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Abstract—Workflow technology has emerged as one of the
leading technologies in modeling, redesigning, and executing
business processes in several different application domains.
Among them, the representation and management of health
and clinical processes have been obtaining a growing interest.
Such processes are in general related to the way each health
organization provides the required health care services: health
and clinical processes underlie the specification and applica-
tion of clinical protocols, clinical guidelines, clinical pathways,
and the most common clinical/administrative procedures.

Current workflow systems are lacking in an effective
management of three general key aspects that are common
(not only) in the clinical/health context: data dependencies,
exception handling, and temporal constraints. For example,
a laparoscopic intervention could need the results of the
concurrent bioptic analysis to be properly concluded, while
exceptional recovery activities have to be performed in case
of emergency evidence during the standard treatment; on the
other hand, the successful application of a fibrinolytic therapy
requires a maximum delay of 30 minutes after the emergency
department admission.

In this paper, we propose TNest, a new advanced, structured
and highly modular workflow modeling language that allows
one to easily express data dependencies and time constraints
during process design, besides to exception handling and
compensation activities. As for temporal constraints, we focus
here on temporal controllability, which is the capability of
executing a workflow for all possible durations of all tasks
satisfying all temporal constraints. Moreover, we analyze
the computational complexity of the temporal controllability
problem in TNest and we propose a general algorithm to
check the controllability. All the features of TNest have been
considered to model clinical pathways from classical clinical
guidelines, i.e., those for the management of STEMI patients,
published by the American College of Cardiology/American
Heart Association, we will use throughout the paper as a
motivating scenario.

Index Terms—Healthcare systems, information systems,
workflow management, time management.

I. INTRODUCTION

Workflow technology is one of the leading technologies
for the management of business processes in several different
application domains. A Workflow Management System
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(WfMS ) has to coordinate the execution of cases, i.e.,
business processes, taking care of resource allocation and
procedural constraints. Each case is an instance of a schema,
which may correspond to several cases executed in different
(possibly contemporary) moments: a workflow schema
(process model) is a formal description of an organizational
process where each atomic unit of work (task) is assigned
to one or more processing entities (agents). An agent may
be a software application (e.g., an electronic medical record
system), a human (e.g., a physician) or a combination of
both (e.g., a physician using a medical decision support
tool).

Workflow technology has been adopted in several applica-
tion domains: Aerospace/Defense, Heavy/Light manufactur-
ing, Chemicals/Energy, Computers/Consumer Electronics/
Software, Education, Financial Services/Insurance, Food/
Beverage, Government/Military, Healthcare/Medical Equip-
ment, Leisure/Entertainment/Travel, Professional/Business
Services/Consulting, Retail and Wholesale, Telecommunica-
tions, Utilities [1]. Among the different application domains,
medical organizations use WfMSs to streamline, automate,
and manage medical processes that depend on clinical
information systems and human resources: supporting
clinical guidelines, managing admission-discharge-transfer
processes, and supporting clinical pathways [2], [3], [4]. A
clinical pathway represents a set of possible schedules of
medical and nursing procedures, including diagnostic tests,
medications, and consultations designed to effect an efficient,
coordinated and structured program of treatment. According
to this general meaning, a clinical pathway may result either
from a process-oriented view of most health and clinical
procedures (often involving different organization units of
a health care institution) or from a concrete application,
adaptation, and execution of a clinical guideline within a
specific healthcare organization [5].

Without loss of generality, in the following we will
mainly consider the healthcare domain: indeed, healthcare
process modeling and management arise several general
issues common to other application domains. It is worth
noting that in the healthcare domain these issues become
crucial to be solved, to guarantee the right applicability of
WfMSs . In particular, we will focus on three key aspects of
workflow technology that need to be properly addressed to
make WfMSs usable in real world (health) scenarios: data
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dependencies, exception handling, and temporal constraints.
Data dependencies arise when different tasks are in-

tertwined with respect to data they need to be properly
executed; for instance, a laparoscopic intervention could
need the results of the concurrent bioptic analysis to be
properly concluded: in this case data synchronization among
concurrent tasks has to be explicitly represented. A related
issue is that, since schemata of workflows are often huge
and with complex connections among tasks, it is important
to prevent the possibility of having deadlocks and/or lacks
of synchronization: a structured modeling language can
guarantee this and it has been recently shown that a
structured modeling language, with proper constructs to
manage data dependencies, can be defined without reducing
its expressiveness w.r.t. unstructured workflow languages [6].
Roughly speaking, a schema is structured if it is formed by
subgraphs with a single-entry and a single-exit point and
the type of its routing constructs is properly matched.

Exception handling can be used to model unlikely situa-
tions that rarely occur and deviate from standard procedures,
requiring the execution of special recovering activities. For
instance, an acute rupture of the intraventricular spectrum
(VSR) is estimated to occur in fewer than 1% of patient
with ST-segment Elevation Myocardial Infarction (STEMI ),
and it requires a urgent cardiac surgical repair.

On the other side, temporal constraints are always
present and their management is mandatory to successfully
complete a workflow: for example, to successfully apply
the fibrinolytic therapy to patients with STEMI a maximum
delay of 30 minutes must be considered with respect to the
emergency department admission [7]. An important concept
related to temporal constraints is that of controllability [8]:
controllability is the capability of executing a workflow for
all possible durations of all tasks and satisfying all temporal
constraints. This is of paramount importance in the clinical
domain because task durations are contingent (e.g., it is
possible to set up a duration range for a therapy but the
WfMS is aware of the effective duration only after the
therapy conclusion).

Available WfMS and research prototypes currently offer
a limited support to all these aspects [9]. According to
this scenario, in this paper we will deal with the following
original aspects:

1) We propose a new structured, data-centric workflow
modeling language called TNest that allows one to
express data dependencies, exception handling and
time constraints in business processes. constructs and
advanced temporal validation methods.

2) We propose a new formal definition of execution
strategies and controllabilities of TNest schemata.

3) We propose a new general algorithm to determine the
optimal temporal durations for a controllable TNest
workflow schema; then, we discuss the computational
complexity of checking different kinds of controlla-
bility.

4) We show the specification through TNest of the
process related to the management of STEMI pa-
tients, according to the guidelines published by the

American College of Cardiology/American Heart
Association [7].

5) We discuss some architectural aspects related to
the integration of TNest in process-aware clinical
information systems.

With respect to the preliminary work [10], several topics
are completely new to this paper: exception handling, the
formal definition of execution strategies and controllability,
and a new approach to check the controllability of TNest
schemata based on the well-known formalism named Simple
Temporal Network with Uncertainty (STNU ) [11]. More-
over, the clinical domain has been studied in more detail
considering new clinical features mainly related to exception
handling and temporal constraints. Since in clinical domains
some widely adopted clinical information systems exist, we
discuss also a possible integration of TNest model in such
platforms.

In more details, in Section II we highlight the difference
between structured versus unstructured workflow models,
then we introduce the relevant contributions towards the
controllability, and, finally, we describe some relevant
research directions in the area of computer-based support
to clinical processes, guidelines, and pathways. Section III
presents the STEMI guideline, we use as motivating scenario
throughout the paper, and the preliminary modeling by
YAWL workflow system. In Section IV we present, in a
detailed way, TNest control-flow, data-flow, and temporal
constructs. In Section V, we propose a new formalization of
execution strategies and controllabilities for TNest schemata.
In Section VI, we discuss how to check the controllability for
the main TNest constructs and, then, we propose a general
algorithm in order to determine the kind of controllability,
if any, of an input TNest schema and, if the schema
is controllable, the optimal durations for the workflow
components. In Section VII TNest schemata for the overall
STEMI process and for the treatment and for the drug
therapy subprocesses are proposed and discussed showing
the suitability of TNest for modeling such clinical process.
In Section VIII, we discuss the role of TNest in a modern
WfMS architecture as well as in a wider setting of process-
aware clinical information systems. In Section IX, we
summarize the main results of this work and sketch some
future work.

II. RELATED WORK

Traditional modeling languages, like YAWL and BPMN,
are classified as unstructured because they allow free compo-
sition of constructs without worrying much about type and
position of the connected elements. However, a modeling
approach that promotes the use of structured compositions
whenever possible offers several advantages. First of all,
different research efforts confirm that it is a good practice
to adopt a structured control-flow design because structured
models are more comprehensible, modular and generally
contain less errors than their unstructured counterparts
[12], [13]. Unfortunately, traditional modeling languages
cannot enforce a structured composition without losing
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expressiveness: it can be shown that there exist well-behaved
unstructured models that cannot be transformed in fully
structured ones in any obvious way [14]. To obviate this
problem, [6] introduces a novel modeling language, called
NestFlow, able to enforce a fully structured control-flow
design without compromising expressiveness.

Regarding temporal constraints and the concept of control-
lability of workflow schemata, two main research directions
may be relevant: i) the refinement of methodologies for
business-process modeling and the extension of WfMSs
in order to consider different kinds of temporalities; ii) in
the AI-related area of temporal constraints, the study of
constraint satisfiability when some temporal constraints are
not under control of the system. In [15], the authors propose
a temporal conceptual workflow model that enhances
the expressiveness of previous proposals in representing
temporal constraints, such as those related to tasks and
connectors. One innovative aspect of the proposal is the
standardization in expressing temporal constraints among
tasks or connectors; temporal constraints are expressed by
ranges representing lower and upper bound of the constraints.
Furthermore, the authors propose different kinds of temporal
constraints consistency and exhibit some algorithms to check
the consistency of a workflow schema both at design time
and at run-time. In [16], the authors propose ten time patterns
used in process-aware information systems and provide a
systematic literature review of existing systems considering
temporal issues in workflows.

In AI area, Vidal et al. propose an extension of the
Simple Temporal Network, the Simple Temporal Network
with Uncertainty (STNU ), where edges, i.e., constraints,
are divided into two classes: contingent links and require-
ment links to manage the likely uncertainty about the
duration of processes. Indeed, contingent links represent
processes of uncertain duration, where finish time points
(i.e., STNU nodes) are decided by Nature within the
limits imposed by the bounds defined on the contingent
links. Requirement links represent all the other processes
whose finish time points are controlled by the agents that
execute processes. Informally, controllability refers to the
capability of specifying all the time points controlled by
agents, satisfying all the requirement and contingent links. In
particular, dynamic controllability ensures that it is possible
to specify at run-time the time points controlled by agents
only by knowing the duration of the already happened
contingent links, without preventing any possible duration
of the future contingent links [17]. Several algorithms have
been proposed to check the dynamic controllability of a
constraint network [18]; eventually, Morris showed that
in the framework of STNU the checking controllability
algorithm has polynomial-time (O(n4)) complexity [19]. In
[20], [21], the author highlights some issues in the approach
proposed by Morris and Muscettola and proposes a stronger
definition of dynamic execution strategies that fixes these
problems and puts the checking algorithm on a more solid
theoretical foundation.

