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Abstract6

Static and dynamic program analyses attempt to extract useful information on program’s behaviours.7

Static analysis uses an abstract model of programs to reason on their runtime behaviour without8

actually running them, while dynamic analysis reasons on a test set of real program executions. For9

this reason, the precision of static analysis is limited by the presence of false positives (executions10

allowed by the abstract model that cannot happen at runtime), while the precision of dynamic11

analysis is limited by the presence of false negatives (real executions that are not in the test set).12

Researchers have developed many analysis techniques and tools in the attempt to increase the13

precision of program verification. Software protection is an interesting scenario where programs need14

to be protected from adversaries that use program analysis to understand their inner working and15

then exploit this knowledge to perform some illicit actions. Program analysis plays a dual role in16

program verification and software protection: in program verification we want the analysis to be as17

precise as possible, while in software protection we want to degrade the results of analysis as much18

as possible. Indeed, in software protection researchers usually recur to a special class of program19

transformations, called code obfuscation, to modify a program in order to make it more difficult to20

analyse while preserving its intended functionality. In this setting, it is interesting to study how21

program transformations that preserve the intended behaviour of programs can affect the precision22

of both static and dynamic analysis. While some works have been done in order to formalise the23

efficiency of code obfuscation in degrading static analysis and in the possibility of transforming24

programs in order to avoid or increase false positives, less attention has been posed to formalise the25

relation between program transformations and false negatives in dynamic analysis. In this work we26

are setting the scene for a formal investigation of the syntactic and semantic program features that27

affect the presence of false negatives in dynamic analysis. We believe that this understanding would28

be useful for improving the precision of existing dynamic analysis tools and in the design of program29

transformations that complicate the dynamic analysis.30
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1 Introduction40

Program analysis refers, in general, to any examination of programs that attempts to extract41

useful information on program’s behaviours (semantics). As known from the Rice theorem,42

all nontrivial extensional properties of program’s semantics are undecidable in the general43

case. This means that any automated reasoning on software has to involve some kind of44

approximation. Programs can be analysed either statically or dynamically. Static program45
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4:2 Towards a unifying framework for tuning analysis precision by program transformation

analysis reasons about the behaviour of programs without actually running them. Typically,46

static analysis builds an abstract model that over-approximates the possible program’s47

behaviours to examine program properties. This guarantees soundness: what can be derived48

from the analysis of the abstract model holds also on the concrete execution of the program.49

The converse does not hold in general due to the presence of false positives: spurious50

behaviours allowed by the abstract model that do not correspond to any real program51

execution. Static analysis has proved its usefulness in many fields of computer science like52

in optimising compilers for producing efficient code, for automatic error detection and for53

the automatic verification of desired program properties (e.g., functional properties and54

security properties) [21]. Many different static analysis approaches exists, as for example55

model checking [7], deductive verification [33] and abstract interpretation [12]. In particular,56

abstract interpretation provides a formal framework for reasoning on behavioural program57

properties where many static analysis techniques can be formalised. In the rest of this58

paper we focus on those static analysis that can be formalised in the abstract interpretation59

framework. Dynamic program analyses, such as program testing [1], runtime monitoring60

and verification [4], consider an under-approximation of program behaviour as they focus61

their analysis on a specific subset of possible program executions. In this paper when we62

speak of dynamic analysis we mainly refer to program testing. Testing techniques start63

by concretely executing programs on an input set and the so obtained test set of concrete64

executions is inspected in order to reason on program’s behaviour (e.g., reveal failures or65

vulnerabilities). It is well known that dynamic analysis can precisely detect the presence of66

failures but cannot guarantee their absence, due to the presence of false negatives: concrete67

program behaviours that do not belong to the test set. There is a famous quote by Dijksta68

that states that “Program testing can be used to show the presence of bugs, but never to69

show their absence!”. Since it is not possible to guarantee the absence of failures we have70

to accept the fact that whenever we use software we incur in some risk. Software testing71

is widely used to reveal possible software failures, to reduce the risk related to the use of72

software and to increase the quality of software by deciding if the behaviour of software is73

acceptable in terms of reliability, safety, maintainability, security, and efficiency [1].74

Static analysis computes an over-approximation of program semantics, while dynamic75

analysis under-approximates program semantics. In both cases, we have a decidable evaluation76

of the semantic property of interest on an approximation of program semantics. For this77

reason what we can automatically conclude regarding the behavioural properties of programs78

has to take into account false positives for static analysis and false negatives for dynamic79

analysis. Static analysis is precise when it is complete (no false positives) and this relates to80

the well studied notion of completeness in abstract interpretation [12, 14, 23]. The intuition81

is that static analysis is complete when the details lost by the abstract model are not relevant82

for reasoning on the semantic property of interest. Dynamic analysis is precise when it is83

sound (no false negatives) and this happens when the executions in the test set exhibit all84

the behaviours of the program that are relevant with respect to the semantic property of85

interest. This means that the under-approximation of program semantics considered by the86

dynamic analysis allows us to precisely observe the behavioural property of interest. The87

essential problem with dynamic analysis is that it is impossible to test with all inputs since88

the input space is generally infinite. In this context, coverage criteria provide structured,89

practical ways to search the input space and to decide which input set to use. The rationale90

behind coverage criteria is to partition the input space in order to maximise the executions91

present in the tests set that are relevant for the analysis of the semantic property of interest.92

Coverage criteria are useful in supporting the automatic generation of input sets and in93
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providing useful rules for deciding when to terminate the generation of the test set [1].94

Program analysis has been originally developed for verifying the correctness of programs95

and researchers have put a great deal of effort in developing efficient and precise analysis96

techniques and tools that try to reduce false positives and false negatives as much as possible.97

Indeed, analysis precision relates to the ability of identifying failures and vulnerabilities that98

may lead to unexpected behaviours, or that may be exploited by an adversary for malicious99

purposes. For this reason the main goal of researchers has been to improve the precision and100

efficiency of both static and dynamic analysis tools.101

Software protection is another interesting scenario where program analysis plays a central102

role but in a dual way. Today, software and the assets embedded in it are constantly under103

attack. This is particularly critical for those software applications that run in an untrusted104

environment in a scenario known as MATE (Man-At-The-End) attacks. In this setting,105

attackers have full control over, and white-box access to, the software and the systems on106

which the software is running. Attackers can use a wide range of analysis tools such as107

disassemblers, code browsers, debuggers, emulators, instrumentation tools, fuzzers, symbolic108

execution engines, customised OS features, pattern matchers, etc. to inspect, analyse and109

alter software and its assets. In such scenarios, software protection becomes increasingly110

important to protect the assets, even against MATE attacks. For industry, in many cases the111

deployment of software-based defense techniques is crucial for the survival of their businesses112

and eco-systems. In the software protection scenario, program analysis can be used by113

adversaries to reverse engineer proprietary code and then illicitly reuse portions of the code114

or tamper with the code in some unauthorised way. Here, in order to protect the intellectual115

property and integrity of programs we have to force the analysis to be imprecise or so116

expensive to make it impractical for the adversary to mount an attack.117

To address this problem, researchers have developed software-based defense techniques,118

called code obfuscations, that transform programs with the explicit intent of complicating119

and degrading program analysis [9]. The idea of code obfuscation techniques is to transform120

a program into a functionally equivalent one that is more difficult (ideally impossible) for121

an analyst to understand. As well as for program analysis also for code obfuscation we122

have an important negative result from Barak et al. [3] that proves the impossibility of123

code obfuscation. Note that, this result states the impossibility of an ideal obfuscator that124

obfuscates every program by revealing only the properties that can be derived from its I/O125

semantics. Besides the negative result of Barak et al., in recent decades, we have seen a126

big effort in developing and implementing new and efficient obfuscation strategies [8]. Of127

course, these obfuscating techniques introduce a kind of practical obfuscators weakening the128

ideal obfuscator of Barak et al. in different ways, and which can be effectively used in real129

application protection in the market. For example, these obfuscators may work only for a130

certain class of programs, or may be able to hide only certain properties of programs (e.g.,131

control flow). Indeed, the attention on code obfuscation poses the need to deeply understand132

what we can obfuscate, namely which kind of program properties we can hide by inducing133

imprecision in their automatic analysis.134

A recent survey on the existing code obfuscation techniques shows the efficiency of135

code obfuscation in degrading the results of static analysis, while existing code obfuscation136

techniques turn out to be less effective against dynamic analysis [31]. Consider, for example,137

the well known control flow obfuscation based on the insertion of opaque predicates. An138

opaque predicate is a predicate whose constant value is known to the obfuscation, while it is139

difficult for the analyst to recognise such constant value [9]. Consider the program whose140

control flow graph is depicted on the left of Figure 1 where we have three blocks of sequential141

