easy to see that for every j we have |SatpCljq| “ 3. Given a
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clause Clj , we denote Clj |1 the first propositional letter of Clj and Clj |2 the
second one, regardless if they appear positive or negated in Clj (e.g., if Clj “
t p1, p4u we have Clj |1 “ p1 and Clj |2 “ p4). We build an instance rCL of
temporal relational schema R “ ptY u, B,Eq where the domain of Y consists of three
elements DompY q “ tJ,K, cu. The value J labels tuples associated to assignments
to true for each variable in ProppCLq. The value K labels tuples associated to
assignments to false for each variable in ProppCLq. Moreover the value c means
clause and labels tuples corresponding to truth assignments for the clauses in CL.
We associate 4 ¨n intervals IJi0 , . . . , I

J
i2n´1

and IKi0 , . . . , I
K
i2n´1

with each propositional
letter pi P ProppCLq, with i “ 0, . . . ,m´1. For each j “ 0, . . . , 2n´1 such intervals
are defined as follows:

(M-case IJ) IJij “ r4in` i` j , 4in` i` 2ns ;

(M-case IK) IKij “ r4in` i` 2n , 4in` i` 2n` j ` 1s;

(O-case IJ) IJij “ r10in` j , 10in` 7n´ j ´ 1s;

(O-case IK) IKij “ r10in` j ` 3n , 10in` 10n´ j ´ 1s.

We associate 4 intervals defined as follows with each clause Clj with j “ 0, . . . , n´1.
Let pi, pi, with pi ăp pi, be the two propositional letters that appear in Clj . We
define 4 intervals for each interval relation (i.e., 4 for the M relation and 4 for the
O relation) related to the possible four assignment of pi and pi:

(M-case IKK) for pi “ K and pi “ K we define IKKClj “ r4in` i` 2n , 4in` i` 2js;

(M-case IKJ) for pi “ K and pi “ J we define IKJClj “ r4in` i` 2n` 1 , 4in` i`
2n` 1s;

(M-case IJK) for pi “ J and pi “ K we define IJKClj “ r4in` i` 2j ` 2n` 1 , 4in`

i` 2j ` 1s;
(M-case IJJ) for pi “ J and pi “ J we define IJJClj “ r4in` i` 2j ` 2n` 2 , 4in`

i` 2n` 1s;
(O-case IKK) for pi “ K and pi “ K we define IKKClj “ r10in`j`2n , 10in`j`2ns;

(O-case IKJ) for pi “ K and pi “ J we define IKJClj “ r10in`j`2n , 10in`j`7ns;

(O-case IJK) for pi “ J and pi “ K we define IJKClj “ r10in`j`7n , 10in`j`2ns;

(O-case IJJ) for pi “ J and pi “ J we define IJJClj “ r10in`j`7n , 10in`j`7ns.

Now we are ready to define the instance rCL of R as the set of tuples:
n´1
Ť

i“0

m´1
Ť

j“0

tt : trY s “ J ^ rtrBs, trEss “ IJij u Y

n´1
Ť

i“0

m´1
Ť

j“0

tt | trY s “ K ^ rtrBs, trEss “ IKij u Y

j´1
Ť

j“0

Ť

p˚1,˚2qPSatpCljq

tt | trY s “ c^ rtrBs, trEss “ I˚1˚2

Clj
u.

It is worth to notice that intervals of kind I˚1˚2

j belong to instance r if and only
if p˚1, ˚2q represents an assignment that satisfies clause Clj , for each clause we
have exactly three tuples in rCL with value c for attribute Y . An example of
the reduction for both the M and O cases on a very small set of clauses is
depicted in Figure 12. In Figure 12 we represent both the M-MaxConsistent

(right) and the O-MaxConsistent (left) instances created for the Max2Sat instance
ψ “ pp_ qq^ p p_ qq^ pq_ rq^ pq_ rq. The flow of time goes from the top to
the bottom of the picture and we may notice how the O-MaxConsistent instance
on the left requires a larger amount of time points than the M-MaxConsistent
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instance on the right.

