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Abstract

Context The collection of narrative spontaneous reports is an irreplaceable
source for the prompt detection of suspected adverse drug reactions (ADRs). In
such task qualified domain experts manually revise a huge amount of narrative
descriptions and then encode texts according to MedDRA standard terminology.
The manual annotation of narrative documents with medical terminology is a
subtle and expensive task, since the number of reports is growing up day-by-day.
Objectives Natural Language Processing (NLP) applications can support the
work of people responsible for pharmacovigilance. Our objective is to develop
NLP algorithms and tools for the detection of ADR clinical terminology. Effi-
cient applications can concretely improve the quality of the experts’ revisions.
NLP software can quickly analyze narrative texts and offer an encoding (i.e., a
list of MedDRA terms) that the expert has to revise and validate.
Methods MagiCoder, an NLP algorithm, is proposed for the automatic encod-
ing of free-text descriptions into MedDRA terms. MagiCoder procedure is efficient
in terms of computational complexity. We tested MagiCoder through several
experiments. In the first one, we tested it on a large dataset of about 4500
manually revised reports, by performing an automated comparison between hu-
man and MagiCoder encoding. Moreover, we tested MagiCoder on a set of about
1800 reports, manually revised ex novo by some experts of the domain, who
also compared automatic solutions with the gold reference standard. We also
provide two initial experiments with reports written in English, giving a first
evidence of the robustness of MagiCoder w.r.t. the change of the language.
Results For the current base version of MagiCoder, we measured an average
recall and precision of 86.9% and 91.8%, respectively.
Conclusions From a practical point of view, MagiCoder reduces the time re-
quired for encoding ADR reports. Pharmacologists have only to review and
validate the MedDRA terms proposed by the application, instead of choosing the
right terms among the 70K low level terms of MedDRA. Such improvement in the
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efficiency of pharmacologists’ work has a relevant impact also on the quality of
the subsequent data analysis. We developed MagiCoder for the Italian pharma-
covigilance language. However, our proposal is based on a general approach,
not depending on the considered language nor the term dictionary.

Keywords: Natural Language Processing, Healthcare informatics,
Pharmacovigilance, Adverse Drug Reactions, Term identification

1. Introduction

Pharmacovigilance includes all activities aimed to systematically study risks
and benefits related to the correct use of marketed drugs.

Uncommon adverse drug reactions (ADRs), such as slowly-developing patholo-
gies (e.g., carcinogenesis) or pathologies related to specific groups of patients,
are hardly discovered before the marketing. It may happen that drugs are with-
drawn from the market after the detection of unexpected side effects. Thus, it
stands to reason that the post-marketing control of ADRs is a necessity, consid-
ering the mass production of drugs. As a consequence, pharmacovigilance plays
a crucial role in human healthcare improvement [1].

Spontaneous reporting is the main pharmacovigilance method in order to
identify adverse drug reactions once drugs have been marketed [2]. Through
spontaneous reporting, healthcare professionals, patients, and pharmaceutical
companies can voluntarily send information about suspected ADRs to the na-
tional regulatory authority1. Spontaneous reports provide pharmacologists and
regulatory authorities with early alerts, by considering every drug on the market
and every patient category.

In last years the number of ADR reports in Italy has grown rapidly, going
from approximately 6000 in 2006 to more than 50000, as shown in Figure 1.

Since the post-marketing surveillance of drugs is of paramount importance,
such an increase is certainly positive. At the same time, the manual review of
reports became difficult and often unbearable both by people responsible for
pharmacovigilance and by regional centers. Each report must be checked, in
order to control its quality; it is consequently encoded and transferred to the
National Network of Pharmacovigilance (RNF).

Since 2014, the application VigiFarmaco helps people responsible for phar-
macovigilance in the review task. An overview of VigiFarmaco and the Ital-
ian pharmacovigilance activities is proposed in Section 2.1. As VigiFarmaco
simplifies the work of pharmacologists since its first release, some further im-
provements of the software became compelling in the light of the recent increase
of reports. An essential onerous step in the validation of spontaneous reports
is the encoding of the free text into the MedDRA (Medical Dictionary for Reg-
ulatory Activities) terminology, through which the reporter describes one or

1in Italy, the Drug Italian Agency AIFA – Agenzia Italiana del FArmaco,
http://www.agenziafarmaco.gov.it/
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Figure 1: The yearly increasing number of reports of suspected adverse drug reactions in Italy.

more adverse drug reactions. MedDRA is a medical terminology introduced with
the purpose of standardizing and facilitating the sharing of information about
medicinal products in particular with respect to regulatory activities [3].

The description of a suspected ADR through narrative text could seem re-
dundant/useless. Indeed, one could reasonably imagine sound solutions based
either on an autocompletion form or on a menu with MedDRA terms. In these so-
lutions, the description of ADRs would be directly encoded by the reporter and
no expert work for MedDRA terminology extraction would be required. However,
such solutions are not completely suited for the pharmacovigilance domain and
the narrative description of ADRs remains a desirable feature, for at least two
reasons. First, the description of an ADR by means of one of the seventy thou-
sand MedDRA terms is a complex task. In most cases, the reporter who points
out the adverse reaction is not an expert in MedDRA terminology. This holds in
particular for consumers, but it is still valid for several professionals. Thus, de-
scribing ADRs by means of natural language sentences is simpler. Second, the
choice of the suitable term(s) from a given list or from an autocompletion field
can influence the reporter and limit her/his expressiveness. As a consequence,
the quality of the description would be also in this case undermined. Therefore,
VigiFarmaco offers a free-text field for specifying the ADR with all the possible
details, without any restriction about the content or strict limits to the length
of the written text. Consequently, MedDRA encoding has then to be manually
implemented by qualified people responsible for pharmacovigilance, before the
transmission to RNF. As this work is expensive in terms of time and attention
required, a problem about the accuracy of the encoding may occur given the
continuous growing of the number of reports and the number of people involved
in this task (about 300 pharmacologists in Italy).

According to the described scenario, in this paper we propose MagiCoder, a
natural language processing (NLP) [4] algorithm with the corresponding soft-
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ware tool, which automatically assigns one or more terms from a dictionary to
a narrative text. This problem is sometimes called text normalization in liter-
ature [5]. Since the normalization accomplishes a number of different shades
of meaning, we will use, equivalently, the word encoding. MagiCoder has been
first developed for supporting pharmacologists in using VigiFarmaco, providing
them with an automatic MedDRA encoding of the ADR descriptions collected
online, that they may correct or accept as is. In this way, the encoding task,
previously completely manual, becomes semi-automatic, reducing errors and the
required time for accomplishing it.

In spite of its first goal, MagiCoder has now evolved in an autonomous algo-
rithm and software usable in all contexts where terms from a dictionary have
to be recognized in a narrative text. With respect to other solutions already
available in literature, MagiCoder has been designed to be efficient, less com-
putationally expensive, and unsupervised. MagiCoder uses stemming in order
to recognize singular/plural and masculine/feminine forms. Moreover, it uses
string distance and other techniques to find best matching terms, discarding sim-
ilar and non optimal terms. With respect to the preliminary version proposed
in [6], we extended MagiCoder by following several directions, listed below.

• First, we refined the procedure: MagiCoder has been equipped with some
heuristic criteria.

• MagiCoder computational complexity has been carefully studied. We will
show that it is linear in the size of the dictionary (in this case, the number
of Low Level Terms in MedDRA) and of the text description.

• We performed some accurate tests of MagiCoder performances. By means
of well-known statistical measures (recall and precision), we collected a sig-
nificant set of quantitative information about the effective behavior of the
procedure. We refined the automatic experiment proposed in [6]. More-
over, we run a second experiment. We created a gold reference standard,
involving three experts of the domain, on a significative sample of narra-
tive reports. Pharmacologists reviewed reports and manually compared
automatic and human solutions.

• We provide some evidences about MagiCoder performances on English
written texts through some preliminary tests.

• We discuss some crucial key-points we met in the development of this
version of the algorithm. We propose short-time solutions we are studying
as work in progress, such as changes in stemming algorithm, generating
and adding synonyms, and term filtering heuristics.

The paper is organized as follows. In Section 2 we provide some background
notions and we discuss related work. In Section 3 we present MagiCoder, by
providing both a qualitative description and the pseudocode. In Section 3.4 we
describe the user interface of the related software tool. In Section 4 we explain
the experiments we developed to test MagiCoder performances and we discuss
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the results. Section 5 is devoted to some discussions. In Section 6 we summarize
the main features of our work and sketch some future work.

2. Background and related work

In this section we first provide some background on the Italian pharma-
covigilance task and the related software tool. We then introduce the MedDRA
terminology about adverse drug reactions. Then, we discuss some related work
on natural language process and mining in medicine.

2.1. The Italian pharmacovigilance and the application VigiFarmaco

The Italian system of pharmacovigilance requires that in each local health-
care structure (about 320 in Italy) there is a qualified person responsible for
pharmacovigilance. Her/his assignment is to collect reports of suspected ADRs
and to send them to the RNF (Rete Nazionale di Farmacovigilanza, in English
National Network of Pharmacovigilance) within seven days since they have been
received2. Once reports have been notified and sent to RNF, they are analysed
by both local pharmacovigilance centres and by AIFA (Agenzia Italiana del
FArmaco, in English Italian Medicines Agency). Subsequently, they are sent to
EudraVigilance [7] and to VigiBase [8] (the European and the worldwide phar-
macovigilance network RNF is part of, respectively). In general, spontaneous
ADR reports are filled out by health care professionals (e.g., medical specialists,
general practitioners, nurses), but also by consumers.