Gabbr i e l l i ’ s Fes t schr i f t



4:4 Towards a unifying framework for tuning analysis precision by program transformation
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Figure 1 Code obfuscation

instructions A,B and C executed in the order specified by the arrows A → B → C. Let142

OPT denote a true opaque predicate, namely a predicate that always evaluates to true. In143

the middle of Figure 1 we can see what happens to the control flow graph when we insert144

a true opaque predicate: block D has to be considered in the static analysis of the control145

flow even if it is never executed at runtime. Thus, A→ OPT → D → C is a false positive146

path added by the obfuscating transformation to the static analysis, while no imprecision is147

added to dynamic analysis since all real executions follow the path A → OPT → B → C.148

On the right of Figure 1 we have the control flow graph of the program obtained inserting149

an unknown opaque predicate. An unknown opaque predicate OP? is a predicate that150

sometimes evaluates to true and sometimes evaluates to false. These predicates are used151

to diversify program execution by inserting in the true and false branches sequences of152

instructions that are syntactically different but functionally equivalent (e.g. blocks B and153

B1) [9]. Observe that this transformation adds confusion to dynamic analysis: a dynamic154

analyser has now to consider more execution traces in order to cover all the paths of the155

control flow graph. Indeed, if the dynamic analysis observes only traces that follow the156

original path A→ OP? → B → C it may not be sound as it misses the traces that follow157

A→ OP? → B1 → C (false negative).158

The abstract interpretation framework has been used to formalise, prove and compare159

the efficiency of code obfuscation techniques in confusing static analysis [17, 25] and to160

derive strategies for the design of obfuscating techniques that hamper a specific analysis161

[19]. The general idea is that code obfuscation confuses static analysis by exploiting its162

conservative nature, and by modifying programs in order to increase its imprecision (adding163

false positives) while preserving the program intended behaviour. Observe that, in general,164

the imprecision added by these obfuscating transformations to confuse a static analyser is165

not able to confuse a dynamic attacker that cannot be deceived by false positives. This is166

the reason why common deobfuscation approaches often recur to dynamic analysis to reverse167

engineer obfuscated code [5, 10, 32, 34].168

It is clear that to complicate dynamic analysis we need to develop obfuscation techniques169

that exploit the Achilles heel of dynamic analysis, namely false negatives. In the literature,170

there are some defense techniques that focus on hampering dynamic analysis [2, 27, 28, 30].171

What is still missing is a general framework where it is possible to formalise, prove and discuss172

the efficiency of these transformations in complicating dynamic analysis in terms of the173

imprecision (false negatives) that they introduce. As discussed above the main challenge for174

dynamic analysis is the identification of a suitable input set for testing program’s behaviour.175

In order to automatically build a suitable input set, the analysts either design an input176

generation tool or an input recogniser tool. In both cases, they need a coverage criterion177

that defines the inputs to be considered and when to terminate the definition of the input178

set. Ideally, the coverage criterion is chosen in order to guarantee that the test set precisely179
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reveals the semantic property under analysis (no false negatives). However, to the best of180

our knowledge, there is no formal guarantee that a coverage criterion ensures the absence181

of false negatives with respect to a certain analysis. If hampering static analysis means to182

increase the presence of false positives, hampering dynamic analysis means to complicate183

the automatic construction of a suitable input set for a given coverage criterion. In order to184

formally reason on the effects that code obfuscation has on the precision of dynamic analysis185

it is important to develop a general framework, analogous to the one based on program186

semantics and abstract interpretation that formalises the relation between dynamic analysis187

and code obfuscation. Thus, we need to develop a framework where we can (1) formally188

specify the relation between the coverage criterion used and the semantic property that we189

are testing, (2) define when a program transformation complicates the construction of an190

input set that has to satisfy a given coverage criterion, (3) derive guidelines for the design of191

obfuscating transformations that hamper the dynamic analysis of a given program property.192

This formal investigation will allow us to better understand the potential and limits of code193

obfuscation against dynamic program analysis.194

In the following we provide a unifying view of static and dynamic program analysis and of195

the approaches that researchers use to tune the precision of these analysis. From this unifying196

overview it turns out that while the relation between the precision of static program analysis197

and program transformations has been widely studied, both in the software verification and198

in the software protection scenario, less attention has been posed to the formal investigation199

of the effects that code transformations have on the precision of program testing. We start200

to face this problem by showing how it is possible to formally compare and relate coverage201

criterion, semantic property under testing and false negatives for a specific class of program202

properties. This discussion leads us to the identification of important and interesting new203

research directions that would lead to the development of the above mentioned formal204

framework for reasoning about the effects of program transformations on the precision of205

dynamic analysis. We believe that this formal reasoning would find interesting applications206

both in the software verification and in the software protection scenario.207

Structure of the paper: In Section 2 we provide some basic notions. In Section 3 we208

discuss possible techniques for improving the precision of the analysis: Section 3.1 revise the209

existing and ongoing work in transforming properties and programs toward completeness of210

static analysis, while Section 3.2 provides the basis for a formal framework for reasoning on211

possible property and program transformations to achieve soundness in dynamic analysis,212

these are preliminary results some of which have been recently published in [18]. Section 4213

shows how the techniques used to improve analysis precision could be used in the software214

protection scenario to prove the efficiency of software protection techniques. The use of this215

formal reasoning for proving the efficiency of software protection techniques against static216

analysis is known, while it is novel for dynamic analysis. The paper ends with a discussion217

on the open research challenges that follow from this work.218

2 Preliminaries219

Given two sets S and T , we denote with ℘(S) the powerset of S, with S × T the Cartesian220

product of S and T , with S ⊂ T strict inclusion, with S ⊆ T inclusion, with S ⊆F T the221

fact that S is a finite subset of T . 〈C,≤C ,∨C ,∧C ,>C ,⊥C〉 denotes a complete lattice on222

the set C, with ordering ≤C , least upper bound (lub) ∨C , greatest lower bound (glb) ∧C ,223

greatest element (top) >C , and least element (bottom) ⊥C (the subscript C is omitted when224

the domain is clear from the context). Let C and D be complete lattices. Then, C m−→D and225
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C c−→D denote, respectively, the set and the type of all monotone and (Scott-)continuous226

functions from C to D. Recall that f ∈ C c−→D if and only if f preserves lub’s of (nonempty)227

chains if and only if f preserves lub’s of directed subsets. Let f : C → C be a function on a228

complete lattice C, we denote with lfp(f) the least fix-point, when it exists, of function f on229

