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Abstract

Functional dependencies (FDs) typically represent associations over facts stored by a database, such as “patients with the same

symptom get the same therapy.” In more recent years, some extensions have been introduced to represent both temporal constraints

(temporal functional dependencies - TFDs), as “for any given month, patients with the same symptom must have the same therapy,

but their therapy may change from one month to the next one,” and approximate properties (approximate functional dependencies

- AFDs), as “patients with the same symptom generally have the same therapy.” An AFD holds most of the facts stored by the

database, enabling some data to deviate from the defined property: the percentage of data which violate the given property is

user-defined.

According to this scenario, in this paper we introduce approximate temporal functional dependencies (ATFDs) and use them to

mine clinical data. Specifically, we considered the need for deriving new knowledge from psychiatric and pharmacovigilance data.

ATFDs may be defined and measured either on temporal granules (e.g., grouping data by day, week, month, year) or on sliding

windows (e.g., a fixed-length time interval which moves over the time axis): to this regard, we propose and discuss some specific

and efficient data mining techniques for ATFDs. We also developed two running prototypes and showed the feasibility of our

proposal by mining two real-world clinical data sets. The clinical interest of the dependencies derived considering the psychiatry

and pharmacovigilance domains confirms the soundness and the usefulness of the proposed techniques.

c© 2014 Published by Elsevier Ltd.

Keywords: Approximate temporal functional dependency, temporal granule, sliding window, grouping, psychiatric patients,

pharmacovigilance

1. Introduction

Current clinical database systems enable us to store huger and huger quantities of data, and data mining techniques

help in extracting relevant knowledge from these data. Analyzing temporal evolution of data, time series, changes of
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information over time, may lead to additional temporal knowledge. Temporal data mining is the research field in this

direction, working on structured [1] and, occasionally, on semi-structured data [2].

Knowledge in (clinical) databases may be expressed in two ways: on one hand, it can be represented through

suitable constraints on data; on the other hand, it can be derived through the analysis of data, by discovering patterns,

regularities, and so on.

According to the first point of view and considering data stored in a plain relational database, we may express con-

straints by identifying functional dependencies (FD). Let us consider, for example, a simple database table describing

the reference areas for emergency admissions in a region. We typically specify that patients have a single reference

hospital for emergencies, depending on their address (considering the neighborhood of the admitting reference hospi-

tal). We can thus specify a functional data dependency between the home address of the patient and the location of the

hospital: all patients with the same address must refer to the same hospital. Leveraging the definition of functional de-

pendencies as a way of expressing constraints on data, the research community focused also on extending FDs to deal

with data temporalities [3, 4, 5, 6, 7]: as example, a temporal functional dependency (TFD) may be used to express

the constraint that the reference hospital for emergencies depends on the patient home address, but this dependency

may change according to the season of the year.

On the other hand, a different approach has to be taken if we consider, for example, a database table collecting

data on patients who were admitted for emergencies to hospitals. In this case, we cannot constrain patient addresses to

hospitals in a strict way, but we could discover on the collected data that the dependency between patient addresses and

hospitals hold on most tuples of the database, but not on all the tuples of that database. We call this an approximate

functional dependency (AFD): patients with the same home address usually go the same hospital (not always the

reference one) when they are at home, but, as an example, some patients on holiday could have been admitted to

an hospital which is not the closest one to their home address. The issue of discovering approximate functional

dependencies from data has been largely studied in the literature [8, 9, 10, 11].

As final consideration, we may also experience that over some periods of the year we generally observe an ap-

proximate functional dependency, while in some other periods we observe a different approximate dependency: for

example, it could occur that patients go to different hospitals for emergencies even according to some specific skills of

hospitals in managing seasonal pathologies. In this case, it still holds that we can discover approximate dependencies

between patient addresses and hospitals for emergencies, but only if we group data according to the season and the

year of the emergency admission. We call this an approximate, temporal functional dependency (ATFD). At the best

of our knowledge, studies on approximate temporal functional dependencies still lack.

According to the depicted scenario, the aim of this paper is to propose a first step, focusing on a specific type

of ATFD, of a general framework for temporal data mining of clinical data. In particular, we adopt a framework for
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temporal functional dependencies recently proposed by Combi et al. in [7]: the framework subsumes all the previous

proposals dealing with temporal functional dependencies for relational databases and introduces some new kinds of

temporal functional dependencies. According to this framework, we then focus on the issue of mining (approximate)

temporal functional dependencies based on a temporal grouping of tuples. We introduce the concept of approximate

temporal functional dependency with temporal grouping, and discuss through some examples both the case when

grouping is induced by granularities (i.e. time units) and the case when sliding windows are used. Then, we propose

efficient algorithms for this kind of temporal data mining. Finally, we discuss the application of our algorithms to real

world clinical data from the psychiatric and pharmacovigilance domains, respectively.

Besides the technical performances, we discuss the clinical meaning and the most relevant mined temporal depen-

dencies; to this regard, it worth noting that the mined temporal functional dependencies are a relatively new kind of

clinical knowledge on data, which deserves further efforts to become clearly interpretable by physicians in a daily clin-

ical setting. Indeed, while association rules and temporal association rules have been considered in clinical domains

for years and their role in the clinical decision-support process has been widely acknowledged [12, 13], approximate

temporal functional dependencies represent a new piece of knowledge that has to be properly integrated in clinical

decision-support processes. As an example, temporal association rules may allow one to derive knowledge as “most

patients presenting a symptom of chest pain overlapping nausea receive, within few days, a therapy with acetylsalicylic

acid”. On the other side, approximate temporal functional dependencies provide knowledge at a higher abstraction

level, as “in most cases, patients with the same symptoms are given the same drug (i.e. active principle), considering

a time window of 10 days”. Such kind of knowledge refers to a general relationship between some features of a

patient, in this case symptoms and therapies: the relationship holds for any specific values of such features. Such a

valuable kind of knowledge requires physicians to merge it with more specific knowledge, such as that one coming

from temporal association rules, in the whole decision making process.

The main novelty aspects of this paper can be summarized as in the following, even with a specific reference to the

preliminary work in [14], where the main focus was on the proposal of ATFDs and on some preliminary experiments

on a reduced set of psychiatry data with some first prototiypal algorithms.

• we discuss in detail the proposed approach for ATFDs and introduce completely new algorithms both for

granularity-based temporal mining and for mining through sliding windows;

• we present and discuss two important clinical domains, i.e. psychiatry and pharmacovigilance, where temporal

data mining is highly required. As the mined temporal dependencies are sometime completely new and unex-

pected even to expert physicians, we discuss here some possible interpretations of the discovered knowledge;

• the new experimental results, with a new and extended setting considering two different data sets from psychia-
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try and pharmacovigilance, consist of both a detailed performance analysis and an evaluation and discussion of

the mined ATFDs from a clinical point of view.

In the following, we describe the background and the related work (Section 2) and discuss the two clinical do-

mains we considered for temporal data mining, namely psychiatry and pharmacovigilance (Section 3); we introduce

the concept of approximate temporal functional dependency (ATFD), providing some examples on the application

scenario (Section 4); then we describe how to mine minimal ATFDs (Section 5) and deploy the proposed techniques

in clinical domains; we describe the experimental results obtained by considering data in the two mentioned domains

(Section 6), and finally (Section 7) we draw some conclusions and sketch out some possible directions for future

research.

2. Background and Related Work

We recall here the definition of functional dependency (FD), and then introduce its extensions: approximate

functional dependency (AFD) and temporal functional dependency (TFD). Such concepts will lead to the definition

of approximate temporal functional dependency (ATFD) of Section 4, where ATFD inherits the properties both from

AFD and from TFD. The concept of functional dependency (FD) comes from the database theory and is defined as

follows [15]:

Definition 2.1 (Functional Dependency). Let r be a relationship over the relational schema R: let X, Y ⊆ R be

attributes of R. We assert that r fulfills the functional dependency X → Y (written as r � X → Y) if the following

condition holds: ∀t, t′ ∈ r(t[X] = t′[X]⇒ t[Y] = t′[Y])

Informally, for all the couples of tuples t and t′ showing the same value(s) on X, the corresponding value(s) on Y

for those tuples are identical.

2.1. Temporal Functional Dependencies

Moving closer to the main kind of temporal features we shall consider here, several kinds of temporal functional

dependencies (TFDs) have been proposed in the literature, usually as temporal extensions of the widely know (atem-

poral) functional dependencies [16]. As an example, we may consider that patients affected by a common pathology

p1 may assume a common therapy t1 during some month M1, while in other month M2 the same patients affected by

the same pathology p1 as above, do follow the another common therapy t2.

Recently, Combi et al. proposed a framework for TFDs that subsumes and extends the considered previous propos-

als [7]. The proposed framework is based on a simple temporal relational data model based on the notion of temporal

relation, i.e. a relation extended with a timestamping temporal attribute VT, representing the valid time temporal

dimension, i.e. the time when the fact is true in the real world [17].

4



Carlo Combi et al. / Computers in Biology and Medicine 00 (2014) 1–34 5

Two temporal views have been introduced: they allow one to join tuples that represent relevant cases of (temporal)

evolution. On the base of the introduced data model, and leveraging the introduced temporal views, TFDs may be

expressed by the syntax [E-Exp(R), t-Group]X → Y where E-Exp(R) is a relational expression on R, called evolution

expression, t-Group is a mapping N→ 2N, called temporal grouping, and X → Y is a functional dependency.

As for the semantics, similarly to the case of standard FDs, a TFD is a statement about admissible temporal

relations on a temporal relation schema R with attributes U ∪ {VT }. A temporal relation r on the temporal relation

schema R satisfies a TFD [E-Exp(R), t-Group]X → Y if it is not possible that the relation obtained from r by applying

the expression E-Exp(R) features two tuples t, t′ such that (i) t[X] = t′[X], (ii) t[VT ] and t′[VT ] (and the valid

times of their evolutions, if present) belong to the same temporal group, according to the mapping t-Group, and (iii)

t[Y] , t′[Y]. In other words, FD X → Y must be satisfied by each relation obtained from the evolution relation by

selecting those tuples whose valid times belong to the same temporal group.