Recently, to increase the efficiency in collecting and managing ADR reports,
a web application, called VigiFarmaco3, has been designed and implemented
for the Italian pharmacovigilance. Through VigiFarmaco, a spontaneous re-
port can be filled out online by both healthcare professionals and consumers
(through different user-friendly forms), as anonymous or registered users. The
user is guided in compiling the report, since it has to be filled step-by-step (each
phase corresponds to a different report section, i.e., “Patient”, “Adverse Drug
Reaction”, “Drug Treatments”, and “Reporter”, respectively). At each step,
data items are validated and only when all of them have been correctly inserted
the report can be successfully submitted.

Once ADR reports are submitted, they need to be validated by a pharma-
covigilance supervisor. VigiFarmaco provides support also in this phase and
is useful also for pharmacovigilance supervisors. Indeed, VigiFarmaco reports
are high-quality documents, since they are automatically validated (the pres-
ence, the format, and the consistency of data are validated at the filling time).
As a consequence, they are easier to review (especially with respect to printed
reports). Moreover, thanks to VigiFarmaco, pharmacologists can send reports
(actually, XML4 files) to RNF by simply clicking a button, after reviewing it.

2According to the Italian Law, Art. 132 of Legislative Decree Number 219 of 04/24/2006.
3Available at https://www.vigifarmaco.it
4eXtensible Markup Language
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Online reports have grown up to become the 30% of the total number of Ital-
ian reports. As expected, it has been possible to observe that the average time
between the dispatch of online reports and the insertion into RNF is sensibly
shorter with respect to the insertion from printed reports. Since 2015, MagiCoder
is included as VigiFarmaco plug-in. This extension further improves pharma-
covigilance activities, offering an effective support to the (previously completely
manual) free text encoding.

A partial screenshot of VigiFarmaco User Interface, concerning the MedDRA
automatic encoding feature, is proposed in Section 3.4.

Since November 2017 EMA (European Medicines Agency) changed the way
ADR reports are gathered and managed in the European Union. In particular,
in all EU countries ADR reports are not anymore managed by the national
medicines agencies and subsequently sent to EudraVigilance, but they are di-
rectly sent to EudraVigilance. EudraVigilance has then to send ADRs reports
to the national medicines agencies and to VigiBase. Moreover, EudraVigilance
allows all pharmaceutical companies to retrieve ADR reports related to their
medicinal products.

2.2. MedDRA dictionary
The Medical Dictionary for Regulatory Activities, MedDRA [3], is a medical

terminology used to classify adverse event information associated with the use
of biopharmaceuticals and other medical products (e.g., medical devices and
vaccines). Coding these data to a standard set of MedDRA terms allows health
authorities and the biopharmaceutical industry to exchange and analyze data
related to the safe use of medical products [9]. It has been developed by the
International Conference on Harmonization (ICH); it belongs to the Interna-
tional Federation of Pharmaceutical Manufacturers and Associations (IFPMA);
it is controlled and periodically revised by the MedDRA MSSO (Mainteinance
And Support Service Organization). MedDRA is available in eleven European
languages and in Chinese and Japanese too. It is updated twice a year (in
March and in September), following a collaboration-based approach. Everyone
can propose new reasonable updates or changes (due to effects of events as the
onset of new pathologies) and a team of experts eventually decides about the
publication of updates. MedDRA terms are organised into a hierarchy: the SOC
(System Organ Class) level includes the most general terms; the LLT (Low Level
Terms) level includes more specific terminologies. Between SOC and LLT there
are three intermediate levels: HLGT (High Level Group Terms), HLT (High Level
Terms), and PT (Preferred Terms).

The encoding of ADRs through MedDRA is extremely important for report
analysis as for a prompt detection of problems related to drug-based treatments.
Thanks to MedDRA it is possible to group similar/analogous cases described in
different ways (e.g., by synonyms) or with different details/levels of abstraction.

Table 1 shows an example of the hierarchy: reaction Itch (LLT) is described
starting from Skin disorders (SOC), Epidermal conditions (HLGT), Pruritus NEC
(HLT), and Pruritus (PT). Preferred Terms are Low Level Terms chosen to be
representative of a group of terms. It should be stressed that the hierarchy
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MedDRA Level MedDRA Term
SOC (System Organ Class) Skin disorders

HLGT (High Level Group Terms) Epidermal conditions
HLT (High Level Terms) Pruritus NEC
PT (Preferred Terms) Pruritus
LLT (Low Level Terms) Itch

Table 1: MedDRA Hierarchy - an Example

is multiaxial: for example, a PT can be grouped into one or more HLT, but it
belongs to only one primary SOC term.

2.3. Natural language processing and text mining in medicine
The automatic detection of adverse drug reactions from text has received no-

table attention in pharmacovigilance research. Narrative descriptions of ADRs
come from heterogeneous sources: spontaneous reporting, electronic health
records, clinical reports, and social media. In [10–14] some NLP approaches [15,
16] have been proposed for the extraction of ADRs from text.

In [11] Wang et al. collect narrative discharge summaries from the Clini-
cal Information System at New York Presbyterian Hospital. The NLP system
MedLEE (Medical Language Extraction and Encoding system) is applied to this
collection for identifing medication events and entities, which could be potential
adverse drug events. Co-occurrence statistics with adjusted volume tests were
used to detect associations between the two types of entities, to calculate the
strengths of the associations, and to determine their cutoff thresholds.

In [17] Toldo et al. report on the adaptation of a machine learning-based
system for the identification and extraction of ADRs in case reports. The role
of NLP approaches in optimised machine learning algorithms is also explored
in [18], where Gonzales et al. address the problem of automatic detection of
ADR assertive text segments from several sources, focusing on data posted by
users on social media (Twitter and DailyStrength, a health care oriented social
media). Existing methodologies for NLP are discussed and an experimental
comparison between NLP-based machine learning algorithms over data sets from
different sources is proposed. Moreover, the authors address the issue of data
imbalance for the ADR description task.

In [19] Yang et al. propose to use association mining and Proportional Re-
porting Ratio (PRR, a well-known pharmacovigilance statistical index) to mine
associations between drugs and adverse reactions from the user contributed
content in social media. In order to extract adverse reactions from on-line text
(from healthcare communities), the authors apply the Consumer Health Vo-
cabulary5 to generate ADR lexicon. ADR lexicon is a computerized collection

5Available at http://www.consumerhealthvocab.org
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of health expressions derived from actual consumer utterances, linked to pro-
fessional concepts and reviewed and validated by professionals and consumers.
Narrative text is preprocessed following standard NLP techniques (such as stop
word removal, see Section 3.1). An experiment using ten drugs and five ad-
verse drug reactions is proposed. The Food and Drug Administration alerts are
used as the gold standard, to test the performance of the proposed techniques.
The authors developed algorithms to identify ADRs from threads of drugs, and
implemented association mining to calculate leverage and lift for each possible
pair of drugs and adverse reactions in the dataset. At the same time, PRR is
also calculated.

In [20], a text extraction tool is implemented on the .NET platform for
preprocessing text (removal of stop words, Porter stemming [21] and use of syn-
onyms) and matching medical terms using permutations of words and spelling
variations (Soundex, Levenshtein distance and Longest common subsequence
distance [22]). Its performance has been evaluated on both manually extracted
medical terms from summaries of product characteristics and unstructured ad-
verse effect texts from Martindale [23] (a medical reference for information about
drugs and medicines) using the WHO-ART (World Health Organization Adverse
Reaction Terminology) and MedDRA medical terminologies. A lot of linguistic
features have been considered and a careful analysis of performances has been
provided.

In [24] Coffman et al. develop an algorithm in order to help coders in the
subtle task of auto-assigning ICD-9 (International Classification of Diseases,
Ninth Revision) codes to clinical narrative descriptions. Similarly to MagiCoder,
input descriptions are proposed as free text. The test experiment takes into
account a reasoned data set of manually annotated radiology reports, chosen to
cover all coding classes according to ICD-9 hierarchy and classification: the test
obtains an accuracy of 77%.

Attardi et al. use machine learning techniques to address the the problem
of extracting knowledge from clinical records written in Italian by physicians
in [5]. They perform recognition of relevant entities (such as symptoms, dis-
eases, treatments, and so on), and then determine their semantic relations, and
other challenging tasks such as mapping entities to a thesaurus, and identifying
whether the narrative context of an expression is positive or negative. Exper-
iments are performed on medical data provided in the context of a regional
research project on technologies for health care6 extending semi-automatically
generated corpora and defining ad-hoc new sets of annotated documents.

In [25], Ribeiro et al. evaluate the retrieval performance of an algorithm that
automatically categorizes medical documents assigning an International Code
of Disease (ICD). The algorithm is based on well-known information retrieval
techniques, operates in a fully automatic mode, and requires no supervision or
training data. Performances are evaluated on a data set of about 20k docu-
ments, and authors reveal the algorithm attains levels of average precision in

6http://progetto-ris.isti.cnr.it/
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the 70 − 80% range. They also analyze some case studies of those documents
whose categorization is not (partially or completely) in accordance with the
one provided by the human specialists. In [26] some methods for automatically
categorizing clinical documents are described and compared. In order to eval-
uate the automatic classification approaches, the authors exploit the PALGA
data set7, a collection of 14 million pathological reports, each of which has been
classified by a domain expert.

In [27] Finite-State Transducers (FSTs, finite-state machines with a memory
tape) are used to classify medical records (written in Spanish language) by
their diagnostic terms, according to the International Classification of Diseases
Clinical Modification (ICD-9-CM) and SNOMED CT 8. The authors deal with
the twofold challenge of treating informal natural language and performing a
large-scale classification problem. FSTs were proven to be efficient in the large-
scale classification task.