C. The well-known Knaster-Tarski’s theorem states that any monotone operator f : C m−→C230

on a complete lattice C admits a least fix point. It is known that if f : C c−→C is continuous231

then lfp(f) = ∨i∈Nf i(⊥C), where, for any i ∈ N and x ∈ C, the i-th power of f in x is232

inductively defined as follows: f0(x) = x; f i+1(x) = f(f i(x)).233

Program Semantics: Let us consider the set Prog of possible programs and the set Σ of
possible program states. A program state s ∈ Σ provides a snapshot of the program and
memory content during the execution of the program. Given a program P we denote InitP
the set of its initial states. We use Σ∗ to denote the set of all finite and infinite sequences
or traces of states ranged over by σ. Given a trace σ ∈ Σ∗ we denote with σ0 ∈ Σ the first
element of sequence σ and with σf the final state of σ if σ is finite. Let τ ⊆ Σ× Σ denote
the transition relation between program states, thus (s, s′) ∈ τ means that state s′ can be
obtained from state s in one computational step. The trace semantics of a program P is
defined, as usual, as the least fix-point computation of function FP : ℘(Σ∗)→ ℘(Σ∗) [11]:

FP (X) def= InitP ∪
{
σsisi+1

∣∣ (si, si+1) ∈ τ, σsi ∈ X
}

The trace semantics of P is [[P ]] def= lfp(FP ) =
⋃
i∈N F iP (⊥C). Den[[P ]] denotes the denotational234

(finite) semantics of program P which abstracts away the history of the computation by235

observing only the input-output relation of finite traces: Den[[P ]] def= {σ ∈ Σ+ | ∃η ∈ [[P ]] :236

η0 = σ0, ηf = σf}.237

Concrete domains are collections of computational objects where the concrete semantics238

is computed, while abstract domains are collections of approximate objects, representing239

properties of concrete objects in a domain-like structure. It is possible to interpret the240

semantics of programs on abstract domains thus approximating the computation with respect241

to the property expressed by the abstract domain. The relation between concrete and242

abstract domains can be equivalently specified in terms of Galois connections (GC) or upper243

closure operators in the abstract interpretation framework [12, 13]. The two approaches244

are equivalent, modulo isomorphic representations of the domain object. A GC is a tuple245

(C,α, γ,A) where C is the concrete domain, A is the abstract domain and α : C → A246

and γ : A → C are respectively the abstraction and concretisation maps that give rise247

to an adjunction: ∀a ∈ A, c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a). Abstract domains can be248

compared with respect to their relative degree of precision: if A1 and A2 are abstractions249

of a common concrete domain C, A1 is more precise than A2, denoted A1 v A2 when250

∀a2 ∈ A2,∃a1 ∈ A1 : γ1(a1) = γ2(a2), namely if γ2(A) ⊆ γ1(A). An upper closure operator251

on a complete lattice C is an operator ρ : C → C that is monotone, idempotent, and252

extensive (∀x ∈ C : x ≤C ρ(x)). Closures are uniquely determined by their fix-points ρ(C).253

If (C,α, γ,A) is a GC then ρ = γ ◦ α is the closure associated to A, such that ρ(C) is a254

complete lattice isomorphic to A. The closure γ ◦ α associated to the abstract domain A can255

be thought of as the logical meaning of A in C, since this is shared by any other abstract256

representation for the objects of A. Thus, the closure operator approach is convenient when257

reasoning about properties of abstract domains independently from the representation of258

their objects. We denote with uco(C) the set of upper closure operators over C. If C is a259

complete lattice then uco(C) is a complete lattice where closure are ordered with respect260

to their relative precision ρ1 v ρ2 ⇔ ρ2(C) ⊆ ρ1(C) which corresponds to the ordering of261

abstract domains.262
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The abstract semantics of a program P on the abstract domain ρ ∈ uco(℘(Σ∗)), denoted263

as [[P ]]ρ, is defined as the fix-point computation of function FρP : ρ(℘(Σ∗))→ ρ(℘(Σ∗)) where264

FρP
def= ρ ◦ FP ◦ ρ is the best correct approximation of function FP on the abstract domain265

ρ(℘(Σ∗)), namely [[P ]]ρ def= lfp(FρP ) =
⋃
i∈N F

ρ
P (⊥ρ(C)). Given the equivalence between GC266

and closures, the abstract semantics can be equivalently specified in terms of abstract traces267

in the corresponding abstract domain and in the following we denote the abstract semantics268

either with [[P ]]ρ or with [[P ]]A where (C,α, γ,A) is a GC and ρ = γ ◦ α.269

Equivalence Relations: Let R be a binary relation R ⊆ C ×C on a set C, given x, y ∈ C270

we denote with (x, y) ∈ R the fact that x is in relation R with y. R ⊆ C×C, is an equivalence271

relation if R is reflexive ∀x ∈ C : (x, x) ∈ R, symmetric ∀x, y ∈ C : (x, y) ∈ R ⇒ (y, x) ∈ R272

and transitive ∀x, y, z ∈ C : (x, y) ∈ R∧(y, z) ∈ R ⇒ (x, z) ∈ R. Given a set C equipped with273

an equivalence relation R, we consider for each element x ∈ C the subset [x]R of C containing274

all the elements of C in equivalence relation with x, i.e., [x]R = {y ∈ C | (x, y) ∈ R}. The sets275

[x]R are called equivalence classes of C wrt relation R and they induce a partition of the set C,276

namely ∀x, y ∈ C : [x]R = [y]R ∨ [x]R ∩ [y]R = ∅ and ∪{[x]R | x ∈ C} = C. The partition of277

C induced by the relation R is denoted by C/R. Let Eq(C) be the set of equivalence relations278

on the set C. The set of equivalence relations on C form a lattice 〈Eq(C),�,uEq,tEq, id, top〉279

where id is the relation that distinguishes all the elements in C, top is the relation that cannot280

distinguish any element in C, and: R1 � R2 iff R1 ⊆ R2 iff (x, y) ∈ R1 ⇒ (x, y) ∈ R2,281

R1 uEq R2 = R1 ∩R2, namely (x, y) ∈ R1 uEq R2 iff (x, y) ∈ R1 ∧ (x, y) ∈ R2; R1 tEq R2282

it is such that (x, y) ∈ R1 tEq R2 iff (x, y) ∈ R1 ∨ (x, y) ∈ R2. When R1 � R2 we say that283

R1 is a refinement of R2. Given a subset S ⊆ C, we denote with R|S ∈ Eq(S) the restriction284

of relation R to the domain S.285

The relation between closure operators and equivalence relations has been studied in286

[29]. Each closure operator ρ ∈ uco(℘(C)) induces an equivalence relation Rρ ∈ Eq(C)287

where (x, y) ∈ Rρy iff ρ({x}) = ρ({y}) and viceversa, each equivalence relation R ∈ Eq(C)288

induces a closure operator ρR ∈ uco(℘(C)) where ρR({x}) = [x]R and ρR(X) =
⋃
x∈X [x]R.289

Of course, there are many closures that induce the same partition on traces and these290

closures carry additional information other than the underlying state partition, and this291

additional information that allows us to distinguish them is lost when looking at the induced292

partition. Indeed, it holds that given R ∈ Eq(C) the corresponding closure is such that293

ρR = u{ρ | Rρ = R}. The closures in uco(℘(C)) defined form a partition R ∈ Eq(C)294

are called partitioning and they identify a subset of uco(℘(C)): {ρR ∈ uco(℘(C)) | R ∈295

Eq(C)} ⊆ uco(℘(C)) [29].296

3 On the precision of program analysis297

As argued above program analysis has been originally developed for program verification,298

namely to ensure that programs will actually behave as expected. Besides the impossibility299

result of the Rice theorem, a multitude of analysis strategies have been proposed [21]. Indeed,300

by tuning the precision of the behavioural feature that we want to analyse it is possible301

to derive an analysable semantic property that, while loosing some details of program’s302

behaviour, may still be of practical interest [12, 14]. We are interested in semantic program303

properties, namely in properties that deal with the behaviour of programs, but the possibility304

of precisely analysing such properties depends also on the way in which programs are written.305