The intervals are represented according to the value of attribute Y as follows:
i) full black intervals are associated with tuples t having trY s “ J; ii) dashed
black intervals are associated with tuples t having trY s “ K; iii) lighter intervals
are associated with tuples t having trY s “ c. Let us consider now the case of the
M relation (right). We have that the black intervals are grouped into 3 sets of
adjacent intervals one for each variable in ψ. The set on the top is associated with
variable p, the one in the middle with variable q, and the one on the bottom is as-
sociated with variable r. It is easy to observe that each one of such sets graphically
resembles the shape of a triangle. Such a triangle is the result of two components,
the black full intervals on the top, which represent the positive assignment of the
relative variable, and the black dashed intervals on the bottom which represent
the negative assignment of the same variable. For each clause Cl in ψ and for each
truth assignment of it, we have exactly one lighter interval. Since each clause has
exactly three truth assignments, we have three red intervals for each clause. Each
red interval meets or is met by all and only the intervals that are inconsistent
with its truth assignment. For instance, interval IKJCl2 on the right side of Figure 12
represents the truth assignment q “ K and r “ J for clause pq _ rq of ψ. We may
observe how IKJCl2 is met by all the full black intervals belonging to the triangle in
the middle representing the assignment q “ J, which is clearly inconsistent with
its assignment.
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Fig. 13 A solution for the encoding of the
Max2Sat instance pp_ qq^ p p_ qq^ pq_ rq^
pq_ rq depicted in Figure 12. The assignment rep-
resented is p “ J, q “ K, r “ J .

Moreover IKJCl2 meets all the
dashed intervals belonging to
the triangle on the bottom and
representing the assignment r “
K, which is again inconsistent
with its assignment. Notice that
these intervals are the only in-
tervals that are in relation either
M or M with IKJCl2 . Clearly, the
instance violates M-Consistency
since J,K and c are pairwise dis-
tinct values for Y . It is easy to
observe that by construction we
have that, if we want to achieve
consistency by removing tuples,
we are forced to remove com-
pletely the top part or the bot-
tom part of each triangle. Oth-
erwise, we would have at least
one full black interval that meets
a dashed one. Such a removal
operation can be directly trans-
lated into an assignment. For in-
stance, let us consider Figure 13
which shows both the solutions
for instances in Figure 12. Look-
ing again on the right side (M-
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relation) we have that the trian-
gle on the top has lost its dashed
portion and thus it means that p
has been assigned to J. On the
other side the triangle in the middle has lost its black full portion and thus it
means that q has been assigned to K. Finally the triangle on the bottom has lost
its dashed portion and thus it means that r has been assigned to J. The resulting
assignment is p “ J, q “ K, and r “ J. It is easy to see by comparison with Figure
12 that the only three red intervals that may be kept in such an assignment for
the black ones are the intervals IJKCl0 , I

JK
Cl1

and IKJCl2 . Notice that the only three
clauses in ψ that are satisfied by the assignment p “ J, q “ K, and r “ J are
Cl0, Cl1 and Cl2. On the other side Cl3 “ pq _  rq is not satisfied since q “ K

and r “ J. As a matter of fact 3 is the maximum number of clauses that can be
satisfied by an assignment in ψ. The very same arguments hold for the instance
of O-MaxConsistent on the left of Figures 12 and 13. In the following we shall
prove formally that, among all the solutions for instances built using one of our
reductions, we have a solution that resembles the one proposed in Figure 13. The
distinctive feature of such solutions is that we take all the black intervals either
on the top or on the bottom of each triangle. Taking advantage of the maximality
requirement for the problem M-MaxConsistent (resp. O-MaxConsistent), we shall
prove that the number of red intervals that “survive” in such a solution is exactly
the maximum number of clauses that can be satisfied in the original Max2Sat
instance.

Such a construction requires quadratic time w.r.t. the size of CL. The definition
of rCL requires a linear parsing of the input in order to determine proppCLq and
values m and n. Moreover, we need a quadratic iteration of Opn ¨mq operations for
populating rCL with tuples relative to intervals IJij and IKij , plus a linear parsing

for populating rCL with tuples relative to intervals I˚1˚2

Cj
. Let fM and fO be the

functions that perform the reduction from CL to rCL in M case and in O case,
respectively. For every set of clauses CL we define an assignment set as a subset
of tuples raCL Ď f˚pCLq, with ˚ P tM,Ou, such that, for every pj P ProppCLq,
either for each 0 ď i ď n ´ 1 we have IJij P raCL or for each 0 ď i ď n ´ 1 we

have IKij P raCL. Informally, every assignment set represents (and can be trivially
translated into) an admissible assignment set for the original clause set CL. In
Figure 13 we represent both an M-Consistent and an O-Consistent solution for
the instance presented in Figure 12. As we may notice, among the red intervals
only the ones consistent with the truth assignment “survive” and thus the number
of lighter intervals in the solution is exactly the solution for the Max2Sat instance
encoded. Such a behaviour is formally proved in the following result.