In [28] the natural language processor MEDSYNDIKATE is introduced.
MEDSYNDIKATE couples Grammatical knowledge, semantic knowledge, and
conceptual (ontological) knowledge. It automatically acquires medical infor-
mation from pathology-oriented clinical reports, transferring text information
into conceptual representation structures, which constitute a corresponding text
knowledge base. The tool is adapted to deal with tricky text structures, such as
various forms of anaphoric reference relations spanning several sentences. The
authors also describe the framework for a preliminary evaluation of their ap-
proach to information extraction in terms of the semantic interpretation of a
class of syntactic patterns in medical documents.

An interesting review about the role of NLP in clinical decision support
systems can be found in [29]. In [30] Banda et al. deal with the standardiza-
tion of medical ADR terminologies, proposing a semantically and linguistically
enriched version of the US Food and Drug Administration Adverse Event Re-
porting System (FAERS).

Other related papers about pharmacovigilance, automatic support to diag-
nostic decisions, machine learning and data mining, are [31–34].

3. Materials: MagiCoder, an NLP software for ADR automatic en-
coding

A natural language ADR description is a completely free text. The user
has no limitations and can potentially write anything. Indeed, a number of
online ADR descriptions actually contains information not directly related to
drug effects. Thus, an NLP software has to face and solve many issues: Trivial
orthographical errors; Use of singular versus plural nouns; The so called “false
positives”, i.e., syntactically retrieved inappropriate results, which are closely
resembling to correct solutions; The structure of the sentence, i.e., the way an

7http://www.palga.nl/en/public-pathology-database/
8http://www.snomed.org/snomed-ct
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assertion is built up in a given language. Also the “intelligent” detection of
linguistic connectives is a crucial issue. For example, the presence of a negation
can potentially change the overall meaning of a description.

In general, a satisfactory automatic support of human reasoning and work
is a subtle task. For example, the uncontrolled extension of the dictionary
with auxiliary synonymous (see Section 5.2) or the naive ad-hoc management
of particular cases can limit the efficiency and the desired behaviour of the
algorithm. For these reasons, we carefully designed MagiCoder, even through
a side-by-side collaboration between pharmacologists and computer scientists,
in order to yield an efficient tool, capable to really support pharmacovigilance
activities.

In literature, several NLP algorithms already exist, and several interesting
approaches (such as the so-called morpho analysis of natural language) have
been studied and proposed [4, 35, 36]. According to the described pharma-
covigilance domain, we considered algorithms for the morpho-analysis and the
part-of-speech (PoS) extraction techniques [4, 35] too powerful and general pur-
pose for the solution of our problem. Indeed, in most cases ADR descriptions
are written in a very succinct way, without using verbs, punctuation, or other
lexical items, and introducing acronyms. Moreover, clinical and technical words
are often not recognized correctly because not included in usual dictionaries.
All these considerations limit the benefits of using morpho-analysis and PoS for
our purposes.

Thus, we decided to design and develop an ad-hoc algorithm for the problem
we are facing, namely that of deriving MedDRA terms from narrative text and
mapping segments of text in effective LLTs. This task has to be done in a feasible
time (we want that each interaction user/MagiCoder requires less than a second)
and the solution offered to the expert has to be readable and useful. Therefore,
we decided to ignore the structure of the narrative description and address the
issue in a simpler way. Main features of MagiCoder can be summarized as
follows:

• It requires a single linear scan of the narrative description. As a con-
sequence, our solution is particularly efficient in terms of computational
complexity.

• It has been designed and developed for the specific problem of mapping
Italian text to MedDRA dictionary, but we claim the way MagiCoder has
been developed is sound with respect to language and dictionary changes
(see Section 6).

• The current version of MagiCoder is only based on the pure syntactical
recognition of the text and it does not exploit any external synonym dic-
tionary; in Section 3.4 we will discuss how synonyms may be used to in-
crease MagiCoder performances. In particular, we will discuss how a näıve
approach to synonyms worsen computational and retrieval performances,
while we will show through experimental results and empirical observa-
tions that a prudent and suitable use of an external dictionary produces
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an improvement of performances.

In this paper we consider the Italian context of Pharmacovigilance and, as a
consequence, we will consider textual descriptions written in Italian language.
We will discuss the potentiality of MagiCoder for other languages and some
preliminary results in Sections 4.3 and 6.

3.1. MagiCoder: overview
The main idea of MagiCoder is that a single linear scan of the free text is

sufficient, in order to recognize MedDRA terms.
From an abstract point of view, we try to recognize, in the narrative de-

scription, single words belonging to LLTs. Recognised words do not necessarily
occupy consecutive positions in the text. This way, we try to “reconstruct”
MedDRA terms, taking into account the fact that in a description the reporter
can possibly permute or omit words. As we will show, MagiCoder has not to deal
with computationally expensive tasks, such as taking into account subroutines
for permutations and combinations of words (as, for example, in [20]).

We can distinguish five phases in the procedure that will be discussed in
detail in Sections 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5, respectively.

1. Definition of ad-hoc data structures. The design of data structures is
central to perform an efficient computation; our main data structures are
hash tables, in order to guarantee an efficient access both to MedDRA terms
and to words belonging to MedDRA terms.

2. Preprocessing of the original text. Tokenization (i.e., segmentation of the
text into syntactical units), stemming (i.e., reduction of words to a par-
ticular root form), elimination of computationally irrelevant words.

3. Word-by-word linear scan of the description and “voting task”. A word
“votes” LLTs it belongs to. For each term voted by one or more words, we
store some information about the retrieved syntactical matching.

4. Weights calculation. Recognized terms are weighted depending on infor-
mation about syntactical matching.

5. Sorting of voted terms and winning terms release. The set of voted terms
is pruned, terms are sorted and finally a solution (a set of winning terms)
is released.

3.1.1. Definition of ad-hoc data structures
The algorithm proceeds with a word-by-word comparison. We iterate on the

preprocessed text and we test if a single word w, a token, occurs into one or
many LLTs.

In order to efficiently test if a token belongs to one or more LLTs, we need to
know which words belong to each term. This can be done simply by indexing
MedDRA LLTs words. The LLT level of MedDRA is actually a set of phrases, i.e.,
sequences of words. By scanning these sequences, we build a meta-dictionary
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of all the words which compose LLTs. As we will describe in Section 3.3, in
O(mk) time units (where m and k are the cardinality of the set of LLTs and
the length of the longest LLT in MedDRA, respectively) we build a hash table
having all the words occurring in MedDRA as keys, where the value associated
to key wi contains information about the set of LLTs containing wi. This way,
we can verify the presence in MedDRA of a word w encountered in the ADR
description in constant time. We call this meta-dictionary DictByWord. We
build a meta dictionary also from a stemmed version of MedDRA, to verify the
presence of stemmed descriptions. We call it DictByWordStem. Finally, also the
MedDRA dictionary is loaded into a hash table according to LLT identifiers and,
in general, all our main data structures are hash tables.

We aim to stress that, to retain efficiency, we preferred exact string matching
with respect to approximate string matching, when looking for a word into the
meta dictionary. Approximate string matching would allow us to retrieve terms
that would be lost in exact string matching (e.g., we could recognize misspelled
words in the ADR description), but it would worsen the performances of the
text recognition tool, since direct access to the dictionary would not be possible.
We discuss the problem of retrieving syntactical variations of the same words
and the problem of addressing orthographical errors in Section 6.

3.1.2. Preprocessing of the original ADR description
A natural language ADR description has to be preprocessed in order to

perform an efficient computation. We adopt a well-known technique such as
tokenization [37]. A phrase is reduced to tokens, i.e., syntactical units which
often, as in our case, correspond to words. A tokenized text can be easily
manipulated as an enumerable object, e.g., an array. A stop word is a word
that can be considered irrelevant for the text analysis (e.g., an article or an
interjection). Words classified as stop-words are removed from the tokenized
text. In particular, in this release of our software we decided to not take into
account connectives, e.g., conjunctions, disjunctions, negations. The role of
connectives, in particular of negation, is discussed in Section 5.

A fruitful preliminary work is the extraction of the corresponding stemmed
version from the original tokenized and stop-word free text. Stemming is a
linguistic technique that, given a word, reduces it to a particular kind of root
form [21, 37]. It is useful in text analysis, in order to avoid problems such as
missing word recognition due to singular/plural forms (e.g., hand/hands). In
some cases, stemming procedures are able to recognize the same root both for the
adjectival and the noun form of a word. Stemming is also potentially harmful,
since it can generate so called “false positive” terms. A meaningful example
can be found in Italian language. The plural of the word mano (in English,
hand) is mani (in English, hands), and their stemmed root is man, which is
also the stemmed version of mania (in English, mania). Several stemming
algorithms exist, and their impact on the performances of MagiCoder is discussed
in Section 5.
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3.1.3. Word-by-word linear scan of the description and voting task
MagiCoder scans the text word-by-word (remember that each word corre-

sponds to a token) once and performs a “voting task”. At the i-th step, it
marks (i.e., “votes”) with index i each LLT t containing the current (i-th) word
of the ADR description. Moreover, it keeps track of the position where the i-th
word occurs in t.

MagiCoder tries to find a word match both for the exact and the stemmed
version of the meta dictionary and keeps track of the kind of match it has
eventually found. It updates a flag, initially set to 0, if at least a stemmed
matching is found in an LLT. If a word w has been exactly recognized in a term
t, the match between the stemmed versions of w and t is not considered. At the
end of the scan, the procedure has built a sub-dictionary containing only terms
“voted” at least by one word. We call VotedLLT the sub-dictionary of voted
terms.

Each voted term t is equipped with two auxiliary data structures, containing,
respectively:

1. the positions of the voting words in the ADR description; we call voterst

this sequence of indexes;

2. the positions of the voted words in the MedDRA term t; we call votedt this
sequence of indexes.

Moreover, we endow each voted term t with a third structure that will con-
tain the sorting criteria we define below; we will call it weightst.