This means that there are programs that are easier to analyse than others with respect to a306

certain property [6]. Thus, program transformations that preserve the program’s intended307

functionality can affect the precision of the results of the same analysis on the original and308

Gabbr i e l l i ’ s Fes t schr i f t
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Figure 2 Abstract domain of Sign and Sign u Parity

transformed program.309

3.1 Static Analysis310

Precision in static program analysis means completeness, namely absence of false positives.311

This means that the noise introduced by the abstract model used for static program analysis312

does not introduce imprecision with respect to the property under analysis. Consider for313

example program P on the left of Figure 3 that, given an integer value a, returns its absolute314

value and it does it by adding some extra controls on the parity of variable a that have no315

effect on the result of computation1. The semantics of program P is:316

[[P ]] = {〈B1 : ⊥〉〈B2 : v1〉〈B4 : 2 ∗ v1 + 1〉〈B6 : 2 ∗ v1 + 1〉〈B7 : v1〉 | v1 ≥ 0} ∪317

{〈B1 : ⊥〉〈B3 : v1〉〈B4 : 2 ∗ v1〉〈B5 : 2 ∗ v1〉〈B7 : −v1〉 | v1 < 0}318

where 〈Bi, val〉 denotes the program state specifying the value val of variable a when entering319

block Bi and ⊥ denotes the undefined value. Assume that we are interested in the analysis on320

the abstract domain Sign depicted on the left of Figure 2. The Sign = {⊥,+0,−,>} abstract321

domain observes the sign of integer values and it is possible to define a GC between ℘(Z)322

and Sign where the abstract element +0 represents all positive values plus 0, the abstract323

element − represents all negative values, while > represents all integer values and ⊥ the324

emptyset. We denote with [[P ]]Sign ∈ ℘(Σ∗) the abstract interpretation of program P on the325

domain of Sign, where the values of variable a are interpreted on Sign.326

[[P ]]Sign = {〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉〈B6 : +0〉〈B7 : +0〉,327

〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉〈B5 : +0〉〈B7,−〉[false positive]328

〈B1 : ⊥〉〈B3 : −〉〈B4 : −〉〈B5 : −〉, 〈B7,+0〉329

〈B1 : ⊥〉〈B3 : −〉〈B4 : −〉〈B6 : −〉〈B7,−〉[false positive]}330

Each abstract trace corresponds to infinitely many concrete traces. So for example the331

abstract trace 〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉〈B6 : +0〉〈B7 : +0〉 corresponds to the infinte set of332

concrete traces: {〈B1 : ⊥〉〈B2 : v1〉〈B4 : v2〉〈B6 : v3〉〈B7 : v3〉 | v1, v2, v3, v4 ≥ 0}. Observe333

that the second and fourth abstract traces are false positives that the abstract analysis has334

to consider but that cannot happen during computation. This is because the guard at B4335

1 The notation ba/2c refers to the integer division that rounds the non-integer results towards the lower
integer value.
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B1:
input a
if a ≥ 0:

B2:
then
a = 2a + 1

B3:
else
a = 2a

B4:
if a is even

B5:
then
a = -a/2

B6:
else
a = ba/2c

B7:
return a

B1:
input a
if a ≥ 0:

B2:
then
a = a

B3:
else
a = - a

B4:
return a

B1:
input a
if a ≥ 0:

B2:
then
if a ≥ 100

B3:
else
a = -a

B4:
then
a=a

B5:
else
a = -a
b = -2a
a = a +b

B6:
end

P Q R

Figure 3 P , Q and R are functionally equivalent programs

cannot be precisely evaluated on Sign and therefore both branches are seen as possible. This336

happens because the abstract domain of Sign is not complete for the analysis of program P337

and we have [[P ]] ⊂ [[P ]]Sign . This induces imprecision in the analysis on the abstract domain338

Sign that it is not able to conclude that the value of variable a is always positive at the end339

of execution. Let us denote with [[P ]](Bi) and with [[P ]]Sign(Bi) the possible values that can340

be assumed by variable a at block Bi when reasoning on the concrete and abstract semantics341

respectively. In this case we have that Sign([[P ]](B7)) = Sign({v | v ≥ 0}) = +0 and this is342

more precise than [[P ]]Sign(B7) = tSign{+0,−} = >.343

Transforming properties towards completeness344

It is well known that completeness is a domain property and that abstract domains can be345

refined in order to become complete for the analysis of a given program [23]. The idea is346

that in order to make the analysis complete we need to add to the abstract domain those347

elements that are necessary to reach completeness. In this case, if we consider the abstract348

domain that observes the sign and parity of integer values we reach completeness. Thus, let349

us consider the domain SignuParity depicted on the right of Figure 2, where even represents350

all the even integer values and odd represents all the odd integer values.351

[[P ]]SignuParity = {〈B1 : ⊥〉〈B2 : (+0, even)〉〈B4 : (+0, odd)〉〈B6 : (+0, odd)〉〈B7 : +0〉352

〈B1 : (+0,⊥)〉〈B2 : (+0, odd)〉〈B4 : (+0, odd)〉〈B6 : (+0, odd)〉〈B7 : +0〉353

〈B1 : (−,⊥)〉〈B3 : (−, even)〉〈B4 : (−, even)〉〈B5 : (−, even)〉〈B7 : +0〉354

〈B1 : (−,⊥)〉〈B3 : (−, odd)〉〈B4 : (−, even)〉〈B5 : (−, even)〉〈B7 : +0〉}355

As we can see all the abstract traces are able to precisely observe that variable a is positive at356

the end of the execution and that it can be either even or odd. Indeed, we have completeness357

with respect to the SignuParity property SignuParity([[P ]](B7)) = [[P ]]SignuParity(B7) = +0.358

Gabbr i e l l i ’ s Fes t schr i f t



4:10 Towards a unifying framework for tuning analysis precision by program transformation

Thus, a possible way for tuning the precision of static analysis is to transform the property359

that we want to analyse in order to reach completeness, there exists a systematic methodology360

that allows us to add the minimal amount of elements to the abstract domain in order to361

make the analysis complete for a given program [23].362

Transforming programs towards completeness363

The way in which programs are written affects the precision of the analysis. For example we
can easily write a program functionally equivalent to P but for which the analysis on Sign is
complete. Consider, for example, program Q as the one in the middle of Figure 3, we have
that:

[[Q]] = {〈B1 : ⊥〉〈B2 : v〉〈B4 : v〉 | v ≥ 0} ∪ {〈B1 : ⊥〉〈B3 : v〉〈B4 : −v〉 | v < 0}

[[Q]]Sign = {〈B1 : ⊥〉〈B2 : +0〉〈B4 : +0〉, 〈B1 : ⊥〉〈B3 : −〉〈B4 : +0〉}

This makes it clear how the abstract computation loses information regarding the modulo of364

the value of variable a, while it precisely observes the positive value of a at the end of execution.365

Indeed, in this case we have that: Sign([[Q]](B7)) = Sign({v | v ≥ 0}) = +0 = [[Q]]Sign(B7).366

It is worth studying the possibility of transforming programs in order to make a certain367

analysis complete. In a recent work [6] the authors introduced the notions of complete368

clique C(P,A) and incomplete clique C̄(P,A) that represent the set of all programs that369

are functionally equivalent to P and for which the analysis on the abstract domain A is370

respectively complete and incomplete. They prove that there are infinitely many abstractions371

for which the systematic removal of false positives for all programs is impossible. Moreover,372

they observe that false positives are related to the evaluation of boolean predicates that the373

abstract domain is not able to evaluate precisely (as we have seen in our earlier example). The374

authors claim that their investigation together with the poof system in [24] should be used375

as a starting point to reason on a code refactoring strategy that aims at modifying a given376

program in order to gain precision with respect to a predefined analysis. Given an abstract377

domain A, the final goal would be to derive a program transformation TA : Prog → Prog that378

given a program P ∈ C̄(P,A) for which the analysis A is incomplete, namely A([[P ]]) 6= [[P ]]A,379

transforms it into a program T (P ) ∈ C(P,A) for which the analysis is complete, namely380

