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Abstract

Despite the recent deep learning (DL) revolution, kernel machines still remain

powerful methods for action recognition. DL has brought the use of large

datasets and this is typically a problem for kernel approaches, which are not

scaling up efficiently due to kernel Gram matrices. Nevertheless, kernel methods

are still attractive and more generally applicable since they can equally manage

different sizes of the datasets, also in cases where DL techniques show some

limitations. This work investigates these issues by proposing an explicit ap-

proximated representation that, together with a linear model, is an equivalent,

yet scalable, implementation of a kernel machine. Our approximation is directly

inspired by the exact feature map that is induced by an RBF Gaussian kernel

but, unlike the latter, it is finite dimensional and very compact. We justify the

soundness of our idea with a theoretical analysis which proves the unbiasedness

of the approximation, and provides a vanishing bound for its variance, which is

shown to decrease much rapidly than in alternative methods in the literature. In

a broad experimental validation, we assess the superiority of our approximation

in terms of 1) ease and speed of training, 2) compactness of the model, and 3)

improvements with respect to the state-of-the-art performance.
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1. Introduction

Action recognition is a paramount research domain in machine intelligence

and computer vision, being nowadays ubiquitous in many application domains

such as human-robot interaction, autonomous driving, elderly care and video-

surveillance, just to name a few [1]. Yet, major difficulties arise when dealing5

with videos due to general visual ambiguities such as illumination variations,

the presence of clutter/noise in the scene, occlusions or unfavorable recording

viewpoint. Moreover, the variability of action evolution, as either executed by

different human subjects or implicit in the structure of the action execution,

further contributes to complicate the classification process. Fortunately, the10

adoption of novel range sensors constitutes an effective countermeasure as they

provide alternative data to process, more robust to the above mentioned issues.

Actually, this type of sensors (e.g. Kinect) also allows to represent a given action

– other than by dense range data – as a collection of skeletal joint positions

progressing in time, through real-time algorithms [2]. Action recognition can15

thus be reformulated as the problem of classifying the multivariate time-series

P ∈ R
3J×T , which collect the three-dimensional coordinates of the J skeletal

joints positions over T temporal acquisitions.

Within the data structure P, J is fixed by the selection of the device which

acquires the joints (e.g., Kinect or VICON), while T typically changes across20

instances. Therefore, a minimal requirement for encoding this data is to be

invariant to the variability of T . Among the possible feature encoding meth-

ods (see [1] for a literature review), the symmetric and positive definite (SPD)

covariance (COV) operator guarantees this property, while also demonstrated

to score a solid performance in 3D action recognition [3, 4, 5, 6, 7]. Actually,25

in addition to properly modeling the skeletal dynamics with a second order

statistics, the COV operator is also naturally able to handle different temporal

durations of the action instances. This avoids slow pre-processing stages such

as time warping or interpolation [8], needed to “re-align” the different sequences
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before the actual classification. Moreover, performance achieved by COV-based30

methods are always comparable and sometimes superior to the one achieved by

deep learning methods [9, 10, 11, 12, 13, 14, 15, 16], which, instead, typically

require a massive amount of data and large computational power (on GPUs)

for training.

All covariance-based paradigms for action recognition can be framed as the

problem of classifying d × d data instances X. In the case of skeleton data,

d = 3J and X = 1
T−1PJP>, where J = 1

T I − 1T×T (being I the identity

matrix) is the centering matrix as defined in [17, 18]. To accomplish such task,

kernel theory [19] naturally promotes max-margin approaches in order to learn

decision boundaries maximally separating (action) classes. Interestingly, this

can be done by only evaluating a kernel function K that, in our work, is fixed

as the Radial Basis Function (RBF) Gaussian kernel:

K(X,Y) = exp

(
− 1

2σ2
‖X−Y‖2F

)
. (1)

The choice of this kernel is motivated by a set of beneficial properties, i.e., 1)35

invariance to translations, 2) isotropy and 3) infinite-smoothness. Moreover,

due to its robustness with respect to the parameter σ, it has been broadly and

effectively used in the literature for many tasks [19, 20, 21, 22, 23, 17, 24, 18].

More specifically, when applying the change of variables X = log( 1
T−1PJP>),

equation (1) becomes the log-Euclidean kernel, which, thanks to its strong the-40

oretical properties, is well suited to compare SPD matrices [25]. To this end, it

has been widely exploited in computer vision and related fields, such as action

recognition [5] or pedestrian re-identification [26], to name a few.

Unfortunately, this approach has a limited scalability, since (1) has to be

computed for each pair of examples within the training set {X1, . . . ,XN} and45

for each ordered pair across training and test sets {Y1, . . . ,YM}. This yields to

the training and test Gram matrices K(Xi,Xj) and K(Yk,Xi), i, j = 1, . . . , N

and k = 1, . . . ,M , respectively. In the case of large number of samples M

and/or N , Gram matrices are quite hard to both store and manipulate when

performing the optimization to determine the decision boundaries. For instance,50

3



if M,N ∼ 104, about 1012 products are required to perform a matrix inversion,

which will likely result in an out-of-memory error.

Such problem can be circumvented if we are able to obtain an explicitly

computable feature representation φφφ such that 〈φφφ(X),φφφ(Y)〉 equals (1), even

approximately. In fact, while a linear machine fed with φφφ is theoretically equiv-55

alent to a kernel machine (thanks to the kernel trick [19]), training a linear SVM

is scalable even in the big data regime, differently from an exact kernel SVM

[27, 28, 29]. However, despite a few approximation schemes have been proposed

[20, 21, 22, 23, 30], there is not yet a definitive answer about which performs

the best in applicative settings.60

With respect to all the problems presented above, our paper provides the

following contributions.

1. We propose a novel, explicit random feature map, which can rigorously

be interpreted as a compact approximation inspired by the exact (and infinite-

dimensional) feature encoding induced by (1).65

2. We theoretically show that, marginalizing the sources of randomness, the

proposed estimator of (1) is unbiased, and its variance has an explicit upper

bound that is i) more clearly interpretable and ii) more rapidly decreasing as a

function of the size of the approximation. These properties make our approach

more favorable with respect to competing methods in the literature [20, 21, 22,70

23, 30].

3. Our formalism is general enough to recover a previously proposed ap-

proximation scheme [6] as a particular case and, at the same time, we endow

the action recognition pipeline [7] with a theoretical background that justifies

its empirical performance.75

4. Differently to previous works [20, 21, 22, 23, 30] where feature approx-

imation schemes are tested on controlled benchmarks against the exact kernel

machine only, we perform an extensive validation against state-of-the-art ap-

proach in human action recognition from skeletal data. As the results certify,

our method guarantees a compact representation, a solid classification perfor-80

mance and a remarkable speed of training.
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The rest of the paper is structured as follows. Section 2 recaps the relevant

works in action recognition and kernel approximation. In Section 3, we dissect

the proposed approximation in formal terms. The experimental validation is

presented in Sections 4 and 5. Finally, Section 6 draws conclusions, profiles85

limitations and sketches the future work.