Moving to processes and temporal constraints in the
healthcare motivating domain we are focusing on, the

computer-based support of clinical guidelines has been
considered since the late 90’s and several methodologies
and systems have been proposed, as EON, GLIF, PRO-
forma, Prodigy, GUIDE, and Asgaard-Asbru [9]. All these
proposals consider the structuring of guidelines into tasks
[9], [22], but adopt different approaches according to the
particular modeling challenges. They deal with different
aspects related to the representation of clinical guidelines:
the modeling of clinical data and of the derived information,
the modeling of the suitable medical knowledge, the use
of standard medical terminology and message formats,
and the representation of specific medical task types (as
decisions, actions, and so on). In general, all these systems
support, in some cases in an implicit way, the specification
of sequential, parallel, and alternative executions of tasks.
Even though in some proposals there is the capability of
managing some kinds of temporalities both for clinical data
and for the specification of clinical tasks, none of them
allows the user to explicitly represent at the conceptual
level temporal constraints between tasks and, at the best
of our knowledge, the issue of both temporal consistency
and temporal controllability of guideline specifications
has not yet been addressed. Moreover, the data flow
between clinical tasks is not explicitly considered during the
conceptual design. Since the scope of computer supported
clinical guideline systems is broader than that of topics
we will deal with in this paper, let us now focus on the
use of WfMS technology to support the design and the
execution of clinical guidelines, and, more in general, of
clinical processes or clinical pathways [2], [4], [23]. Several
specific features have been acknowledged as relevant for
the implementation of clinical workflows [2]: flexibility and
uncertainty management during the execution [4], explicit
representation of medical and organizational knowledge
[23], sharing of clinical guidelines (i.e., processes) through
different institutions [3]. Time aspects in clinical workflow
modeling and management have been recently considered
in [24], [25], [10].

A further research direction dealing with processes
in healthcare focuses on the resource management and
optimization in hospital organizations. In [26], the authors
propose a hierarchical model based on Petri Nets and Unified
Modeling Language (UML) to design the structure, the
resources, and the dynamics of a hospital department.

In [5], the authors provide a review of implementation
challenges for process-oriented health information systems
by considering computerization of workflows, guidelines,
and care pathways. In more details, the authors select and
review 108 papers from international journals and confer-
ences and they identify the mostly recurring challenges
and research topics: among the 25 identified challenges, we
mention here Flexibility and adaptability, Model verification,
Process modeling and Temporal abstraction as they are
related to the topics we will face in this paper.

III. THE CLINICAL SCENARIO

To motivate our proposal, let us consider as a case study
the guideline for the diagnosis and treatment of ST-segment
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Elevation Myocardial Infarction (STEMI), published by the
American College of Cardiology/American Heart Associa-
tion in 2004 [7]. The guideline considers the management of
patients with STEMI symptoms from the symptom onset to
the late hospital care. In particular, it recommends different
kinds of treatment (i.e., Pharmacological Reperfusion, Per-
cutaneous Coronary Intervention (PCI ) and Acute Surgical
Reperfusion) according to different patient conditions (e.g.,
age, early/late presentation, specific contraindications) and
describes how to deal with ancillary therapies and possible
complications, and so on. As preliminary step, we tried
to specify the workflow schema corresponding to STEMI
guidelines through the Yet Another Workflow Language
(YAWL ) system [27]: the specification consists of several
tasks, both compound and atomic, modeling activities from
the 911 call to the clinical activities. Within the clinical
activities, we distinguished tasks related to pharmacological
therapies, ancillary therapies, surgery, PCIs, monitoring and
complications.

During the design of STEMI guidelines through YAWL ,
some limitations have been found in the representation of
the following main aspects. A first limitation is related to the
specification of data dependencies among tasks: in YAWL
it is not possible to describe them at the conceptual level,
even if there are some possibilities at low level by using
local and global variables to exchange data among tasks.
As an example, in the STEMI guidelines it is important
to underline that surgery is allowed only after data from
monitoring devices are at disposal. A second limitation
is related to the specification of temporal aspects of the
clinical process: in YAWL it is only possible to specify
deadlines, while dummy tasks are needed to handle ad hoc
temporal requirements. In the STEMI guidelines there are
several temporal constraints that need to be managed as, for
example, “primary PCI should be performed within 90 min
after the patient contact (arrival at the emergency department
or contact with paramedics)”, “fibrinolytic therapy must
start within 30 min after the patient contact” and “after
successful fibrinolysis, transfer to a PCI capable hospital
for coronary angiography, ideally between 3 to 24 hours
after start fibrinolytic therapy, may be considered”. A third
issue is related to the fact that YAWL allows unstructured
workflow schemata that could cause deadlocks or lack of
synchronization [28]. For example, in YAWL one can spec-
ify that tasks PCI and fibrinolysis are alternative and then
require through an AND join connector that the workflow
needs the completion of both tasks to continue. Therefore,
in the design of the STEMI guidelines it has been difficult
to (manually) check that split and join constructs were
suitably nested. The last limitation regards the possibility
of properly manage exceptional situations that rarely occur
and that deviate from the standard procedures; for instance,
specific recovering activities have to be performed in case
of emergency evidence during the execution of the operative
choices or of the Drug Therapy sub-process.

IV. THE TNest MODELING LANGUAGE

Any non-trivial process has to deal with some temporal
requirements and this is exceptionally true for clinical
pathways where clinicians have to plan therapies, record
administered drugs, track the current state of patients and so
on. Workflow technology seems to be the most appropriated
technology to build flexible software systems that can
support human agents in carrying out their work. Unfor-
tunately, workflow technology is not sufficiently mature
for modeling and enforcing temporal constraints: indeed,
temporal aspects are at best implemented with improper
constructs when they are not ignored at all. The lack of a
temporal support makes workflow technology less effective
for end-users and developers. TNest is a subset of the
NestFlow graphical Process Modeling Language (PML ) [6]
enriched with specific temporal constructs and sanity checks
that allow one to express and verify time-related properties.
NestFlow integrates a structured control-flow with an explicit
representation of data-flow aspects. The name NestFlow has
been chosen because control-flow structures are expressed by
recursively nesting language constructs with a single entry
and a single exit point. In this way the process design activity
is less prone to errors because threads of control are confined
in specific blocks and the use of a structured control-flow
helps in enforcing important static properties that guarantee a
safe run-time behavior. This is a critical requirement because
schemata are used not only for easing human communication
but also for driving software systems in order to support
and coordinate complex human activities often carried out
concurrently. TNest embraces the NestFlow rationale in order
to provide temporal constructs and verification methods.
The following subsections represent a gentle introduction to
TNest and its main features, including exception handling
are also presented here. Except for Sec. IV-E, each section
focuses on a particular language aspect, as far as possible,
isolated from the other ones. Sec. IV-E briefly introduces
language semantics by explaining the run-time behavior of
each single part and how these parts can be put together to
provide a complete specification.

A. Control-Flow Aspects

This section introduces the basic graphical elements of
TNest and its syntax. TNest elements are obtained from
graphical primitives, like rounded boxes, diamonds, or lines,
connected together in heterogeneous groups called blocks. In
contrast with existing Process Modeling Languages (PMLs),
each block is intended to be manipulated as a whole by a
graphical editor that can also enforce the essential syntactical
rules.

The TNest blocks are summarized in Fig. 1 using a
BNF notation1 that encodes the basic compositional rules.
In particular, three main syntactical categories can be
distinguished: the main block 〈P 〉, called Process, non-
terminal blocks 〈B〉, Seq, Choice, Loop, Par, Catch,

1In the given Backus-Naur Form (BNF ) grammar, a rule 〈S〉 ::=
X|Y |Z means that the meta-symbol 〈S〉 can be replaced by one block
chosen among X , Y or Z.
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Fig. 1. The TNest modeling language constructs.

and Concur, and terminal blocks 〈C〉, Skip, Run, Spawn,
Throw, Send, Receive, and Empty. In the following
the term block may refer to both terminal and non-terminal
blocks, while the term command is used as an alias for
terminal blocks. Excluding the last three commands that
deal with data, the other blocks are used to describe the
main control-flow relations among tasks. An edge, depicted
as a solid-line arrow, represents a control-flow between
two blocks, while a connector denotes either the entry
or the exit construct for Choice, Loop, Par, Concur,
and Catch blocks. A task is essentially a more or less
complex pre-existing process specification invoked using
a Run command or created at run-time with a Spawn
command. An invoked process can be a native procedure
implemented with a general-purpose programming language
or any other previously defined TNest process model. The
ability of reusing an existing process specification is essential
for supporting a uniform hierarchical decomposition that
in turn enhances the overall system modularity. A native
procedure can be used to implement an automatic task, drive
an external program or interact with human agents by means
of a graphical user interface.

A process specification, i.e., a workflow schema, is ob-
tained starting from the main process 〈P 〉 and by recursively
nesting multiple blocks 〈B〉 and commands 〈C〉 following
the grammar in Fig. 1 and some additional syntactical rules
that are explained in Sec. IV-D. A sequence of blocks of
arbitrary length n can be obtained by nesting n − 1 Seq
blocks. Choice and Par blocks can have two or more
branches. Each branch i of a Choice block is annotated
with a condition ϕi(x̄) over a set of variables x̄, except
the last one, which is called default branch and is marked
with an oblique bar /. A Par block is used to execute in
parallel two or more inner blocks that have to synchronize
at the end of the block before leaving it. A Loop block has
two branches: both of them can be expanded with further
inner blocks or they can be also used alone closing the
other branch with a Skip command. Concur is a block
with initially two branches, one depicted as a solid line that
represents the main flow, and one with a shaded line that
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� �
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x y
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� �

� �
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Fig. 2. Different combinations of TNest links. Tasks are denoted by A
and B and the corresponding task instance identifiers by lower-case letters.
Streams are denoted by the initial Greek letters α and β, while x and y are
variables. S and R denote commands Send and Receive, respectively.

denotes the possibility of adding one more branches at run-
time with a Spawn command, as explained in Sec. IV-E.
TNest is designed not only for creating schemata but also for
displaying process executions: block Concur offers a basic
mechanism to make visible the creation and destruction of
dynamic entities by growing and shrinking the displayed
model. PMLs usually do not offer any representation of
this dynamic behavior and concurrent instances are usually
left implicit. Catch is a block with two or more branches.
The first branch, depicted as a solid line, represents the
main flow; the other branches, each annotated with a type
ξi, represent the alternative execution of the block if an
exception of type ξi occurs on the first branch.

The formal semantics of the main TNest constructs is
given in Appendix A.

B. Data-Flow Aspects

A workflow schema shall be accompanied with the
declaration of input and output streams as well as local
variables using the keywords in, out and var, respectively.
Input and output streams represent the interface of the
process, while variables capture the main part of its internal
state.

It is assumed that every stream, variable and process has a
type and an identifier, for instance x:Int denotes a variable
with identifier x and type Int. The same notation holds for
streams, but for convenience a subscript in or out is added
to the identifier, especially when no declaration is given. A
process instance invoked in a Run command is declared in
a similar way with the difference that its identifier can be
omitted in the graphical representation.