Temporal grouping enable us to group tuples together over a set of temporal granules, based on one temporal

dimension. We focus here on the VT temporal dimension.

Four different classes of TFD have been identified in [7]:

• Pure temporally grouping TFD: E-Exp(R) returns the original temporal relation r. Rules of this class force the

FD X → Y, where X, Y ⊆ U, to hold over all the maximal sets which include all the tuples whose VT belongs to

the same temporal grouping;

• Pure temporally evolving TFD: E-Exp(R) collects all the tuples modelling the evolution of an object. No

temporal grouping exists: that is, the temporal grouping collects all the tuples of r in one unique set;

• Temporally mixed TFD: the expression E-Exp(R) collects all the tuples modelling the evolution of the object.

The temporal grouping is applied to the set of tuples generated by E-Exp(R);

• Temporally hybrid TFDs. First, the evolution expression E-Exp(R) selects those tuples of the given temporal

relation that contribute to the modeling of the evolution of a real-world object (that is, it removes isolated

tuples); then, temporal grouping is applied to the resulting set of tuples.

In the remainder of the paper, we shall focus on pure temporally grouping TFDs, only.

2.2. Approximate Functional Dependencies

The concept of approximate functional dependency (AFD) derives from the concept of plain FD. Given a re-

lation r where a FD holds for most of the tuples in r, we may identify some tuples, for which that FD does not

hold. Consequently, we define some measurements over the error we make in considering the FD to hold on r. One

measurement [8] is know as G1 and considers the number of violating couples of tuples. Another measurement [8],
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known as G2, considers the number of tuples which violate the functional dependency. The most common measure-

ment [8], known as G3, considers the minimum number of tuples in r to be deleted for the FD to hold. Formally,

G3(X → Y, r) = |r| − max{|s| | s ⊆ r ∧ s � X → Y}

The related scaled measurement g3 is defined as g3(X → Y, r) = G3(X → Y, r)/|r|

We can now introduce here the definition of approximate functional dependency AFD as:

Definition 2.2 (Approximate Functional Dependency). Let r be a relation over the relational schema R: let X, Y ⊆ R

be attributes of R. Relation r fulfills an approximate functional dependency X
ε
−→ Y (written as r � X

ε
−→ Y) if

g3(X → Y, r) ≤ ε, where ε is the maximum acceptable error defined by the user.

Among the several AFDs that can be identified over a relation r, the minimal AFD is of particular interest, as many

other AFDs can then be derived from the minimal one. We thus define the minimal AFD as follows:

Definition 2.3 (Minimal AFD). Given an AFD over r, we define X
ε
−→ Y to be minimal for r if r � X

ε
−→ Y and ∀X′ ⊂ X

we have that r 2 X′
ε
−→ Y.

3. Motivating Medical Domains

In order to motivate and validate our approach, we consider two clinical domains: the first one refers to psychiatry,

collecting data about contacts between patients and psychiatrists, psychologists, and social workers; the second one

refers to pharmacovigilance, collecting data about drug administrations and adverse reactions.

3.1. Psychiatric Case Register

The first application domain (see Section 3.3 for further examples) refers to the Verona Psychiatric Case Register

(PCR). The Verona Health District serves about 460,000 inhabitants. The National Health Service in trust with

the University of Verona offers a public Community-based Psychiatric Service (CPS), providing psychiatric care to

mentally ill as well as psychological care and responses to social needs. Data about patients are collected in the

information system PCR, which has recorded information about patients’ accesses to this service since 1979. At

the first contact with the psychiatric service, socio-demographic information, past psychiatric history, and clinical

data are routinely collected for patients aged 14 and over. Recorded contacts with psychiatrists, psychologists, social

workers and psychiatric nurses include home visits, telephone calls, day cares, and so on. Data on some 28,700

patients and more than 1,500,000 psychiatric contacts have been recorded. Besides patients’ personal data (e.g., birth

information, health insurance card number, gender, nationality, and previous contacts), patients’ medical record, and

contact information (contact duration, involved professionals, referrals, contact type, and conclusions), PCR also

records education, employment, professional status, type of accommodation, and marital status of patients.
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PCR is used as a basis to evaluate the direct management costs for groups of patients, and to monitor the effects

coming from changes in resources, organization, and needs. The clinical purposes include monitoring of patients to

plan future contacts at regular time intervals, and providing clinicians with reports about admissions and contacts for

every patient in a given time period.

PCR stores several temporal data: a patient’s contact is temporally qualified by its occurrence timestamp, while

other personal information are qualified by their respective valid time. These temporal data can then be used by

epidemiologists, e.g. to identify the number of contacts in different time periods with respect to different factors such

as age, diagnosis.

3.2. Pharmacovigilance

Pharmacovigilance (PhV) collects, analyzes, and prevents adverse reactions induced by drugs (ADR) [18]. In fact,

also because of the limitations of pre-marketing trials (e.g. short duration of the study, highly selected test population),

adverse reactions often go undetected, and become evident when the drug is put on the market, only [19]. Therefore

a continuous monitoring of the effects is needed.

The spontaneous reporting of ADRs identifies unexpected reactions and informs the regulating authority about

them. This practice is valuable, provides early warnings, and requires limited economic and organizational re-

sources [20]. It also has the advantage of covering every drug on the market and every category of patient.

PhV considers possible relationships between one or more adverse reactions and one or more drugs, mainly

focusing on unknown or completely undocumented relationships. Reports suggest a cause-effect link among ADRs

and drugs: the link can be classified as “suspected” or “concomitant’. Reports are submitted by a physician, a

chemists, or a private citizen.

Each report includes patient’s information (age, nationality, gender, weight, outcome of reactions, and so on),

drug(s) involved in the suspected reaction(s) (identified by their Anatomical Therapeutic Chemical - ATC - classifica-

tion, brand name, dosage), and the description of the occurred adverse reaction(s) encoded by means of the MedDRA

classification [21]: MedDRA is a standard medical terminology used to classify adverse event information associated

with the use of bio-pharmaceuticals and other medical products (e.g. medical devices and vaccines).

Temporal data refer to entry date, drug name, exposure period, and adverse reaction. These temporal data are used

to investigate any cause-effect relationship among drugs and reaction(s) in different time periods, or according to the

time frame of the exposure.

3.3. The Motivating Example

Throughout the paper we will refer to examples from the Verona Psychiatric Case Register (PCR). Table 1

graphically depicts a simplified excerpt of database table Contact: VT (valid time, i.e., the date of the contact),
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ContactNumber (internal identifier of the contact), Patient (patient’s name), Duration (of the contact), Area

(location of the patient at contact time), and Professional (name of the operator responsible of the contact).

Contact VT Contact Patient Duration Area Professional Tuple#

Number

2007-05-14 828 Joan 10 North Mike 1

2007-09-18 840 Joan 10 North Romina 2

2007-11-05 859 Joan 15 North Mike 3

2008-03-11 934 Joan 35 South Mike 4

2008-03-12 935 Joan 35 West Mike 5

2008-05-13 936 Joan 20 South Romina 6

Table 1. A (adapted) fragment of database table Contact, collecting data about contacts of patients with the Community-based Psychiatric Service

We can start making some comments. Generally, one Patient refers to the same Professional: but this may

be not always true. In the example of Table 1, we have Professional = “Mike” for all the tuples but Tuple#=2

and Tuple#=6. Thus, FD Patient → Professional does not hold: that FD holds if we delete those two tuples out

of the six tuples we have in Table 1. Consequently, according to the measurement of Definition 2.2, G3(Patient →

Professional,Contact) = 2.

Moreover, AFD Patient
0.5
−−→ Professional holds because g3(Patient → Professional,Contact) ≤ 0.5. Thus,

accepting an error of 0.5 (50% of error), we can assert the AFD Patient→ Professional. Instead, the AFD Patient
0.1
−−→

Professional does not hold, because g3(Patient→ Professional,Contact) > 0.1.

Obviously, the plain FD X → Y equals the AFD X
0.0
−−→ Y, where g3(X → Y, r) = 0.0.

Besides plain AFDs, clinicians could be interested in discovering some temporal properties, relevant even from

the clinical point of view. For example, according to the content of Table 1, it could be important to discover that

some (approximate) dependencies hold month by month. The dependency from Patient to Duration holds month by

month and it could be related to seasonal conditions influencing the overall state of the patient and requiring different

durations of the contact. On the other hand, further dependencies could be observed when corresponding tuples are

within a fixed time span. For example, an approximate dependency holds from Patient to Duration, considering a time

span of three months (i.e., by deleting Tuple#=2 and Tuple#=6): sch an approximate dependency could be related to

the fact that the same patient usually has contacts of the same duration within some given time span, as the possible

changes of a psychiatric state are slow with respect to the frequency of the contacts. As we shall see in the following

sections, such dependencies require to group data in different ways, either according to non-overlapping time granules

or according to (overlapping) time windows. We observe here that discovering this kind of temporal dependencies

over clinical data could help physicians to have a better and deeper understanding and management of some temporal

behaviors of their patients.
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4. Approximate Temporal Functional Dependencies

Moving from the definitions of FD, TFD, and AFD, we now introduce the concept of ATFD. In the following,

we consider the basic temporal extension of the relational model proposed in [7]: we consider relations of a generic

relational schema R with attributes U ∪ {VT }, where the set U is that of atemporal attributes, while VT represents the

valid time. Moreover, according the the taxonomy proposed in [7] and described in Section 2, we consider here pure

temporally grouping TFDs of the form [r, t-Group]X → Y, where t-Group consists of granularity (Gran) or sliding

window (SW) grouping, only:

1. Grouping on granules (granularity grouping, or Gran grouping). A temporal granularity is a partition of a

temporal domain in indivisible non-overlapping groups, i.e., granules, of time points: minutes, hours, days,

months, years as well as working days are granularities [22].

Definition 4.1 (Grouping by Gran(i)). Two tuples t1, t2 ∈ r belong to the same temporal group Gran(i) iff

t1[VT ], t2[VT ] ∈ Gran(i) where Gran(i) is the ith granule of granularity Gran.