2. Related Work

In this Section, we discuss some of the most relevant related works in the

field of 3D human action recognition, focusing on state-of-the art approaches in

(approximated) kernel methods and feature learning.90

Kernel methods. Within 3D action recognition methods on manifolds,

a major role is played by symmetric and positive definite (SPD) matrices and,

among them, covariance operators. The latter are either extended to the infinite

dimensional case [4] or hierarchically combined in a temporal pyramid [31]. The

conceptual analogy with trial-specific kernel matrices is investigated [3, 32],95

whereas kernelized covariance can capture arbitrary non-linear relationships [5].

Alternatively, Hankel matrices proficiently model action dynamics when used

in tandem with a Hidden Markov Model [33] or a Riemannian nearest neighbors

with class-prototypes [34]. As a slightly different paradigm, the Lie group [8] and

associated Lie algebra [35] of the special Euclidean group of roto-translations100

are very effective in classifying skeletal joints temporal sequences.

However, as already mentioned, kernel methods usually do not scale up eas-

ily to big datasets due to demanding storage and computational costs. There

are various possible solutions available in the literature: smooth differentiable

approximations of kernel machine in the primal form [36], low-dimensional sub-105

spaces guided by information theoretical tools [37, 38], random projections

[39, 40, 41] or hashing [42]. Among them, instead of the exact kernel func-

tion k, an explicit feature map φ is computed, so that the induced linear kernel

〈φ(x), φ(y)〉 approximates k(x,y). Our work belongs to this class of approaches.

Within the latter proposed methods, a few works [20, 22, 23, 30], exploit the110
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formalism of the Fourier Transform. Recently, Kar & Karnick [21] have pro-

posed an approximated feature maps for dot product kernels k(x,y) = k(〈x,y〉)

by leveraging on the Taylor expansion of k.

Feature learning. The representation for skeletal joints can be learned

from the data itself. Du et al. [43] propose a hierarchy of bidirectional re-115

current neural networks to represent in a bottom-up fashion all the structural

relationships between joints in the human skeleton. Starting from legs, arms and

torso, modeled with separated networks, higher levels of the hierarchy aggregate

all parts while a final softmax layer is responsible for the final action classifi-

cation. Long-Short Term Memory (LSTM) models can be proficiently applied120

to 3D action recognition. Indeed, after the introduction of the first modern

big-size dataset for 3D action recognition from joints [9], the performance of

LSTM networks achieves the state-of-the-art level by either performing a direct

training on the raw joint coordinates of the human body [9] or implementing

the true human skeleton structure with a direct acyclic graph [10] and, eventu-125

ally, recurring to attention mechanisms [11]. Recently, multiple deep RNN [44]

and LSTM [45] have been combined in an adaptive tree-structure for hierarchi-

cal classification. Alternatively, joint trajectories are used to produce distance

maps, then converted into images to fine-tune convolutional neural networks

(CNN), which can be therefore applied for 3D action recognition [15, 16, 12].130

2.1. Originality aspects

In this work, we propose two novel approximating feature maps that are

explicitly designed for kernel machines fed with covariance operators. With

respect to previously proposed approximating schemes [20, 22, 23, 30, 21], our

method is endowed with stronger theoretical guarantees and achieves better135

performance.

When compared with state-of-the-art methods for 3D action recognition, our

method is more compact and scalable with respect to kernel methods [3, 32, 8,

5, 35] and, when compared with deep learning methods [9, 10, 15, 16, 12, 11],

our pipeline is easier and faster to train, yet reaching comparable performance.140
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This approach extends two our previous works [6, 7]. With respect to [6],

we propose an alternative strategy to deploy an approximation which improves

upon the previous method while having the same computational complexity.

Further, we extend the experimental validation to a new dataset (the large-scale

NTU RGB+D [9] benchmark) while also completing the analysis by discussing145

the computational cost. Finally, we propose a variation of the approximating

scheme of [6] such that performance can be improved while maintaining the

same computational burden. With respect to [7], we show that the architecture

thereby proposed can be framed into our theoretical analysis as a particular case.

In fact, we can interpret it as a linearization of our proposed encoding where, as150

to recover from such compression, we use a data-driven learning scheme to re-

place the random sampling of weights and boost its descriptiveness. Finally, we

extend its experimental validation on new datasets with state-of-the-art com-

parisons.

3. Approximating the RBF kernel with Kronecker products155

In this Section, we present in formal terms our original technique to approx-

imate the RBF kernel (1) by means of a low-dimensional and explicit feature

map, characterized by a random component which is ultimately responsible of

the quality of the approximation itself. Indeed, when averaging upon all the pos-

sible realization of such component, our representation approximates (1) with160

zero bias. Additionally, the variance of such estimation can be controlled by an

explicit upper bound that easily writes as a function which rapidly decreases as

the feature dimensionality increases.

3.1. Construction of the approximated feature map

Given X ∈ Rd×d and fixed a strictly positive integer ν, that corresponds to165

the feature dimensionality, our approximation is defined as follows.

Definition 1. We define a ν dimensional vector φφφkron−π(X) whose components

φkron−π,1(X), . . . , φkron−π,ν(X) are (1/
√
ν-multiplied) independent realizations
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of the following scalar function

ϕkron−π(X) =
1

σ2n

√
exp(− 1

σ2 )

ρ(n)n!
tr
(
⊗nκ=1W

(κ)>X
)
. (2)

In (2), σ > 0 defines the bandwidth of the kernel function (1), n is sampled

from any distribution ρ supported over the integers. Furthermore, the following

assumptions are made:

A.1 W(κ) are (elementwise) drawn from the distribution P with null expected170

value and standard deviation equals to the kernel’s bandwidth σ.

A.2 The d× d matrix which is inputted to ϕkron−π lies on the Frobenius norm-

unitary sphere, that is ‖X‖F = 1.

Note that the ϕkron−π(X) has two sources of randomness. First, the integer

n, which is sampled from ρ. Second, precisely nmatrices W(1), . . . ,W(κ), . . . ,W(n)
175

are sampled, so that each of their element is independently drawn from P. More

in detail, for each κ = 1, . . . , n, the transpose of W(κ) is (row-by-column) mul-

tiplied by X. Afterwards, the results of the previous operation are combined

together with a Kronecker product and, finally, the trace operator is evaluated.

For the sake of clarity, let us notice that, since the trace operator applied on180

matrix returns a scalar, ϕkron−π(X) ∈ R and φφφkron−π(X) ∈ Rν , since it stacks ν

independent realizations of ϕkron−π(X) (divided by
√
ν, which is factorized out

of the definition of ϕ only for convenience in the demonstrations). Algorithm 1

provides the pseudo-code for the construction process.

With respect to the assumptions A.1 and A.2, the first one constrains the185

distribution P. Indeed, let us notice that, in all our theoretical exposition, the

distributions ρ and P are allowed to be highly general, and we will specify them

only in the experiments when we need to numerically sample from them. For

instance, A.1 is satisfied if P = N (0, σ2), being fixed as a zero-mean Gaussian

with σ2 variance.190

Instead, A.2 is only technical and does not really represent a constraint under

an applicative point of view. Indeed, given an arbitrary input data X, we can
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Algorithm 1: Approx, by Kronecker product.

Input: A normalized d× d input matrix X, the desired feature size ν,

the probability distributions ρ over integers and P over real

numbers, the kernel bandwith σ > 0.