A([[P ]]) = [[P ]]A.381

These recent promising works suggest how to proceed in the investigation of program382

transformations as a mean for gaining precision in static program analysis.383

3.2 Dynamic Analysis384

Testing is typically used to discover failures (or bugs), namely an incorrect program behaviour385

with respect to the requirements or the description of the expected program behaviour.386

Precision in program testing is expressed in terms of soundness: the ideal situation where no387

false negatives are present. When speaking of failures, this happens when the executions388

considered in the test set exhibit at least one behaviour for each one of the failures present389

in the program. Indeed, when this happens, testing allows us to detect all the failures in the390

program. It is clear that the choice of the input set to use for testing is fundamental in order391

to minimise the number of false negatives. What we have just said holds when testing aims392

at detecting failures as well as for the analysis of any property of traces (as for example the393

order in which memory cells are accessed, the target of jumps, etc.). Let us denote with IP394

the input space of the possible input values needed to complete an execution of program395
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P under testing2. Dynamic analysis considers a finite subset of the input space, called the396

input set InSet ⊆F IP , that identifies the input values that are used for execution. The397

execution traces generated by the input set define the test set, which is the finite set of traces398

used by dynamic analysis to reason on program behaviour. Given an input value x ∈ IP we399

denote with P (x) ∈ [[P ]] the execution of program P when fed with input x.400

As argued above, the main source of imprecision in testing is that the number of potential401

inputs for most programs is so large as to be effectively infinite. Since we cannot test with402

all inputs, researchers typically recur to the use of coverage criteria in order to decide which403

test inputs to use. A coverage criterion C induces a partition on the input space and in order404

to minimise the false negatives the input set should contain at least one element for each405

class of the partition. In the left part of Figure 4 we consider a typical coverage criterion,406

called path coverage, for the testing of program Q in Figure 3. Path coverage criterion is407

satisfied when for each path in the control flow graph of the program there exists at least one408

execution in the test set that follows that path. When considering program Q it is immediate409

to derive from the coverage criterion the partition of the input space: the class of positive410

integer values (that follow the path B1 → B2 → B4) and the class of negatives integer values411

(that follow the path B1 → B3 → B4). In this case the coverage criterion is satisfied by every412

input set that contains at least one positive integer value and one negative integer value.413

Since it is the coverage criterion that determines the input set and therefore the executions414

that are considered by the dynamic analysis, it is very important to select a good coverage415

criterion. However, it is not clearly stated or formally defined what makes a coverage criterion416

good [1], and this may be one of the reasons why many coverage criteria have been developed417

by researchers. Generally speaking, there are some features that it is important to consider418

when speaking of coverage criterion such as:419

the difficulty of deriving the rules to partition the input space with respect to the coverage420

criterion;421

the difficulty of generating an input set that satisfies the coverage criterion, namely that422

contains at least one input for each one of the classes in which the input space has been423

partitioned;424

how well a test set that satisfies the coverage criterion guarantees the absence of false425

negatives.426

To the best of our knowledge there is no general framework that formalises the relation427

between coverage criterion, partition of the input space and false negatives in the dynamic428

analysis of a semantic program property. Indeed, while the soundness of dynamic analysis429

may not be possible in general, we think that it would be interesting to study the soundness430

of dynamic analysis of a program with respect to a specific semantic property (as usually431

done when reasoning about completeness in static analysis). We believe that this formal432

investigation would help in better understanding the cause of false negatives and would be433

useful in reducing them.434

3.2.1 Towards a formal framework for dynamic analysis435

We formalise the splitting of the input space induced by a coverage criterion C in terms of436

an equivalence relation RCI ∈ Eq(IP ), and this allows us to formally define when an input437

set satisfies a coverage criterion.438

2 In this work, for simplicity but with no loss of generality, we speak of input values while in the general
case we may need collections of values in order to complete an execution of the software under test.
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IQ [[Q]]

RC
I

RC
v � 0

v < 0

hB1 : ?ihB2 : vihB4 : vi

hB1 : ?ihB3 : vihB4 : �vi
A

⌃⇤

[[P ]]RC

Figure 4 Path coverage criterion on program Q of Figure 3, and soundness conditions

I Definition 1. Given a program P , an input set InSet ⊆F IP and a coverage criterion439

C, we say that InSet satisfies C, denoted InSet |= C, iff: ∀[x]RC ∈ IP /RCI we have that440

InSet ∩ [x]RC
I
6= ∅.441

We have seen this in Figure 4 when considering the partition induced in the input space442

of program Q and observing that an input set satisfies the path coverage criterion when it443

contains at least one positive and one negative integer value. When considering coverage444

criteria we need to take into account infeasible requirements: for example when considering445

coverage criteria related to the paths of the control flow graph we have to handle infeasible446

paths as it is not possible to define input values that follow these paths (as for example paths447

B1 → B2 → B4 → B5 → B7 and B1 → B3 → B4 → B5 → B7 of program P ). This is a448

known challenging problem in dynamic analysis and testing as the detection of infeasible test449

requirements is undecidable for most coverage criteria [1]. This means that some preliminary450

analysis is needed in order to ensure the feasibility of the coverage criteria, namely to ensure451

that it is possible to generate an input set that satisfies a given coverage criterion. Otherwise,452

we need to somehow quantify how much the input set satisfies the coverage criterion, for453

example considering the percentage of equivalence classes that are covered by the input set.454

In this work we do not address this problem and we assume the feasibility of the coverage455

criteria.456

Observe that the equivalence relation RCI ∈ Eq(IP ) naturally induces an equivalence457

relation on traces RC ∈ Eq([[P ]]) where (σ1, σ2) ∈ RC iff ∃x1, x2 ∈ IP : P (x1) = σ1,458

P (x2) = σ2 and (x1, x2) ∈ RCI . Thus, we can say that a given coverage criterion, and459

therefore any test set that satisfies that coverage criterion, can be associated to a partition460

of program trace semantics. Our idea is that the partition of the program trace semantics461

induced by the coverage criterion could be used to reason on the class of semantic program462

properties for which the coverage criterion can ensure soundness. To this end, we need to463

represent semantic program properties in a way that can be compared with partitions on464

traces.465

Properties of traces are naturally modelled as abstract domains, namely as closure466

operators in uco(℘(Σ∗)). A semantic property ρ ∈ uco(℘(Σ∗)) maps an execution trace467

(or a set of execution traces) to the minimal set of traces that cannot be distinguished468

by the considered property. Each closure operator ρ ∈ uco(℘(Σ∗)) induces an equivalence469

relation Rρ ∈ Eq(Σ∗): σ1Rρσ2 iff ρ({σ1}) = ρ({σ2}), where traces are grouped together470

if they are mapped in the same element by abstraction ρ. In the following, we model the471

properties of traces as equivalence relations over traces or equivalently as partitioning closures472

in uco(℘(Σ∗)), and we denote these properties as A ∈ Eq(Σ∗). According to [29] there is473

more than one closure that maps to the same equivalence relations, thus considering the474

partitions induced by closure operators corresponds to focusing on the set of partitioning475

closures (which is a proper subset of closure operators over ℘(Σ∗)). This allows us to express476
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properties of the single traces but not relational properties that have to take into account477

more than one trace. This means that we can use equivalence relations in Eq(Σ∗) to express478

properties such as: the order of successive accesses to memory, the order of execution of479

instructions, the location of the first instruction of a function, the target of jumps, function480

location, possible data values at certain program points, the presence of a bad states in the481

trace, and so on. These are properties of practical interest in dynamic program analysis.482