2. Grouping on sliding windows (SW). A sliding window1 S W(i, k) includes all the time points in interval [i . . . i+

k − 1]. Thus, once we fix the length of the SW over relation r (i.e. k in the example), every SW over r will

feature that length, and will - at most - include k elements (if relation r has tuples for all the time points of

interval [i . . . i + k − 1]).

Definition 4.2 (Grouping by SW(i,k)). Two tuples t1, t2 ∈ r belong to the same sliding window SW(i, k) iff

t1[VT ], t2[VT ] ∈ [i . . . i + k − 1].

Before introducing ATFD, let us consider a new error measure, namely G4, we shall use for approximate temporal

functional dependencies. G4 considers the minimum number of tuples in r which must be modified for the plain TFD

to hold on all the tuples of r. In the following, if looking for an FD such as X → Y, we assume to modify values for

the Y attributes, only. The ε parameter is user-defined and it states the maximum error acceptable by that user.

G4([r, t-Group]X → Y, r) = min{|s| | s ⊆ r, ((r − s) ∪ w) � [r, t-Group]X → Y}

where the set w is the minimal one for which the following formula holds:

∀t ∈ s (∃t′ ∈ w(t[U − Y] = t′[U − Y] ∧ t[VT ] = t′[VT ]))

The related scaled measurement g4 is defined as g4(X → Y, r) = G4(X → Y, r)/|r|

We anticipate here that, if we consider the Gran grouping, the two measurements g3 and g4 do not differ. However,

as we shall describe in the following, g3 and g4 may differ when the SW grouping is considered.

1Actually a sliding window comes with three parameters: granularity, beginning timestamp, and size as the number of time points inside the
window.
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4.1. ATFD with Gran Grouping

We define the ATFD with granularity grouping as:

Definition 4.3 (ATFD with Gran grouping). Let r be a relation over the relational schema R with attributes U ∪ {VT }:

let X, Y ⊆ U be attributes of R. Let Gran be the reference granularity. Relation r fulfills an approximate temporal

functional dependency (written as r � [r,Gran]X
ε
−→ Y) iff g3([r,Gran]X → Y, r) ≤ ε.

That is, the percentage of tuples in the entire relation r to be deleted for a ATFD to hold on all the tuples of r is

less than ε; tuples of r are then grouped according to the granule of Gran their VT value belongs to, to evaluate the

considered ATFD. We recall that the count of tuples in r to be deleted refers to the entire relation r, and not to the

group - and one tuple may belong to one group only, if we use a Gran grouping.

As an example, let us consider the fragment of the database table Contact, as depicted by Table 1, and the above

Definition 4.3 based on the measurement G3.

ATFD [Contact, Year(i)] Patient
0.4
−−→ Duration holds, as tuples for which the rule does not hold, i.e. the tuples

Tuple#=3 or Tuple#=6 in the specific example and which need to be deleted for the rule to hold on all the tuples, are

less then the 40% in the entire table (Table 1).

In fact, if we group the tuples according to granularity Year granularity, we can identify groups Year(2007),

Year(2008). For the first group (Year(2007)), two tuples (Tuple#=1 and Tuple#=2) out of three in the group confirm

the FD Patient → Duration for a Duration of 10. For the second group (Year(2008)), two tuples (Tuple#=4 and

Tuple#=5) out of three in the group confirm the FD Patient → Duration for a Duration of 35. As a consequence,

the overall error is 2/6, or 1/3, and it is smaller than 40%, and the required ATFD [Contact, Year(i)] Patient
0.40
−−−→

Duration holds on the fragment of Table 1.

If we again consider the fragment of Table 1 and group tuples according to granularity Year, as we did before, we

can check ATFD [Contact, Year(i)] Patient
0.1
−−→ Area, accepting an error of 10%. While FD Patient→ Area holds on

all the tuples of group of Year(2007) (where Area = “North”), inside the group of Year(2008) the FD (where Area =

“South”) fails on one tuple (Tuple#=5) out of the three we have. The overall error is 1/6 or 16.66%, which is greater

that the allowed 10%. Thus, ATFD [Contact, Year(i)] Patient
0.1
−−→ Area with an error of 0.1 does not hold on the

fragment of Table 1.

As for plain AFD, we can introduce the concept of minimality also for ATFD.

Definition 4.4 (Minimal ATFD with Gran grouping). An ATFD [r,Gran]X
ε
−→ Y is said to be minimal for r iff

r � [r,Gran]X
ε
−→ Y and ∀X′ ⊂ X we have that r 2 [r,Gran]X′

ε
−→ Y.

4.2. ATFD with SW Grouping

We define the ATFD with sliding window (SW) grouping as follows:

10
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Definition 4.5 (ATFD with SW grouping). Let r be a relation over the relational schema R with attributes U ∪ {VT }:

let X, Y ⊆ U be attributes of R. Let {i . . . i + k − 1} be a sliding window (SW) of length k. The relation r fulfills an

approximate temporal functional dependency (written as r � [r, {i . . . i + k − 1}]X
ε
−→ Y) iff g4([r, {i . . . i + k − 1}]X →

Y, r) ≤ ε.

A similar definition can be derived from Definition 4.5 by replacing g4 with g3, as we shall discuss in Section 4.3.

We consider as many SWs as possible, every SW sizing k elements: thus, the first considered sliding window

is i . . . i + k − 1, the second considered sliding window is i + 1 . . . i + k, the third considered sliding window is

i + 2 . . . i + k + 1, and so on. Every SW sets up a group (or chain) over which the ATFD is checked. The ATFD must

hold, with an acceptable amount of error smaller than ε, over the entire database: we recall that, if we delete (as for

measurement g3) or modify (as for the measurement g4) a tuple inside a SW, that tuple will remain deleted or modified

in all the SWs (either preceding or following the current SW) which include that tuple.

As an example, let us consider the fragment of the database table Contact, as depicted by Table 2, where the

attribute VT refers to the valid time of the tuple at the day granularity. If we fix the length of the SW to 5, i.e. every

sliding window includes a group (or chain) of five days, the first SW will formally include time points {2009-04-

11, 2009-04-12, 2009-04-13, 2009-04-14, 2009-04-15}: since relation r in Table 2 has tuples for VT=2009-04-11 or

VT=2009-04-14 or VT=2009-04-15, the first SW includes 3 tuples having VT values 2009-04-11, 2009-04-14, 2009-

04-15, respectively. Thus, the following 6 SWs consider all the possible VT value groups {2009-04-11, 2009-04-14,

2009-04-15}, {2009-04-14, 2009-04-15}, {2009-04-15}, {2009-04-26, 2009-04-27, 2009-04-28}, {2009-04-27, 2009-

04-28}, and {2009-04-28}.

ATFD [Contact, {i . . . i + 4}] Patient
0.4
−−→ Duration holds. Indeed, tuples for which the dependency does not

hold, i.e. Tuple# 3 and Tuple# 6 in the specific example, are those which need to be modified according to the

measurement g4 of Definition 4.5. More precisely, the value of attribute Duration for Tuple# 3 has to be changed

to 20; the value of attribute Duration for Tuple# 6 has to be changed to 40. Should we modify these two tuples,

we shall obtain a plain TFD, holding on all the six SWs. The tuples we modified are less then the 40% of the entire

fragment (Table 2), thus proving that the ATFD holds even with a threshold ε of 2/6 (i.e. 1/3), which is smaller than

0.4.

If we again consider the fragment of Table 2 and group tuples according to the same six SWs as we did before,

we can now check the ATFD [Contact, {i . . . i + 4}] Patient
0.1
−−→ Area, accepting an error of 10%. The TFD fails on

one tuple (Tuple# 5, i.e. 1/6 of the entire relation), which needs to be modified according to measurement g4 of

Definition 4.5: thus, the ATFD does not hold with a ε of 0.1.

Analogously to Definition 4.4, we can introduce the concept of minimality also for ATFD with SW grouping.

Definition 4.6 (Minimal ATFD with SW grouping). Given an ATFD over [r, {i . . . i + k − 1}], we define X
ε
−→ Y to be

11
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VT Patient Duration Area Tuple#

2009-04-11 Jackie 20 North 1

2009-04-14 Jackie 20 North 2

2009-04-15 Jackie 15 North 3

2009-04-26 Jackie 40 South 4

2009-04-27 Jackie 40 West 5

2009-04-28 Jackie 30 South 6

Table 2. A fragment taken from the database table Contact

minimal for r iff r � [r, {i . . . i + k − 1}]X
ε
−→ Y and ∀ X′ ⊂ X we have that r 2 [r, {i . . . i + k − 1}]X′

ε
−→ Y.

4.3. g3 and g4 with SW Grouping

When using a SW grouping, and only when using this grouping, measurements g3 and g4 (and the related G3 and

G4) may differ: on the other side, when using granularity grouping, measurements g3 and g4 do not differ. In fact,

in the SW grouping, according to the measurement g3 we delete one or more tuples: this may modify the temporal

relationships among the tuples, the number of tuples inside every SW, and - occasionally - the total number of SWs to

consider. Instead, according to the measurement g4, we modify one or more tuples, leaving unchanged the temporal

relationships among tuples, the number of tuples inside every SW, and the total number of SWs to consider.

VT Patient Professional Tuple#

2010-06-11 Claudia Mike 1

2010-06-12 Claudia Mike 2

2010-06-13 Claudia Romina 3

2010-06-14 Claudia Romina 4

2010-06-15 Claudia Romina 5

Table 3. A fragment taken from the database table Contact

As an example, let us consider the fragment of Contact in Table 3, assuming a length 2 for the SW (i.e., we

consider i . . . i + 1). We shall then have the following SWs: {2010-06-11, 2010-06-12}, {2010-06-12, 2010-06-13},

{2010-06-13, 2010-06-14}, {2010-06-14, 2010-06-15}, and {2010-06-15}, for a grand total of 5 SWs. We are interested

in the ATFD [Contact, {i . . . i + 1}] Patient
0.25
−−−→ Pro f essional.