Output: [φkron−π,1(X), . . . , φkron−π,ν(X)]

foreach j = 1, . . . , ν do

1 Sample n according to ρ

foreach κ = 1, . . . , n do

2 Sample W(κ) ∈ Rd×d from P elementwise.

end

3 Compute the scalar π(X) = tr
(
⊗nκ=1W

(κ)>X
)

4 Return φkron−π,j(X) = σ−2n
(

exp(−σ−2)
νρ(n)n!

)1/2
π(X)

end

achieve A.2 by dividing X entrywise by ‖X‖F . Such operation is easy to perform

and it is along the line of the classical pre-processing which is applied on the data

before passing them to a kernel method - as for instance, the component-wise195

division by the standard deviation is a common preprocessing step before SVM

training [19]. If compared with similar results in [20, 22, 23, 21, 30], the assump-

tion of unitary norm for X and Y is in line with the analogous assumptions of

sampling the data from a given submanifold - with the remarkable difference

that our assumption is easy to satisfy also in an applicative domain.200

Before digging into the details of the theoretical foundation, lets us provide

the intuition behind equation (2).

3.2. Intuition behind the genesis of ϕkron−π

According to the well established kernel theory [19], the exact feature map f

associated to the RBF kernel (1) is infinite-dimensional. Still, it can be expressed205

in closed form. In fact, without loss of generality, let us assume d = 1 and, for

the sake of simplicity, let σ = 1. Consequently, we replace the matrices X,Y
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with the scalars x, y and, in such a case, the kernel function (1) rewrites as

K(x, y) = exp(− 1
2 (x− y)2).

We would like to write the exact infinite dimensional feature map x 7→ f(x)

for such RBF kernel, i.e. the exact infinite-dimensional vector f(·) such that

〈f(x), f(y)〉 = K(x, y) = exp(−(x− y)2/2) (3)

where the inner product 〈·, ·〉 is computed over the square-integrable series of

f(·). Since

exp(−(x− y)2/2) = exp(−x2/2) · exp(xy) · exp(−y2/2), (4)

we can take advantage of the Taylor expansion to obtain

f(x) =
√
e−x2

[
1, x,

x2√
2!
,
x3√
3!
, . . . ,

xn√
n!
, . . .

]
. (5)

As certified by Lagrange’s remainder formula for Taylor expansions [46], a210

good approximation of (5) is obtained by considering all the terms which are

less or equal to an arbitrary degree n. In the scalar case, these terms are exactly

n. Differently, in order to compute the products for d > 1, the terms of a given

degree n must include all the possible combinations Xα11
11 Xα12

12 · · ·X
αij
ij · · ·X

αdd
dd ,

where Xij are the components of X and αij are d2 non-negative integers such215

that
∑
ij αij = n. That is, we have to consider all the n/

∏
ij αij ! combinations,

and this has an exponential complexity with respect to d (check [47, page 39.]).

This clearly produces an exponentially-sized feature map that, as shown in [24],

is formally fine but obviously not applicable in real-world datasets. In fact, as

operative condition assumed in [24], d needs to be less than 4.220

Since the analytical pipeline inspired by Taylor’s remainder theorem is not

viable in practical pattern analysis, in this work we propose a manageable al-

ternative solution. When asked to build a ν-dimensional representation, we

repeat ν times the following pipeline. We sample n from ρ and we use n as a

pointer to index which component of (5) to sample. Then, as a surrogate tech-225

nique for computing all the possible combinations of products of degree n, we

introduce ⊗nκ=1W
(κ)>X = W(1)> ⊗X⊗ . . .W(n)> ⊗X. The latter is directly
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inspired from the technique of random rescaling, which is common practice in

random approximated feature map approaches [20, 22, 23, 30, 21], where in-

troducing random projections can be interpreted as a trick to ”recover” from230

the sparse sampling of n. In the limit case where W(κ) are identity matrices,

⊗nκ=1W
(κ)>X = X⊗n and we can find a clear analogy between scalar expo-

nentiation in (5) and Kronecker exponentiation in (2), being the latter a d× d

generalization of the former.

3.3. Unbiasedness and variance bound235

In this Section, we demonstrate that, thanks to assumptions A.1 and A.2,

once averaging upon all possible realizations of n from ρ and W(1), . . . ,W(n)

from P, we have no bias in approximating the kernel - that is, the expected

value of our 〈φφφkron−π(X),φφφkron−π(Y)〉 coincides with (1) and, at the same time,

we are able to control the variance of the estimation.240

Unbiasedness of φφφkron−π. As previously explained, an exact feature map

f is able to satisfy the equality 〈f(X), f(Y)〉 = K(X,Y). Thanks to the well

established kernel trick [19], one does not need to compute f explicitly but, in-

stead, a kernel machine can be trained by evaluating the kernel function only.

In many cases (like the one of RBF kernel (1)), computing f explicitly is im-245

possible due to its infinite dimension. Moreover, on the opposite, computing

the kernel function does not scale to big datasets, since evaluating K(X,Y)

for every X and Y has a quadratic complexity. Due to the prohibitive size of

the Gram matrices, either the training or inference stages may be simply not

computationally affordable (typically because of out-of-memory issues).250

In order to accommodate for that, we propose to replace f with a map

φφφkron−π , such that

〈φφφkron−π(X),φφφkron−π(Y)〉 ≈ K(X,Y) (6)

with the crucial difference that φφφ is explicitly computable. In other words, while

the kernel trick allows to replace the feature map f with the kernel function K,

we revert the perspective, and evaluate the kernel function with φφφkron−π , which,

11



differently from f(X), is finite-dimensional and explicitly computable. In fact,

a linear model fed with φφφkron−π is a theoretically valid estimate for the exact255

kernel machine fed with (1).

As well established in the literature that similarly proposed random approx-

imated feature maps [20, 21, 30, 22, 23], we want to demonstrate the validity

of the approximation by showing that, once averaging upon all the sources of

randomness which affect our feature map φφφkron−π , an equality holds in eq. 6.260

In other words, we want to prove the absence of biases in the approximation.

Theorem 1 (Unbiased approximation for φφφkron−π). With the previous nota-

tions, the linear kernel 〈φφφkron−π(X),φφφkron−π(Y)〉 induced by ϕkron−π is an un-

biased estimator for K(X,Y) as in (1). Indeed,

En,P [〈φφφkron−π(X),φφφkron−π(Y)〉] = K(X,Y), (7)

being the expected value jointly computed over all possible realizations of n from

ρ and of W(κ) from P, κ = 1, . . . , n.

Proof. See the Supplementary Material, Section 1.

Bound on the variance for φφφkron−π. Theorem 1 guarantees that, on265

average, 〈φφφkron−π(X),φφφkron−π(Y)〉 is a good approximation for K(X,Y), since

there is no bias. This is a strong and necessary assumption to ensure that our

statistical estimator is reliable, but it does not take into account the variance,

i.e. the quality of the approximation. Namely, even an unbiased estimator can

heavily deviate from its expected value if there are no theoretical guarantees for270

its variance. We can prove that our estimator well behaves also in this respect,

since φφφkron−π induces a linear kernel whose variance can be upper bounded as

follows.