What we cannot express are properties on sets of traces, the so called hyper-properties,483

that express relational properties among traces, like non-interference. The extension of the484

framework to closures that are not partitioning is left as future work. This allows us to485

formally model the soundness of dynamic analysis.486

I Definition 2. Given a program P and a property A ∈ Eq(Σ∗), the dynamic analysis A487

on input set InSet ⊆F IP is sound, denoted InSet s
 A(P ), if ∀[σ]A ∈ [[P ]]/A we have that488

[σ]A ∩ InSet 6= ∅.489

This precisely captures the fact that dynamic analysis needs to observe the different behaviours490

of the program with respect to the property of interest in order to be sound. Indeed, when491

considering a program P and a property A it is enough to observe a single trace in an492

equivalence class [σ]A ⊆ [[P ]] in order to observe how property A behaves in all the traces of493

program P that belong to that equivalence class. If we consider program Q in Figure 3 we494

have that in order to precisely observe the evolution of the sign property along the execution495

we have to consider at least one trace that follows the path B1 → B2 → B4 and one trace496

that follows the path B1 → B3 → B4 as depicted in Figure 4.497

Modelling program properties as equivalence relations makes it easy to compare them498

with the coverage criteria and to reason on soundness.499

I Theorem 3. Given a program P , a coverage criterion C, an input set InSet ⊆F IP and a500

property A ∈ Eq(Σ∗), we have that if RC � RA|[[P ]]
and InSet |= C, then InSet s

 A(P ).501

Proof. InSet |= C therefore ∀[x]RC ∈ IP /RC we have that InSet ∩ [x]RC 6= ∅. Since502

RC � A|[[P ]] we have that for each equivalence class [σ]RC there exists an equivalence class503

[σ]A|[[P ]]
that [σ]RC ⊆ [σ]A|[[P ]]

. This implies that for every [σ]A|[[P ]]
∈ [[P ]]/A we have that504

[σ]A|[[P ]]
∩ InSet 6= ∅ and therefore InSet s

 A(P ). J505

In Figure 4 on the right we provide a graphical representation of the above theorem. Traces506

in Σ∗ exhibit different attributes with respect to property A and this is represented by the507

different shapes: circle, triangle, square and star. Trace partition is then represented by the508

thick lines that group together traces that are undistinguishable with respect to property509

A. Dotted lines are used to represent a trace partition induced by coverage criterion C on510

the traces of P and that ensures the absence of false negatives in the analysis. Indeed, from511

the graphical representation it is clear that when InSet |= C then InSet contains at least a512

trace for each equivalence class of RC , and this implies that it contains at least a trace for513

each one of the possible attributes (circle, triangle and square) that traces in [[P ]] can exhibit514

with respect to property A. This allows us to characterise the set of properties for which a515

given coverage criterion can ensure soundness.516

I Definition 4. Given a coverage criterion C on a program P , we define the set of properties517

Π(C) def= {A ∈ Eq(Σ∗) | RC � A|[[P ]]} that are coarsest than the equivalence relation induced518

by the coverage criterion.519

It follows that any input set that satisfies a coverage criterion C on a program P would lead520

to a sound dynamic analysis on any property in Π(C).521
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id

top

A A1

RC1RC

T1

T2

8RC : RC � A ) soundness

8A 2 ⇧(C) ) soundness
⇧(C)

Figure 5 Comparing RC and A for soundness

I Corollary 5. Given a coverage criterion C on a program P , and input set InSet ⊆F IP522

such that InSet |= C, than ∀A ∈ Π(C) we have that InSet s
 A(P ).523

In Figure 5 we summarise the relation between coverage criteria and soundness of a particular524

program property. Given a program P , Figure 5 depicts the domain of equivalence relations525

over [[P ]] where id denotes the most fine equivalence relation that corresponds to the identity526

relation, ∀σ1, σ2 ∈ [[P ]] : (σ1, σ2) ∈ id iff σ1 = σ2, and top denotes the coarser equivalence527

relation that sees every trace as equivalent ∀σ1, σ2 ∈ [[P ]] it holds that (σ1, σ2) ∈ top. As528

stated in Theorem 3 whenever RC � A|[[P ]] then the coverage criterion C can be used to529

ensure soundness of the analysis of property A on program P . As stated by Corollary 5 a530

coverage criterion C can ensure soundness for all those properties in Π(C).531

Following our reasoning, the most natural coverage criterion for a given semantic property532

A is the one for which RC = A, namely the coverage criterion whose partition on states533

corresponds to the property under analysis. In the literature there exists many different534

coverage criteria and some of them turn out to be equivalent when compared with respect535

to the partition that they induce on the input space. It has been observed that all existing536

test coverage criteria can be formalised on four mathematical structures: input domains,537

graphs, logic expressions, and syntax descriptions (grammars) [1]. Even if these coverage538

criteria are not explicitly related to the properties being analysed they have probably been539

designed while having in mind the kind of properties of interest. For example, some of the540

most widely known coverage criteria are based on graph features and are typically used for541

the analysis of properties related to a graphical representation of programs, like control flow542

or data flow properties of code or variables that can be verified on the control flow graph of543

a program, or function calls that can be verified on the call graph or a program, and so on.544

For example code coverage requires the execution of all the basic blocks of a control flow545

graph and wants to ensure that all the reachable instructions of a program are considered at546

least in one execution of the test set.547

What we have stated so far allows us to begin to answer the question regarding how548

well the coverage criterion behaves with respect to the analysis of a given semantic property549

(when this can be modelled as a partitioning closure on the powerset of program traces). The550

design of an automatic or systematic strategy for the generation of an input set that covers551

a given coverage criterion remains an open challenge that deserves further investigation.552
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Transforming properties towards soundness553

There are two questions that naturally arise from our reasoning and that would be interesting554

to investigate regarding the systematic transformation of the property under analysis or the555

coverage criterion towards soundness.556

1. Consider a program P , a coverage criterion C that induces a partition RC ∈ Eq([[P ]]) on557

the traces of program P and a trace property A1 for which the coverage criterion C cannot558

ensure soundness. We wonder if it is possible to design a systematic transformation of559

property A1 that, by grouping some of its equivalence classes, returns a trace property560

for which we have soundness when C is satisfied by the input set. It would be interesting561

to understand when this transformation is possible without reaching top, i.e., while still562

being able to distinguish trace properties. This is depicted by the arrow labeled with T1563

in the upper part of Figure 5.564

2. Consider a program P , a coverage criterion C1 that induces a partition RC1 ∈ Eq([[P ]]) on565

the traces of program P and a trace property A for which the coverage criterion C1 cannot566

ensure soundness. We wonder if it is possible to design a systematic transformation of567

RC1 that, by further splitting its equivalence classes, returns a partition of the program568

traces, and therefore a coverage criterion, that when satisfied by the input set ensures569

soundness for the analysis of property A. In this case it is interesting to investigate when570

this refinement is possible without ending up with the identity relation, namely without571

collapsing to id where all program traces needs to be considered for coverage. This is572

depicted by the arrow labeled with T2 in the bottom part of Figure 5.573

Transforming programs towards soundness574

As for static analysis also for dynamic analysis the way in which programs are written575

influences the precision of the analysis either because they expand the input set that satisfies576

a given coverage criterion, thus requiring the observation of more program runs, or because577

they complicate the automatic/systematic extraction of an input set that satisfies a given578

coverage criterion. We focus on the first case since we still have to formally investigate the579

extraction of input sets for a given coverage criterion, namely the input generation and input580

recogniser procedure.581

Let us consider program R on the right of Figure 3 that computes the absolute value of582

an integer value and does it by adding some extra control on the range of the input integer583

value in order to proceed with the computation of the modulo in some syntactically different,584

but semantically equivalent ways. Indeed, in this example it is easy to observe that blocks B4585

and B5 are equivalent, but we can think about more sophisticated ways to write equivalent586

code in such a way that it would be difficult for the analyst to automatically recognise that587

they are equivalent. If we consider again the path coverage criterion we can observe that in588

order to cover the control flow graph of program R we need at least three input values: a589

negative integer, a positive integer smaller than 100 and a positive integer greater than or590

equal to 100. Of course what is done in block B2 can be replicated many times, as far as we591

are able to write blocks that are syntactically different but semantically equivalent to B4 or592