For the measurement G3, the FD Patient→ Pro f essional holds in the SWs {2010-06-11, 2010-06-12}, {2010-06-

13, 2010-06-14}, {2010-06-14, 2010-06-15}, {2010-06-15}: the FD does not hold in the SW {2010-06-12, 2010-06-13}.

Consequently, if we delete from Table 3 Tuple# 3, the remaining SWs are: {2010-06-11, 2010-06-12}, {2010-06-12},

{2010-06-14, 2010-06-15}, {2010-06-15}. The FD holds on all the SWs remaining after the deletion of Tuple# 3.

Thus, the measurement G3 is 1, as we only deleted one tuple (Tuple# 3), obtaining the ATFD with an error of 1/5

(i.e. 20.00%), which is smaller than the maximum acceptable error of 0.25. The ATFD holds, and the measurement

12
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G3 returns G3([Contact, {i . . . i + 1}]Patient→ Op,Contact) = 1.

For the measurement G4, if we update in Table 3 Tuple# 1 and Tuple# 2, setting the value of the attribute

Professional to “Romina”, the ATFD will hold in the SWs {2010-06-11, 2010-06-12}, {2010-06-12, 2010-06-13},

{2010-06-13, 2010-06-14}, {2010-06-14, 2010-06-15], and {2010-06-15}, that is in 5 out of the 5 SWs. Thus, the

measurement G4 is 2, as we modified two tuples (Tuple# 1 and Tuple# 2) to obtain the ATFD. Changing one tuple

only, whatever the tuple is, does not suffice to obtain the required TFD.

G4([Contact, {i . . . i + 1}]Patient→ Op,Contact) = 2

We obtain the ATFD with an error of 2/5 (i.e. 40%), which is greater than the maximum acceptable error of 0.25:

as a consequence, according to G4 the ATFD does not hold with the required threshold of 25%.

5. Mining Minimal ATFDs

We now consider how to mine minimal ATFDs both with granularity and sliding window groupings. While mining

Gran grouping ATFDs can be mapped to mine corresponding suitable AFDs, mining SW grouping ATFDs requires ad

hoc algorithms. The approach we propose here differs from the one in [14], where we performed both Gran and SW

grouping ATFDs through an AFD analysis by the TANE [10] tool.

5.1. Mining Granularity-based ATFDs

Let us now consider how we can reduce the evaluation of minimal Granularity-based ATFDs to the evaluation of

corresponding minimal AFDs: such approach allows us to use well-know algorithms for AFD and to characterize the

complexity of mining minimal ATFD. In general, we proceed in three different steps: in the first one (PreAFD), the

given relation is pre-processed to represent, by a suitable attribute, the granule/window each tuple belongs to. Next, we

have an (atemporal) relation to consider for the usual AFD extraction (AFD phase). Finally, a suitable post-processing

phase (PostAFD) is needed to properly identify and represent the mined ATFDs.

As the temporal grouping of a granularity Gran is a bijective function, we may conclude that the set E of tuples

not satisfying the considered granularity-based ATFD, may be partitioned in subsets EG(i), where EG(i) is the set of

tuples of E having their valid time contained in the granule G(i). Thus, it holds |E| = G4([r,Gran]X → Y, r).

Given an instance r with schema R = U ∪ {VT }, a granularity Gran and a threshold ε, the preprocessing phase

(see Algorithm 1 PreAFD-G(r,G)) builds up the relation preAFD with schema R′ = U ∪ {codGran}: the attribute

VT is replaced by the attribute codGran. The tuples of preAFD have the same value for codGran if and only if they

belong to the same temporal granule of the given granularity Gran. More formally, for each tuple t of r, we apply

the function f (Gran, t) : r 7→ preAFD, where f (t)[U] = t[U] and f (t)[codGran] = i, with t[VT ] ∈ Gran(i). The

Algorithm 1 shows the pseudo-code of the preprocessing phase, having complexity O(|r|).
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Algorithm: PreAFD-G(r,G)

Input: r,G

Output: preAFD

1 preAFD← ∅ ; /* preAFD has schema U ∪ codGran */

2 forall the ti ∈ r do

3 t′[U]← ti[U];

4 t′[codGran]← f (G, ti);

5 preAFD← preAFD ∪ t′

6 end forall

7 return preAFD

Algorithm 1: PreAFD-G(r,G)

On the obtained relation preAFD, the next phase derives the minimal AFDs, according to the threshold ε. Let

outAFD be the set of the found AFDs. As discussed in [10], the complexity of the corresponding algorithm is O(2|R|),

since the number of attributes of preAFD is that of R.

The error tuples of the ATFD [r,Gran]X → Y are, through the correspondence function f , the same as those of

the AFD codGran, X → Y on preAFD. As preAFD and r have the same cardinality ( f is total and injective), we

have g4([r,Gran]X → Y, r) = g4(codGran, X → Y, preAFD). Indeed, for each Gran(i) for the set ri = {t[U] | t ∈

r ∧ t[VT ] ∈ Gran(i)} we can compute G4(X → Y, ri) and, by definition,
∑

i G4(X → Y, ri) = G4([r,Gran]X → Y, r).

According to the definition of f (t), we have that the set r′
i
= {t′[U] | t′ ∈ preAFD ∧ t′[codGran] = i} = ri; thus

G4(X → Y, r′
i
) = G4(X → Y, ri) and it holds G4(codGran, X → Y, preAFD) =

∑

i G4(X → Y, r′
i
) =
∑

i G4(X → Y, ri) =

G4([r,Gran]X → Y, r).

As |r| = |preAFD|, we may conclude that g4([r,G]X → Y, r) = g4(codGran, X → Y, preAFD).

The last phase (post-processing) maps the derived AFDs into the minimal ATFDs holding in r. Algorithm 2

PostAFD-G maps the AFDs of the form codGran, X
ε
−→ Y into the ATFDs of the form [r,Gran]X

ε
−→ Y. The complexity

of the algorithm is O(|outAFD|): as the number (|outAFD|) is of order O(2|R|), Algorithm 2 has complexity O(2|R|).

Algorithm: PostAFD-G(outAFD)

Input: outAFD

Output: postAFD

1 postAFD← ∅ ; /* postAFD is a set of ATFDs of the form codGran, X
ε
−→ Y */

2 forall the codGran, X
ε
−→ Y ∈ outAFD do

3 postAFD = postAFD ∪ ([r,Gran]X
ε
−→ Y)

4 end forall

5 return postAFD

Algorithm 2: PostAFD-G(outAFD)

It is straightforward to observe that these three phases allow us to derive all the minimal ATFDs with grouping

based on granularity Gran, and holding in r with threshold ε.

Finally, a strategy (see Algorithm 3) is needed to evaluate how to mine a relation r according to a set of temporal

granularities. Let us focus on (GranSet,≺), a set of continuous and total granularities with a total order according to
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relation FinerThan [22]. Informally, relation FinerThan(Gran1,Gran2) holds if each granule of granularity Gran1 is

contained in a granule of Gran2. If FinerThan(Gran1,Gran2), then:

1. r � [r,Gran2]X
ε
−→ Y ⇒ r � [r,Gran1]X

ε
−→ Y

2. (pruning condition) r 2 [r,Gran1]X
ε
−→ Y ⇒ r 2 [r,Gran2]X

ε
−→ Y

Algorithm 3 StrategyG(r,GranSet) starts to mine, according to order ≺, the ATFDs from the minimal (finest)

granularity to the coarsest one in (GranSet,≺). In mining the ATFDs with coarser granularity, we shall find those

ATFDs with antecedent X′ ⊇ X, where X is the antecedent of a ATFD at a finer granularity. If there is no ATFD at

granularity Grani, for the pruning condition no ATFD will be mined at any granularity Gran( j) such that Gran(i) ≺

Gran( j). Algorithm 3 StrategyG, has complexity O(2|R|), since the three phases PreAFD-AFD-PostAFD are executed

at most |GranSet| times.

Algorithm: StrategyG(r,GranSet,ε)

Input: r,GranSet,ε

Output: ATFDs

1 currGran← in f {Grani ∈ GranSet};

2 ATFDs← ∅;

3 while currGran , ∅ do

4 AT FD← {[r, currGran]X
ε
−→ Y found in r executing PreAFD-G, AFD, and PostAFD-G};

5 if AT FD = ∅ then

6 return ATFDs

7 else

8 ATFDs← ATFDs ∪ AT FD;

9 GranSet← GranSet - currGran ; /* ATFDs is the set of all minimal ATFDs */

10 ; /* [r,Grani]X
ε
−→ Y valid in r for granularities ∈ GranSet */

11 currGran← in f {Grani ∈ GranSet}

12 end if

13 end while

14 return ATFDs

Algorithm 3: StrategyG(r,GranSet,ε)

5.2. Mining SW-based ATFDs

For SW grouping, in [14] we adopted an approach in 4 phases: PreAFD-G, AFD, PostAFD-G, and StrategyG. We

introduce here a novel approach for SW-based analysis, which does not need any PreAFD and PostAFD step. In the

following we will focus on G3 and g3 error measures.

We aim at verifying whether the ATFD [R, t-Group]X
ε
−→ Y holds over an instance r of a temporal relational schema

R(U,VT ). First, we define the relation ValueCount(r, v) = {(y, vt, c) | c = |{t | t ∈ r∧ t[VT ] = vt∧ t[X] = v∧ t[Y] = y}|},

which, given the instance r of the schema R and a tuple v of values for attributes X, returns triples (y, vt, c). A triple

(y, vt, c) belongs to ValueCount(r, v) iff there exists exactly c > 0 distinct tuples t ∈ r where t[X] = v ∧ t[Y] =

y ∧ t[VT ] = vt.
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Given r as above, a set r′ ⊆ r is minimal for [R, SlidingWindow(k)]X → Y iff r - r′ fulfills [R, SlidingWindow(k)]X →

Y, and for every r′′ ⊂ r′ we have that r - r′′ does not satisfy [R, SlidingWindow(k)]X → Y.