Theorem 2 (Bound on the variance of φφφkron−π). With the previous notation,

the linear kernel 〈φφφkron−π(X),φφφkron−π(Y)〉 induced by ϕkron−π has a controlled

variance which is bounded by a linear function of the feature dimensionality ν.
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Precisely,

var [〈φφφkron−π(X),φφφkron−π(Y)〉] ≤ Cρ
ν3

exp

(
9m4(P)− 2σ4

σ8

)
where the variance is computed over all possible realizations of n from ρ and

all possible manners of sampling W(κ) from P for each κ. Cρ is defined as275

Cρ =
∑∞
n=0

1

ρ(n) · n!
and m4(P) denotes the fourth order moment of P.

Proof. See the Supplementary Material, Section 2.

If we neglect the function exp
(

9m4(P)−2σ4

σ8

)
, which is fixed after we select

P and the bandwidth σ in (1), the boundary on the variance rewrites as Cρ/ν
3.

This means that, as the feature dimension ν increases, the variance very sharply280

converges to zero as 1/ν3, i.e. our approximation converges to its expected value.

The constant Cρ may however affect the quality of this limit. For instance,

if we choose ρ to be a Geometric distribution of parameter 0 < θ ≤ 1, we have

ρ(n) = (1− θ)nθ and one can analytically obtain

Cρ =
1− θ
θ

exp

(
1− θ
θ

)
. (8)

The previous function increases and diverges for θ → 1− and θ → 0+ making

the bound potentially loose. The limit case θ ≈ 0 is very unfavorable also in in

practice: in such a case a value sampled from ρ is high with high probability

and, therefore, many Kronecker products need to be evaluated in (2). On the285

opposite side, the case θ ≈ 1 is very favorable in practical terms since n is

small with high probability and therefore the cost of computing (2) approaches

the minimal one. Further considerations on the practical choice of θ are also

reported in Section 4.4.

To conclude our discussion on the variance, we provide the following result,290

which is derived from Theorem 1 and 2 as a straightforward consequence of

Chebyshev inequality.

Corollary 1. Under the previous hypothesis, for any ε > 0 and X,Y d × d

matrices, the probability P [|〈φφφkron−π(X),φφφkron−π(Y)〉 −K(X,Y)| > ε] does not

exceed the quantity
Cρ
ν3ε2 exp

(
9m4(P)−2σ4

σ8

)
.295
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This result ensures that the probability of the undesired event

|〈φφφkron−π(X),φφφkron−π(Y)〉 −K(X,Y)| > ε

is small, since upper bounded by a quantity which is inversely quadratic in ε and

inversely cubic in ν: this means that even a small value of ν ensures the latter

probability to be small and guarantees the soundness of the approximation.

3.4. An alternative formulation

If inspecting equation (5), it would be natural to replace classical expo-300

nentiation - which works with scalars - with Kronecker exponentiation X⊗n.

However, with respect to the feature map φφφkron−π presented in the previous

Section, one may observe that ⊗nκ=1W
(κ)>X 6= X⊗n for a general distribution

of the weights (the equality would be true only if W(κ) equals to the identity

matrix I for every κ). We could thus argue that the following expression would305

be more appropriate for ϕ.

Definition 2. Using the previous notations, for any d× d matrix X we define

the scalar quantity

ϕkron−e(X) =
1

σ2n

√
exp(− 1

σ2 )

ρ(n)n!
tr(V>X⊗n) (9)

where n ∼ ρ, we still require ϕkron−e to satisfy Assumption A.2 (see Theorem

1), while also assuming

A′.1 The matrix V is the Kronecker product of n matrices of size d× d, whose

entries are drawn independently from N (0, σ2) (so are consequently the310

entries of V – see suppl. material).

A.2 The d× d matrix which is inputted to ϕkron−π lies on the Frobenius norm-

unitary sphere, that is ‖X‖F = 1.

Then, define the ν dimensional vector φφφkron−e(X) where each component is

an independent realization of ϕkron−e(X)/
√
ν. The explicit steps to compute315

φφφkron−e(X) given X are enumerated in Algorithm 2.
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At a first glance, equation (9) seems closer to an arbitrary component of the

exact feature map (5). This is because, as opposed to (2), the exponentiation

operator for scalars is here directly replaced with the Kronecker exponentia-

tion for matrices. Again, as for φφφkron−π , we introduce some random weights –320

here, denoted by V in order to accommodate for the compression generated by

approximating an infinite dimensional vector.

For what concerns the assumptions, A.2 was also hypothesized in Section 3.3

and can be considered as a simple pre-processing step where each entry of the

data X is divided by ‖X‖F .On the contrary, if we compare A.1 with A’.1, we find325

a remarkable difference. In fact, A.1 was only constraining the mean and vari-

ance of the distribution P. Differently, A’.1 not only constrains the probability

distribution to be Gaussian but, additionally, we have to explicitly assume that

V factorizes as the Kronecker product of n variables. Indeed, despite φφφkron−e

seems more naturally close to the exact feature map than φφφkron−π , it needs330

the more restrictive assumption A′.2. Without the latter, it is impossible to

prove any theoretical result about the approximation 〈φφφkron−e(X),φφφkron−e(Y)〉

for (1). The reason for that is extremely technical and we illustrate it in the

Supplementary Material, Section 4.

It is straightforward to see that Definition 2 actually corresponds to the335

generalization to the kernel (1) of the approach in [6], which is instead explicitly

devised for the log-Euclidean kernel of covariance operators. Here, in fact, X

and Y can be generic d × d data structures. Ultimately, we can state that the

approximation devised in [6] is a particular case of φφφkron−e, which, in turn, is a

reformulation of φφφkron−π . We can also prove what follows.340

Theorem 3 (Unbiased approximation and bound on variance for φφφkron−e). Un-

der the assumptions A′.1 and A.2, the linear kernel 〈φφφkron−e(X),φφφkron−e(Y)〉 in-

duced by ϕkron−π is an unbiased estimator for K(X,Y) = exp(− 1
σ2 ‖X−Y‖2F ).

Actually it results

En,V [〈φφφkron−e(X),φφφkron−e(Y)〉] = K(X,Y), (10)

being the expected value jointly computed over all possible realizations of n from
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Algorithm 2: Approx, by Kronecker exponentiation

Input: A d× d input matrix X, the desired feature size ν, the

probability distributions ρ over integers and P over real

numbers, the kernel bandwith σ > 0.

Output: [φkron−e,1(X), . . . , φkron−e,ν(X)]

foreach j = 1, . . . , ν do

1 Sample n according to ρ

2 Sample V as the Kronecker product of n random d× d matrices,

each of the independently sampled from P ;

3 Compute the scalar e(X) = tr
(
V>X⊗n

)
4 Return φkron−e,j(X) = σ−2n

(
exp(−σ−2)
νρ(n)n!

)1/2
e(X)

end

ρ and of the weight matrix V.

In addition, the variance of the proposed estimator is explicitly bounded ac-

cording to the following inversely-cubic function of ν,

varn,V [〈φφφkron−e(X),φφφkron−e(Y)〉] ≤ Cρ
ν3

exp

(
3− 2σ2

σ4

)
.