A stream is simply a queue for objects of the same type
that can be used for modeling, not only the information
flow, but also the set of objects needed and produced by a
task. An instance of A can refer to one of its own interface
stream α through the dot notation this.α, where this is
a language keyword. Similarly, a stream α of an internal
component instance b : B is referred by b.α, where b is
the instance identifier and α is an interface stream of B.
The dot-notation ensures that all streams in a component
are uniquely identified and the keyword this can be left
implicit.

The flow of objects among internal tasks of a schema is
expressed through the notion of link that is a unidirectional
connection between two streams. A link is graphically
denoted using a dashed line with an hollow arrow pointing
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Fig. 3. (a) Example of an expression involving variables. (b) Functional-
style parameter passing. (c) The two notations can be implemented with
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to the task that exposes the input stream. Depending on
involved commands, link ends are also annotated with stream
or variable identifiers as summarized in Fig. 2.

Links can be distinguished in internal and external ones,
as in Fig. 2(a)-(b) and Fig. 2(d), respectively. Internal links
connect two streams inside the same process, external links
are dangling dashed lines that represent an interaction with
the environment.

One strength of TNest resides on the possibility to hide
links and their related commands any time they can be
subsumed by the main control-flow. For instance, internal
links with the same source and target can be grouped
into a unique collapsed link and subsumed by a control-
flow relation with the same direction; moreover, Receive
and Send commands with hidden links can be subsumed
as well. The remaining links mostly describe interactions
among concurrent tasks. Message passing is sufficiently
expressive to encode parameter passing mechanism, hence
parameter passing notation can be considered as a syntactic
abbreviation for representing message exchange.

A process can declare zero or more variables with their
own type. Variables are visible only inside the component
where they have been declared and their scope does not
extend to components contained in it. For shortening the
presentation, TNest does not include operators to express
computations on variables: it can be assumed without losing
expressiveness that any computation can be implemented as
a native task eventually annotated with the corresponding
expression. For example, a task denoted with x ← x +
y, as in Fig. 3, means that exists a native task with two
input streams xin:Int, yin:Int and an output stream
xout:Int that taken the value of the variables x and y in
the same scope computes their sum and stores it again in x.
The connection between variables and streams is obtained
by means of Send/Receive commands and links. Thanks
to this kind of encoding, the language gains compactness
maintaining the same small set of primitives.

C. Specification of Temporal Constraints

As already introduced in previous sections, in this paper
we want to propose a data-driven workflow language where
many temporal aspects can be specified and managed. In
TNest there are two main kinds of temporal constraints:
activity duration and relative constraint.

An activity duration represents the allowed temporal
spans for the execution of a either a task, a connector,

a:A b:B

�a� �d��c�

S�x,y�S

a:A b:B
S�x,y�E

a:A b:B
E�x,y�S

a:A b:B
E�x,y�Er1:�

�x,y�

t:T
�x,y� �x,y�

�x,y�
�x,y�

�b�

Fig. 4. TNest constructs with temporal constraints. (a) Duration constraint
associated to a task, or a Receive command, respectively. (b) Duration
constraint associated to a connector, notice that the connector is empty to
be general. (c) Delay defined on a control-flow relation, or a data-flow
link, respectively. (d) Relative constraint between the two tasks.

or an edge (see Fig. 4(a), (b) and (c), respectively) and
it is assumed that each activity, but Spawn, Send and
Throw, has a duration specification set by the designer.
Activity durations are expressed by ranges like [MinD,
MaxD] Granularity where 0 ≤ MinD ≤ MaxD ≤ ∞ and
Granularity stands for the time unit used. If a designer does
not set a duration, it is assumed to be [1,∞] MinGranularity,
where MinGranularity is the minimum time granularity
used by the WfMS managing the workflow schemata
(0 MinGranularity is not allowed because it is not possible to
execute an activity without consuming time). Since Spawn,
Send, and Throw are non-blocking activities and are used
as milestone by the run-time engine to start other blocks or
messages, we assume that they have a fixed unit duration
that cannot be modified by the designer. The model allows
also the setting of a duration for edges: it may be viewed
as a delay because it represents the allowed delay to enact
the execution of the second block after the end of the
execution of the first one. The duration associated to a
link represents the allowed delivery time of a message
once it is generated. In general, duration constraints can
be modified during the controllability check at design time
(more details in the following section) or at run-time in
order to satisfy all the given constraints. Nevertheless, such
assumption is not suitable to represent real environments
where tasks are executed by external agents usually requiring
a non negotiable time to complete an assignment. Therefore,
we assume that the duration constraint for tasks is a non
modifiable constraint and neither controllability check nor
run-time engine can modify it.

The other kind of temporal constraints is relative con-
straints. They allow the expression of several other kinds
of temporal constraints among activities. A relative con-
straint limits the time distance (duration) between the
starting/ending instants of two non-consecutive workflow
blocks. It is graphically represented as a dash-dot-dash
edge between the two blocks (see Fig. 4(d)). The label
of the edge specifies the constraint according to the fol-
lowing pattern: 〈IF〉[MinD,MaxD]〈IS〉 Granularity, where
i) 〈IF〉 marks which instant of the First activity to use
(〈IF〉 = S〈activity〉 | E〈activity〉 as the starting/ending execution
instant, respectively; the subscript can be omitted if it is
clear from the context); ii) 〈IS〉 marks the instant for the
Second activity in the same way; iii) [MinD, MaxD] Gran-
ularity represents the allowed range for the time distance
between the two instants 〈IF〉 and 〈IS〉. We assume that
−∞ ≤ MinD ≤ MaxD ≤ ∞. A finite positive MaxD value
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models a deadline since it corresponds to the maximum
global allowable execution time for the activities that are
present on possible flows between the first node and the
second one. On the other hand, a finite positive MinD
represents the minimum execution time that has to be spent
before proceeding after IS : if the global time spent to
execute all activities between IF and IS is less than MinD,
then the WfMS has to dynamically manage a suitable action
(like to sleep, for example) that depends from the specific
applications. A finite negative MaxD value expresses that
the IS has to occur at least |MaxD| instants before IF . In
general, if a designer does not specify the granularity of a
range, it is assumed that the granularity is MinGranularity.

D. Well-Formed Schemata

In general, a schema is well-formed if it can be executed
without unexpected exceptions. A well-formed schema
satisfies some properties that can be statically checked
without executing it. These properties are important because
they can guarantee the presence of a good run-time behavior
that can be hard to prove otherwise. As an example of such
properties, a link can connect only an output stream with
an input stream of the same type or a super-type; moreover,
a Spawn command can be placed only inside a Concur
block; and so on. An exhaustive formalization of all TNest
well-formedness properties is out of the scope of this paper;
instead this section wants to introduce the most relevant
ones, namely i) only one place per component instance and
ii) no shared variables among parallel branches. The first
rule guarantees that there are no concurrent executions of
the same component which may leave the process in an
inconsistent state. At the same time it simplifies data-flow
graphical specification because the source and the target of
a link are uniquely identified without explicitly stating task
identifiers. The second rule prunes away non-deterministic
executions caused by the exact timing of events that are not
completely under the designer’s control.

Both properties can be relaxed at the expense of making
their check more complex. For example, two or more parallel
branches can access in read-only mode to the same variable
without causing inconsistencies; read-only access can be
easily verified by checking whenever a variable appears as
an output or a left-value in an assignment statement.

Since the relative constraint concept is quite general and
some block constructs have a complex behavior, some
unfitting settings are possible. Hence, we propose the
following five general construction rules.

1) Relative constraints cannot be set for activities be-
longing to mutually exclusive flows.

2) An implicit E[0,∞]S relative constraint between a
Spawn command and the dotted task generated by it
is always set as shown in Fig. 5(a). Further constraints
between other tasks and the spawned tasks may be
arbitrarily set.

3) Inside a loop, it is possible to set a relative constraint
between two tasks but on different cycles of the loop
using a specific notation and with some limitations.

For example, in Fig. 5(a) the relative constraint
between B and D has label IS[x, y]S meaning that
any instance of D has to start in [x, y] time units after
(i.e., x ≥ 0) the start of the block B spawned before
it in the same cycle iteration.

4) Between two connected Send-Receive commands
there is always an implicit S[u,∞]E constraint where
u could be 0 or the lower bound of the duration
constraint of the link, in case it is specified. Such
constraint has a different meaning w.r.t. the duration
constraint of the link: even if the two constraints
are graphically similar (see Fig. 5(b), where there is
an explicit constraint S[u, q]E), while the duration
represents the allowed delivery time, the relative
constraint dictates the time range limits in which the
message has to be produced and consumed, i.e., the
validity time of a message. A designer can always
customize the validity constraint observing that the
validity lower bound has to be always not less than
the lower bound of the corresponding delivery time.

5) Inside a Catch block, an implicit E[0, 0]S relative
constraint between the Throw command and the first
task on the associated exception branch it is always
set as shown in Fig. 5(c). Relative constraints between
tasks on an exception branch and tasks outside the
Catch block are not allowed because we assume
that exceptions should hardly ever occur and allowing
relative constraints between tasks on an exception
branch and tasks outside it makes the controllability
harder for most of the schema executions uselessly.

E. Runtime Behavior
The complete state of a process is given by the state of its

streams, its variables, and the component instances contained
in it. In TNest a component instance is stateful: it retains
its state over multiple executions. Any new instance starts
from an initial state, which may be modified by sequential
executions of the component internal blocks. TNest blocks
have the following behavior:
– Sequence block. It runs the first inner block 〈B〉 until
completion, then it executes the next one.
– Choice block. It evaluates conditions ϕi(x) associated
to each branch in a fixed order. As soon as a condition is
true, the corresponding branch is executed, otherwise the
default (rightmost) one is chosen.
– Loop block. It executes blocks contained in its two
branches multiple times. After the execution of the right
branch in Fig. 1, condition ϕ(x) is evaluated. If the condition
is false the loop exits, otherwise it executes the left and
the right branch in sequence. The condition ϕ(x) specifies
either a maximum number of iterations n or a timeout t.
– Par block. It executes the specified branches in parallel
each with its own thread of control. The block is left only
when all threads have been completed.
– Concur block. It is the scope of a dynamic component
creation. It initially executes the main body 〈B〉 but one or
more parallel branches can be added at run-time using a
Spawn; all threads join before exiting the block.
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Fig. 5. (a) Specification of temporal constraints in presence of a spawn command. (b) Specification of temporal constraints between a Send and a
Receive command. (c) Specification of temporal constraints in presence of a Catch block.