B3. According to our framework, path coverage is more complicated to reach on program593

R than on program Q. Indeed, in this case, every input set that satisfies path coverage for594

program R also satisfies path coverage for program Q while the converse does not hold in595

general. This reasoning is limited to the amount of traces that we need to satisfy a given596

coverage criterion and does not take into account the difficulty of generating such traces. Of597

course both aspects would need to be taken into account by our formal framework.598
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Moreover, as done for static analysis in [6], it would be interesting to define the notions
of sound clique S(P, InSet,A) and of unsound clique S̄(P, InSet,A) that represent the sets
of all programs that are functionally equivalent to P and for which the dynamic analysis of
property A on input set InSet ⊆ IP is respectively sound and not sound:

S(P, InSet,A) def= {Q ∈ Prog | Den([[P ]]) = Den([[Q]]), InSet s
 A(P )}

S̄(P, InSet,A) def= {Q ∈ Prog | Den([[P ]]) = Den([[Q]]), Q 6∈ S(P, InSet,A)}

We plan to study the existence of transformations from S̄(P, InSet,A) to S(P, InSet,A) in599

order to rewrite a program toward soundness. It is interesting to understand which are the600

properties for which this can be done in a systematic way and what is the key for reaching601

soundness. The intuition is that for reaching soundness with respect to a property A on an602

input set InSet we should choose programs whose variations of property A are all considered603

by the input set as stated in Theorem 3. Thus, in general, if we reduce variations of the604

considered property by merging traces that are functionally equivalent even if they have605

diversified A properties we would probably facilitate soundness. This needs to be formally606

understood, proved and validated on some existing dynamic analysis.607

4 Software protection: a new perspective608

In the software protection scenario we are interested in preventing program analysis while609

preserving the intended behaviour of programs. To face this problem Collberg et al. [9]610

introduced the notion of code obfuscation: program transformations designed with the explicit611

intent of complicating and degrading program analysis while preserving program functionality.612

Few years later Barak et al. [3] proved that it is not possible to obfuscate everything but613

the input-output behaviour for all programs with limited penalty in performances. However,614

it is possible to relax some of the requirements of Barak et al. and design obfuscating615

techniques that are able to complicate certain analysis of programs. This is witnessed by the616

great amount of obfuscation tools and techniques that researchers, both from academia and617

industry, have been developing in the last twenty years [8]. What it means for a program618

transformation to complicate program analysis is something that needs to be formally619

stated and proved when defining new obfuscating transformations. The extent to which an620

obfuscating technique complicates, and therefore protects, the analysis of certain program621

properties is referred to as potency of the obfuscation. A formal proof of the quality of622

obfuscation in terms of its potency is very important in order to compare the efficiency of623

different obfuscation techniques and in order to understand the degree of protection that they624

guarantee. Unfortunately, a unifying methodology for the quantitative evaluation of software625

protection techniques is still an open challenge, as witnessed by the recent Dagstuhl Seminar626

on this topic [20]. What we have are specific measurements done when new techniques are627

proposed, or formal proofs that reduce the analysis of obfuscated programs to well known628

complex analysis tasks (like alias analysis, shape analysis, etc.).629

In our framework, complicating program analysis means inducing imprecision in the630

results of the analysis of the obfuscated program with respect to the results of the analysis631

of the original program. This means that code obfuscation should induce false positives in632

static program analysis and false negatives in dynamic program analysis.633

4.1 Program transformations against static program analysis634

The abstract interpretation framework has been used to reason on the semantic properties635

that code obfuscation transformations are able to protect and the ones that they can still be636
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analysed on the obfuscated program. It has been observed that a program property expressed637

by an abstract domain A is obfuscated (protected) by an obfuscation O : Prog → Prog on638

a program P whenever [[P ]]A ≤A [[O(P )]]A, namely when the analysis A on the obfuscated639

program returns a less precise result with respect to the analysis of the same property on640

the original program P . The spurious information added to the analysis by the obfuscation641

is the noise that confuses the analyst, thus making the analysis more complicated. The642

relation between potency of code obfuscation and the notion of (in)completeness in abstract643

interpretation has been proven, as obfuscating a property means to induce incompleteness644

in its analysis [22]. So, for example, the insertion of a true opaque predicate OT (see the645

program in the middle of Figure 1) would confuse all those analyses that are not able to646

precisely evaluate such a predicate and have to consider both branches as possible. No647

confusion is added for those analyses that are able to precisely evaluate the opaque predicate648

and consider only the true branch as possible, namely those analyses that are complete for649

the evaluation of the predicate value. Following this idea, a formal framework based on650

program semantics and abstract interpretation has been developed, where it is possible to651

formally prove that a property is obfuscated by a given program transformation, compare652

the efficiency of different obfuscating techniques in protecting a given property, define a653

systematic strategy for the design of a code obfuscation technique for protecting a given654

program property [17, 19, 22, 25]. This semantic understanding of the effects that code655

obfuscation has on the semantics and semantic properties of programs as shown its usefulness656

also in the malware detection scenario where malware writers use code obfuscation to evade657

automatic detection [15, 16].658

Thus we can say that the effects of functionality preserving program transformations on659

program semantics and on the precision of the results of static analysis has been extensively660

studied and a mature formal framework has been provided [15, 16, 17, 19, 22, 25].661

4.2 Program transformations against dynamic program analysis662

To the best of our knowledge, the effects of functionality preserving program transformations663

on the precision of dynamic analysis have not been fully investigated yet. Following our664

reasoning, the general idea is that dynamic analysis is complicated by program transformations665

that induce false negatives while preserving program’s functionality. Let A ∈ Eq(Σ∗) denote666

a property of interest for dynamic analysis. Inducing false negatives for the analysis of667

a property A can be done by exploiting the partial observation of program’s executions668

innate in the test set, and thus adding traces that do not belong to the test set and have669

a different A property. Thus, the key for software protection against dynamic analysis is670

software diversification with respect to the property under analysis. The ideal obfuscation671

against the dynamic analysis of property A should specialise programs with respect to every672

input in such a way that every input exhibits a different behaviour for property A. Namely,673

an ideal obfuscation against A is a program transformation O : Prog → Prog such that674

∀σ1, σ2 ∈ [[O(P )]] we have that A(σ1) = A(σ2)⇔ σ1 = σ2. In this ideal situation in order675

to avoid false negatives the analyst should consider every possible execution trace of O(P )676

since each trace exhibits a different aspects of property A, so missing a trace would mean677

to miss such an aspect. This intuition is confirmed in a preliminary work in this direction678

where it is shown how diversification is the basis of existing software protection techniques679

against dynamic analysis [18]. This work provides a topological characterisation of the680

soundness of the dynamic analysis of properties expressed as equivalence relations (as we681

have done in Section 3.2.1). This formal characterisation is then used to define the notion of682

transformation potency for dynamic analysis.683
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[[P ]]/A [[O(P )]]/A

O

Figure 6 Transformation Potency

I Definition 6. A functionality preserving program transformation O : Prog → Prog is684

potent for the analysis of A ∈ Eq(Σ∗) of program P if:685

∀σ1, σ2 ∈ [[O(P )]] : [σ1]A = [σ2]A, ∀ν1, ν2 ∈ [[P ]] : Den(ν1) = Den(σ1),Den(ν2) =686