Let us now introduce some notations we will use in the following. We de-
note as t.size the function that, given an LLT t, returns the number of words
contained in t (excluding the stop words). We denote as voterst.length (resp.
votedt.length) the function that returns the number of indexes belonging to
voterst (resp. votedt). We denote as voterst.min and voterst.max the functions
that return the maximum and the minimum indexes in voterst, respectively.

From now on, sometimes we explicitly list the complete denomination of
a terms: we will use the notation “name”(id), where “name” is the MedDRA
description and id is its identifier, that is possibly used to refer to the term.
Let us exemplify these notions by introducing an example. Consider the fol-
lowing ADR description: “anaphylactic shock (hypotension + cutaneous rash)
1 hour after taking the drug”. Words in it are numbered from 0 (anaphy-
lactic) to 9 (drug). The complete set of data structures coming from the
task is too big to be reported here, thus we focus only on two LLTs. At
the end of the voting task, VotedLLT will include, among others, “Anaphy-
lactic shock” (10002199) and “Anaphylactic reaction to drug” (10054844). We
will have that voters10002199 = [0, 1] (i.e., “anaphylactic” and “shock”) while
voters10054844 = [0, 9] (i.e., “anaphylactic” and “drug”). On the other hand,
voted10002199 = [0, 1], revealing that both words in the term have been voted,
while voted10054844 = [0, 2], suggesting that only two out of three words in the
term have been voted (in particular, “reaction” has not been voted). In this

13



  

example all words in the description have been voted without using the stem-
ming.

3.1.4. Weight calculation
After the voting task, selected terms have to be ordered. Notice that a purely

syntactical recognition of words in LLTs potentially generates a large number of
voted terms. For example, in the Italian version of MedDRA, the word “male”
(in English, “pain”) occurs 3385 times.

So we have to: i) filter a subset of highly feasible solutions, by means of
quantitative weights we assign to candidate solutions; ii) choose a good final
selection strategy in order to release a small set of final “winning” MedDRA terms
(this latter point will be discussed in Section 3.1.5).

For this purpose, we define four criteria to assign “weights” to voted terms
accordingly.

In the following, 1
t.size is a normalization factor (w.r.t. the length, in terms

of words, of the LLT t). The first three criteria have 0 as optimum value and 1
as worst value, while the fourth criterion has optimum value to 1 and it grows
in worse cases.

Criterion one: Coverage

First, we consider how much part of the words of each voted LLT have not
been recognized.

C1(t) =
t.size− votedt.length

t.size

In the example we introduced before, we have that C1(10002199) = 0
(i.e., all words of the terms have been recognized in the description) while
C1(10054844) = 0.33 (i.e., one word out of three has not been recognized
in the description).

Criterion two: Type of Coverage

The algorithm considers whether a perfect matching has been performed
with or without using stemmed words. C2(·) is simply a flag. C2(t) holds
if stemming has been used at least once in the voting procedure of t, and
it is valued 1, otherwise it is valued 0.

For example, C2(10002199) = 0 and C2(10054844) = 0.

Criterion three: Coverage Distance

The use of stemming allows one to find a number of (otherwise lost)
matches. As side effect, we often obtain a quite large set of joint winner
candidate terms. In this phase, we introduce a string distance comparison
between recognized words in the original text and voted LLTs. Among the
possible string metrics, we use the so called pair distance [38], which is
robust with respect to word permutation. Thus,
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C3(t) = pair(t, t)

where pair(s, r) is the pair distance function (between strings s and r) and
t is the term “rebuilt” from the words in ADR description corresponding
to indexes in voterst.

For example, C3(10002199) = 0 (i.e., the concatenation of the voters and
the term are equal) and C3(10054844) = 12.

Criterion four: Coverage Density

We want to estimate how an LLT has been covered.

C4(t) =
(voterst.max− voterst.min) + 1

votedt.length

The intuitive meaning of the criterion is to quantify the “quality” of the
coverage. If an LLT has been covered by nearby words, it will be consid-
ered a good candidate for the solution. This criterion has to be carefully
implemented, taking into account possible duplicated voted words.

After computing (and storing) the weights related to the above criteria, for
each voted term t we have the data structure weightst = [C1(t), C2(t), C3(t), C4(t)],
containing the weights corresponding to the four criteria. These weights will be
used, after a first heuristic selection, to sort a subset of the syntactically re-
trieved terms.

Continuing with the example introduced before, we have that C4(10002199) =
1 while C4(10054844) = 5. Thus, concluding, we obtain that weights10002199 =
[0, 0, 0, 1] while weights10054844 = [0.33, 0, 12, 5].

3.1.5. Selection, ordering and release of winning terms
In order to provide an effective support to pharmacovigilance experts’ work,

it is important to offer only a small set of good candidate solutions.
As previously said, the pure syntactical recognition of MedDRA terms into

a free text generates a possibly large set of results. Therefore, the releasing
strategy has to be carefully designed in order to select only the best suitable
solutions. We will provide a heuristic selection, followed by a sorting of the
survived voted terms. Then we propose a release phase of solutions, further
refined by a final heuristic criterion.

As a first step, we provide an initial pruning of the syntactically retrieved
terms guided by the ordered-phrases heuristic criterion. In the ordered-phrases
criterion we reintroduce the order of words in the narrative description as a
selection discriminating factor. From the set of selected LLTs, we remove those
terms where voters (i.e., tokens in the original free text) appear in the ADR
description in a relative order different from that of the corresponding voted
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tokens in the LLT. We do that only for those LLTs having voters that voted for
more than one term.

Let us consider the following example. On the (Italian) narrative descrip-
tion “edema della glottide-lingua, parestesia al volto, dispnea” (in English,
“edema of glottis-tongue, facial paresthesia, dyspnoea”), the voting procedure
of MagiCoder finds, among the solutions, the MedDRA terms “Edema della glot-
tide” (“Edema glottis”), “Edema della lingua” (“Edema tongue”), “Edema del
volto” (“Edema face”), “Parestesia della lingua” (“Paresthesia tongue”), and
“Dispnea” (“Dyspnoea”). The ordererd-phrase criterion removes LLT “Pareste-
sia della lingua” from the set of candidate solutions because “lingua” votes for
two terms but in the narrative text it appears before than “parestesia” while in
the LLT it appears after.

We call SelVotedLLT the set of voted terms after the selection by the ordered-
phrases criterion. We proceed then by ordering SelVotedLLT. We use a sorting
on elements weightst, for each t ∈ SelVotedLLT. The obtained subdictionary is
dubbed as SortedVotedLLT and it has possibly the most suitable solutions on top.

After this phase, the selection of the “winning terms” takes place. The
main idea is to select and return a subset of voted terms which “covers” the
ADR description. We create the set SelectedLLT as follows. We iterate on the
ordered dictionary and for each t ∈ SortedVotedLLT we select t if all the following
conditions hold:

1. t is completely covered, i.e., C1(t) = 0;

2. t does not already belong to SelectedLLT;

3. t is not a prefix of another selected term t′ ∈ SortedVotedLLT;

4. t has been voted without stemming (i.e., C2(t) = 0) or, for any wi ∈
voterst, wi has not been covered (i.e., no term voted by wi has been already
selected) or wi has not been exactly covered (i.e., only its stem has been
recognized in some term t1)9.

At this stage, we have a set of MedDRA terms which “covers” the narrative
description. We further select a subset FinalVotedLLT of SelectedLLT with a
second heuristic, the maximal-set-of-voters criterion.

The maximal-set-of-voters criterion deletes from the solution those terms
which can be considered “extensions” of other ones. For each pair of terms ti
and tj , it checks if votersti is a subset of voterstj (considered as sets of indexes).
If it is the case, ti is removed from SelectedLLT.

9In the implementation we add also the following thresholds: we choose only terms t such
that C3(t) < 0.5 and C4(t) < 3. We extracted these thresholds by means of some empirical
tests. We plan to eventually adjust them after some further performance tests.
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In MagiCoder we do not need to consider ad-hoc subroutines to address
permutations and combinations of words (as it is done, for example, in [20]).
In Natural Language Processing, permutations and combinations of words are
important, since in spoken language the order of words can change w.r.t. the
formal structure of sentences. Moreover, some words can be omitted, while the
sentence still retains the same meaning. These aspects come for free from our
voting procedure: after the scan, we retrieve the information that a set of words
covers a term t ∈ VotedLLT, but the order between words does not necessarily
matter.

3.2. MagiCoder: structure of the algorithm and Pseudocode
Figure 2 depicts the pseudocode of MagiCoder. We represent dictionaries

either as sets of words or as sets of functions. We describe the main procedures
and functions used in the pseudocode.

• Procedure Preprocessing takes the narrative description, performs tok-
enization and stop-word removal and puts it into an array of words.

• Procedures CreateMetaDict and CreateMetaDictStem get LLTs and create
a dictionary of words and of their stemmed versions, respectively, which
belong to LLTs, retaining the information about the set of terms containing
each word.

• By the functional notation DictByWord(w) (resp., DictByWordStem(w)),
we refer to the set of LLTs containing word w (resp., the stem of w).

• Function stem(w) returns the stemmed version of word w.

• Function indx t(w) returns the position of word w in term t.

• stem usaget is a flag, initially set to 0, which is set to 1 if at least a
stemmed matching with the MedDRA term t is found.

• adr clear, voterst, votedt are arrays and add[A, l] appends l to array A,
where l may be an element or a sequence of elements.

• Ci (i = 1, 2, 3, 4) are the weights related to the criteria defined in Sec-
tion 3.1.4.

• Procedure sortby(A, {v1, . . . , vk}) performs the sorting of the array A
based on the values of properties v1, . . . , vk of its elements.

• Procedure prefix (S, t), where S is a set of terms and t is a term, tests
whether t (considered as a string) is prefix of a term in S. Dually, proce-
dure remove prefix(S, t) tests whether in S there are one or more prefixes
of t, and eventually removes them from S.