Proof. See the Supplementary Material, Section 4.

As a corollary, for any X,Y and ε > 0,

P [|〈φφφkron−e(X),φφφkron−e(Y)〉 −K(X,Y)| > ε] ≤ Cρ
ν3ε2 exp

(
3−2σ2

σ4

)
,

ensuring that the proposed feature map is almost always approximating the

desired kernel function in a reliable manner.345

3.5. The perceptron heuristics

So far, n was randomly sampled from the distribution ρ. However, for both

φφφkron−e and φφφkron−π , sampling big values of n increases the number of Kronecker

products to be computed and this impact on the computational cost of the

method which will be discussed in Section 4.4.350
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In this Section, we want to investigate the case where, in order to circumvent

the previous issue, we fix n = 1 in a deterministic manner. This makes (2) and

(9) formally identical and corresponds selecting only the component of degree 1

in (5). In these terms, we can interpret it as a linearization of the exact feature

map associated to the RBF kernel function (1).355

Intuitively, the randomness in n can lead to “explore” all the infinite compo-

nents in the exact feature map f(X) in order to accumulate enough patterns in

φφφkron−e and φφφkron−π to properly approximate the RBF Gaussian kernel. Impos-

ing n = 1 can be instead thought of as a sort of linearization as to approximate

f(x) in (5). In such a case, there is clearly a little room for the weights W(κ)
360

to help recovering from the compression. Therefore, as an opposed paradigm

to randomly sample the weights, we can try to learn them in a data-driven

fashion, in order to promote class-disambiguation. In fact, since our ultimate

goal is accomplishing the action recognition task, the perspective of learning

from the data itself seems appealing, especially due to the recent outstanding365

performance of (deep) feature learning methods [9, 10, 15, 16, 12, 11, 7].

Motivated by the previous considerations, we are now interested in learning

the weights of ϕkron−π from data. We propose to do so by taking advantage of

the formal analogy between ϕkron−π and the hidden layer of a perceptron. Since

n = 1, we only have W(1) = W in (2) and we can also write

ϕkron−π(X) ∝ tr(W>X) = 〈W,X〉F = vec(W)>vec(X). (11)

As a result, if we denote as WWW the ν×d2 matrix which stacks by rows all the

parameters W = W(1) of each independent realization of ϕkron−π , we get that

φφφkron−π(X) = WWWvec(X)> (12)

meaning that φφφkron−π actually computes the hidden representation of a (1-layer)

perceptron fed with (the vectorization of) X as data. Furthermore, a squeezing

non-linearity (such as tanh or sigmoid) function on top of (12) can be actually

interpreted as a sort of data normalization which is a good practice before SVM370

training. Since the latter can be implemented in a neural network by means of
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Algorithm 3: The perceptron heuristics.

Input: A d× d input matrix X, a training set D of d× d matrices, the

desired feature size ν, the probability distributions ρ over

integers and P over real numbers, the kernel bandwith σ > 0.

Output: The ν-dim feature map φφφP(X)

1 Learn ν × d2 weight matrix WWW from the hidden layer parameters of the

architecture of [7] trained on D.

2 Return φφφP(X) as the multiplication of WWW by the vectorization of X.

a hinge loss with weight decay, we can therefore establish a connection between

our paradigm φφφkron−π + linear SVM and a feed-forward perceptron, having one

hidden layer of size ν, with sigmoid non-linearities and hinge loss with weight

decay for final classification.375

Let us summarize the previous findings. Consider φφφkron−π , set n = 1 and,

instead of a random sampling, learn the weights W = W(1) for each ϕkron−π-

component from the hidden layer of the architecture composed by a supervised

feed-forward perceptron with sigmoid as non-linearities and cross entropy loss.

Then, use the network to extract the feature map, that we term φφφP, and use380

it in combination of a linear SVM. This can be interpreted as a deterministic

implementation of ϕkron−e and ϕkron−π where random weights’ sampling is re-

placed with their data-driven optimization. (see the Supplementary Material,

Section 5, for further details).

In Section 5, we will validate the previous heuristics of replacing φφφkron−π as385

given by Algorithm 1 with the map φφφP which is computed according to pseudo-

code presented in Algorithm 3.

4. Experimental results: evaluation vs. other approximations

In this Section we will present our experimental validation of φφφkron−π , φφφkron−e

as well as the perceptron heuristics φφφP. To begin with, we will describe the390
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benchmark datasets adopted and explain the data preprocessing that we carried

out.

4.1. 3D action recognition datasets and preprocessing

We present here all the datasets considered for the experiments, namely

UTKinect [48], Florence3D [49], MSR-Action-Pairs (MSR-pairs) [50], MSR-395

Action3D [51], Gaming-3D (G3D) [52], HDM-05 [53], MSRC-Kinect12 [54] and

NTU RGB+D [9].

We follow usual training and testing splits proposed in the literature. For

Florence3D, G3D, and UTKinect, we use the protocols of [8, 35, 34]. For MSR-

Action3D, we adopt the splits originally proposed by [51]. On MSRC-Kinect12,400

once highly corrupted action instances are removed as in [31], training is per-

formed on odd-index subject, while testing on the even-index ones. On HDM-05,

the training split exploits all the data from the “bd” and “mm” subjects, being

“bk”, “dg” and “tr” left out for testing [3]. To be consistent with the literature,

we replicated the 14 classes experiments (HDM-0514) as in [3, 5]. When dealing405

with the whole dataset (HDM-05all), since some of the total classes are missing

from the training/testing splits, we adopted the protocol of [55] to partition

the dataset into 65 action classes. For NTU RGB+D, we followed the authors’

instructions 1 in removing the most corrupted instances, also purging the trials

with missing joints recordings. Finally, we replicated both the cross-subject and410

cross-view testing protocols proposed in [9], denoting them as NTU-×-subject

and NTU-×-view.

In all experiments, as a common data pre-processing step [8, 33, 35, 34, 9,

5, 32, 10], we fix one root joint (the one located at the hip center), and we

compute the relative differences of all the other J − 1 3D joint positions. By

doing this at any timestamps t = 1, . . . , T we obtain a 3(J − 1)-dimensional

(column) vector p(t) of relative displacements. As the representation for data

1https://github.com/shahroudy/NTURGB-D#samples-with-missing-skeletons
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instance [p(1), . . . ,p(T )], we compute a covariance matrix

C =
1

T − 1

T∑
t=1

(p(t)− µ)(p(t)− µ)>, (13)

being µ = 1
T

∑T
t=1 p(t) the temporal average of p(t). Finally, the input repre-

sentation for our approximated feature map is obtained as

X = log C = Udiag(log(ς))U>, (14)

being ς the vector of eigenvalues (eventually regularized by an additive factor

as in [17]) and U the matrix of eigenvectors of C. Finally, since the log of a

symmetric matrix is symmetric, in order to avoid to process identical entries415

twice, we zero out all the lower triangular entries in X before dividing by ‖X‖F .

4.2. Implementation details

The implementation for φφφkron−π , φφφkron−e and φφφP, is in MATLAB, and is

based on the pseudo-code of Algorithms 1, 2 and 3, respectively2.