– Catch block. It executes the default branch and if an
exception of type ξi is raised inside it, the current execution
is interrupted and resumed from the branch annotated with
the proper exception type ξi to handle the exceptional
situation. For example, in Fig. 1 the non-terminal block
〈B〉 in the second branch is executed when an exception
of type ξ is raised by a Throw command in the default
branch. An exception raised inside a parallel branch that
does not contain a corresponding Catch block, causes
also the interruption of all the other tasks running in the
parallel branches, through the raise of an interrupt exception
on those branches, in order to revert the entire block. All
these different exceptions (i.e., the initial exception and the
various interrupt ones) are grouped into a single exception
before leaving the parallel block.
– Skip. It is useful for obtaining specific control-flow
structures from generic ones; for instance, the usual while
and repeat-until loops can be obtained replacing the right
or the left branch of a Loop with it, respectively.
– Run. It executes a component instance and the current
thread of control is suspended until the component com-
pletes. The command has no special symbol, it is only
labeled with the invoked component type and optionally
with the component instance identifier.
– Throw. It raises an exception of the specified type,
reverting recursively all blocks that contain it until a proper
handler is reached.
– Spawn. It creates a new task instance t : T that is
immediately executed into a new parallel branch added
to the inner Concur block containing the command.
– Send. It inserts the value of one or more variables into
one or more corresponding output streams. A Send is
non-blocking: the execution continues with the next block

without waiting.
– Receive. It stores into one variable an object extracted
from one of the available input streams. The Receive
temporally suspends the current thread of control until an
object arrives or a timeout θ expires. A multiple Receive
stores the first arrived object from a stream αiin into the
corresponding variable xi, and continues the execution; this
behavior is called or-receive. A sequence of Receive
commands can be grouped into a unique and-receive which
waits for an object from each connected stream before
proceeding and is denoted as in Fig. 2(c).
– Empty. It removes all objects contained in a specified
stream α. An Empty command does not have its own
input or output streams, but it is annotated with the input
stream of an existing Receive command contained in
the workflow. The Empty is non-blocking: if the specified
stream a is already empty, it does not wait. An Empty
command can be seen as a Receive inside a Loop which
is iteratively performed until all objects in its input stream
α have been consumed. However, this command cannot
be really simulated with existing constructs, because an
Empty consumes the object previously enqueued in the
input stream of another Receive placed somewhere of
the workflow, and two commands cannot share the same
streams. Since streams hold the enqueued objects until they
have been consumed, the Empty command is useful, for
instance, for resetting the state of a Receive placed inside
a Loop by consuming all remaining objects before a new
iteration is performed, assuming that each iteration has to
be performed on its own data.

A Send has only output streams and a Receive only
input ones: regardless of its name, a stream may have a
different direction depending on the internal or external
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perspective. Furthermore, Send and Receive commands
can be viewed as special component instances with their
own identifiers; hence, each variable x involved in a Send
s :S can be considered as an output stream s.xout, while
each variable y of a Receive r :R can be considered as
an input stream r.yin.

V. CONTROLLABILITY IN TNest

Here, we extend the approach proposed in [8], [29]
to TNest and propose a completely new formalization
of the controllability of workflow schemata. In the first
subsection we propose some preliminary definitions and
the formalization of the concept of execution of a schema
(schedule); moreover, we propose a characterization of pos-
sible execution strategies with respect to their applicability
to real systems. In the following subsection, we describe
two possible kinds of controllability of schemata based on
the possible execution strategies for their wf-paths .

A. Formalizing Execution Strategies

After the specification of the runtime behavior of TNest
components, to formally define the concepts of execution
strategies and controllability of a TNest schema, we need
to introduce some preliminary concepts.

If a TNest schema contains one or more Choice or Loop
or Catch blocks, not all the its cases perform exactly the
same set of blocks.

Regarding the presence of a Loop block in a TNest
schema, it is possible to show that an equivalent schema is
possible without using the Loop construct.

Lemma 1: Each Loop block, even containing one or
more Spawn commands, can be represented by an appro-
priate sequence of copies of the block each controlled by a
Choice block and Skip command preserving all temporal
constraints.

Proof: Since it is always possible to determine in
advance an upper bound to the maximum number of
iterations of a Loop, a workflow containing a Loop can
be rewritten as a loop-free one. For example, a do-while
cycle subgraph can be replaced by a subgraph containing
iterations copies of the original loop body. In particular,
the first copy is followed by (iterations-1) nested Choice
blocks each one containing two branches with a condition
on the first one equals to the loop condition. The first branch
is populated with a copy of the loop body followed by the
subsequence Choice, while the second branch contains a
Skip command.

If a cycle contains a Spawn block, the described unrolling
phase has also to set up the necessary parallel branches in
order to properly connect the possible relative constraints
between blocks within the cycle and dynamically generated
tasks as exemplified in Fig. 6. In more details, the unrolling
phase creates as many parallel branches as the number of
cycles, each of them as copy of the dotted parallel branch
of the schema and in one-to-one correspondence with a
cycle subgraph. Possible relative constraints depicted in the

b1:B

d:D

a:A

c:C

e:E

B

a:A

c:C

B b2:B

φ�x�

E�0,∞�S

E�0,∞�S

Fig. 6. Unrolling of a loop of two cycles containing a Spawn. This
transformation requires to relax the first property of well-formedness, i.e.,
only one place per component instance, because the instance identifiers a
and c appears multiple times in the same process: one time for each cycle.
Anyway, this relaxation is admissible because they run in sequence and
no concurrent execution of the same instance are possible. The use of the
same task instance is necessary because tasks are stateful; therefore, the
execution of the same instance multiple times in sequence can produce
different effects from the sequential execution of different instances of the
same task.

schema between blocks within a cycle and dynamically gen-
erated blocks are copied in the cycle-free graph considering
each cycle subgraph and the corresponding parallel branch.

Regarding Catch blocks, we observe the following fact.
Fact 1: Each Catch block containing one or more

Throw commands can be viewed as a set of alternative
cases, one corresponding to the execution without any
exception, and the other ones corresponding to each possible
execution of a Throw command.
In general, in a Catch block there can be different Throw
commands in different positions, even in branches associated
to exceptions (nested exceptions). Here, without loss of
generality, we consider only cases where one or more
Throw commands are present into the default branch. For
example, let us consider Fig. 7(a). There are two possible
cases:

1) the first one occurs when no exception is raised, as
depicted in Fig. 7(b).

2) the second one occurs when the exception ξ is raised
and, therefore, tasks G and H are executed just after
the Throw command ξ. It is worth observing that
all activities after Throw command are skipped but,
in order to maintain a right graph structure, only
tasks are removed from the graph while the connector
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Fig. 7. Controllability analysis of a Catch block. In (a) a simple Catch
block is depicted. In (b) the corresponding default branch. In (c) the branch
of the ξ exception.

are maintained with duration [0, 0] as depicted in
Fig. 7(c). If there are parallel branches to the branch
containing the Throw command, such branches are
part of the case, even if it is possible that not all
tasks of these branches are really executed according
to the semantics of exception raising. Such case
containing all parallel branches represents the “worst”
possible execution where all possible constraints must
be considered.

Now, we are ready to introduce the concept of wf-path
that allows the identification of which blocks are performed
during a case.

Definition 1 (wf-path): Given a TNest schema where
each possible Loop block has been replaced according
to Lemma 1, a workflow path (wf-path ), usually denoted by
p, denotes a connected maximal workflow subgraph of the
schema containing the starting node, I , and ending one,

, and such that all Choice connectors have exactly one
branch and each Catch block contains either the default
branch without any Throw command or the default branch
with exactly one Throw command and the corresponding
exception branch as described in Fact 1.

A wf-path p can be also briefly described by a string
containing the task identifiers of the wf-path sorted w.r.t.
their execution order and separated by a dash if the order
is sequential or by a double vertical bar if the order is
parallel, as illustrated in the following example. If there
exists a Throw command, it is explicitly represented by
followed by the exception type and the representation of
the corresponding exception branch.

Example 1 (wf-path): Consider the schema in Fig. 8,
the wf-path A-B-C represents a wf-path where tasks are
executed in the sequential order A, B, C while D-(E——F)
represents a wf-path where task D is executed before
concurrent tasks E and F.
Note that the set WfPTN of all wf-paths of a TNest schema
TN may have an exponential cardinality w.r.t. the number
of Choice blocks present in the schema.

Durations of tasks cannot be decided by a WfMS
executing a schema case but they can only be considered

φ�x�
A B C

E

F

D

Fig. 8. A simple workflow schema to show two alternative wf-paths:
A-B-C and D-(E——F)

to determine the durations of other connectors/delays.
A situation represents one possible combination of task
durations in an execution.

Definition 2 (situation): Let S be a sub schema contain-
ing k tasks, T1, T2, . . . , Tk, with respective duration ranges,
[x1, y1], . . . , [xk, yk]. ΩS = [x1, y1]× . . .× [xk, yk] is called
the space of situations for S and any w = (d1, . . . , dk) ∈
ΩS is called situation. We may write Ω instead of ΩS when
the set of tasks is clear from the context.

The pair (p, ω), where p is a wf-path and ω is a situation
for tasks in p is called wf-path situation:

Definition 3 (wf-path situation): Given a TNest schema
TN , a wf-path situation is any pair (p, ω), where p ∈
WfPTN , and ω ∈ Ωp is a situation defined considering tasks
of p. The set of all wf-path situations (for TN ) is contained
in WfPTN × ΩTN .
In a wf-path situation all task durations are known and,
therefore, it is only necessary to properly select durations of
connectors/delays and the start instant of the case in order
to execute the wf-path .

More generally, the concept of execution is defined by
specifying a schedule function that associates each starting/
ending instant of tasks/connectors with a timestamp value.

Definition 4 (Schedule): Let IS be the set of all starting/
ending instants (also called time-points) of tasks/connectors
of a TNest (sub)schema S. Let T ⊆ IS .

A schedule for a set of time-points T is a mapping
sc : T → N that assigns a natural number to each time-
point in T . The set of all schedules for any subset of T is
denoted by SCT .

Since every WfMS can manage the temporal aspects with
a fixed accuracy (given by MinGranularity), it is possible
consider the set of natural number as codomain of a schedule
function without loss of generality.

A schedule defines the starting/ending instants of tasks
and connectors, while an execution strategy allows the
selection of which schedules can be used given a wf-path
situation of a schema.

Definition 5 (Execution strategy): Let TN be a TNest
schema. An execution strategy st for TN is a mapping
st : (WfPTN×ΩTN )→ SCIT N , such that for each wf-path
situation, (p, ω), returns a schedule for the set of time-points
of the wf-path p observing the durations specified by ω.
st is called viable if for each wf-path situation, (p, ω),

the schedule st(p, ω) satisfies all the temporal constraints in
p when the situation is ω. For any time-point x and wf-path
situation (p, ω), the execution time of x in the schedule
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st(p, ω) is denoted by [st(p, ω)]x.
An example of execution strategy is a function that builds

a schedule assigning as timestamp value of a time-point
the first value that satisfies all constraints involving the
considered time-point (early-execution strategy).

In general, a TNest case can be executed if it admits
an execution strategy, but the general definition cannot be
directly used in real systems because it requires to know in
advance which wf-path situation will be considered before
starting the execution. In real environments, it is required
to use an execution strategy that determines a schedule in
a incremental way, according to the duration of already
executed tasks (partial situations) and the decisions made
in the already executed choice connectors.