17



  

• Function mark(w) specifies whether a word w has been already covered
(i.e., a term voted by w has been selected) in the (partial) solution during
the term release: mark(w) returns 1 if w has been covered (with or without
stemming) and it returns 0 otherwise. We assume that before starting
the final phase of building the solution (i.e., the returned set of LLTs),
mark(w) = 0 for any word w belonging to the description.

• Procedures ordered phrases(S) and maximal voters(S), where S is a set
of terms, implement ordered-phrases and maximal-set-of-voters criteria
(defined in Section 3.1.5), respectively.

• Function win(S, n) returns the first n elements of an ordered set S. If
|S| = m < n, the function returns the complete list of ordered terms and
n−m nil values.

3.3. MagiCoder complexity analysis
Let us now conclude this section by sketching the analysis of the computa-

tional complexity of MagiCoder.
Let n be the input size (the length, in terms of words, of the narrative

description). Let m be the cardinality of the dictionary (i.e., the number of
terms). Moreover, let m′ be the number of distinct words occurring in the
dictionary and let k be the length of the longest term in the dictionary. For
MedDRA, we have about 75K terms (m) and 17K unique words (m′). Notice that,
reasonably, k is a small constant for any dictionary; in particular, for MedDRA we
have k = 22. We assume that all update operations on auxiliary data structures
require constant time O(1).

Building meta-dictionaries DictByWord and DictByWordstems requires O(km)
time units. In fact, the simplest procedure to build these hash tables is to scan
the LLT dictionary and, for each term t, to verify for each word w belonging to
t whether w is a key in the hash table (this can be done in constant time). If w
is a key, then we have to update the values associated to w, i.e., we add t to the
set of terms containing w. Otherwise, we add the new key w and the associated
term t to the hash table. We note that these meta-dictionaries are computed
only once when the MedDRA dictionary changes (twice per year). Then as many
narrative texts as we want can be encoded without the need to rebuild these
meta-dictionaries.

Hash tables permit a fast lookup for words and stems, drastically reduc-
ing computational time complexity. On the other hand, they require memory
space. However we note that in our tests using MedDRA, the memory usage has
not been excessive (about 200MB) with respect to memory usually available in
current PCs and servers. Moreover, we note that these hash tables are mainly
used for meta-dictionaries, thus they may be shared across several instances of
MagiCoder responding to different encoding requests.

It can be easily verified that the voting procedure requires in the worst case
O(nm) time units. This is a totally conservative bound, since this worst case
should imply that each word of the description appears in all the terms of the
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Procedure MagiCoder(D text, LLTDict dictionary, n integer)
Input: D: the narrative description;

LLTDict: a data structure containing the MedDRA LLTs;
n: the maximum number of winning terms that have to be released by the procedure

Output: an ordered set of LLTs
DictByWord = CreateMetaDict(LLTDict);
DictByWordStem = CreateStemMetaDict(LLTDict);
adr clear = Preprocessing(D);
adr length = adr clear.length;
VotedLLT = ∅;
/* for each non-stop-word in the description */
foreach (i ∈ [0, adr length− 1] do

/* test whether the current word belongs to MedDRA */
if adr clear[i] ∈ DictByWord then

/* for each term containing the word */
foreach t ∈ DictByWord(adr clear[i]) do

/* keep track of the index of the voting word */
add[voterst,i];
/* keep track of the index of the recognized word in t */
add[votedt, indxt(adr clear[i])];
VotedLLT = VotedLLT ∪ t;

/* test if the current (stemmed) word belongs the stemmed MedDRA */
if stem(adr clear[i]) ∈ DictByWordStem then

foreach t ∈ DictByWordStem(stem(adr clear[i])) do
/* test if the current term has not been exactly voted by the same word */
if i /∈ voterst then

add[voterst, i];
add[votedt, indxt(adr clear[i])];
/* keep track that t has been covered by a stemmed word */
stem usaget = true;

VotedLLT = VotedLLT ∪ t

/* for each voted term, calculate the four weights of the corresponding criteria */
foreach t ∈ VotedLLT do

add[weightst, C1(t), C2(t), C3(t), C4(t)]

/* filtering of the voted terms by the first heuristic criterion */
SelVotedLLT = orderd phrases(VotedLLT);
/* multiple value sorting of the voted terms */
SortedVotedLLT = sortby(SelVotedLLT, {C1, C2, C3, C4});
foreach t ∈ SortedVotedLLT do

foreach index ∈ voterst do
/* select a term t if it has been completely covered, its i-th voting word has not been covered

or if its i-th voting word has been perfectly recognized in t and if t is not prefix of another
already selected terms */

if C1(t) = 0 AND ((stem usaget = false OR (mark(adr clear(index))=0)) AND
t /∈ SelectedLLT AND prefix(SelectedLLT,t)=false) then

mark(adr clear(index))=1;
/* remove from the selected term set all terms which are prefix of t */
SelectedLLT = remove prefix(SelectedLLT,t);
SelectedLLT = SelectedLLT ∪ t

/* filtering of the finally selected terms by the second heuristic criterion */
FinalVotedLLT = maximal voters(SelectedLLT);
winners = win(FinalVotedLLT, n);

return winners

Figure 2: Pseudocode of MagiCoder

dictionary. A simple analysis of the occurrences of the words in MedDRA shows
that this worst case never occurs. In fact, the maximal absolute frequency of
a MedDRA word is 3937, and the average of the frequencies of the words is 19.1
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(These values have been calculated excluding the stop-words and taking into
account the stems of words appearing in MedDRA). Thus, usually, real computa-
tional complexity is much less of this worst case.

The computation of criteria-related weights requires O(nm) time units. In
particular, both criterion one and criterion two require O(m) time units. Cri-
terion three requires O(nm) units (we assume to absorb the complexity of the
pair distance function); criterion four requires O(nm) time units.

The subsequent sorting based on computed weights is a sorting algorithm
having complexity approximated to O(m log m), based on the comparison of
objects of four elements (i.e., the weights of the four criteria). Since the number
of the criteria-related weights involved in the sorting is constant, it can be
neglected. Thus, the complexity of sorting can be considered to be O(m log m).

Finally, to derive the best solutions actually requires O(nm) steps. The
ordered-phrases criterion requires O(nm); the maximal set of voters criterion
takes O(mn) time units.

Thus, we conclude that MagiCoder requires in the worst case O(nm) com-
putational steps. We again highlight that this is a (very) worst-case scenario,
while in average it performs quite better. Indeed, we did not take into account
that each phase works on a subset of terms of the previous phase, and the size of
these subsets rapidly decreases in real computations. The selection phase works
only on voted terms, thus, in common applications, on a subset of the original
dictionary.

3.4. Software implementation: the user interface
MagiCoder has been implemented as a VigiFarmaco plug-in: people respon-

sible for pharmacovigilance can consider the results of the auto-encoding of the
narrative description and then revise and validate it. Figure 3 shows a screen-
shot of VigiFarmaco during this task. In the top part of the screen it is possible
to observe the five sections composing a report. The screenshot actually shows
the result of a human-MagiCoder interaction: by pressing the button “Autocod-
ifica in MedDRA” (in English, “MedDRA auto-encoding”), the user responsible for
pharmacovigilance obtains a MedDRA encoding corresponding to the natural lan-
guage ADR in the field “Descrizione” (in English, “Description”). Up to six
solutions are proposed as the best MedDRA term candidates returned by Magi-
Coder. According to the processing description, MagiCoder can also return an
empty solution (if no ADRs are detected). If the automatic encodings reveals
more than six MedDRA terms, the sofware returns the first six in the ordered list
of candidate terms (see Section 3.1). The user can refuse a term (through the
trash icon), change one or more terms (by an option menu), or simply validate
the automatic encoding and switch to the next section “Farmaci” (in English,
“Drugs”). The maximum number of six terms to be shown has been chosen in
order to supply pharmacovigilance experts with a set of terms extended enough
to represent the described adverse drug reaction but not so large to be redundant
or excessive.

We are testing MagiCoder performances in the daily pharmacovigilance ac-
tivities. Preliminary qualitative tests and discussions with people responsible for
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Figure 3: A partial screenshot of VigiFarmaco User Interface. The field Descrizione (De-
scription) is devoted to the natural language description. Below it can noticed the automatic
encoding into four MedDRA terms.

pharmacovigilance who are using VigiFarmaco show that MagiCoder drastically
reduces the amount of work required for the revision of a report, allowing the
pharmacovigilance stakeholders to provide high quality data about suspected
ADRs.

4. Testing MagiCoder performances

In this section we describe the experiments we performed to evaluate Magi-
Coder performances. The first completely automatic test exploits a large amount
of manually revised reports we obtained from VigiSegn [39] (see Section 4.1).
The second test involves a set of about 1800 reports, revised ex novo by a group
of three experts of the domain, that represents a gold standard and provides
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Precision P = |RelS ∩ RetS|
|RetS| = TP

TP+FP

Recall R = |RelS ∩ RetS|
|RelS| = TP

TP+FN

Table 2: Performance and correctness measures

a sound reference for the accurate estimation and classification of MagiCoder
errors.

In information retrieval the standard approach to system evaluation revolves
around the orthogonal notions of relevant/non-relevant solution and retrieved/non-
retrieved solution [40]. In our setting, a solution is relevant if and only if it is
a MedDRA term which correctly encode the narrative description. On the other
hand, a retrieved solution is trivially defined as a MagiCoder output term, inde-
pendently from its relevance. We dub the sets of relevant and retrieved solutions
as RelS and RetS, respectively. Two main kinds of errors are defined [40]: false
positive errors (FP) and false negative errors (FN). In our setting, these errors
can be defined as follows. A false positive error corresponds to the retrieval of
a “wrong” LLT, i.e., a retrieved non-relevant term. A false negative error cor-
responds to the failure in the recognition of a “good” LLT, i.e., a non-retrieved
relevant term.