For both φφφkron−π and φφφkron−e, we fixed the distribution ρ to be a Geometric420

with parameter 0.9 - a full justification fro this choice is provided in Section 4.4

- and P = N (0, σ2) is a Gaussian distribution. We carried out experiments for

ν = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 and we averaged among 10 rep-

etitions of each experiment, to account for the random nature of the approach.

For φφφP we used the architecture of [7] which is also fed with log-projected co-425

variance representations. With such input we trained a one-hidden layer percep-

tron with sigmoid non-linearities and cross-entropy loss using scaled conjugate

gradient descent for all datasets except to the NTU RGB+D, for which we used

ADAM optimizer with mini-batches of size 1024. The size of the hidden layer

was cross-validated among 102, 103, . . . , 109 as the one which gives the lowest430

objective value. Once the network is trained, we extracted the parameter of the

hidden layer and built φφφP as in Algorithm 3. For all cases - φφφkron−π , φφφkron−e

and φφφP - we use the linear SVM implementation of [27].

2We used MATLAB R2017a installed on an Intel Xeon(R) CPU E5645 @2.40GHz, 12 cores,

with 12GB RAM.
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4.3. Comparing the bounds on the variance

A direct comparison among the bounds of the variance between the proposed435

approximations φφφkron−π,φφφkron−e and the previous approaches [20, 22, 23, 30, 21,

24, 6] is tricky because the theoretical foundation of each approximation is

approached in different manners. Indeed, [24] does not rely on a probabilistic

framework, but instead, proposes a simple truncation of the feature map (5).

Despite this allows the relative error between the exact and the approximated440

kernel to be explicitly bounded, the method [24] is only applicable in a case of

a small d (see Section 4.4).

Other probabilistic frameworks as [20, 22, 23, 21] also provide an analogous

result of Corollary 1. However, the probability P[|〈φφφ(X),φφφ(Y)〉−K(X,Y)| > ε]

has only a weaker O(1/(νε2)) behavior. Moreover, while considering the analo-445

gous approximated feature maps of [20, 22, 23, 21], the previous result holds only

provided that X and Y lie on a common sub-manifold. Despite we analogously

assume that X and Y have unitary norm, our requirement is easier to satisfy in

practice and less restrictive. Moreover, ancillary conditions are needed in those

works to achieve results of the form P[|〈φφφkron−π(X),φφφkron−π(Y)〉−K(X,Y)| > ε]450

and P[|〈φφφkron−e(X),φφφkron−e(Y)〉−K(X,Y)| > ε], while, differently, the assump-

tions we made are much milder.

In addition, [30] and [6] also provide a strong theoretical foundation sim-

ilar to ours. Indeed, in [30], the proposed approximation gives an unbiased

estimation of (1) and its variance is bounded a O(1/ν) function. In our case,455

however, the variances of the approximations φφφkron−π and φφφkron−e are bounded

by O(1/ν3) and are therefore more rapidly decreasing to zero, ensuring a better

approximation for a fixed ν. Finally, the quality of the approximation of [6]

is comparable - no bias and O(1/ν3) decreasing variance. This is reasonable

because, as we proved, [6] is a particular case of our approximation φφφkron−π .460

4.4. Computational cost

Interestingly, we can observe one common trend which is shared across all the

approaches [20, 22, 23, 21, 6]: in computational terms, the number of products
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required for computing one component of the feature map is linear with respect

to the data dimensionality (which is O(d2) since log-covariance d×d matrices are465

used as input). Among the previously published works, two papers are different:

[30] achieves a log-linear complexity, while, unfortunately, [24] has exponential

complexity with respect to the data size: this is the reason why we were not

able to include [24] among the methods in comparison.

Thus, the cost of calculating tr(⊗nκ=1W
(κ)>X) =

∏n
κ=1 tr(W(κ)>X) (in the470

computation of φφφkron−π) is linear in both the input data dimensionality and in

n. Similarly, the same holds for φφφkron−e, thanks to the factorization assumption

A′.1.

Despite such linear dependence from n may appear as a drawback, we can

take advantage of the freedom in choosing ρ in order to keep n small. Indeed,475

throughout all the experiments, either involving φφφkron−π or φφφkron−e, we fixed

ρ as a Geometrical distribution of parameter θ = 0.9. This ensures that the

probability of sampling high values of n from ρ is practically zero. Indeed,

through analytical computations, we can also notice that, for each realization

of ϕkron−π or ϕkron−e, P(n > 3) = 0.04.480

This makes the computational cost of our approach substantially in line with

that of other works[20, 22, 23, 21, 6]. Practically, in terms of computational

running times, it means that, by either using φφφkron−π or φφφkron−e to produce

a ν = 100 dimensional feature representation, we can process 5-10 instances

per second (a more detailed list of results is available in the supplementary485

material).

4.5. Analysis of action recognition performance

Despite [20, 22, 23, 30, 21, 24, 6] are applicable to a RBF kernel function

(1), to the best of our knowledge there is no clear evidence of which method is

more effective for classification. Indeed, despite all methods ensure scalability490

in the big data regime, there is no clear understanding about which method

gives superior performance and, in general, how a good feature dimensionality

ν should be chosen in practice. Here, we try to answer this question with
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Figure 1: Mean classification accuracy plots averaged over 10 random sampling of the approx-

imating schemes. Check the supplementary material, where the remaining plots are reported.

Best viewed in colors.

a detailed validation on 3D action recognition benchmarks, while the feature

dimensionality ν assumes one of the following values: 10, 20, 50, 100, 200,495

500, 1000, 2000, 5000. We report the results of this analysis in Figures 1 for

a few exemplar dataset: the overall trend is confirmed also in the remaining

benchmarks as one can see in the supplementary material.

As common trend, we observe that accuracy grows while ν increases. This it

theoretically reasonable because φφφkron−π and φφφkron−e, as well as the alternative500

methods [20, 22, 23, 30, 21, 24, 6] are guaranteed to provide a better approx-

imation for a bigger ν. For our method is the very same: since the bound on

the variance is O(1/ν3), when ν →∞, we converge towards the expected value
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of our approximation which is the exact kernel function.

As another piece of evidence for correctness of the approximations, we can505

notice that with a feature dimensionality ν ≥ 1000, the performance of each

single method is close to the remaining ones and, globally, they are able to mimic

the classification accuracy of an exact kernel machine: when ν > 500, 1000, we

observe a plateau of accuracies since all methods tend to approach the horizontal

asymptote given by the exact kernel method (black dotted line).510

However, we can observe an interesting pattern which is, in general, common

to all datasets for the case ν < 200: at low feature dimensionality (such as 10 or

20), the proposed approximations φφφkron−π and φφφkron−e are remarkably superior

in performance with respect to all other competitors which are outperformed by

margin. For instance, +10% on Florence3D for ν = 10, +14% on MSR-Action3D515

for ν = 20, +9% on G3D when ν = 50 and more than +10% on HDM-05all

when ν = 100. Such superiority can be explained by considering the fact that,

in our paper, we explicitly provide an upper bound on the variance, as only few

methods in the literature do. Consequently, our method is remarkably faster

in recovering the original kernel function when increasing the dimensionality of520

the approximated feature map.