In order to identify the ATFD [R, SlidingWindow(k)]X
ε
−→ Y we can restrict our analysis to the minimal sets r′: it

can be easily observed that [R, SlidingWindow(k)]X
ε
−→ Y holds over a given instance r iff there exists a minimal set r′

for [R, SlidingWindow(k)]X
ε
−→ Y with |r′| ≤ ǫ · |r|. By restricting our analysis to minimal sets, only, we have to find one

minimal set with minimum cardinality. This allows us to check immediately if an ATFD [R, SlidingWindow(k)]X
ε
−→ Y

holds over a given instance of R. Let us consider now the following result over minimal sets.

Lemma 5.1. Given an instance r of a temporal relational schema R(U,VT ), for every k ∈ N, for every minimal set

r′ ⊆ r for [R, SlidingWindow(k)]X → Y, and for every value v, it holds ValueCount(r′, v) ⊆ ValueCount(r, v)

Algorithm: VerifySW([R, SlidingWindow(k)]X
ε
−→ Y, r)

Input: [R, SlidingWindow(k)]X
ε
−→ Y, r

Output: TRUE or FALSE

1 σ← 0;

2 foreach v ∈ {x | ∃t ∈ r(t[X] = x)} do

3 σ← σ + MinDelete(ValueCount(r, v), k);

4 if σ > ǫ · |r| then

5 return FALSE

6 end if

7 end foreach

8 return TRUE ; /* verify if [R, SlidingWindow(k)]X
ε
−→ Y holds over r */

Algorithm 4: VerifySW(. . . )

Lemma 5.1 provides us with the following property: the tuples of r which have the same attribute values for

(X,VT ) are either totally deleted or totally kept in a minimal set r′ ⊆ r for [R, SlidingWindow(k)]X → Y.

By means of this property, a procedure that verifies [R, SlidingWindow(k)]X
ε
−→ Y over r is described in Algo-

rithm 4. By definition, we have that r does not satisfy [R, SlidingWindow(k)]X → Y iff there exists at least one pair of

tuples t, t′ with t[X] = t′[X] ∧ t[Y] , t′[Y] ∧ t′[VT ] − t[VT ] ≤ k.

Thus, we can partition r into r = rv1
, . . . , rvm

, where rvi
= {t | t ∈ r ∧ t[X] = vi} (i.e., tuples having the tuple vi of

values for attributes X).

For each i, 1 ≤ i ≤ m, we compute the minimal set r′vi
for [R, SlidingWindow(k)]X

ε
−→ Y restricted to the set rvi

. It

follows immediately that
⋃

1≤i≤m

r′vi
represents a minimal set r′ for [R, SlidingWindow(k)]X

ε
−→ Y over the whole relation

r.

In the procedure, every set rvi
of the partition is represented by its ValueCount(r, vi) relation, which contains the

minimum amount of information needed to determine the cardinality of r′vi
.
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The whole collection of relations ValueCount(r, vi), for 1 ≤ i ≤ m, can be computed in O(|r| · log(|r|)), by means

of a simple counting aggregation function over r lexicographically ordered and grouped by attributes X, Y,VT .

As shown in Algorithm 4, the auxiliary function MinDelete is applied to each relation ValueCount(r, vi) and it

returns the minimum amount of tuples that have to be removed from rvi
to satisfy [R, SlidingWindow(k)]X

ε
−→ Y on rvi

.

Since |ValueCount(r, vi)| ≤ |rvi
|, the overall worst-case complexity is reached when the partition is formed by one set

only, namely r, i.e. all the tuples in r assume the same (tuple of) values for attributes X.

Being O( f (n)) the worst case complexity of MinDelete, where n is the size of the input relation, the overall worst

case complexity is O(|r| · log(|r|) + f (|r|)) (as we shall see, k does not affect the complexity of MinDelete).

We now have to identify an efficient algorithm to compute the function MinDelete, as described in Appendix A.

First, Appendix A.1 describes a quadratic time algorithm version of MinDelete, that allows us to introduce the main

ideas behind our solution, such as the representation of temporal relations by Directed Acyclic Graphs (DAG): this

naive algorithm shows that [R, SlidingWindow(k)]X
ε
−→ Y can be computed in polynomial time for every instance r of

R. Next, Appendix A.2 improves the asymptotic complexity of MinDelete, by providing an O(|r| · log |r|) version of

its.

6. Mining Clinical Data

We developed two running prototypes for off-line analysis: G-ATFDminer (Granularity Approximate Temporal

Functional Dependency Miner); and SW-ATFDminer (Sliding Windows Approximate Temporal Functional Depen-

dency Miner).

6.1. Results for mined granularity-related ATFDs

G-ATFDminer is a Java based system aimed at extracting rules of approximate temporal functional dependency

for granularity (Gran) grouping. We test G-ATFDminer on the psychiatric data set of Section 3.1, and on the phamar-

covigilance data set of Section 3.2.

We start by considering the scalability of the implemented software. The parameters of the algorithm are set as

follows: ǫ = 0.1; time granularity set to MONTH.

6.1.1. Performance Analysis for GATFDminer

The first analysis refers to tests with a fixed number of rows, but a varying number of attributes. G-ATFDminer

was tested on a machine equipped with a 6 core AMD OpteronT M 4284, and 8 GB of RAM. We use the Ubuntu 12.04

64-bit (kernel 3.2.0-23-generic) operating system, Java version 1.7.0, and Postgresql 9.1 as DBMS.

Table 4 depicts the processing time in seconds over the psychiatric data set, consisting of 10,000 rows. Likewise,

Table 5 depicts the processing time in seconds, according to the number of attributes (the number of rows is kept
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fixed to 10,000) over the pharmacovigilance data set. Figure 1 depicts the processing time compared to the theoretical

overall complexity of the algorithm.

Attributes 2 3 4 6 8 10 13 17

Time (seconds) 3 6 16 47 177 468 1896 48900

Table 4. Processing time in seconds for the test over 10,000 rows from the psychiatric data set.

Attributes 2 3 4 6 8 10 13 17

Time (seconds) 2 4 16 108 623 2889 12150 107100

Table 5. Processing time in seconds for the test over 10,000 rows from the pharmacovigilance data set.
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Figure 1. Graphical plot of data from Tables 4 and 5. The red line refers to the theoretical overall complexity of the algorithm; the blue line refers
to experimentally detected values over the psychiatric data set; the green line refers to experimentally detected values over the pharmacovigilance
data set.

The second analysis refers to tests with a fixed number of attributes (5 in the example) over the psychiatric data

set and over the pharmacovigilance data set, but with a varying number of rows. Table 6 depicts the processing time

in seconds for the psychiatric data set (5 attributes). Likewise, Table 7 depicts the processing time in seconds for

the pharmacovigilance data set (5 attributes): due to the smaller number of rows in this data set, experiments were

performed up to 212 · 100 rows. Figure 2 compares the processing times with the theoretical overall complexity of

the algorithm. The processing time is directly proportional (linearly) to the number of rows in input. The estimated

complexity is n · log(n), but by using the pruning strategies, we tear down the processing time close to linear time.

6.1.2. Psychiatric Case Register

By running the G-ATFDminer, we identify some meaningful dependencies on the psychiatric data set we discuss

here.
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Rows (2n · 100) 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (seconds) 14 17 20 23 22 25 28 31 37 66 231 292 535

Table 6. Processing time in seconds for the test over 5 attributes from the psychiatric data set.

Rows (2n · 100) 1 2 3 4 5 6 7 8 9 10 11 12

Time (seconds) 24 25 25 24 22 26 28 48 48 78 79 132

Table 7. Processing time in seconds for the test over 5 attributes from the pharmacovigilance data set.

102 103 104 105 106

0

100

200

300

400

500

600

700

800

900

1,000

Rows

T
im

e
(s

)

pychiatric data set

102 103 104 105 106

0

100

200

300

400

500

600

700

800

900

1,000

Rows

T
im

e
(s

)

pharmacovigilance data set

102 103 104 105 106

0

100

200

300

400

500

600

700

800

900

1,000

x ∗ log(x)

Figure 2. Graphical plot of data from Tables 6 and 7. The red line refers to the theoretical complexity of the algorithm; the blue line refers to
experimentally detected values over the psychiatric data set; the green line refers to experimentally detected values over the pharmacovigilance
data set. The experimental values are much lower than the theoretical estimation due to suitable pruning strategies.

• [MONT H]GAF S cale→ Area: this dependency points out that the state of the patient, expressed by means of

the GAF scale, is directly connected to the geographical area the patient lives in. An urban environment, due to

its chaotic nature, could negatively influence the state of the patient. Since the dependency refers to the month

granularity, one may infer seasonal changes of state in patients, too;

• [MONT H]Patient → GAF S cale: this dependency points out that patients are relatively stable: their state,

expressed by the GAF Scale, does not change within a month;
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• [MONT H]Patient → Operator1: this dependency links the patient to a particular operator (Operator1 is the

first person that talks to the patient during a call or a visit). Patients are more used to talk to the same operator,

instead of talking to different ones (“strangers”);

• [MONT H]Area → Number of Psychiatrists: this dependency links the geographical area to the number of

psychiatrists deployed during one month: shifts or teams of psychiatrists last for at least one month.

6.1.3. Pharmacovigilance

The most relevant dependency we obtained by running the G-ATFDminer on the pharmacovigilance data set is:

[MONT H](Severity,Duration,Gender,Drug)→ Dosage. It points out that drug dosage during a therapy, character-

ized by drug name, patient gender, duration and the severity (expressed a boolean flag), are likely to be adjusted due

to reports about occurrences of adverse reaction. This means that the occurrences of adverse reaction may be linked

to the dosage of a drug during therapies.

6.2. Results for Mined SW-related ATFDs

SW-ATFDminer (Sliding Window Approximate Temporal Functional Dependencies Miner) is a Java based

software extracting rules of approximate temporal functional dependencies for sliding window (SW) grouping.

We start by considering the scalability of the implemented software. The parameters of the algorithm are set as

follows: ǫ = 0.1; minimum window size is 1 day; maximum window size is 100 years. This means that the mining

algorithm returns the maximum window size for ATFDs to hold within this specified interval.

We now describe some of the mined functional dependencies over the two data sets of Section 3.