For example, consider a report that has the (partially misspelled) narrative
form “Seizure followed by headace” (notice the typo in the last word). It may
be mapped to two MedDRA terms, say, ”Seizure” (10039906) and ”Headache”
(10019211). MagiCoder fails in recognise the misspelled word “headace” as the
correct corresponding LLT and only returns “Seizure”. Then, in the MagiCoder’s
output we measure (w.r.t. a correct encoding) a true positive (“Seizure”) and
a false negative (“Headache”).

As dual notions of false positive and false negative errors, one can define
correct results, i.e., true positive (TP) and true negative (TN): in our case,
a true positive corresponds to a correctly returned relevant LLT, and a true
negative is an non-relevant LLT, which correctly has not been recognized as a
solution.

The evaluation of the false positive and the false negative rates, and in
particular of the impact of relevant solutions among the whole set of retrieved
solutions, are crucial measures in order to estimate the quality of the automatic
encoding. For this purpose two main metrics are used, i.e., precision and recall.
The precision (P), also called positive predictive value, is the percentage of
retrieved solutions that are relevant. The recall (R), also called sensitivity, is
the percentage of all relevant solutions that have been retrieved by the system.

Table 2 summarizes formulas for precision and recall. We provide formulas
both in terms of relevant/retrieved solutions and binary classification errors.

It is worth noting that the binary classification of solutions as relevant or
non-relevant is referred to as the gold standard judgment of relevance. In our
case, the gold standard is represented by a human encoding of the narrative
description, i.e., a set of MedDRA terms choosen by a pharmacovigilance expert.

22



  

Class # chars # reports Recall R Precision P

1 0-20 chars 459 86% 88%

2 21-40 chars 1012 72% 75%

3 41-100 chars 1993 61% 62%

4 101-255 chars 970 58% 52%

5 >255 chars 11 46% 45%

overall 4445 65% 65%

Table 3: Results of the first experiment on MagiCoder

Such a set is assumed to be definitively correct (only correct solutions are re-
turned) and complete (all correct solutions have been returned).

4.1. First experiment
To evaluate MagiCoder performances, we first developed a benchmark, which

automatically compares MagiCoder behavior with human encoding on already
manually revised and validated ADR reports.

For this purpose, we exploited VigiSegn, a data warehouse and OLAP system
that has been developed for the Italian Pharmacovigilance National Center [39].
VigiSegn offers a large number of encoded ADR reports. The encoding has been
manually performed and validated by experts working at pharmacovigilance
centers. Encoding results have then been sent to the national regulatory au-
thority, AIFA. The dataset we considered covers all the 4445 reports received,
revised, and validated during 2014 in the Italian region Veneto.

To test MagiCoder we automatically compared the output provided by the
procedure with the manual encoding of the ADR reports from the dataset. For
each report, we checked which terms belong to either both or only one of manual
and automatic solutions, and then we calculated errors and performance mea-
sures. In order to have two uniform data sets, we compared only those reports
where MagiCoder recognized at most six terms, i.e., the maximum number of
terms that human experts are allowed to select through the VigiFarmaco user
interface.

4.1.1. Results

Table 3 shows the results of this first performance test. We grouped narrative
descriptions by increasing length (in terms of characters). Reported results are
computed considering terms at PT level, i.e., mapping each LLT recognized by
the human experts or by MagiCoder to its corresponding preferred term. By
moving to PT level, instead of using the LLT level, we group together terms that
represent the same medical concept (i.e., the same adverse reaction). In this
way, we do not consider an error when MagiCoder and the human expert use
two different LLTs for representing the same adverse event. The use of the LLT
level for reporting purpose and the PT level for analysis purpose is suggested
also by MedDRA [3].

23



  

MagiCoder behaves very well on very short (class 1) and short (class 2)
descriptions. Recall and precision remain greater than 50% up to class 4. Very
long descriptions (class 5), on which performances drastically decrease, represent
a negligible percentage of the whole set (less than 0.3%).

It is worth noting that this test simply estimates how much, for each report,
the MagiCoder behavior is similar to the manual work. The query we perform to
compare manual and automatic encoding is, obviously, quantitative. For each
VigiSegn report, the query is able to detect common retrieved terms and terms
returned either by the human expert or by MagiCoder. It is not able to fairly
test redundancy errors, human experts often make some encoding choices in
order to avoid repetitions. Thus, an LLT returned by MagiCoder that has not
been selected by the expert because redundant is not truly a false positive. This
suggests that we are probably underestimating MagiCoder performances.

4.1.2. Examples
Table 4 provides some examples of the behavior of MagiCoder. We propose

some Italian free text ADR descriptions from the first experiment and provide
both the manual and the automatic encodings into LLT terms. To ease the
reading, we also provide a quite straightforward literal translation in English of
reports and encodings.

In Table 4 we use the following notations: t1
n and t2

n are two identical
LLTs retrieved both by the human and the automatic encoding; t1

n and t2
n

are two semantically equivalent (i.e., LLTs with the same PT) or similar LLTs
retrieved by both the human and the automatic encoding and considered as
true positive; we use italic to denote text in the descriptions and LLTs that have
been recognized only by MagiCoder. For example, in description D3, “cefalea”
(in English, “headache”) is retrieved and encoded both by the human expert
and MagiCoder; in description D2, ADR “febbre” (in English, “fever’) has been
encoded with the term itself by the algorithm, whereas the expert encoded it
with its synonym “piressia” (in English, “pyrexia”); in D1, ADR “ipotensione”
(in English, “hypotension”) has been retrieved only by MagiCoder.

To exemplify how the ordered-phrase heuristic works, we can notice that
in D2 MagiCoder did not retrieve the MedDRA term “Vescicole in sede di vacci-
nazione” (10069623), Italian for “Vaccination site vesicles”. It belongs to the
set of the voted solutions (since C1(10069623) = 0), but it has been pruned from
the list of the winning terms by the ordered-phrase heuristic criterion.

4.2. Second experiment
For the second experiment, we created a gold reference standard with the in-

volvement of three experts of the domain. The experts have a great experience
both in report annotation and in the use of MagiCoder. We adopted a stan-
dard praxis: after the blind revision of two experts, which worked separately, a
third moderator reviewed and eventually corrected and made the gold standard
uniform.
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# Narrative description LLT human encoding LLT MagiCoder encoding

D1

Shock anafilattico
(ipotensione + rash
cutaneo) 1 h dopo
assunzione x os del
farmaco

Shock anafilattico1 Ipotensione, Shock anafilattico1

Anaphylactic shock
(hypotension + rash
cutaneous) 1 hour after
assumption per os of the
medicine

Anaphylactic shock1 Hypotension,
Anaphylactic shock1

D2

Gonfiore in sede di
vaccinazione sx dal
5/11, febbre meno di
39,5 dal 21/11,
vescicole, bolle presso la
guancia dal 10/11

Piressia
1
, Vescicole2,

Gonfiore in sede di vaccinazione3
Bolle, Febbre

1
, Vescicole2,

Gonfiore in sede di vaccinazione3

Swelling in the area of
left vaccination from
5/11, fever less than
39.5 since 21/11,
blisters, bullaes at the
cheek since 10/11

Pyrexia
1
, Blisters2,

Swelling in vaccination site3
Bullaes, Fever

1
, Blisters2,

Swelling in vaccination site3

D3

Reazione locale estesa,
dolore locale; cefalea e
febbre per due giorni

Cefalea1, Febbre2,

Reazione in sede di vaccinazione
3

Cefalea1, Dolore, Febbre2,

Reazione locale
3

Extended local reaction,
local pain; headache
and fever for two days

Headache1, Fever2,

Vaccination site reaction
3

Headache1, Pain, Fever2,

Local reaction
3

Table 4: Examples of MagiCoder behavior

The dataset includes 1805 ADR narrative descriptions from VigiSegn. We
grouped reports by increasing length as in the previous experiment, taking into
account different length intervals. The definition of the classes and the number
of reports in each of them are reported in Table 5.

The cardinality of classes does not reflect the effective distribution of lengths
among the whole dataset. In particular, very long ADR description (>199 char-
acters) represents a small percentage. Notwithstanding, we decided to observe
MagiCoder behaviour on a significative amount of long (and potentially tricky)
documents.

Pharmacologists reviewed the reports ex novo and then compared results
with MagiCoder outputs. In the comparison, they considered redundancy and
semantic equivalence of different solutions as right encoding, and so provided a
fair account of MagiCoder performances.

4.2.1. Results
Results of the second experiment are summarized in Table 5.
Moreover, they taxonomized false positives and false negatives errors into

more refined subclasses. Among false negatives, they distinguished the following
three cases.

FNi) Laboratory results. Out of range results for a lab test described in the
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Class # chars # reports Recall R Precision P

1 <50 chars 405 93.6% 98.7%

2 50-100 chars 368 87.0% 96.6%

3 100-149 chars 378 87.9% 92.5%

4 150-199 chars 358 87.8% 89.7%

5 >199 chars 301 84.4% 86.8%

overall 1810 87.7% 92.0%

Table 5: MagiCoder performances according to the second experiment

ADR report may entail some adverse reaction (e.g., systolic blood pres-
sure greater than 140 stands for systolic hypertension), that cannot yet
be interpreted by MagiCoder.

FNii) Mispelled words. Since MagiCoder uses perfect string matching, it is not
still able to recognize mispelled words and then it may miss an adverse
reaction.

FNiii) Lack of synonyms. Missing terms are due to the lack of synonymical
terminology.

Similarly, also false positive are classified into three classes.