As anticipated, an interesting collateral result of our work consists in the

possibility to compare the previously proposed methods [20, 22, 23, 30, 21]

within a common benchmark in which we monitor the deviation in performance

of the various approximations with respect to the exact kernel machine. In fact,525

despite [30] shows a solid performance which is always able to match the exact

kernel machine and all the other competitors, such approach is limited by the

impossibility to obtain a low-dimensional feature representation. Differently,

the Fourier [20, 22, 23] and Taylor-based methods [21] show an oscillating per-

formance where, frequently, one outperforms the other, even by margin. In this530

respect, the solidity of our methods, which is always top scoring, can be con-

cretely appreciated as an advantage in terms of both compactness and superior

classification performance.
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5. Experimental results: state-of-the-art benchmarks in 3D action

recognition535

In this Section we will compare our proposed approximating schemes ϕkron−e

and ϕkron−π not only with previously proposed approximations [20, 22, 23, 30,

21], but also against state-of-the-art approaches for 3D action recognition from

skeletal data. Additionally, we will provide the results obtained through our

proposed perceptron heuristics φP.540

Before presenting the results, we will briefly discuss the methods involved in

the comparison, both kernel methods and feature learning-based approaches.

Kernel methods. We compare against the Fisher vectors-based encoding

of [56] and the Lie group representation [8] and related Lie algebra embedding

[35] of rototranslations. We also compare against the combination of multiple545

non-linear RBF kernels (Ker-RP-RBF) [3], the sequence and dynamics compat-

ibility kernels (SCK + DCK) [32] and Hankel matrices combined with either

HMM (H-HMM) [33] or geodesic nearest neighbors method with class-protypes

(H-prototypes) [34]. Also, we consider the nearest neighbor classification per-

formed in [57] through a spatio-temporal Bayesian kernel similarity. Since our550

approach is covariance-based, we benchmark the temporal pyramid of covariance

descriptors (t-COV-pyramid) of [31], Bregman-divergence [4] and the kernelized

covariance operator (Ker-COV) [5]. Despite [18] applies a similar approximated-

covariance paradigm, the published results only pertain to image classification.

For completeness, we run the original code and applied it to 3D action recogni-555

tion, denoting with rnd-logHS and QMC-AlogHS the approaches which exploit

either random sampling or Quasi-Monte Carlo integration.

Feature learning approaches. We compete against the following recur-

rent architectures: the RNN fed on the raw joints data (J-RNN) [9] with its

body part-aware variant [43] and we consider Long-Short Term Memory units560

fed by either raw joints (J-LSTM) [9] and its improvements J-LSTM-a [10] and

J-LSTM2-a [11], which adopt either a shallow or a deep attention module, re-

spectively. We compare against the ensemble of deep models given by RNN-tree
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Florence3D? UTKinect MSR-Action3D? MSR-Action3D

SCK [32] 92.98 96.1 90.72 93.5

DCK [32] 93.03 97.5 86.30 91.7

SCK+DCK [32] 95.23 98.2 91.45 94.0

φφφP (proposed) 97.25 98.3 96.30 97.4

Table 1: Classification accuracies [%] of φφφP against [32]. Best results are bold and underlined,

the symbol ? indicates that we used the alternative training/testing split adopted in [32].

[44] and TSLSTM [45]

We consider the architectures proposed in [13] and [14] which embed a struc-565

tured input data matrix within a deep net: [13] trains a deep neural network

on top of covariance matrices (SPD-Net) and [14] trains on top of rotation ma-

trices. We also compete against LieNet-3B, the 3 blocks configuration that is

superior to other investigated in [14].

Also, we benchmark our approach against a few other methods which com-570

putes dynamic images (DI), image-like data structures from the joint data to

encode the kinematics, and exploit them to train a convolutional neural network.

Namely, we consider the J-DIE-CNN [15] that exploits the Euclidean distance

function between joints, J-DIθ-CNN [16] that extract DI from rototranslational

representations and J-DIv-CNN [12] that does the same from velocities, approx-575

imated with finite differences.

At the same time, we report the best performance obtained from Figures 1

related to the Hadamard- [30], Fourier- [20, 22, 23] and Taylor-based approxi-

mations [21], that we indicate with H-approx, F-approx and T-approx, respec-

tively. Ancillary, we also compare with our proposed approximated feature maps580

φφφkron−e and φφφkron−π .

The results are reported in Table 2, except for the comparison φφφP versus [32]

which is presented in Table 1 due to the different experimental protocol adopted

from [32].
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Florence3D MSR-pairs G3D

H-approx [30] 85.5 72.8 83.8

F-approx [20][22][23] 83.4 72.2 83.4

T-approx [21] 84.2 73.6 84.6

φφφkron−e (proposed) 84.9 73.1 83.9

φφφkron−π (proposed) 84.3 73.7 83.8

rnd-LogHS [18] 88.1 79.4 87.8

QMC-logHS [18] 88.5 79.5 89.5

J-diff-DI-CNN [12] – 90.3 –

LieNet-3B [14] – – 89.1

Lie Group [8] 90.7 91.4 91.1

Lie Algebra [35] 91.4 94.7 90.9

φφφP (proposed) 91.2 95.5 93.0

MSRC-Kinect12 HDM-05all

H-approx [30] 92.4 63.7

F-approx [20][22][23] 92.2 64.0

T-approx [21] 92.8 62.0

φφφkron−e (proposed) 92.3 65.0

φφφkron−π (proposed) 95.6 66.5

t-COV-pyramid [31] 89.2 –

Bregman-div [4] 89.9 58.2

Ker-RP-RBF [3] 92.3 66.2

J-DIE-CNN [15] 93.1 −

Ker-COV [5] 95.0 –

rnd-logHS [18] 97.1 58.1

QMC-logHS [18] 96.2 60.2

SPD-net [13] – 61.4

φφφP (proposed) 98.5 72.0

NTU-×-subject NTU-×-view

H-approx [30] 51.5 50.6

F-approx [20][22][23] 50.7 50.6

T-approx [21] 50.8 51.0

φφφkron−e (proposed) 50.7 49.4

φφφkron−π (proposed) 54.0 54.1

Fisher Vectors [56] 38.6 41.4

Lie Group [8] 50.1 52.8

J-RNN [9] 56.3 64.0

J-RNN-parts [43] 59.1 64.1

LieNet-3B [14] 61.4 67.0

J-LSTM [9] 60.7 67.3

J-LSTM-a [10] 69.2 77.7

J-DIE-CNN [15] 73.4 75.2

J-LSTM2-a [11] 74.4 82.8

TS-LSTM [45] 74.6 81.3

RNN-tree [44] 74.6 83.2

J-DIθ-CNN [16] 76.2 82.3

J-DIv-CNN [12] 79.6 84.8

φφφP (proposed) 60.9 63.4

MSR-Action3D HDM-0514 UTKinect

H-approx [30] 88.4 89.2 83.9

F-approx [20][22][23] 88.2 88.6 84.0

T-approx [21] 89.6 88.9 84.0

φφφkron−e (proposed) 89.5 89.6 84.4

φφφkron−π (proposed) 89.9 89.9 84.0

t-COV-pyramid [31] 74.0 91.5 –

H-HMM [33] 89.0 – 86.8

rnd-logHS [18] 91.5 88.5 89.7

QMC-logHS [18] 90.6 85.4 91.3

H-prototypes [34] 94.7 86.3 100

TS-LSTM [45] – – 97.0

J-LSTM [10] 94.8 – 97.0

Ker-RP-RBF [3] 96.9 96.8 –

ST-BNN [57] 94.8 – 98.0

Ker-COV [5] 96.8 98.1 –

φφφP (proposed) 97.4 99.1 98.3

Table 2: Classification accuracies [%] for 3D action recognition. For each table, the top part