Lemma 8 For every set of clauses CL, where each clause in CL contains exactly two

literals, let k be the solution of problem M-MaxConsistentp Y, fM pCLqq (resp. O-

MaxConsistentpY, fOpCLqq). There exists an M´ consistent (resp. O´ consistent)

set r Ď fM pCLq (resp. r Ď fOpCLq) w.r.t. to Y with |r| “ k and an assignment set raCL
with raCL Ď r.

Proof We prove the claim for the meets case, as the overlaps one is analogous. Sup-
pose that M-MaxConsistentpY, fM pCLqq “ k and thus there exists an M-consistent
set r Ď fM pCLq with |r| “ k. Now we have to prove that there exists an M-consistent
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set r1 Ď fM pCLq with |r1| “ k and an assignment set raCL Ď r1. We obtain r1 by
“repairing” r with successive iterations. Before starting with the procedure, we
observe that there are only three ways in which r may not contain an assignment
set:

(i) there exists pi P ProppCLq, two indexes 0 ď j ‰ j1 ď 2n ´ 1, and two tuples
t, t1 such that trY s “ t1rY s “ J, rtrBs, trEss “ IJij , rt1rBs, t1rEss “ IJij1 , t P r and

t1 R r;
(ii) there exists pi P ProppCLq, two indexes 0 ď j ‰ j1 ď 2n ´ 1, and two tuples

t, t1 such that trY s “ t1rY s “ K, rtrBs, trEss “ IKij , rt1rBs, t1rEss “ IKij1 , t P r and

t1 R r;
(iii) there exists pi P ProppCLq such that for every 0 ď j ď 2n ´ 1, and for every

tuple t with rtrBs, trEss “ IKij and either trY s “ J or trY s “ K, we have t R r. It
is worth to notice that it cannot be the case in which there exists pi P ProppCLq,
two indexes 0 ď j ‰ j1 ď 2n ´ 1, and two tuples t, t1 such that trY s “ K and
t1rY s “ J (resp. trY s “ J and t1rY s “ K), rtrBs, trEss “ IKij , rt1rBs, t1rEss “ IJij1

(resp. rtrBs, trEss “ IJij , rt1rBs, t1rEss “ IKij1 ), t, t
1
P r.

Indeed, such a scenario violates M-consistency since IJij1 M IKij (resp. IJij M IKij1 )

and trY s ‰ t1rY s. It also to be pointed out that, if r is M-Consistent and it does
not satisfy each one of the three conditions above, then r contains an assignment
set raCL. We begin our iterative procedure that builds r1 by setting r0 “ r. As
invariant conditions we guarantee that at each step h ě 0 instance rh satisfies
|rh| ě k and it is M-Consistent. Our invariant condition takes into account the
fact that k may be increased. We shall not pay too much attention to this case,
because, since our instance is maximal by hypothesis, a contradiction will arise.
At each step we shall focus only on the fact that we introduce in the new instance
rh`1 at least the same number of tuples that we remove from rh. At each step i we
choose one among the following cases, according to the fact that its precondition
holds.

– case (i) holds for rh. First, we observe that for each t2 P fM pCLq with t2rY s “ c

and rt1rBs, t1rEss M rt2rBs, t2rEss we have t2 R rh. This is a consequence of
the fact that t P rh and thus rtrBs, trEss M rt2rBs, t2rEss and trY s “ J ‰ c “

t2rY s. Otherwise, M-Consistency would be violated but it is guaranteed by the
invariant conditions. By construction we have that there exists at most one
tuple t2 such that t2rY s “ c and rt2rBs, t2rEss M rt1rBs, t1rEss. Thus, we can
define rh`1 “ priztt

2
uqY tt1u and both the invariants turn out to be preserved;