6.2.1. Performance Analysis for SWATFDminer

The first analysis refers to tests with a fixed number of rows, but different number of attributes. As in Section 6.1,

we tested SW-ATFDminer on a machine equipped with a 6 cores AMD OpteronT M 4284, and 8 GB of RAM. We use

the Ubuntu 12.04 64-bit (kernel 3.2.0-23-generic) operating system, Java version 1.7.0, and Postgresql 9.1 as DBMS.

Table 8 depicts the processing time in seconds over the psychiatric data set, consisting of 10,000 rows. Likewise,

Table 9 depicts the processing time in seconds, according to the number of attributes (the number of rows is kept fixed

to 10,000) over the pharmacovigilance data set: due to the smaller number of attributes in this data set, experiments

were performed up to 16 attributes. Figure 3 depicts the processing time compared to the theoretical overall complexity

of the algorithm.

One may argue that the experimental results (the blue line in Figure 3) show that by our approach, due to suitable

pruning strategies, it is possible to mine using 25 attributes before having a decay in the performances. Theoretically,

this performance decay should occur as the number of attributes exceeds 10, as depicted by the red line of Figure 3.
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Attributes 2 3 4 6 8 10 13 16 26

Time (seconds) 3 6 8 24 118 224 625 5084 113820

Table 8. Processing time in seconds for the test over 10,000 rows from the psychiatric data set.

Attributes 2 3 4 6 8 10 13 16

Time (seconds) 2 8 15 100 238 425 2031 7069

Table 9. Processing time in seconds for the test over 10,000 rows from the pharmacovigilance data set.
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Figure 3. Graphical plot of data from Tables 8 and 9. The red line refers to the theoretical overall complexity of the algorithm; the blue line refers
to experimentally detected values over the psychiatric data set; the green line refers to experimentally detected values over the pharmacovigilance
data set.

The second analysis refers to tests with a fixed number of attributes (5 in the example) over the psychiatric data

set and over the pharmacovigilance data set, but with a varying number of rows. Table 10 depicts the processing time

in seconds for the psychiatric data set (5 attributes). Likewise, Table 11 depicts the processing time in seconds for the

pharmacovigilance data set (5 attributes): as before, due to the smaller number of rows in this data set, experiments

were performed up to 212 · 100 rows. Figure 4 compares the processing times with the theoretical overall complexity

of the algorithm. The processing time is directly proportional (linearly) to the number of rows in input. The estimated

complexity is n · log(n), but by using the pruning strategies, we tear down the processing time close to linear time.

Rows 2n · 100 2 4 6 8 10 11 12 13

Time (seconds) 11 12 17 28 73 93 193 243

Table 10. Processing times in seconds for the test over 5 attributes from the psychiatric data set.
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Rows 2n · 100 2 4 6 8 10 11 12

Time (seconds) 20 19 22 30 51 67 89

Table 11. Processing times in seconds for the test over 5 attributes from the pharmacovigilance data set.
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Figure 4. Graphical plot of data from Tables 10 and 11. The red line refers to the theoretical complexity of the algorithm; the blue line refers
to experimentally detected values over the psychiatric data set; the green line refers to experimentally detected values over the pharmacovigilance
data set. The experimental values are much lower than the theoretical estimation due to suitable pruning strategies.

6.2.2. Psychiatric Case Register

The psychiatric data set consists of 26 attributes. Theoretically, a mining algorithm would need to validate

872,415,232 (i.e. 26 · 225) functional dependencies: however, after running the pruning operation, only 125,919 have

been tested by SW-ATFDminer to obtain 3042 valid rules. By testing only the 0, 014% (125, 919/872, 415, 232 =

0, 014%) of all the possible ATFDs (that is 1 functional dependency every 6945), SW-ATFDminer allows one to treat

an otherwise intractable problem.

By running the SW-ATFDminer, we identify some meaningful dependencies we discuss here.

• [133days]HealthStructure → ContactType: due to the large window of 133 days, this dependency points out

that healthcare structures are specialized in providing particular contact types (that is either scheduled, urgent,

or not classified). For example, urgent contacts are less likely to be registered in community-based structures
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vs. hospital-based structures.

• [112days]Patient → GAFScale: even in this case the window size is very large (112 days). This dependency

states that the patient’s GAF score (Global Assessment of Functioning is a numeric scale used by mental health

professionals to rate subjectively the psychopathology severity, the social and occupational functioning of pa-

tients) basically is assessed every 3 months, when changes in the patient’s mental condition are observed.

• [13days]FirstContact→ ContactType: this dependency states that, in a window of 13 days, whenever a patient

contacts the service for the first time (FirstContact = TRUE), the type of that contact is the same for all the

patients. This occurs also when the contact is not the first one (FirstContact = FALSE). This could be of

interest: in fact, both the antecedent and the consequent of the dependency may assume 2 or 3 values, so

one could guess, for instance, that the first contact of a patient is usually urgent, and the other contacts are

routine/scheduled ones. This could be considered as an indicator of a good quality of care, as after an urgent

contact (usually in an emergency room), the next contact is scheduled with a short waiting list.

• [12days](GAFScale, Patient) → Duration: over a window of 12 days, this dependency links the patient and

the current condition (measured by the GAF score) to the duration of the contact. It means that, if a patient is

scored with a higher functioning (high GAF score), the duration of the outpatient contact is shorter, since the

need for psychological, psycho-pharmacological and social support is reduced. If a patient has a lower GAF

score, the duration of the outpatient contact is longer.

• [5days]Patient → Referral: this dependency states that, in a window of 5 days, the referral of the service

depends on the patient (typically, the referral is a family member, a neighbor, the police, or the physician). The

small window size indicates that the referral of a contact is strictly linked to the condition of the patient at that

particular stage of the disease.

• [5days](Duration,GAFScale) → Professional: this dependency links the duration of the contact and the GAF

score of the patient to the professional involved in the contact. The duration of the contact is longer if the patient

is talking to his/her usual professional, while if talking to an unusual professional, the contact is shorter.

6.2.3. Pharmacovigilance

We selected 19 attributes from the pharmacovigilance (PhV) data set, and processed them by the SW-ATFDminer.

Theoretically, a mining algorithm would need to validate 4,980,736 functional dependencies (i.e. 19 · 218): however,

after running the pruning operation, SW-ATFDminer tested only 49, 904 of them.

By running the SW-ATFDminer, we identify some meaningful dependencies we discuss here.
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• [30days](Drug, AdverseReaction) → Outcome: due to the large size of the window, this dependency points

out that - given an adverse drug reaction - the outcome does not change. This is of interest for the analyst (i.e.,

asserting that the suspected drug is indeed the one that caused the reaction). In this case, it is not completely

understood by pharmacologists why this dependency does not hold even for bigger window sizes.

• [23days](Drug, AdverseReaction)→ HealthcareRegion: this dependency links a drug and its adverse reaction

to the geographical region where that event has been detected. This dependency is explained as follows. Many

reports are related to specific active pharmacovigilance projects. For example, many reports from the Lombardy

region come from a project focusing on the monitoring of emergency departments: many drug-reaction couples

(e.g., bleeding and aspirin) occur several times in the considered data sets due to this project. Even in this case,

the length of the sliding window needs further investigations. Moreover, it is of interest to analyze this kind of

dependency only for those reports which are not related to specific pharmacovigilance projects.

• [11days](Drug, TreatmentDuration) → Outcome: this dependency states that the outcome of any adverse

reaction induced by a drug can be linked to the drug itself and to the duration of the treatment. This dependency

is similar to the first one. In this case, it is interesting to observe that, given a drug, both the induced adverse

reaction and the duration of the treatment induce a dependency with respect to the outcome. This could confirm

that the same drug may produce different outcomes, according to the time span of the treatment.

• [6days]AdverseReaction → Severity: this dependency links the reaction to its severity. It is acknowledged by

pharmacologists that a reaction is usually severe/not severe regardless of the associated drug. This feature holds

even in this case, where severity is associated to the overall report, possibly containing several reactions for the

same drug.

• [5days](ATC, AdverseReaction) → DrugRole: The ATC (Anatomical Therapeutic Chemical) classification

system is widely used to classify drugs. ATC classifies drugs into different groups, according to the organ or

system on which they act, and/or their therapeutic and chemical characteristics. This dependency links the

higher level of this classification (e.g. cardiovascular system, dermatology, central nervous system), and the

observed adverse reaction to the drug role (e.g. suspected of being the cause of the reaction, or just contempo-

rary). This dependency may be explained by the “notoriety” of a reaction with respect to a group of drugs. For

example, an hypertensive drug is expected to possibly induce hypotension, an anti-arrhythmic one may cause

bradycardia. The short width of the sliding window could be explained by the irregular flow of reports and by

the fact that different types of reports come in different time periods. Even in this case, the found window size

has to be studied and deeply considered by pharmacologists.
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7. Conclusions

In this paper, we introduced and discussed approximate temporal functional dependencies, with their related algo-

rithms and clinical data mining issues. More precisely, we discussed how to mine pure temporally grouping temporal

functional dependencies. We considered both granularity-based and sliding window temporal groupings. We applied

ATFD mining to two different clinical data sets, related to psychiatric patient management and to pharmacovigilance,

respectively. ATFDs proved to be an interesting tool for mining clinical data and the derived dependencies have been

discussed as for their clinical relevance.

As a future work, we plan to extend mining techniques to other kinds of temporal functional dependencies, ac-

cording to the framework proposed in [7]. Moreover, a tuning of these techniques for specific temporal clinical data

will be considered. In particular ATFDs could be the result of specific tools within an integrated suite of (temporal)

data mining tools for clinical data, comprising both temporal dependencies and temporal association rules.
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Appendix A. The Function MinDelete

This appendix describes two implementations for the MinDelete function: Appendix A.1 describes a naive im-

plementation, while Appendix A.2 describes a smarter implementation.

Appendix A.1. A Naive MinDelete Function

Function MinDelete of Algorithm 5 receives as input a relation r with schema R(Y,VT,C); this relation stores, for

a given tuple of values for attributes X, the number C of tuples, which share the same value for the attribute Y at the

same valid time VT in the original instance r.