In order to formalize properties of such required execution
strategies, we define the following preliminary concepts:

Definition 6 (Situation history): Let TN be a TNest
schema, st be any execution strategy for TN , (p, ω) be
any wf-path situation, and t be any natural number. Then
the history of t in the situation ω, for the strategy st and
wf-path p, denoted by sitHst(t, p, ω, st), is the subset of ω
where:
• sitHst(t, p, ω, st) = {di | di ∈ ω and di is associated

to task Ti and [st(p, ω)]TiE
] < t}, where TiE is the

ending instant of Ti.
Definition 7 (wf-path situation history): Let TN be a

TNest schema, st be an execution strategy for TN , (p, ω)
be some wf-path situation, and t be some natural number.
Then the history of t for the wf-path situation (p, ω) and
execution strategy st, denoted by wfHst(t, p, ω, st), is the
pair (Hp,Hω) where:
• Hp = {x | x is a starting/ending instant of a task/

connector in p and [st(p, ω)]x < t}; and
• Hω = sitHst(t, p, ω, st).

In other words, wf-path situation history wfHst(t, p, ω, st)
specifies the set of durations of already executed task at
instant t and the set of all starting/ending instants of all
tasks/connectors already executed at time t. The information
of the first set could be derived from the second set, but
we consider it explicitly for sake of readability.

Let I−p ⊆ Ip be the subset of all starting/ending time-
points of connectors and all starting time-points of tasks of
a TNest wf-path p. I−p contains the time-points that are not
contingent and, therefore, can be assigned by a schedule
according to an execution strategy. Now, considering the
two concepts of history, it is possible to impose different
restrictions on possible execution strategies for a schema,
obtaining the following two interesting strategies:

Definition 8 (Dynamic Execution Strategy): A viable ex-
ecution strategy st for TN is called dynamic if, given a
wf-path p, for any pair of situations, ω1 ∈ Ωp and ω2 ∈ Ωp,
and any time-point x ∈ I−p , it holds: if [st(p, ω1)]x =
k and wfHst(k, p, ω1, st) = wfHst(k, p, ω2, st), then
[st(p, ω2)]x = k.

In other words, if the execution strategy st in the situation
ω1 assigns the value k to the executable time-point x, then
st must also assign k to x for any other situation ω2 whose

wf-path situation history relative to k matches that of ω1

on the same wf-path p.
Definition 9 (Fully Dynamic Execution Strategy): A vi-

able execution strategy st for TN is called fully dynamic if
for every pair of wf-paths p1, p2, for every pair of situations,
ω1 ∈ Ωp1 and ω2 ∈ Ωp2 , and for any time-point x ∈ I−p1 ∩
I−p2 it holds: if [st(p1, ω1)]x = k and wfHst(k, p1, ω1, st) =
wfHst(k, p2, ω2, st), then [st(p2, ω2)]x = k.

In other words, if the execution strategy st in the situation
ω1 assigns the value k to the executable time-point x, then
st must also assign k to x for any other wf-path p2 and
situation ω2 whose wf-path situation history relative to k
matches that of ω1 on the wf-path p1.

B. Controllability of a TNest Schema

Considering the two kinds of execution strategies in-
troduced in the previous section, it is useful to classify
workflow schemata with respect to the possible execution
strategies they admit.

Definition 10 (Weak Controllability): A TNest schema
is called weakly controllable (WeC) if it admits a viable
dynamic execution strategy for each wf-path ; i.e., if it
is possible to perform a wf-path satisfying all relative
constraints using allowed delays and allowed connector
durations once the wf-path is known.

The requirement of knowing in advance which wf-path
will be followed is a quasi-impossible condition to satisfy
in real applications. Therefore, it is useful to consider more
powerful execution strategies that could determine schedules
given only the knowledge of the already executed activities.

Definition 11: History−Dependent Controllability A
TNest schema is called history-dependently controllable
(HDC) if it admits a fully dynamic execution strategy st; i.e.,
if it possible to perform any wf-path satisfying all relative
constraints using allowed delays and allowed connector
durations knowing only the durations of connectors/tasks
already executed.
In this case the duration range of a connector/edge could
depend on the executed tasks (i.e., the history), but does not
prevent the WfMS to execute any possible future activity.
According to such dependency, a given connector/edge
may have different and disjoint duration ranges, each one
corresponding to a different history2.

In general, we will say that a TNest schema is controllable
if it is History−Dependently Controllable .

VI. CHECKING THE CONTROLLABILITY OF A TNest
SCHEMA

In this section we first discuss how to check the controlla-
bility of a schema showing how to map a single wf-path to a
Simple Temporal Network with Uncertainty (STNU) and how
to exploit the well known results about STNU controllability.
Then, we show how to check the controllability in general
schemata by providing a new checking algorithm.

2As a subcase of HDC, in [30] we defined a schema as
Strongly Controllable if it is HDC and each connector/edge has only
one duration range for all possible histories.
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Let us now start recalling the basic concepts and results
about STNUs.

A. STNU: definition and main properties

Following [11], a Simple Temporal Network with Uncer-
tainty (STNU) is a set of time-point variables (hereinafter,
time-points) together with temporal ordinary constraints
and contingent links. Each ordinary constraint has the form
Y −X ≤ δ, where X and Y are time-points and δ is a real
number. Each contingent link has the form, (A, u, v, C),
where A and C are time-points and 0 < u < v <∞. A is
called the activation time-point; C is the contingent time-
point. Once A is executed, C is guaranteed to execute such
that C −A ∈ [u, v]. However, the particular time at which
C executes is uncontrollable. Instead, it is only observed
as it happens.

More formally, let S = (T , C,L) be an STNU , where T
is a set of time-points, C is a set of constraints, and L is
a set of contingent links. The graph associated with S has
the form, (T , E , E`, Eu), where each time-point in T serves
as a node in the graph; E is a set of ordinary edges; E` is
a set of lower-case edges; and Eu is a set of upper-case
edges [18]:

• Each ordinary edge has the form, X δ Y , representing
the constraint Y −X ≤ δ.

• Each lower-case edge has the form, A c : u C, repre-
senting the possibility that the contingent duration of
link (A, u, v, C) might take on its minimum value, u.

• Each upper-case edge, C C :−v
A, represents the pos-

sibility that the contingent duration of link (A, u, v, C)
might take on its maximum value, v.

In [11], authors formally defined a STNU being dynam-
ically controllable, if there exists a strategy for executing
the time-points in the network that guarantees that all of the
constraints will be satisfied no matter how the contingent
durations turn out. Crucially, the durations of contingent
links are observed in real-time, as they complete; execution
decisions can only depend on past observations.

In [18], authors presented a polynomial-time algorithm—
called a MM5 DC-algorithm—for determining whether any
given STNU is dynamically controllable (DC). The MM5
DC-algorithm works by recursively generating new edges
in the STNU graph using the rules shown in Table I. For
each rule, pre-existing edges are denoted by solid arrows
and newly generated edges are denoted by dashed arrows.
Note that each of the first four rules takes two pre-existing
edges as input and generates a single edge as its output.
In contrast, the Label-Removal rule takes two pre-existing
edges as input and replace the upper-case edge with an
ordinary one. Finally, applicability conditions of the form,
R 6≡ S, should be construed as stipulating that R and S
must be distinct time-point variables, not as constraints on
the values of those variables.

Note that the edge-generation rules only generate new
ordinary or upper-case edges. Unlike the upper-case edges in
the original graph, the upper-case edges generated by these
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TABLE I
EDGE-GENERATION RULES FOR THE MM5 ALGORITHM. FOR EACH

RULE, THE EDGE GENERATED BY THE RULE IS DASHED.

Function MM5-DC-Check(G)
Input: G: STNU instance.
Output: the controllability of G.
for 1 to Cutoff Bound do

if (AllMax matrix inconsistent) then return false ;
generate new edges using rules from Table I;
if (no edges generated) then return true ;

return false

Fig. 9. Pseudocode for the MM5 DC-algorithm. The algorithm
returns all minimal bounds of the edges when G is consistent.

rules represent conditional constraints, called waits [11].

In particular, an upper-case edge, Y C :−w
A, represents

a constraint that as long as the contingent time-point, C,
remains unexecuted, then the time-point, Y , must wait at
least w units after the execution of A, the activation time-
point for C.

Fig. 9 depicts the pseudocode for the MM5 DC-algorithm.
The algorithm performs at most n2 + nk + k = O(n2)
iterations, which is the number of distinct kinds of edges in
a graph having n time-points and k contingent links. In each
iteration, the algorithm first computes the AllMax matrix—
which is the distance matrix for the Simple Temporal
Network (STN) [31] formed by all of the original and
generated, ordinary and upper-case edges (without their
alphabetic labels)—and checks that there is no negative
cycles in it3 and then applies the rules from Table I to
all relevant combinations of edges of the STNU from the
previous iteration. If no new edges are generated in any given
iteration and there is no negative cycle at all, the algorithm

3Morris et al. based their approach on the well known algorithm for
STN consistency, introduced in [31].
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reports that the network is dynamically controllable. If the
algorithm continues generating new, stronger edges after
the cutoff bound n2 + nk + k, then the network cannot be
DC. Since each iteration can be done in O(n3) time, the
overall complexity of the MM5 algorithm is O(n5).

B. Mapping TNest to STNU
In this section we show that it is possible to map any

TNest wf-path into an equivalent STNU such that the wf-
path admits a Dynamic Execution Strategy if and only if
the corresponding STNU is DC. The proof is a constructive
one and consists of mapping each TNest construct into a
corresponding STNU fragment.

Theorem 1: Given a TNest wf-path p, there exists a
STNU sp such that p admits a Dynamic Execution Strategy
if and only if sp is DC.

Proof: First of all, we propose the mapping of tasks,
edges, basic connectors and TNest temporal constraints.
Then, we discuss how to deal with the case of a Receive
with multiple input streams, that results to be the only
connector which requires a particular analysis of one of its
possible configurations.