– case (ii) holds for rh. This case is completely symmetric to case (i).
– case(iii) holds for rh. In this case we can choose which assignment for the letter
pi may be introduced as a set of tuples. Such a choice makes no difference
with respect to the invariant conditions. Thus, we choose the subset ri Ď

fM pCLq such that ri “ tt : trY s “ J ^ rtrBs, trEss “ IJij with 0 ď j ď 2n ´ 1u.
Clearly |ri| “ 2n. Consider now the set ri Ď fM pCLq such that ri “ tt P

fM pCLq : trY s “ c ^ rtrBs, trEss “ IK˚2

Cj
with 0 ď j ď 2n´ 1 and pi “ Cj |1u Y

tt : trY s “ c ^ rtrBs, trEss “ I˚1K
Cj

with 0 ď j ď 2n´ 1 and pi “ Clj |2u. By

construction we have that |ri| ď 2n. From condition (iii) and the invariant
ones we have that if a tuple t P r satisfies either rtrBs, trEss M rt1rBs, t1rEss or
rt1rBs, t1rEss M rtrBs, trEss with t1 P ri, then it satisfies t P ri. We can conclude
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that the assignment rh`1 “ prhzriq Y ri satisfies both the invariant conditions
and this is the one we choose;

– No one among conditions piq, piiq, and piiiq is satisfied. Thus rh contains an
assignment set raCL. We put r1 “ rh and terminate the procedure.

Since at each of the first three cases we introduce at least one new tuple t P raCL
in rh for some assignment raCL and such set is finite, we have that the procedure
above reaches the fourth case in at most |raCL| steps and thus its termination is
proved.

This result directly connects the solution of M-MaxConsistentpY, fM pCLqq (resp.
O-MaxConsistentpY, fOpCLqq) to the solution of Max2SatpCLq.

Lemma 9 For every set of clauses CL “ tCl1, . . . , Cln u, each containing exactly two

literals, let proppCLq “ tp1, . . . , pmu be the set of propositional variables in CL. We have

that Max2SatpCLq “M-MaxConsistent pY, fM pCLqq´m ¨n “ O-MaxConsistentpY,

fOpCLqq ´m ¨ n.

Proof We consider the meets case, as the overlaps one is analogous. Let r be the
M-Consistent subset r Ď fM pCLqq such that |r| “ M-MaxConsistentpY, fM p CLqq.
From Lemma 8 we may assume that r contains an assignment set raCL Ď r. Using
raCL, we define the assignment σr : proppCLq Ñ tJ,Ku as σrppiq “ J if and only if
for every 0 ď j ď 2n´1 there exists t P r with Iptq “ IJij . By construction, we have

that for each 1 ď j ď m there exists a tuple t P r such that Iptq “ I˚1,˚2

Clj
if and

only if pi “ ˚1 and pi “ ˚2 is a truth assignment for clause Clj and σrppiq “ ˚1
and σrppiq “ ˚2. It means that the set of clauses CL1 Ď CL that are satisfied by
the assignment is CL1 “ tClj P CL : Dt P r, D˚1, ˚2 P tJ,KuI

˚1˚2

Clj
“ Iptqu and thus

|CL1| “ |tt P r : trY s “ cu| “ M-MaxConsistent pY, fM pCLqq ´ m ¨ n. Suppose
now by contradiction that there exists an assignment σ1 such that CL2 “ tClj :
σ1 |ù Clju and |CL2| ą |CL1|. Thus, we could build the following assignment set

ra
1

CL “ tt P fM pCLq : Di Iptq “ I
σ1ppiq
ij

, 0 ď j ď 2n ´ 1u and a set rc “ tt P fM pCLq :

D˚1, ˚2 P tJ,Ku, I
˚1˚2

Clj
“ Iptq, σ1pClj |1q “ ˚1 ^ σ1pClj |2q “ ˚2u. Clearly ra

1

CL Y rc

for construction is an M-Consistent subset of fM pCLq. Moreover |raCL| “ |ra
1

CL|,

|rc| “ |CL2| ą |CL1|, which would mean |ra
1

CLYrc| ąM-MaxConsistent pY, fM pCLqq
(contradiction).

Since both reduction functions fM and fO operate in polynomial time (i.e.
logarithmic space), we can conclude this section with the following result.

Theorem 9 Problems M-MaxConsistent and O-MaxConsistent are NP-Complete.

9 Approximate ITFDs and database repair

Originally, we came to the problem of determining the maximum size for a maximal
consistent subsets of a relation r w.r.t to a given ITFD X Ñ„ Y as a way to
determine if it holds under a given approximation ε. Our approach is oriented
towards the discovery of dependencies among data in a given instance r.