Given such relation r, the algorithm computes the minimum number of tuples t, with t[X] = x, to be deleted from

r in order to have the TFD [R, SlidingWindow(k)]X → Y to hold over the remaining tuples of r that share the same

tuple x of values for t[X]. That is, Algorithm 5 looks for a minimal set r′x ⊆ rx for [R, SlidingWindow(k)]X → Y.

The procedure builds a DAG with positive weights on the edges. The nodes of G represent tuples of the input

relation, and have two auxiliary nodes s and e. The set E of edges and their respective weights W are defined as

follows:

• there is one edge from s to every t ∈ r, and one edge from every t ∈ r to e;
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Algorithm: MinDeleteNaive(r, k)

Input: r, k

Output: DAG Shortest Path(V ,E,W, S, f )

1 ; /* r is supposed to contain only tuples (y, vt, c) where y is a value in the domain of

Y, and both vt and c are natural numbers */

2 assign to y a value ∈ Dom(Y);

3 s← (y,min
t∈r

t[VT ] − k − 1, 0);

4 e← (y,max
t∈r

t[VT ] + k + 1, 0);

5 V ← r ∪ {s, e};

6 E ← {(s, t) | t ∈ r} ∪ {(t, e) | t ∈ r} ∪ {(t, t′) | t, t′ ∈ r ∧ t[VT ] < t′[VT ] ∧ (t′[VT ] − t[VT ] > k ∨ t[Y] = t′[Y])};

7 foreach (t, t′) ∈ E do

8 W(t, t′)←
∑

t′′∈r∧t′′,t′∧t[VT ]<t′′[VT ]≤t′[VT ]
t′′[C]

9 end foreach

10 return DAG Shortest Path(V ,E,W, S, f )

Algorithm 5: MinDeleteNaive(r, k)

• one edge connects two tuples t, t′ ∈ r, iff the two tuples with subsequent VT s (t[VT ] < t′[VT ]) do not create a

conflict with respect to [R, SlidingWindow(k)]X → Y. This occurs when either t[Y] = t′[Y] or t′[VT ]− t[VT ] >

k;

• the weight of every edge (t, t′) is the number of tuples that must be deleted if all the tuples represented by t

together with all the tuples represented by t′ will be kept in the final solution and no other tuples are in between,

with respect to their valid time. In particular, when considering tuples within the sliding window, we cannot

have tuples between t[VT ] and t′[VT ] with the same corresponding values for attributes X and different values

for Y (i.e. violating the dependency).

Every path from s to e in the DAG describes one possible “deletion-strategy”. Every edge indicates that the two

tuples may coexist without violating the dependency. If an edge e = (t, t′) is chosen in the shortest path between s and

e, it means that t and t′ are kept in r, and thus all the tuples of the DAG in-between them are deleted. The number of

such deleted tuples is represented by the weight of the edge e.

As an example, let us consider in Figure A.5 the edge between nodes ti+1 and ti+6. Tuples ti+2, ti+3, . . . ti+5 will be

deleted. Every path from s to e guarantees that [R, SlidingWindow(k)]X → Y is satisfied by all the remaining tuples

sharing the same tuple x of values for attributes X. Indeed, all the edges on a path guarantee that the two connected

nodes represent tuples that can be in a relation satisfying the given temporal functional dependency. Moreover the

sum of the weights on every path from s to e is exactly the number of the tuples to be deleted, if the corresponding

strategy would be adopted. Finding the weighted shortest path from s to e in the DAG corresponds to identifying the
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Figure A.5. A fragment of the DAG created by procedure MinDelete.

minimum number of tuples to be deleted to make rx consistent with [R, SlidingWindow(k)]X → Y, i.e. considering

only those tuples with the given (tuple of) values for attributes X.

The complexity of such a procedure is O(|r|2), and it is determined by the worst case complexity to compute the

weights for the edges. Such a computation requires, in the worst case, a quadratic parse of the original relation r: this

dominates the overall complexity for every single source shortest path procedure used to compute the output value.

We shall see in the next section how such weights can be incrementally computed just in time, tearing down the

complexity of the whole procedure by exploiting the particular structure of the generated DAG.

Appendix A.2. A Smart MinDelete Function

The procedure MinDelete can be improved with respect to the asymptotic complexity analysis, obtaining the pro-

cedure described in Algorithm 6. The soundness and completeness of such a procedure is given by Lemma Appendix

A.1, which can be proved by contradiction.

Lemma Appendix A.1. Given a shortest path P = s, t1, . . . , tm, e in the DAG built up according to Algorithm 5,

for every pair of consecutive nodes ti, ti+1 in P there does not exist a path P′ in the DAG with |P′| > 1 and P′ =

ti, t
′
1
, . . . , t′m′ , ti+1.

This result strongly depends on how the weights are computed in the DAG, and informally it enables us to disregard

all the edges that can lead to a longer path when computing the shortest path through the function SHP. SHP computes

the cost of the shortest path between two given nodes. For example, in the DAG of Figure A.5, the edge (ti, ti+7) can

be deleted without affecting any value for every shortest path. Indeed, looking at the edge weights we observe that:

W(ti, ti+7) =
i+6
∑

j=i+1
t j[C] > W(ti, ti+4) +W(ti+4, ti+7) =

i+3
∑

j=i+1
t j[C] +

i+6
∑

j=i+5
t j[C]
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Thus, every path featuring (ti, ti+7) is not the shortest one, since such an edge may be replaced by the edge pairs

(ti, ti+4), (ti+4, ti+7), to obtain a path with a lower weight. Corollary 1 follows from this result.

Corollary 1. Given a shortest path P = s, t1, . . . tm in the DAG from s to any node tm ∈ V , then either tm[VT ] −

tm−1[VT ] > k, or for every t′ with tm−1[VT ] < t′[VT ] < tm[VT ], we have t′[Y] , tm[Y].

This means that every node tm ∈ V has either:

• a predecessor in its shortest path outside the sliding window or;

• an immediate predecessor among the tuples with the same value for attribute Y in the sliding window.

We call such a tuple, if it exists, the minimal window predecessor of tm. Given a node t, we say that t′, with

t[VT ] − t′[VT ] > k, is its minimal-external predecessor if and only if for every t′′ with t[VT ] − t′′[VT ] > k, we have

SHP(s, t′′) +W(t′′, t) ≥ SHP(s, t′) +W(t′, t).

Corollary 2 completes the needed properties for our procedure. It can be proved by contradiction by looking at

the properties of the weights in the DAG.

Corollary 2. For every pair of tuples t, t′ with t[VT ] ≤ t′[VT ], let t and t
′

be the minimal external predecessors of t

and t′ respectively: then, it holds t[VT ] ≤ t
′
[VT ].

Suppose that we are looking for a given node t. Properties highlighted by the two corollaries 1 and 2 restrict the

value of SHP(s, t) to min((SHP(s, t′) +W(t′, t)), (SHP(s, t′′) +W(t′′, t)). Thus, t′ is the minimal-external predecessor

of t, and t′′ is the minimal-window predecessor of t (if any).

The procedure described in Algorithm 6 makes use of these properties to tear down the complexity of procedure

MinDelete to O(n · log(n)). The procedure requires that the tuples are ordered lexicographically on VT, Y (given an

arbitrary order on Y) in the input relation r. In the following, we assume that retrieving a tuple t j given its index j has

a computational cost log(|r|), by supposing that there is some sort of an indexing structure (e.g. a B-tree) built up on

the indexes of the tuples, and that the computational cost of computing such a structure is O(|r| · log |r|).

Moreover, the procedure assumes that in the input relation there are five additional auxiliary not-initialized at-

tributes LC, PW, PWC, FW and SHP, respectively. These integer attributes have the following meaning:

• LC means “level count”, and it represents the sum for the C attribute for all the tuples that share the same VT

with the current one (including t itself).

Formally:

t[LC] =
∑

t′∈r,t[VT ]=t′[VT ]

t[C]
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Algorithm: MinDelete(r ,k)

Input: r,k
Output: Min

1 optimized version for MinDelete ; /* r contains only tuples (y, vt, c, lc, pw, pwc, f w, shp) where y, vt and c are defined

as in Algorithm 5. Attributes lc,pw, pwc, f w and shp are natural numbers. */

2 for i = 1 to |r| do

3 if i = 1 ∨ ti−1[VT ] < ti[VT ] then

4 Count ← 0; j← i;
5 while t j[VT ] = ti[VT ] ∧ j ≤ |r| do

6 Count = Count + t j[C]
7 end while

8 end if

9 ti[LC] ← Count

10 end for

11 ; /* T is assumed to be a balanced binary search tree. Each node of T is ordered on the field key which

assumes values in the domain of y and contains attributes idx and bonus which are natural numbers. */

12 T ← ∅; Count ← 0;
13 for i = |r| down to 1 do

14 ti[PW]← NIL; n← T.search(ti[Y]);
15 if n , NIL then

16 if tn[idx][VT ] − ti[VT ] ≤ k then

17 tn[idx][PW]← i; tn[idx][PWC]← Count − n[bonus]
18 end if

19 T.delete(ti [Y])

20 end if

21 n← NewNode(); n[key] ← ti[Y]; n[idx] ← i; n[bonus] ← Count + ti[C]; T.insert(n);
22 if i > 1 ∨ ti[VT ] > ti−1[VT ] then

23 Count ← Count + ti[LC]
24 end if

25 end for

26 foreach t ∈ r do

27 t[FW] = min
t j∈r∧t[VT ]≥t j[VT ]∧t[VT ]−t j[VT ]≤k

j

28 end foreach

29 Ext ← Win← 0;
30 for i = 1 to |r| do

31 OutValue ← Ext + ti[LC] − ti[C];
32 if ti[PW] , NIL then

33 InValue ← tt[PW][SHP] + ti[PWC]; ti[S HP]← min(InValue,OutValue)
34 else

35 ti[S HP]← OutValue

36 end if

37 if i < |r| ∧ ti[VT ] < ti+1[VT ] then

38 Win← Win + ti[LC]; Ext ← Ext + ti[LC];
39 if ti+1[FW] > ti[FW] then

40 for j = ti[FW] to ti+1[FW] − 1 do

41 Ext ← min(Ext,Win + t j[SHP] − t j[LC]);
42 if t j[VT ] < t j+1[VT ] then

43 Win ← Win − t j[LC]
44 end if

45 end for

46 end if

47 end if

48 end for

49 Min ← t|r|[SHP]; Count ← 0;
50 for i = |r| − 1 down to 1 do

51 if ti+1[VT ] > ti[VT ] then

52 Count ← Count + ti+1[LC]
53 end if

54 Min← min(Min, ti[SHP] +Count);

55 end for

56 return Min

Algorithm 6: MinDelete(r,k)
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Such an attribute is introduced in order to improve the readability of the code: the attribute is computed at

the very beginning of the procedure and for every t ∈ r with a simple single scan of r (lines from 2 to 10 in

Algorithm 6).