Table II depicts the mapping of TNest task, edge, basic
connectors and temporal constraints to the associated STNU
fragments.
– Task. Given a TNest wf-path , each task node T is
converted to two STNU nodes, TS and TE , representing its
start and end instants. The duration attribute of T , [u, v], is
converted to the contingent link (TS , u, v, TE).
– Edge. An edge from task/connector A to task/connector
B with delay [c, d] is converted to two constraints between
nodes AE and BS : BS −AE ≤ d and AE −BS ≤ −c.
– Choice connector. For both start and end Choice
connectors the translation is the same. A Choice C with
duration attribute [u, v] is converted to two nodes CS and
CE and two constraints between such nodes: CS −CE ≤ v
and CE − CS ≤ −u.
– Par connector. The translation of a start Par connector
is similar to that of Choice connectors. The translation
of a Par end connector is more subtle. Without loss of
generality, in the following, we will consider the case of
a Par end connector with two incoming parallel flows.
The execution of this connector requires to wait for all
incoming flows and, after the last incoming flow occurs,
to wait for a time according to the connector range before
following the outgoing edge. The key aspect of the connector
is that the incoming flows can arrive at different instants,
each observing the delay specified in the incoming edge.
Therefore, a Par end connector P is represented by two
nodes, PS and PE and a pair of buffer nodes, w1 and w2;
each incoming flow is connected to a buffer node and such
node to PS by an edge representing a maximum delay that
it could be necessary to wait until the other flow incomes.
The constraint between w1 and PS waits for the execution
of the other buffer node for a maximum time t1 determined
at design time by the controllability-check algorithm (see
below). In particular, during the setup of the controllability-
check algorithm, the range of the constraint between w1 and

Type TNest component STNU fragment

Task: A
[u, v]

AS AE

ae : u

AE : −v

Edge: [c, d]
d

−c

Choice: ?1
[u, v]

?1S ?1E

v

−u

Par end: [x, y]

S

E

y−x

w1 w2

t1

0 0

t2

Relative
constraint:

A

B
E[c, d]S

AE

BS

d−c

Send-
Receive:

s:S
[0, 0]

r:R
[x, y]

[u, v]

S[p, q]E

s b rS

rE

v

−u
y−x−

1

q

−p

Spawn: IB b1:B
[x, y]E[0,∞]S

IB b1S

b1E

b1:xB1:−y
0

Throw: ξ
b1:B
[x, y]E[0, 0]S

ξ b1S

b1E

b1:xB1:−y

0

0

Catch start/
end:

TABLE II
MAPPING OF TNest TASK, EDGE, BASIC CONNECTORS AND TEMPORAL
CONSTRAINTS TO THE ASSOCIATED STNU FRAGMENTS. IN A STNU , IF

A CONSTRAINT a− b ≤ d HAS |d| =∞, THEN THE EDGE
REPRESENTING THE CONSTRAINT CAN BE REMOVED.
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PS is set to ∞ and the constraint between PS and w1 to
0. Thus, the controllability-check algorithm determines the
minimum sufficient value t1 to allow the synchronization
with the other flow in the worst case execution. In the similar
way, the upper-bound value t2 is determined. In this way,
if node w1 is executed before w2, the execution waits for
the occurrence of w2 before executing PS as required by
the semantics of Par end connector. It is simple to show
that if there are more incoming flows in the original Par
end connector, it is possible to translate it using a sequence
of pairs of wait nodes properly connected before PS .
– Relative constraints. A relative constraint 〈IF〉[c, d]〈IS〉
between F and S is converted to two constraints between
nodes representing the the time points associated to the
instants IF and IS : IS − IF ≤ d and IF − IS ≤ −c.
– Send-receive pattern. In this pattern, the temporal range
[u, v] is the delivery time of a message, while S[p, q]E
the validity of a message. In general, at run time a Send
command can generate messages without any synchroniza-
tion with the corresponding Receive command(s). If one
or more messages arrive to a not yet activated Receive,
they have to be buffered until the command will trigger
on and consume them. To properly represent the delivery
constraint in the corresponding STNU , we have to introduce
a buffer node to represent the temporal aspect of the possible
buffering action. In more detail, Send is represented as a
single node, since it is a non-blocking activity with a fixed
execution time, Receive as a pair of nodes, rS and rE ,
linked by two STNU constraints representing the duration
constraint, and the original delivery constraint as a pair
of STNU constraints between the send node and a new
buffer node b representing the buffer stage. The buffer node
is then connected to rE by constraint b − rE ≤ −1 to
represent the fact the rE occurs after b. In this way, when a
message is sent, b can be activated according to the delivery
constraint [u, v]. The precedence constraint between b and
rE allows the activation of rE , after the execution of b,
only considering the Receive duration constraint [x, y] as
expected. If there is a validity constraint in the pattern (i.e.,
a temporal constraint between Send and Receive), then
it is translated according to its label.
– Spawn pattern. In this pattern, the relative constraint
E[0,∞]S guarantees that the Spawn command precedes
the start of the execution of the associated task. To properly
represent the pattern in the corresponding STNU , it is
sufficient to set a constraint between the node representing
the start of the task and the node representing the Spawn
command with value 0. The Spawn command is a non-
blocking one and, therefore, one STNU node is enough.
– Throw pattern. In this pattern, the relative constraint
E[0, 0]S guarantees that the Throw command immediately
precedes the start of the execution of the first task in
the exception branch. To properly represent the pattern
in the corresponding STNU , it is sufficient to set a pair of
constraints between the node representing the start of the
first task and the node representing the Throw command
with the same value 0.

b1 rS

rEb2

y −x

−
1

−1

(a)

b1 rS

rEb2

y −x

−
1

0

(b)

b1 rS

rEb2

y −x

−1

0

(c)

Fig. 10. (a) A STNU translation of a Receive block with two input
streams. (b) a modified STNU to determine the relative temporal order
between b1 and b2. (c) STNU where b1 occurs before b2. (d) STNU
where b2 occurs before b1.

– Catch connector. Any Catch connector corresponds to
a STNU node without any further feature since it is a
non-blocking node.

To complete the mapping of all TNest blocks, it is
necessary now to consider the multiple Receive pattern,
where a Receive command has two or more input streams
(cf. Fig. 2(c)). Without loss of generality, in the following,
we will consider the case of a Receive command with
two incoming streams. The behavior of the command with
two incoming streams can be described as the behavior of
a Receive in which the input streams are merged into
one: the first incoming message triggers the Receive. In
other words, it is sufficient that only one Send sends a
message to trigger (after a suitable time) the Receive. The
previously described translation of a Receive command
with one input stream to the corresponding STNU can be
still considered but with an adjustment. For example, let
us consider the STNU depicted in Fig. 10(a) where there
are two buffer nodes b1 and b2 and two nodes rS and
rE representing the core of the translation of a Receive
block with two input channels obtained following the method
previously described. In order to represent the right behavior,
it is necessary to consider two different cases:

1) b1 occurs before (or at the same instant of) b2. In
this case, STNU must have the constraint between
b2 and b1 representing the precedence of b1 w.r.t. b2
and must not have the constraint between rE and b2
because b2 can occur even after rE . The final STNU
is depicted in Fig. 10(b).

2) b2 occurs before (or at the same instant of) b1. It is
the similar configuration of the previous one with b2
for b1 and vice versa as depicted in Fig. 10(c).

Therefore, the mapping Fig. 10(a) has to be replaced by
Fig. 10(b) and Fig. 10(c) in two different wf-paths .

Given a TNest wf-path p, applying the above showed
mappings to the blocks of p and to the possible relative
constraints, it is simple to verify that the obtained STNU
represents all precedence and temporal constraints but not
data flows of the original p.

As formalized in [20], a STNU N is said to be dynam-
ically controllable (DC) if there exists a viable dynamic
execution strategy, S : Ω → T , from situations (TNest
situations applied to STNU ) to schedules such that for any
situations, ω′, ω′′ ∈ Ω, and executable time-point x ∈ N
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it holds that if [S(ω′)]x = k and [S(ω′)]<k = [S(ω′′)]<k,
then [S(ω′′)]x = k, where [S(ω′)]<k is the pre-history
relative to k, i.e., it specifies the durations of all contingent
links that execute before x according to the schedule S(ω′).
In other words, if the viable strategy S in the situation ω′

assigns the value k to the executable time-point x, then S
must also assign k to x for any other situation ω′′ whose
pre-history relative to k matches that of ω′.

Considering the definition of Dynamic Execution Strategy
for a TNest wf-path (cf. Definition 8), it is simple to
verify that a TNest viable dynamic execution strategy can
be easily mapped to a STNU viable dynamic execution
strategy for the corresponding STNU according to the
structural mappings presented above. If the TNest wf-path
has multiple Receive patterns, then there exist several
corresponding STNUs: in this case the TNest viable dynamic
execution strategy is mapped in a STNUs viable dynamic
execution strategy for at least one of the corresponding
STNUs because the set of STNUs represent all possible
cases that are possible with multiple Receive patterns of
the original TNest wf-path .

Vice versa, given a STNU corresponding to a TNest
wf-path built using the previous mappings, if such STNU
admits a viable dynamic execution strategy, then it is simple
to define a TNest viable dynamic execution strategy as there
is a straight correspondence between temporal constraints
of STNU and the corresponding ones in TNest wf-path
induced by construction. If there exist two o more STNUs
associated to a TNest wf-path (this occurs only if wf-path
contains one or more multiple Receive patterns), then it
is sufficient that one of STNUs admits a viable dynamic
execution strategy in order to determine the viable dynamic
execution strategy for the TNest wf-path , since it means
that at least one relative order among input streams of
any multiple Receive pattern admits a dynamic execution
strategy.

Since the proposed mappings transform each block but
multiple Receive pattern into a corresponding STNU
fragment of the same order of size, the execution of the
transformation of a wf-path can be done in a O(n) time,
where n is the number of TNest nodes. Then, considering
that a STNU DC can be checked in time O(n5) by the MM5
DC-algorithm (cf. Fig. 9), where n is the number of nodes,
the overall process to determine a viable dynamic execution
strategy, if any, of a TNest wf-path can be performed in
O(n5) time.

C. A Controllability-Check Algorithm
Regarding the determination of a controllability-check

algorithm, in [29] a simple exponential-time algorithm,
controllabilityCheck(G), has been proposed: it determines
whether a given workflow schema G is controllable, its kind
of controllability, and duration ranges for connectors/edges
(duration ranges of tasks must be leaved unchanged).

Here we propose an optimization of such algorithm that
exploits the mapping to STNUs. In order to simplify the
description of the algorithm, hereinafter we assume that
TNest schemata have no multiple Receive patterns.

Function controllabilityCheck(G)
Input: G: workflow graph to analyze.
Output: the controllability of G and a possibly new set of

ranges for activities/delays.
Unroll all possible Loop blocks in G;
WfP = all wf-paths of G according also to Fact 1;
/* Initial wf-paths controllability check */
foreach (wf-path p ∈ WfP) do

R = ranges in p;
(status, R) =pathControllabilityCheck(p,R);
if (status == ‘Non Controllable Path’) then

return (‘Non Controllable Wf’, ∅)

/* All wf-paths are controllable, determine if it is HDC */
?ConnectorSet =
{x | x is the last Choice end connector in a wf-path};
localStatus = ‘’;
foreach (x ∈ ?ConnectorSet) do

(localStatus, R) =controllabilityCheck(G, x);
if (localStatus == ‘Prefixes with controllable ranges’)
then

status = ‘History-Dependently Controllable Wf’;
break;

if (status!= ‘History-Dependently Controllable Wf’) then
(status, R) = (’Weakly Controllable Wf’, ∅);

return (status, R);

Fig. 11. Algorithm to check the controllability of a workflow graph

Let us call prefix of an activity/edge y the set of all
wf-paths that have the same path from the starting node,
I , to y. The prefix of y is useful to consider all possible

wf-paths that can be followed after the execution of y.
Fig. 11 shows the pseudo-code of the proposed algorithm:

the algorithm verifies that each single wf-path is controllable
in isolation and then verifies whether the workflow schema
is history-dependently controllable: it considers the (possibly
several) last Choice end connectors of the workflow
schema. Choice end connectors are considered as they
are responsible of varying the number of wf-paths of the
schema. Starting from last Choice end connectors, the
algorithm can verify that for each connector/edge of each
prefix there is a suitable range not preventing any possible
future execution path in a simpler way than starting from the
first Choice end connector. This range could be different
according to the considered prefix and ranges related to
different prefixes could even be disjoint. To do this check,
controllabilityCheck(G) uses controllabilityCheck(G, root).
If the check of each wf-path in isolation is negative, the
workflow is not controllable. If the check starting from
Choice end connectors is negative, then the schema is
weakly controllable. Otherwise, it is history-dependently
controllable.