FPi) Therapeutic indication/concomitant pathologies. Sometimes ADR re-
ports contain also information about either concomitant pathologies or
the therapeutic indication of the administered drugs. These clinical data
may be wrongly interpreted by MagiCoder as ADRs.

FPii) Negation. MagiCoder does not take negations into account, thus a reac-
tion may be reported when its absence is stated in the ADR report.

FPiii) Similar words. Some errors are induced by the usage of syntactically
similar words with different meanings that MagiCoder is not able to
discriminate.

Some examples of these error subclasses can be found in Tables 6, 11, and 12.
Since reviewers can evaluate the semantic equivalence of apparently different

results, human comparison is certainly more fair than the automatic one per-
formed in the first experiment. For this reason, with respect to performances
calculated in the first experiment, MagiCoder performances degrade less moving
from class 1 to class 5, and the global results are drastically better. Indeed, the
recall and the precision reach 86.99% and 91.81%, respectively.

Analyzing errors, we observe that among false negatives FNi, FNii, and
FNiii errors represent the 3%, 8%, and 89%, respectively. This confirms the
importance to equip MagiCoder with synonyms (see Section 5.2). Among false
positives, the majority of errors is covered by FPi (61%) whereas FPii and FPiii
represent 16% and 23% of errors, respectively.
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Errors of type FPi (i.e., errors involving therapeutic indication/concomitant
pathologies) can only be addressed by extending MagiCoder with suitable knowl-
edge bases. Since therapeutic indications are systematically included in the de-
scription of ADRs, the same kind of errors can be observed also on the dataset
of English Summaries of Product Characteristics analyzed in Section 4.3.

Errors related to the lack of the negation detection (FPii) represent a smaller
percentage. A discussion about the detection of connectives is reported in Sec-
tion 5.3.

Finally, errors involving similar words depend on the given language and
partially on the stemmer algorithm. It seems quite tricky to find a general
solution without a drastic worsening of MagiCoder performances. A partial,
but potentially satisfactory solution, may be to handle with ad-hoc solutions
frequently occurring cases (as the common Italian false positive mania described
in Section 3.1.2).

4.2.2. Examples
Table 6 reports three examples of ADR descriptions from the second ex-

periment. Each LLT is eventually annotated with its error class as reported by
domain experts.

Apart errors, we note in the first ADR how experts may consider correct
MagiCoder outputs also when they do not match perfectly the gold standard. In
the ADR description, the reporter said “ostruzione delle coane da secrezione” (in
English, “choanae obstruction due to secretion”). Experts encoded that part of
the ADR as “Ostruzione nasale” (Italian for “Nasal obstruction”) but accepted
as correct the MagiCoder encoding “Ostruzione” (in English, “Obstruction”)
although the anatomical descriptor (“nasale”) is missing.

Similarly, in the third ADR, we note that experts did not considered incorrect
the output of MagiCoder, despite it is redundant. Indeed, all encoded reactions
are outcomes of “Shock anafilattico” (in English, “Anaphylactic shock”) and
thus they are omitted in the gold standard.

4.3. Some initial experiments on English text
MagiCoder has been developed to be robust with respect to language changes.

Indeed, no assumptions related to the structure of written phrases are directly
exploited in the procedure.

The full exploration of MagiCoder performances and its potentiality on En-
glish language is one of the main current developments of MagiCoder. So far,
we obtained some evidences about the good behavior of the software also for
English written descriptions. In order to test MagiCoder, one needs a large cor-
pus (i.e., annotated English text), possibly a set of narrative descriptions about
suspected ADRs.

Up to now, we performed two preliminary experiments. They suggest promis-
ing results also on English written clinical texts. In both experiments, no syn-
onyms for English MedDRA have been considered.
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ADR description Gold standard MagiCoder

Dopo circa 5/6’ dalla fine
della somministrazione:
dispnea, sensazione di
soffocamento, ostruzione
delle coane da secrezione,
eruzione cutanea al volto. No
broncospasmo

Sensazione di soffocamento,
Dispnea, Ostruzione nasale,

Eruzione cutanea

Secrezione (FPi),
Broncospasmo (FPii),
Dispnea, Ostruzione,

Eruzione cutanea,
Sensazione di soffocamento

Eritema cutaneo, atralgie
migranti, rialzo degli indici
di funzione renale (rialzo
della creatinina di 1mg/dl),
rialzo di VES e PCR

Velocità di
eritrocitosedimentazione

aumentata (FNiii),
Creatinina aumentata (FNiii),
Proteina C aumentata (FNiii),

Artralgia (FNii),
Eritema della cute (FNiii)

Eritema migrante (FPiii)

Il paziente riferisce reazione
allergica, vomito, diarrea,
orticaria gigante e inizio di
shock anafilattico, bolle
pruriginose

Shock anafilattico

Bolle, Vomito, Diarrea,
Reazione allergica,
Orticaria gigante,
Shock anafilattico

Table 6: Examples of Adverse Drug Reaction descriptions from the second experiment

The first experiment involves some examples proposed in [20], where TextMiner,
a text extraction tool for MedDRA and WHO-ART10 terminologies, is described
and implemented. In [20], the author addressed the same problem we are facing,
i.e., the encoding of free text descriptions of adverse drug reactions. The com-
parison has been done on a small data set, and is based on some Martindale [23]
narrative sentences, the author considered in [20]. We considered only sentences
effectively describing adverse effects.

In Tables 7, 8, and 9 we compare the behavior of MagiCoder and TextMiner
on the same input and we can observe that MagiCoder exceeds TextMiner perfor-
mances. Recall that TP stands for True Positives, FP stands for False Positives
and FN stands for False Negatives. Let us now discuss interesting differences,
strong and weak points of MagiCoder encoding.

Martindale description 1. CNS-related adverse effects include headache, ver-

tigo, dizziness, nervousness, tinnitus, depression, drowsiness, and insom-

nia. Hypersensitivity reactions may occur occasionally and include fever,

angioedema, bronchospasm, and rashes. Hepatotoxicity and aseptic menin-

gitis, which occur rarely, may also be hypersensitivity reactions. Some pa-

tients may experience visual disturbances.

10https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/WHO/
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MagiCoder TextMiner

TP

Headache, Vertigo, Dizziness,
Insomnia, Nervous, Tinnitus,

Depressive reaction, Angioedema,
Bronchospasm, Fever, Rash all over,

Aseptic meningitis, Drowsiness,
Hepatotoxicity, Hypersensitivity

reaction, Visual disturbances

Headache, Vertigo, Dizziness,
Insomnia, Nervousness, Tinnitus,

Depression, Angioedema,
Bronchospasm, Fever, Rash,

Meningitis

FP No adverse effect Meningism

FN
Drowsiness, Hypersensitivity

reaction, Hepatotoxicity, Visual
disturbances

Table 7: Comparison of MagiCoder and TextMiner on Martindale description 1

The MagiCoder false positive “No adverse effect” is, de facto, an uninforma-
tive (in our setting) MedDRA term. A manual cleaning of uninformative preferred
terms (and related LLTs) can easily avoid this kind of error.

Martindale description 2. Reports have included anaphylaxis (which has some-

times been fatal, and may occur after the first dose), serum sickness, Stevens-

Johnson syndrome, toxic epidermal necrolysis (sometimes fatal), laryngeal

oedema, and vasculitis.

MagiCoder TextMiner

TP

Vasculitis, Laryngeal oedema,
Serum sickness, Stevens-Johnson

syndrome, Toxic epidermal
necrolysis, Anaphylaxis

Vasculitis, Oedema, Serum sickness,
Stevens Johnson syndrome,

Epidermal necrolysis

FP Laryngitis

FN Anaphylaxis

Table 8: Comparison of MagiCoder and TextMiner on Martindale description 2

Martindale description 3. Severe life-threatening events, including hyper-

osmolar nonketotic hyperglycaemic coma, diabetic ketoacidosis, hypogly-

caemic coma, convulsions, and mental status changes have been reported

very rarely

MagiCoder TextMiner

TP
Hypoglycaemic coma, Convulsions,

Mental status changes, Diabetic
ketoacidosis

Hypoglycaemic coma, Convulsions

FP Diabetic coma, Coma Coma diabetic

FN Hyperglycaemic coma
Hyperglycaemic coma, Diabetic

ketoacidosis, Mental status changes

Table 9: Comparison of MagiCoder and TextMiner on Martindale description 3
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Product Active ingredients Recall R Precision P

000546 Pregabalin 97.67% 92.31%
001026 Liraglutide 92.50% 82.22%

002048
Collagenase clostridium
histolyticum 88.43% 85.96%

002332 Boceprevir 99.21% 94.38%
002601 Dimethyl fumarate 88.46% 60.53%
002783 Levetiracetam 90.79% 81.18%
003766 Evolocumab 81.82% 56.25%
003768 Daclatasvir dihydrochloride 94.60% 92.10%
003985 Nivolumab 87.94% 84.93%

004042
Elvitegravir / Cobicistat /
Emtricitabine / Tenofovir
alafenamide

62.07% 72.00%

Average 88.35% 80.20%

Table 10: MagiCoder performances on a dataset of ten English SPCs

The second experiment involves a set of ten Summaries of Product Char-
acteristics (SPCs) from the European Medicines Agency11 (EMA), manually
revised by an expert of the domain.

Table 10 summarizes MagiCoder performances on this dataset.
We analyze here one of the worst performances, measured on product 004042,

where the recall reaches only 62%. We focus on some examples of false negative
errors and we discuss the MagiCoder behavior case by case.

We categorized errors according to the classification defined in Section 4.2
Moreover, we add two further classes of errors:

FNiv) false negative errors related to MagiCoder selection criteria and heuris-
tics.

FPiv) false positive errors related to MagiCoder selection criteria and heuris-
tics.