present the performance achieved by φφφkron−π and φφφkron−e against other alternative approxi-

mating schemes [20, 22, 23, 30, 21]: within this class of methods, the best accuracy is high-

lighted in bold. At the same time, in the bottom part of each table, φφφP is compared against

state-of-the-art approaches and, among them, the best performance is marked by bold and

underlined. All the performance achieved by methods proposed in this paper (φφφkron−π,φφφkron−e

and φφφP) are in italic.
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5.1. Discussion585

In Section 4.5, we primarily compared the proposed mapsφφφkron−e andφφφkron−π

among alternative approximating schemes for different ν values. In Table 2, in-

stead, we can monitor the performance of this class of approximating methods

in absolute terms while comparing among methods which have been explicitly

designed for 3D action recognition.590

First of all, we can notice that our approximation is able to improve upon ex-

isting approximating schemes [20, 22, 23, 30, 21] which apply general theoretical

frameworks (Bochners Theorem and Fourier analysis in [20, 22, 23, 30] and gen-

eral properties of a broad family of kernel functions in [21]) to carry out kernel

approximation in a top-down fashion. Differently, by means of our bottom-up595

approach which is directly tailored on the specific kernel function that we care

of approximating, we ultimately maximize performance and compactness.

In certain cases, φφφkron−e and φφφkron−π are better than methods which have

been explicitly designed for action recognition. It is important to remind here

that, in theory, those approximations hold for any type of d × d data input.600

For instance, on MSR-Action3D, φφφkron−e and φφφkron−π improves [31] by about

+15% and, on the NTU RGB+D dataset with the cross-subject protocol, the

performance of [8] and [56] is improved by +4% and +16%, respectively. Even-

tually, on the NTU-×-subject, the performance scored by φφφkron−e and φφφkron−π is

almost on par with respect to the deep recurrent neural networks J-RNN and J-605

RNN-parts [43, 9]. Furthermore, in the middle data regime of MSRC-Kinect12

and HDM-05all, φφφkron−e and φφφkron−π (and, in general, all the other approxi-

mated feature maps hereby considered) are scoring better than [31, 4, 3, 15] on

MSRC-Kinect12. For what concerns HDMall, φφφkron−π is even able to beat by

5% the state-of-the-art deep learning method SPD-net [13]. Such trend can be610

motivated by the fact that, in the middle data regime (∼ 104 samples), the data

instances are sufficiently rich to allow learning satisfactory decision boundaries

in a max margin sense, whereas they are not enough to effectively train deep

models due to their over-parametrization.

While moving from either φφφkron−e or φφφkron−π to φφφP, we always observe a615
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growth in performance, the latter being about +2% in the worst case and

about +22% in the best one. Precisely, in the small data regime, we improved

previously published state-of-the-art classification results by +0.5% on MSR-

Action3D, +0.8% on MSR-pairs, +1% on HDM-0514 and by +2.1% on G3D.

At the same time, the gap in accuracy between φφφP and φφφkron−e,φφφkron−π620

grows as the size of the dataset increases: such correlation is clearly a matter of

the well known fact that feature learning benefits from more data. Again, the

middle data regime seems the ideal operative setting for φφφP, since, to the best of

our knowledge, the previously published state-of-the-art performance on MSRC-

Kinect12 by +2.3% (with respect to Ker-RP-RBF [3]) and by +10.6% on HDM-625

05all. All in all, we explain such trend by observing that φφφP by rinterpreting φφφP

as a sort of linearized version of the schemes φφφkron−e,φφφkron−π , where the random

sampling of weights is replaced by back-propagation learning.

On the NTU RGB+D experiments, φφφP improves (by margin) Fisher vectors

[56], Lie group representation [8] as well as the deep J-RNN and J-RNN-parts630

on the NTU-×-subjects. However, when comparing with the performance of

LSTM- and CNN-based methods, φφφP shows a suboptimal performance. This

trend can be justified in two ways.

On the one hand, we are applying a shallow architecture with just one hidden

layer while, for instance, J-DIv-CNN and JCNN2 uses multiple deep convnets635

in parallel and J-LSTM2-a conditions a deep LSTM on the output of another

deep LSTM network.

On the other hand, all LSTM-based methods and J-DIv-CNN access all the raw

coordinates for each given timestamps: therefore, since we train the architecture

of [7] on covariance matrices, we can say that we are using much less data that640

are reduced by a factor of approximatively 1/100, being 100 the typical temporal

length for the sequences on the NTU RGB+D dataset.

Despite the previous two points are a drawback in terms of classification

accuracies, they results in the following operative advantages.

First, since the architecture of [7] is shallow, there is no need for GPU accelera-645

tion neither for inference (which is nevertheless real-time), nor for the training
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stage (which, even on CPU, only lasts less than one hour, as opposed to one

day, for instance, for the LSTM networks to be trained [11]). Therefore, our

system achieves a clear portability for deployment in real-world applications

that requires real-time and scalable recognition capabilities.650

Second, our representation is very compact: the experiments reported in Table 1,

we are able to always overcome SCK and DCK in performance, even using a fea-

ture representation which is about 100 times more compact. Even on the NTU

RGB+D dataset, we train the coefficients of the support vectors on top of the

hidden representation of [7] where its size is fixed to 28. Having only two sets of655

weighted elements is a very favorable operative condition as opposed to stacking

several convolutional layers [15, 16, 12] or allocating high-dimensional tensors

for back-propagating through times and train the architectures of [43, 9, 10, 11].

This certifies in empirical terms the benefits of learning instead of sampling

weights since although being a simple heuristics, the improvements in perfor-660

mance justifies the soundness of our proposed φφφP.

6. Conclusions & future work

This paper presented φφφkron−π a novel approximation scheme for the RBF

kernel function, which was shown to be superior to other approximations [20,

22, 23, 30, 21] in terms of better variance bound and classification accuracy,665

being the computational cost almost equal.

In a broad experimental evaluation among state-of-the-art competitors over

publicly available action recognition datasets, our method generally assesses its

superiority in terms of classification accuracy. Such favorable performance is also

obtained by means of a very compact model, that is characterized by a simple670

& fast training procedure, especially if compared to deep learning methods.

We opted for a trade-off (ρ to be Geometric distributed of parameter θ = 0.9)

which slightly penalizes variance in favor of computational efficiency, but with

practically no impact on classification performance.

As future work, we aim at investigating a couple of topics. In theoretical675
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terms, We will try to devise an improved bound on the variance, while, from the

application standpoint, we want to apply our approximation to other computer

vision tasks, such as object categorization.
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