The algorithm controllabilityCheck(G, root), shown
in Fig. 12, firstly determines the prefixes of given activity
root . For each prefix of root , it verifies whether the prefix
admits controllable ranges: a prefix has controllable ranges
if every connector/edge in the prefix has a unique duration
range common to all wf-paths of the prefix itself. If all
prefixes admit controllable ranges, then it means that root
may have a temporal range for each of its prefixes but all
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Function controllabilityCheck(G, root)
Input: G: a workflow graph; root : activity from which to

start the analysis
Output: the status of prefix(es) of root and, if prefix(es)

admits one, a new set of ranges for activities and
delays

P = set of all prefixes of root;
/* Rp is the array of ranges of activities/edges present in

prefix p */
foreach prefix ∈ P do /* Initialize all Rprefix */

Build Rprefix considering original temporal ranges in G;

do
foreach {prefix | Rprefix 6= null} do

R′
prefix = Rprefix ; /* Save last found solution */

foreach {prefix ∈ P} do
/* Check if the prefix has controllable ranges. */
(status, Rprefix ) =
buildControllableRanges(prefix , Rprefix );
if (status 6= ’Controllable Ranges Found’) then

/* It is necessary to evaluate another root */
return (’One prefix has not controllable ranges’,
∅);

foreach {a | a is a connector/edge ∧ a precedes root}
do

/* Determine the controllability range for a among
prefixes */

P ′ = {p′ | p′ is prefix of a};
foreach prefix ′ ∈ P ′ do

Rprefix ′ [a] =
⋂

all a ranges in wf-paths ∈
prefix ′;
if (Rprefix ′ [a] == ∅) then

return (’One prefix has not controllable
ranges’, ∅);

foreach {prefix ′′ | prefix ′ � prefix ′′} do
/* Propagate the new range to all prefixes

greater than prefix’ */
Rprefix ′′ [a] = Rprefix ′ [a];

while (∃ prefix of activity/edge b | Rprefix [b] 6= R′
prefix [b]);

return (’Prefixes with controllable ranges’, ∪prefixRprefix );

Fig. 12. Algorithm to check the controllability of a prefix

flows starting from it are possible and controllable. In order
to state that the schema is history-dependently controllable, it
is necessary to guarantee that each connector/edge preceding
root has the same property: in other words, the algorithm
has to verify whether for each of connectors/edges preceding
root it is possible to derive a common duration range for
each of their prefixes.

The derivation of these duration ranges may require to
execute several times buildControllableRanges(prefix , Rp)
(depicted in Fig. 13) until a fixed-point is reached: indeed,
the change of a duration range for a connector/edge may
produce other range changes for wf-paths containing the
considered connector/edge.

These changes, in their turn, require that the controllability
of modified wf-paths has to be checked again (through
pathControllabilityCheck(p,R) depicted in Fig. 14) and
it may induce further changes in the duration ranges of
connectors/edges.

In the worst case, the time complexity of
controllabilityCheck(G) can be shown to be

Function buildControllableRanges(S,R)
Input: S: set of wf-paths; R: collection of connector/edge

temporal ranges
Output: the status and a new set of temporal ranges for

connectors/edges
do

R′ = R;
foreach connector c present into any wf-paths do

c range =
⋂

of c ranges present into wf-paths;

foreach edge d present into any wf-paths do
d range =

⋂
of d ranges present into wf-paths;

R = collection of these new ranges;
foreach wf-path p ∈ S do

(status, R) = pathControllabilityCheck(p, R);
if (status == ’Non Controllable Path’) then

return (’Non Controllable Path Found’, ∅)

if (at least one range in R is empty) then
return (’Empty Range Found’, ∅)

while (at least one range in R has changed w.r.t. R′);
return (’Controllable Ranges Found’, R)

Fig. 13. Algorithm to check the controllability of a set of wf-paths

Function pathControllabilityCheck(p, R)
Input: p: wf-path , R: set of connector/edge temporal ranges
Output: the controllability status and, possibly, the new set

of temporal ranges for connectors and delays
sp = STNU associated to p (cf. Theorem 1);
MM5-DC-Check(sp);
if (sp is not consistent) then

return (’Non Controllable Path’, ∅)
else

/* Determine the new temporal ranges in p from the
dynamic ex. st. of sp */

R = determine new ranges of p from sp;
return (’Controllable Path’, R)

Fig. 14. Algorithm to check the controllability of a wf-path

O(|WfP|2 n5 MaxRange2), where n is the number
of nodes after the unrolling of all possible Loop blocks and
MaxRange is the maximum integer value present among
the temporal durations/delays. It holds that |WfP| ≤ kc,
where k is the maximum arity of Choice blocks and c is
their number.

D. The Complexity of Controllabilities

In the previous section, we introduced the two possible
kinds of controllability of a workflow schema. In this
section we investigate on the computational complexity
of the controllability problem. First of all, we observe that
HDC⇒WeC.

1) Weak Controllability: There is no possibility other
than checking the controllability of each possible wf-path
of a workflow schema separately to state if the schema
is weakly controllable. The proof is given as corollary
of the following theorem about coWeak Controllability
(coWeC), the complementary problem asking whether a
schema contains at least one not controllable wf-path .

Theorem 2: coWeC is NP-complete.
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Proof: It is sufficient to show the two following
properties: i) coWeC is in NPand ii) a NP-complete problem
is polynomial-time reducible to it.
i) coWeC ∈ NP: as previously discussed, it is possible to
check the controllability of a wf-path in polynomial time
using the function pathControllabilityCheck() (cf. Fig. 14).
Hence, given a workflow schema and one of its wf-paths
as certificate it is possible to verify in polynomial time if
the wf-path is not controllable and, therefore, to state that
coWeC ∈ NP.
ii) SUBSETSUM ≺m coWeC: given a set of integers I
and an integer s, the SUBSETSUM problem requires to
verify if a non-empty subset I ′ ⊆ I exists such that the
sum of its elements is equal to s. SUBSETSUM is NP-
complete [32].
To show a polynomial-time many-to-one reduction ≺m
between SUBSETSUM and coWeC, it is sufficient to set up
a polynomial-time function f between the set of instances of
SUBSETSUM and the set of instances of coWeC such that
each instance x is a positive instance of SUBSETSUM if
and only if f(x) is a positive instance of coWeC [32]. One
possible ≺m between SUBSETSUM and coWeC is the
following. Given the set I = i1, i2, . . . , in and the integer s,
set up a schema with n sequential Choice blocks, each of
them associated to an element of I , as depicted in Fig. 15.

Each Choice blocks is made by a choice split connector,
a task on true branch and the choice end connector.
Considering the jth Choice block, the task on the true
branch adds the associated element ij to a global variable
S spending ij time units exactly. Each choice connector
choices which branch to follow randomly. After the last
Choice block, there is another Choice block where
the equality between the global variable S and the input
parameter s is tested. If the S value is equal to s+ 5n, the
task ts is executed, otherwise nothing occurs. ts is useful
only as milestone to set up the relative constraint with
range [0, s − 1 + 5n] from the beginning of the schema.
The value 5n is the minimum time required to execute
all n Choice blocks. If the instance of SUBSETSUM
is positive, then any wf-path executing ts (surely, at least
one exists) is not controllable because the time required to
calculate S is s + 5n and the relative constraint requires
to start ts within (s − 1) time units after the start of the
process. On the opposite direction, given an instance of the
schema, if one wf-path is not controllable, then it contains
the true branch of the last Conditional split. Hence, the
corresponding SUBSETSUM instance is positive.

It is simple to verify that the construction of the workflow
schema can be done in linear order time with respect to the
size of the SUBSETSUM instance.
Therefore, even the determination of the WeC of a schema
considering only the wf-paths that are really executed
requires to check the controllability of all wf-paths in the
worst case.

Corollary 1: WeC problem is coNP-complete.
2) History-Dependent Controllability: The

History−Dependent Controllability definition requires to
determine if it possible to perform a wf-path satisfying

all relative constraints using allowed delays and allowed
connector durations knowing only the durations of
connectors/tasks already executed.

HDC problem cannot be in coNPclass
because, otherwise, it would mean that
coHistory−Dependent Controllability (coHDC) ∈ NP
and this is impossible (unless NP = coNP) since coHDC
could require to solve WeC, already shown to be
coNP-complete.

In order to assign HDC to a complexity class, let
us consider the computational class ΣP

2 = NPNP. It
can be described as the class of languages L such that
L = {x | ∃y1∀y2 such that (x,y1,y2) ∈ R}, where
R is a polynomially balanced, polynomial-time decidable
relation and x,y1,y2 are strings. A relation R ⊆ (Σ∗)3

is polynomially balanced if, whenever (x,y1,y2) ∈ R, it
holds that |y1|, |y2| ≤ |x|k for some k [33].

Examining the definition of fully dynamic execution
strategy, it is possible to build a ΣP

2 language L setting
the x,y1,y2, and R components as follow:
• x is the string representing a workflow schema TN ;
• y1 is the string representing a certificate of an execution

strategy st : (WfPTN × ΩTN )→ SCIT N ;
• y2 is the string built concatenating the representation

of wf-paths p1, p2;
• R is the relation containing triples

(x,y1,y2) that satisfies the constraint
∃st,∀ω1,∀ω2,∀t wfHst([st(p1, ω1)]t, p1, ω1, st) =
wfHst([st(p2, ω2)]t, p2, ω2, st) ⇒ [st(p1, ω1)]t =
[st(p2, ω2)]t. The relation R is a simple extension of
the relation verified by the pathControllabilityCheck
algorithm, In particular, pathControllabilityCheck
decides (in polynomial time) the relation R′(p) defined
as ∃st′,∀ω1,∀ω2,∀t sitHst([st′(p, ω1)]t, p, ω1, st

′) =
sitHst([st′(p, ω2)]t, p, ω2, st

′) ⇒ [st′(p, ω1)]t =
[st′(p, ω2)]t. As in section V-A, a wfHst(t, p, ω, st)
is a sitHst(t, p, ω, st) enriched with the set of
starting/ending instants for tasks/connectors already
executed with respect to time t.

From the above definitions, it is possible to verify
that x,y1,y2, and R satisfy the conditions to make L
a language in ΣP

2 and that L is the language of HDC
workflows provided that the execution strategy st′ verified
by pathControllabilityCheck is always the same general
defined strategy st required by the definition.

Therefore, HDC ∈ ΣP2 . To our knowledge, HDC seems
not to be ΣP

2 -complete. So far, we know that HDC is coNP-
hard since HDC⇒WeC and WeC has been shown to be
coNP-complete.