• PW stands for “predecessor in window”: it is the index for which tt[PW] is the minimal-window predecessor of

t in r.

Formally (recall that tuples in r are lexicographically ordered on VT, Y):

t[PW] =























































max i
















ti ∈ r ∧ t[Y] = ti[Y]

∧t[VT ] − ti[VT ] ≤ k

















if
∃t ∈ r(t[Y] = ti[Y]

∧t[VT ] − ti[VT ] ≤ k)

NIL otherwise

• PWC represents the weight of the edge between a node t and its minimal window predecessor (if any):

t[PWC] =



























W(tt[PW], t) if t[PW] , NIL

NIL otherwise

Both PW and PWC are computed in the second for-loop of the algorithm (lines from 13 to 25 of Algorithm 6),

but their computation is much more complex with respect to the one for LC values.

In fact, a naive way to compute them may lead to a quadratic complexity, making all our efforts unfruitful.

On the contrary, the values PW and PWC can be computed for all the tuples t ∈ r in O(|r| · log |r|) by using a

balanced tree T , say a B-tree, as an auxiliary structure (any other data structure where the computational cost to

search /insert /delete is logarithmic will perform the same way).

A node n of such a tree consists of a key value n[key], which represents a value in the domain of Y, given an

arbitrary order of the values for Y. n[idx] represents the index of the last tuple with attribute Y equal to the

key encountered in the current window. n[bonus] is a value to easily compute the value of PWC. During the

procedure, for every node n ∈ T we guarantee that for every n′ ∈ T , with n , n′, n[key] , n′[key]. This

second for-loop that computes the values for attributes PW and PWC for all the tuples t ∈ r, works backward

from the tuple with the maximum value for the attributes VT, Y. At every step, PW is assigned to NIL for

the current tuple ti, and the key ti[Y] is searched into T . If there exists a node n ∈ T with n[key] = ti[Y] and

tn[idx][VT ] − ti[VT ] ≤ k, then ti is the minimal-window predecessor of tn[idx], and tn[idx][PW] = i.

The value tn[idx][PWC] is computed as follows: at every step Count is increased by the value ti[LC] of the
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current tuple if it represents the first tuple of all the tuples with the same VT . When we insert a node n, we

store into n[bonus] the current value of Count, which is the sum of all the C attributes for the tuples already

encountered. The weight tn[idx][PWC] = W(ti, tn[idx]) is simply computed as Count − n[bonus].

At the end of the iteration, n is removed from the tree and a new node for the current tuple is inserted into T .

For every iteration we have a constant number of retrieve /search /delete /insert operations, each one costing

O(log |r|). The loop completes after O(|r| · log |r|) operations.

• FW stands for “first in window”, and for a tuple t it represents the minimum index j such that a tuple t j exists

for which 0 ≤ t[VT ] − t j[VT ] ≤ k.

The third for-loop of the algorithm (lines from 26 to 28 of Algorithm 6) computes j for every tuple t ∈ r.

Algorithm 6 performs |r| min operations on the indexes, by using the value t[VT ] for the current tuple t. We

recall that the index i of every tuple is given according to the lexicographical order on VT, Y. Then, for every

i ≤ j we have ti[VT ] ≤ t j[VT ]. The complexity of the third loop is O(|r| · log |r|).

The fourth for-loop of the algorithm (from line 30 to 48 of Algorithm 6) for every tuple t ∈ r computes SHP.

At the end of the fourth loop, we require that t[S HP] = S HP(s, t) for every t ∈ r.

We use two additional variables, namely Ext and Win, belonging to the set of natural numbers. Ext represents

the SHP value for the minimal-external predecessor for the tuple t. Win represents the sum of all the attributes C

for all the tuples t′ of the current tuple t with t[VT ]− t′[VT ] ≤ k. For every tuple, the value of the attribute SHP

is the minimum between the minimal-external predecessor and the SHP of the minimal-windows predecessor

(if any) plus their respective weights. At the end of every iteration, we update - if needed - the value Ext (lines

from 37 to 47). Then we collect all the tuples that are in the current window, and that will not be included into

the next one. Such a set of tuples is non-empty iff ti+1[FW] > ti[FW] where ti is the current tuple.

According to the property expressed by Corollary 2, the set containing the candidates for minimal-external

predecessor is restricted to the current tuple, and the t j ones, with j = ti[FW], . . . , ti+1[FW] − 1. Values for

t j[S HP] = S HP(s j) are already defined, and the value for W(t j, ti+1) is computed by the most internal for-loop

(lines from 40 to 45) by means of Win. A graphical representation of this for-loop is depicted in Figure A.6.

Having SHP(s, t) for every t ∈ r, we still have to determine the cost of the shortest path of the entire graph, i.e.

SHP(s, f ). This is done by the fifth and last for-loop (lines from 50 to 55 of Algorithm 6). Basically, this loop

moves backward from the tuple t ∈ r with maximum value for the attributes VT and Y, computing the distance

between the current tuple and f : at the end, the minimum value is returned. The complexity of the fifth loop is

O(|r|) and the overall complexity of the procedure MinDelete shown in Algorithm 6 is O(|r| · log |r|).

In conclusion, the complexity of procedure VerifySW is O(|r| · log |r|): this complexity does not depend on the
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size of the sliding window k, which is provided as input. However, the sliding window size may assume any

positive value: we are interested in finding all the independent ATFDs [R, SlidingWindow(k)]X
ε
−→ Y with the

maximum sliding window size, where only ǫ and r are provided by the user. Indeed, k is the maximum value,

for which the approximate temporal dependency [R, SlidingWindow(k)]X
ε
−→ Y holds over r.

tk . . . t j t j+1

t j+2

t j+3

t j+4 . . . ti ti+1

ti+1[FW]
ti[FW]

Ext

Ext + ti[LC]

t j[S HP] +Win − t j[LC]

t j+4[S HP] +Win′′ − t j+4[LC]

t j+1[S HP] +Win′ − t j+1[LC]

t j+2[S HP] +Win′ − t j+2[LC]

t j+3[S HP] +Win′ − t j+3[LC]

Win′ = Win − t j[LC]
Win′′ = Win′ − t j+1[LC]

Figure A.6. A graphical representation of how the minimal external predecessor value Ext is updated when ti+1[FW] > ti[FW]. The new value of
Ext is given by the minimum among the values associated to dashed edges (such operation is performed iteratively by the most internal for-loop of
lines from 40 to 45 in Algorithm 6).

At the beginning of this section we observed that, in the worst case, the number of couples (X, Y) to be tested is

exponential [23]. The size k of the sliding window is provided as a parameter, which does not affect the complexity

of the procedure. One may ask if testing all the possible sliding windows in the interval [0,max
t∈r

t[VT ]] is reasonable:

in fact, testing all the possible sliding windows would increase the overall complexity, depending in this case on the

value max
t∈r

t[VT ]. However, such a test is not necessary in this case.

Lemma Appendix A.2. (Downward closure property) For every temporal relation R, for every couple of attributes

X, Y, for every instance r of R, for every 0 ≤ ǫ ≤ 1, and for every k, if [R, SlidingWindow(k)]X
ε
−→ Y holds over r, then

for every k′ ≤ k we have that [R, SlidingWindow(k)]X
ε
−→ Y holds over r.
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Lemma Appendix A.2 asserts that finding the maximum k, if it exists, for which [R, SlidingWindow(k)]X
ε
−→ Y

holds over r, may suffice. Then, by having X, Y and ǫ fixed, we perform a dichotomic search by the procedure

VerifySW, starting from k = max
t∈r

t[VT ], till we either terminate unsuccessfully or find the maximum sliding window k

for which [R, SlidingWindow(k)]X
ε
−→ Y holds over r. The complete procedure is given in Algorithm 7.

VerifySW can be applied at most log(max
t∈r

t[VT ]) times. Finally, let kmax = max
t∈r

t[VT ] be the maximum value

for the attribute VT in the instance r; the encountered complexity in finding the maximum size k (if any) for which

[R, SlidingWindow(k)]X
ε
−→ Y holds over r is |r| · log(|r|) · log(kmax), by assuming that the VT is non-negative, and

kmax is expressed in the lower time-granule of its temporal domain (e.g. if VT is a year-month-day date then kmax is

expressed in days).

Algorithm: MaxSlidingWindow(R, X, ǫ, Y, r)

Input: R, X, ǫ, Y, r

Output: k

1 ; /* A procedure for the dichotomic search of the maximum size k, if it exists, such

that [R, SlidingWindow(k)]X
ε
−→ Y holds over r. */

2 kmax ← max
t∈r

t[VT ]]; kmin ← 0;

3 while kmax , kmin do

4 if VerifySW([R, SlidingWindow(kmax)]X
ε
−→ Y, r) then

5 return kmax

6 end if

7 if NOT VerifySW([R, SlidingWindow(kmin)]X
ε
−→ Y, r) then

8 return NIL

9 end if

10 k ←
⌈

kmax+kmin

2

⌉

;

11 if VerifySW([R, SlidingWindow(k)]X
ε
−→ Y, r) then

12 kmin ← k

13 else

14 kmax ← k

15 end if

16 end while

17 if VerifySW([R, SlidingWindow(kmax)]X
ε
−→ Y, r) then

18 return kmax

19 else

20 return NIL

21 end if

Algorithm 7: MaxSlidingWindow(R, X, ǫ, Y, r)
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