Den(σ2) then [ν1]A = [ν2]A687

∃ν1, ν2 ∈ [[P ]] : [ν1]A = [ν2]A for which ∃σ1, σ2 ∈ [[O(P )]] : Den(ν1) = Den(σ1),Den(ν2) =688

Den(σ2) such that [σ1]A 6= [σ2]A689

Figure 6 provides a graphical representation of the notion of potency. On the left we have the690

traces of the original program P partitioned according to the equivalence relation A induced691

by the property of interest, while on the right we have the traces of the transformed program692

O(P ) partitioned according to A. Traces that are denotationally equivalent have the same693

shape (triangle, square, circle, oval), but different dimension since they are in general different694

traces. The first condition means that the traces of O(P ) that property A maps to the695

same equivalence class (circle and square), are denotationally equivalent to traces of P that696

property A maps to the same equivalence class. This means that what is grouped together697

by A on [[O(P )]] was grouped together by A on [[P ]], modulo the denotational equivalence698

of traces. The second condition requires that there are traces of P (triangle and star) that699

property A maps to the same equivalence class and whose denotationally equivalent traces in700

O(P ) are mapped by A to different equivalence classes. This means that a defense technique701

against dynamic analysis with respect to a property A is successful when it transforms a702

program into a functionally equivalent one for which property A is more diversified among703

execution traces. This implies that it is necessary to collect more execution traces in order704

for the analysis to be precise. At the limit we have an optimal defense technique when A705

varies at every execution trace.706

The above definition of transformation potency for dynamic analysis has been validated707

by modelling in the proposed framework some existing software defence strategies against708

dynamic analysis for the extraction of the control flow graph of programs like Range Dividers709

[2] and Gadget diversification [30]. In both cases it is possible to show that the proposed710

transformations complicate the dynamic extraction of the control flow graph by adding new711

diversified paths to the control flow graph, as stated in Definition 6. In the following we712

report a simple example from [18] that shows how the key for obfuscating properties of data713

values for dynamic analysis is diversification.714

I Example 7. Consider the following programs P and Q that compute the sum of natural715

numbers from x ≥ 0 to 49 (we assume that the inputs values for x are natural numbers).716
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P

input x;
sum := 0;
while x < 50
• o X = [0, 49] o
sum := sum + x;
x := x + 1;

Q

input x;
n : = select(N,x)
x := x * n;
sum := 0;
while x < 50 * n
• o X = [0, n ∗ 50− 1] o

sum := sum + x/n;
x := x + n;

x := x/n;

717

Consider a dynamic analysis that observes the maximal value assumed by x at program
point •. For every possible execution of program P we have that the maximal value assumed
by x at program point • is 49. Consider a state s ∈ Σ as a tuple 〈pp, [valx, valsum]〉, where
pp denotes the current program point, valx and valsum denote the current values of variables
x and sum respectively. We define a function τ : Σ→ N that observes the value assumed by
x at state s when s refers to program point •, and function max : Σ∗ → N that observes the
maximal value assumed by x at • along an execution trace:

τ(s) def=
{

valx if pp = •
∅ otherwise max(σ) def= max({τ(s) | s ∈ σ})

This allows us to define the equivalence relation Amax ∈ Eq(Σ∗) that observes traces with718

respect to the maximal value assumed by x at •, as (σ, σ′) ∈ Amax iff max(σ) = max(σ′).719

We can observe that all the execution traces of P belong to the same equivalence class of720

Amax . In this case, a dynamic analysis of property Amax on P is sound whenever the test721

set contains at least one execution trace of P . This happens because the property that we722

are looking for is an invariant property of program executions and it can be observed on any723

execution trace.724

Let us now consider program Q equivalent to P , i.e., Den[[P ]] = Den[[Q]], where the725

value of x is diversified by multiplying it by the parameter n. The guard and the body726

of the while are adjusted in order to preserve the functionality of the program. When727

observing property Amax on Q, we have that the maximal value assumed by x at program728

point • is determined by the parameter n generated in the considered trace. The statement729

n:=select(N,x) assigns to n a value in the range [0, N ] depending on the input value x. We730

have that the traces of program Q are grouped by Amax depending on the value assumed by731

n. Thus, A([[Q]]) contains an equivalence class for every possible value assumed by n during732

execution. This means that the transformation that rewrites P into Q is potent according733

to Definition 6. Dynamic analysis of property Amax on program Q is sound if the test set734

contains at least one execution trace for each of the possible values of n generated during735

execution.736

5 Open research directions737

We have provided an unifying view of the relations between properties and program transfor-738

mations and the precision of static and dynamic analysis in the standard analysis scenario739

and in the software protection scenario. Researchers have proposed possible ways for tuning740

the precision of static analysis while less attention has been posed to the formal investigation741

of dynamic analysis. In this context it is worth to mention the recent work of O’Hearn [26]742

that defines a formalism called incorrectness logic, which is similar to Hoare’s logic, and743

allows us to prove the presence of bugs but not their absence, thus capturing the essence744

Gabbr i e l l i ’ s Fes t schr i f t



4:20 Towards a unifying framework for tuning analysis precision by program transformation

of program testing. The incorrectness logic is based on a under-approximation triple that745

plays a dual role when compared to the standard over-approximation triple that we are746

used to see in Hoare’s logic. Indeed, while logic and symbolic reasoning are useful since747

they can cover many states or program paths at once, they do not allow in general to cover748

all paths and this makes it difficult to prove the absence of errors. The author claims the749

necessity and usefulness of incorrectness logic that formalises under-approximate reasoning750

in order to provide a logical proof of the presence of bugs. Such reasoning should of course751

be combined with standard correctness proof in order to obtain a global view of program’s752

runtime behaviour. The incorrectness logic of O’Hearn does not try to gain soundness,753

namely to avoid or reduce false negatives, but provides formal proofs for what can be derived754

in an unsound context. Our idea is to investigate the extent to which it is possible to induce755

or force soundness by modifying either the program, the property to be analysed or the756

coverage criterion. Once we have understood when and how soundness can be forced we757

should see how this interacts with incorrectness logic.758

The preliminary work done in the investigation of program and properties transformations759

towards sound dynamic analysis have pointed out many interesting aspects that need to be760

studied and that we list below as future research directions.761

The preliminary results that relate program properties, coverage criteria and the soundness762

of the analysis should be generalised and extended to properties that cannot be modelled763

as partitioning closures. Soundness of the analysis and transformation potency should764

be redefined probably in terms of join-irreducible elements instead of equivalence classes.765

This further investigation would probably lead to a classification of the properties usually766

considered by dynamic analysis based on the domain model needed to express them: properties767

of traces, properties of sets of traces, relational properties, hyper-properties. For each class768

of properties it would then be interesting to derive a suitable obfuscation strategy. This769

unifying framework would provide a common ground where to interpret and compare the770

potency of different software protection techniques in harming dynamic analysis.771

As regarding the transformation of properties towards soundness, we plan to verify if772

and when it is possible to refine the coverage criterion C in order to ensure soundness with773

respect to a given property A, or when it is possible to further abstract the semantic property774

A in order to make it sound for a given coverage criterion C. This should be done starting775

with properties that can be expressed as partitioning closures and then generalised to the776

other classes of properties.777

As regarding the transformation of programs towards soundness, it is important to778

investigate when it is possible to transform a program P for which the dynamic analysis of a779

given property A is sound (resp. unsound) into a different program P ′ which is functionally780

equivalent to P and for which the dynamic analysis of property A is unsound (resp. sound).781

It would also be important to extend the framework in order to take into account the782

feasibility of the considered coverage criterion, maybe defining some constraints that a783

program has to satisfy in order to guarantee the feasibility of a given coverage criterion, or784

by modelling and measuring situations when full coverage is not possible.785
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