VII. MODELING STEMI GUIDELINES

The TNest schema in Fig. 16 summarizes the main process
for the diagnosis and treatment of a myocardial infarction
(STEMI ) described in [7]. After an initial evaluation of the
patient conditions and the available exam results, a first
diagnosis is formulated and some operative choices are
taken by clinicians. These operative choices may regard the
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Fig. 15. The workflow schema corresponding to an instance of SUBSETSUM.
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Fig. 16. The main process for the diagnosis and treatment of STEMI .
Label ‘SM’ stands for “Secondary Management”, ‘ER’ stands for “Exam
Request”, ‘DR’ stands for “Drug Therapy”.

request for other analysis, the execution of some treatments
and the administration of suitable drugs. Several instances
of such activities can be activated in parallel through the
Spawn commands contained in the inner Loop block. Task
Monitoring deals with all activities performed in a stable
way for continuously checking the patient conditions during
her hospital stay. This task periodically sends information
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Fig. 17. Details of the process Treatment of Fig. 16.

about the patient vital signs to the operative activities
that are executing. Temporal constraints are defined on
messages and they specify that patient vital signs have to
be communicated within 10 minutes. In case a generic
complication happens, an exception is thrown and all the
running activities are interrupted, in order to immediately
start a new complete patient evaluation and define a new
diagnosis. Anyway, if the complication regards an acute
rupture of the intraventricular septum (VSR), a different
exception is thrown which is handled by the outer Catch
block by performing an urgent cardiac surgical repair,
without any need to further evaluation or diagnosis. The
main process terminates when a “secondary management”
operative choice is taken.

Process Treatment is further specified in Fig. 17: it
consists of the main therapeutic actions for the treatment
of STEMI . Three main options are possible: the first
one, labeled “PCI”, is related to percutaneous coronary
intervention, the second one, labeled “Surgery”, is related to
coronary artery bypass grafting (CABG ) surgery interven-
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tion, and the last one, labeled “fibrinolysis”, is related to the
administration of fibrinolytic drugs. As you can notice, some
temporal constraints have been defined from tasks contained
in the main process to tasks in this inner one, and vice versa.
In this way, we can represent the main temporal constraints
in the STEMI guidelines requiring that from the the start
of Prehospital issues, Fibrinolysis therapy has to start
within 30 minutes, Surgery intervention has to start within
18 hours, and PCI related activities have to start within 90
minutes. For sake of readability, tasks from the main process
are represented in Fig. 17 within a dashed-line rounded box.
During the therapeutic actions, suitable messages from task
Monitoring may activate different tasks for the management
of complications, such as hemodynamic problem, arrythmia,
RV infarction, and so on. In Fig. 17, tasks managing
such complications are named after the complication name.
Many different instances of the Treatment process can be
concurrently activated by the loop inside the Concur block
in Fig. 16. Therefore, several treatments can be performed
in parallel on the patient. Some temporal constraints are
specified between treatments activated by different Spawn
commands inside subsequent loop iterations.

Process Drug Therapy is further specified in Fig. 18: it
consists of the main drug administrations for the treatment
of STEMI . Different drugs are administered concurrently
and several times. The Send blocks S at the end of each
drug administration may raise an exception that stops all the
other possibly drug administrations in case of emergency
without to take any further actions (void exception branch).

VIII. TNest AND PROCESS AWARE CLINICAL
INFORMATION SYSTEMS

This section briefly describes the role of TNest in a
modern WfMS architecture as well as in the wider setting

of process-aware clinical information systems. A WfMS
usually provides a multi-user client-server architecture
consisting in four main software components: a workflow
designer, an engine, a graphical user interface (GUI)
and an administration GUI, as depicted in Fig. 19. The
workflow designer is a client application used to produce
a graphical representation of a workflow schema enhanced
with auxiliary textual data. Such schema can be translated
into an executable specification in a given standard language
for a particular run-time system. According to the given
environment, the translation can be fully automated or may
need several human interventions. In turn, this specification
can be interpreted by a software system, usually called
engine, running on a server. During the workflow execution,
the engine can access to additional data needed at run-time
(e.g., user roles and user availability for a particular task),
and to existing software components exposed as services.
The engine is able to run several workflow instances at
the same time corresponding to different schemata and
versions. The execution of all these instances can be
managed through a GUI provided by the engine. Moreover, a
specific user interface is associated to each process instance
for communicating with end-users. An initial GUI can be
automatically generated by the engine starting from the
schema, and subsequently customized by developers in order
to make it more user-friendly.

TNest is a core formal modeling language that may be
used to build a real interpreter which can become the central
component of the described WfMS architecture. Anyway,
TNest can also be integrated into an existing system by
offering a workflow designer and a translation procedure.
The designer should support at least the graphical modeling,
validation and simulation of workflow schemata. These
features are sufficient to make the language of practical use,
for instance during the modeling of medical pathways, since
it allows one to formalize complex procedures, share them
between different organizations, simulate and check their
feasibility, even with respect to temporal constraints.

A further integration step can consist in the realization of
a software module for the translation of TNest schemata into
an existing and standard workflow language, such as BPEL,
to take advantage of available technologies. However, a fully
automatic translation procedure may be hard to obtain due
to the limitations of existing languages and WfMSs; for
instance, they usually provides a limited support for temporal
constraints. Therefore, besides to provide a complete TNest
interpreter, another viable solution can be the extension of
the internal interpreter of an existing WfMS engine with
the specific constructs of TNest.

As for the integration of a WfMS based on TNest
modeling language in a wider architecture considering an
health information system, we may point out two different
approaches. In the first approach we may consider the
TNest- based WfMS as the core of a process-oriented
healthcare information system, where all those clinical
processes/pathways requiring a careful management of
temporal constraints are represented and managed through
the WfMS . Integration between data and processes is
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facilitated by the WfMS that allows different clinical tasks
to synchronize (even through data flows) and suitably share
clinical data. In the second approach the overall process-
aware health information system may benefit of the special
features of TNest language: in this case we could think
to a TNest- based software tool able to check temporal
properties of health workflow/process schemata, which are
then managed and executed by, for example, the BPEL
engine of the health information system. Without loss of
generality, we may assume that both these approaches
can be realized within a Service Oriented Architecture
(SOA), where applications are viewed as software services,
described through the WSDL language, able to exchange
data between them and to cooperate in a loosely coupled
way [34]; indeed, most health information systems provide
a large number of SOA services [35], [36] and several
SOA-based integrated healthcare systems have been recently
proposed [3], [37], [38].

Finally, a further use of a TNest-based graphical design
tool may a stand-alone one, where physicians can simulate
and check different versions and refinements of a clinical
pathway, focusing on data-related and critical time features,
before entering a clinical pathway in the daily routine. it
is worth noting that such use is of particular interest in
those clinical domains where time-related requirements are
particularly important and complex, as in Intensive Care
Units, in follow-up treatments, and so on.

IX. DISCUSSION AND CONCLUSION

In this paper we proposed TNest, a new structured, data-
centric workflow modeling language for expressing data
dependencies, time constraints and exception management
in business processes. Data dependencies among tasks are
modeled in TNest through message passing mechanisms;
temporal controllability checking has been proposed for all
TNest constructs. We formally introduced the concept of
execution strategy for TNest schemata and we proposed two
kinds of controllabilities with respect to the possible execu-
tion strategies. Then, we proposed a general algorithm that,
given a TNest schema, determines its kind of controllability.

Moreover, we discussed the computational complexity of
the problem of controllability checking.

As a motivating scenario, we considered some important
requirements for modeling clinical processes. In particular,
we deeply studied the specification of complex guidelines,
such as the STEMI ones, and the related clinical pathways,
for the management of cardiological patients. To this regard,
TNest allows us to capture some specific requirements
from the STEMI guidelines that would be difficult to
explicitly represent through existing WfMSs. Finally, we
also discussed how to integrate TNest in real world WfMS
architectures and in clinical information systems.

Future studies will regard the role of TNest modularity in
the controllability of large workflow schema. In particular,
some approximated notion of controllability can be defined
in order to take advantage of modular decomposition and
reduce the time required by controllability check.

APPENDIX A
TNest FORMAL SEMANTICS

A simplified TNest operational semantics is depicted in
Fig. 20: it formally describes how each language block is
interpreted considering in particular how the process state
is updated. As explained in Sec. IV-E, the state of a process
is given by the state of its streams, its variables, and the
component instances contained in it. In Fig. 20 the process
state is denoted by the letter σ eventually enriched with a
subscript.

The simplest rule regards the Sequence block: let us
assume that two tasks A and B have to be executed in
sequence, and that the execution of A in the state σ1
produces a new state σ2, while the execution of B in the
state σ2 produces a new state σ3, then the execution of the
sequence AB starting form the state σ1 produces the new
state σ3.

Rules R2a and R2b regards the execution of a Loop block
with two branches, respectively represented by the composite
tasks A and B, and a condition ϕ defined over a set of
variables x̄. If the execution of A in the state σ1 produces a
new state σ2 in which the condition ϕ(x̄) evaluates to false,
then the execution of the Loop starting from the state σ1
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Fig. 20. A simplified operational semantics of TNest constructs.

produces the new state σ2. Otherwise, if the condition ϕ(x̄)
evaluates to true in σ1, then the Loop execution produces
a new state equivalent to the one obtained by sequentially
executing task B followed by another Loop execution. Rule
R3a and R3b regarding the Choice block can be interpreted
in a similar way.

The execution of a Parallel block produces a state
equal to the union of the states produced by the execution
of each single branch: since parallel branches cannot share
variables, the produced state are disjoint. Conversely, the
execution of a Concur block or a Skip command do not
produce effects on the state, since the first one represents
only the scope of a Spawn command, while the second one
does not perform anything. A Spawn command generates a
new task instance which is executed in parallel with the other
existing ones, hence the effects of such instance execution
has to be combined with the state produced by the other
ones. While rule R8 simply states that the effects of a Run
command are those produced by the task execution.

Rules R10 and R6 regard the exception management: the
execution of Throw command simply produces a state in
which exception ξ is valid. As regards to the Catch block,
if the execution of the default branch A produces a state
σ2 in which the exception ξ is not valid, then the overall
block execution produces the state σ2; conversely, if the
exception ξ is valid in σ2 and the execution of the recovery
branch B staring from σ2 produces a new state σ3, then
the overall block execution produces the state σ3.

The only two commands that can update the process state
are Send and Receive: in particular, the execution of a
Send s which stores the value contained in a set of variables
x̄ into the set of output streams ᾱout, produces a new state
equal to the original one but in which the value of each
variable xi ∈ x̄ has been enqueued to the corresponding
stream αiout, as reported in rule R11 of Fig. 20. Conversely,
the execution of a Receive command stores into one
variable yi of ȳ the first value contained into one of the
available input streams ᾱin and sets to unbound the other
ones, as reported in rule R12a of Fig. 20. An and-Receive
has a similar behaviour, but it sets the value of all variables

in ȳ. Finally, an Empty command produces a state in which
the associated stream α is empty.
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