There is a completely symmetric representation of our results in the field of
database repairing [16]. Given a schema R, a relation r and a finite set Σ of first-
order defined constrains over R, we say that a relation r1 is a repair or r with respect
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to Σ if it satisfies all constraints in Σ. For each r2 that satisfies all constraints in
Σ, we have |r

À

r1| ď |r
À

r2|, where
À

represents the symmetric union (i.e., the
union of the disjoint parts of the two sets). It is worth to notice that there are
several notions of repair in literature (see [15] for example). In particular, we have
that our problem, due to the particular constraints expressed through an ITFD,
turns out to be related to a class of repairs called subset repairing, where the set r1

is required to be a subset of r. According to definitions given in [1], three classes
among the possible constraints in Σ are of particular interest3:
– an equality-generating dependency (egd) is a first order formula of the form
@xpφp xq Ñ x “ x1q, where φpxq is a conjunction of atomic formulas over R,
each variable x P x occurs in φpxq, and x, x1 P x;

– a denial constraint (dc) is a first order formula of the form @x pαpxq ^ βpxqq,
where αpxq is a conjunction of atomic formulas over R and β is a conjunction
of comparison atoms x “ x1, x ď x1, x ‰ x1 and x ă x1, where both x and x1

occur in αpxq;
– a tuple-generating dependency (tgd) is a first order formula of the form @xpφpxq

Ñ Dyψpx,yqq, where φpxq is a conjunction of atomic formulas over R, each
variable x P x occurs in φpxq, and ψpx,yq is a conjunction of atomic formulas
with variables in x and y.

It is easy to see that an (egd) is logically equivalent to a (dc) but not viceversa.
ITFDs are a class of dependencies different from the ones shown above. A problem
related to our approach is the repair checking problem: given two relations r and
r1 on the same schema R and a set of constraints Σ over R, let us try to answer
the question “is r1 a repair of r with respect to Σ?”. The complexity of such a
problem has been addressed for various notions of repair and various classes of
dependencies including the ones shown above [1,6,23]. An ITFD X Ñ„ Y can be
translated as @x@y@y1@x1@x

1
1 @x2@x

1
2pApx, y, x1, x2q ^Apx, y

1, x11, x
1
2q ^ βpx1, x2, x

1
1,

x12q Ñ y “ y1q. We may notice that we may consider only an atom A of R at a
time. Moreover the syntax on atoms is very restricted. Indeed only a conjunction
of the same atom which shares the x attributes is allowed. Let us notice that x

is the counterpart of the atemporal attributes X. Formula βpx1, x2, x
1
1, x

1
2q is a

conjunction of comparison atoms and it is the translation of the interval relation
„. Here we have that x1, x

1
1 are the counterparts of attribute B and x2, x

1
2 are the

counterparts of attribute E.

In the present work, we do not consider sets of ITFDs. We focus on a single
ITFD and our problem consists of finding the value corresponding to the cardinal-
ity of the possible repairs. It is straightforward to adapt our algorithm to obtain
a repair without affecting the complexity of the problem. Thus, as a by-product
of our results we have the complexity classification for the problem of ITFD re-
pairing when the set of dependencies consists of a single one. Despite the fact that
the syntax of our constraints seems more restricted than the syntax of the three
classes above and that we consider sets with one dependency at the time, we have
shown that, even for a simple single constraint, the boundary between tractable
and intractable cases depends on the constraints that we put in β, which is the
counterpart of the chosen interval relation. A possible promising development of

3 Notice that in the terminology of database repairing we have that boldfaced lower-case
letters (e.g. x,y, . . .) denote sets of attributes while lower case letters (e.g. x, y, . . .) denote a
single attribute.
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our work is the classification of the repair checking problem with respect to sets
of ITFDs together with possible generalizations of them.

10 Conclusions

In this paper we discussed the complexity of deriving approximate interval-based
functional dependencies with respect to the size of the given database instance.
Complexities for such an operation are different according to the Allen’s interval
relation considered for the dependency. Compass structures have been used to
analyze such complexities. Different ITFD-Approx problems are in different com-
plexity classes, according to the considered Allen’s relation, and range from P to
NP-complete. Such results make approximate ITFDs quite different from both ap-
proximate FDs and point-based TFDs, as their related data complexity remains
polynomial. As a future research, we plan to apply and refine our (tractable) al-
gorithms to the analysis of clinical data, as ITFD-related knowledge needs to be
deeply assessed according to the specific domain. Heuristics for the NP-complete
problems will be studied, even considering the specific needs of the medical domain.
From a more theoretical point of view we intend to study extensions of ITFDs
(and TFDs in general) considering non-equivalence relations between atemporal
attributes. As an example, consider the dependency “the same therapy type for
the same patient and the same drug is increasing the dose over time”.
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