Some false negatives and false positives on SPC 004042 are reported in Ta-
bles 11 and 12, respectively. For each error we propose the original text fragment
from the SPC, the expert’s encoding and, eventually, a comment about the error
made by MagiCoder.

11 http://www.ema.europa.eu/
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5. Discussion

We discuss here some choices and issues we faced when developing Magi-
Coder.

5.1. Stemming and performance of the NLP software
Stemming is a useful tool for natural language processing and text searching

and classification. Deriving the stemmed form of a word is a non-trivial oper-
ation. In particular, due to the complexity of the language and the number of
linguistic variations and exceptions, stemming for Italian language is extremely
critical.

For the first implementation of MagiCoder as VigiFarmaco plug-in, we used
a robust implementation of the Italian stemming procedure12 based on Porter’s
algorithm [21]. The procedure takes into account subtle properties of the lan-
guage and the etymological source of the words. In addition to the simple recog-
nition of words up to plurals and genres, it is able, in most cases, to recognize
an adjectival form of a noun by extracting the same syntactical root.

Despite the efficiency of this algorithm, we noticed that the recognition of
some MedDRA terms were lost. In some sense, this stemming algorithm is too “ag-
gressive” and, in some cases, counterintuitive. For example, the Italian adjective
“psichiatrico” (in English, “psichiatric”) and its plural form “psichiatrici” have
two different stems, “psichiatr” and “psichiatric”, respectively. Thus, in this
case the stemmer fails in recognizing the singular and plural forms of the same
word.

We then decided to adopt the stemming algorithm also used in Apache
Lucene13, an open source text search engine library. This procedure is less so-
phisticated w.r.t. the stemming algorithm cited above, and can be considered
as a “light” stemmer. It simply elides the final vowels of a word [41]. This
induces a conservative approach and a uniform processing of the whole set of
MedDRA words. This may be unsatisfactory for a general problem of text pro-
cessing, but it is fruitful in our setting. We repeated the first experiment (the
completely automatic one on the VigiSegn dataset) both with the classical and
the light stemmer. In the latter case, we measured a global enhancement of the
performances. Average recall and precision on all reports (i.e., without regards
to their length), moved from 63% and 61%, respectively, to 65% (overall per-
formances in Table 3). We note in particular the growth of recall and precision
on class 5, where an increase of 5% and 7% have been measured, respectively.

5.2. Synonyms
MagiCoder performs a pure syntactical recognition (up to stemming) of the

words in the narrative description. No semantic information is used in the cur-
rent version of the algorithm. On the other hand, in written informal language,

12http://snowball.tartarus.org/
13https://lucene.apache.org/
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synonyms and variations of words and locutions (e.g., acronyms, abbreviations)
are frequently used. Thus, a natural evolution of our NLP software may be
the addition of an Italian thesaurus dictionary. This would appear a trivial
extension, as one could try to match MedDRA both with original words and their
synonyms, and try to maximize the set of retrieved terms. We performed a
preliminary test and we observed a drastic deterioration of performances (both
in terms of correctness and completeness). The main reason is related to the
nature of natural language. Indeed, synonymical groups include words related
by figurative meaning. For example, among the synonyms of word “faccia” (in
English, “face”), one finds “viso” (in English “visage”), which is semantically
related, but also “espressione” (in English, “expression”), which is not relevant
in the considered medical context. Moreover, the use of synonyms of words in
ADR text leads to an uncontrolled growth of the voted terms, that barely can be
later dropped in the final terms release. Furthermore, the word-by-word recog-
nition performed by MagiCoder, with the uncontrolled increase of the processed
tokens (original words plus synonyms plus possible combinations), could induce
a serious worsening of computational performances.

Thus, we moved from integrating word synonyms to add new locutions (i.e.,
phrases possibly composed by more words) as synonyms of an already existing
MedDRA term. We recall that, unfortunately, the UMLS lexicon cannot help us
in the generation of synonyms since it is not available in Italian. Therefore, we
are exploring other solutions.

Up to now, we added to the official MedDRA terminology a set of about 1300
locutions. We automatically generated such a lexicon by considering three nouns
that frequently occur in MedDRA, “aumento”, “diminuzione” and “riduzione” (in
English “increase”, “decrease”, and “reduction”, respectively) and their adjec-
tival form. For each LLT containing one of these nouns (resp., adjectives) we
generated an equivalent term (also called pseudo-LLT) taking into account the
corresponding adjective (resp., noun). A pseudo-LLT is regularly voted and
sorted by MagiCoder but, if selected, the software returns the official (seman-
tically equivalent) MedDRA term. Notice that, conversely to the single word
synonyms solution, each pseudo-LLT is related to one and only one official term.
This clearly limits the performance and computation time deterioration.

We repeated the first experiment on MagiCoder equipped with this small
set of synonyms. The addition of synonyms induced a global improvement of
MagiCoder performances on classes 4 and 5. For class 4, both precision and
recall increased of 1%. For class 5, we observed a more significant increment as
precision moved from 45% to 49%, while recall moved from 46% to 55%.

Class 5, which enjoys a particular advantage from the introduction of the
pseudo-LLTs, represents a small part of reports. Notwithstanding, these cases
are very arduous to address, and we have, at least, a good evidence of the
effectiveness of our approach.

A different solution, working side-by-side with the pharmacovigilance ex-
perts, could consist in enlarging the MedDRA official terminology and generating
a new ADR lexicon. This could be done on the basis of frequently retrieved
locutions which are semantically equivalent to LLTs. “Candidate” pseudo-LLTs
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can be retrieved adapting some statistical methods for linguistics [42], and then
validated and linked to the official the terminology by experts. Some first ex-
periments about the automatic generation of new MedDRA terminology can be
found in [43].

5.3. Connectives in the narrative descriptions
As previously said, in MagiCoder we do not take into account the structure of

sentences. From this point of view, our procedure is different from those based
on the so called part-of-speech (PoS) [15]. PoS includes powerful methodologies
able to perform the morpho-syntactical analysis of texts, labeling each lexical
item with its grammatical properties. PoS-based text analyzers are also able
to detect and deal with logical connectives such as conjunctions, disjunctions,
and negations. Even if connectives generally play a central role in the logical
foundation of natural languages, they have a minor relevance in the problem we
are addressing. Indeed, ADR reports are, on average, badly/hurriedly written,
or they do not have a complex structure (we empirically noted this also for long
descriptions). Notwithstanding, negation deserves a distinct consideration, since
the presence of a negation can drastically change the meaning of a phrase. We
evaluated the frequency of negation connectives in ADR reports. We considered
the same sample exploited in Section 4.1, and counted the occurrences of words
“non” (Italian for “not”) and “senza” (Italian for “without”)14. We detected
potential negations in 162 reports (i.e., only in the 3.6% of the total number,
4445). Even though negative sentences seem to be quite uncommon in ADR
descriptions, the detection of negative forms is a short-term issue we plan to
address. We are considering to adapt simple and efficient algorithm such as
NegEx [44] (used, for example, in [33]) for identifying negations in textual
medical records. NegEx has been developed for English language, it exploits
a knowledge base (a “negation phrase list”) and is able to distinguish different
kinds of negation and to catch double negations. Some multilingual (Swedish,
French and German) extensions of NegEx can be found in [45].

6. Conclusions and future work

In this paper we proposed MagiCoder, a simple and efficient NLP software,
able to provide a concrete support to the pharmacovigilance task, in the revision
of ADR spontaneous reports. MagiCoder takes in input a narrative description
of a suspected ADR and produces as outcome a list of MedDRA terms that “cover”
the medical meaning of the free-text description. Differently from other NLP
software proposed in literature for the medical domain, we developed an orig-
inal text processing procedure. Results of tests proposed in Section 4 about
MagiCoder efficiency are encouraging.

14The word “senza” does not necessarily imply a negation, thus we are clearly overestimating
the presence of negations.
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As for ongoing and future work, we are addressing the inclusion of ad-hoc
knowledge bases, as the MedDRA-thesaurus described in Section 5.2, and the
study of suitable new heuristics and refinements to improve MagiCoder perfor-
mances. We plan also to address the management of orthographic errors possi-
bly contained in narrative ADR descriptions. A solution could be to include a
medical term-oriented spell checker in VigiFarmaco or MagiCoder. In the first
case, we would be able to prevent mistakes by pointing out to the user that she
is doing some spelling error. This should drastically reduce users’ orthographi-
cal errors without any side effect in MagiCoder development and performances.
Note that a spell checker does not limit the user’s expressiveness, but it just
avoid trivial and common typos and it can be ignored when the user uses a word
unknown to the spell checker. In the second case, MagiCoder would be able to
recognize, and correct, spelling mistakes. Moreover, as already said, another
short-term goal is to include in MagiCoder a subroutine for the detection and
the management of negation connectives.

We are also providing evidence that MagiCoder is robust with respect to
language and dictionary changes. The preliminary results in Section 4.3 suggest
that MagiCoder can be a suitable tool also for narrative descriptions written in
English. We plan to develop significative tests for MagiCoder on the English
version of MedDRA and, moreover, we aim to test our procedure on different
dictionaries (e.g., ICD15, WHO-ART, SNOMED CT16).

Finally, we aim to apply MagiCoder to different sources of ADRs, such as
drug information leaflets, clinical records, and social media [19, 46].
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1) The NLP software MagiCoder, that automatically maps 

spontaneous reports into MedDRA terminology is 

introduced. 

 

2) We tested MagiCoder against a gold standard of about 

1800 manually revised reports.  

We measured an average recall and precision  
of 86, 9% and 91,8%, respectively.  
 

3) We also performs some initial, encouraging experiments on 

English  texts. 

 

4)  From a practical point of view, MagiCoder  reduces 
the time required 
for encoding ADR reports. This improvement in the 
efficiency  of  
pharmacologists' work has a relevant impact also on the 
quality  
of the subsequent data analysis. 


