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Extracellular vesicles (EVs) are membrane-coated particles secreted by virtually all cell types in response
to different stimuli, both in physiological and pathological conditions. Their content generally reflects
their biological functions and includes a variety of molecules, such as nucleic acids, proteins and cellular
components. The role of EVs as signaling vehicles has been widely demonstrated. In particular, they are
actively involved in the pathogenesis of several hematological malignancies (HM), mainly interacting
with a number of target cells and inducing functional and epigenetic changes. In this regard, by releasing
their cargo, EVs play a pivotal role in the bilateral cross-talk between tumor microenvironment and can-
cer cells, thus facilitating mechanisms of immune escape and supporting tumor growth and progression.
Recent advances in high-throughput technologies have allowed the deep characterization and functional
interpretation of EV content. In this review, the current knowledge on the high-throughput technology-
based characterization of EV cargo in HM is summarized.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Extracellular vesicles (EVs) include a heterogeneous group of
membrane-coated particles, with a size ranging from 15 nm to
10 mm, released by several types of cells in both normal and patho-
logical conditions, including tumors [43]. According to their size,
shape, and biogenesis, EVs are subclassified into exosomes (Exo,
20–150 nm), microvesicles (MVs, 50–1000 nm), and apoptotic bod-
ies (50–5000 nm). The term ‘‘oncosomes” (up to 10 lm) has been
used to describe small and large EVs released by cancer cells [50].
While exosomes are formed by inward budding of endoplasmic
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reticulum, microvesicles derive from the outward budding of
plasma membrane [16,26].

Several factors can induce EVs release from normal or tumor
cells, including microenvironmental signals, oxygen tension or
intracellular Ca2+ concentrations [22]. EVs cargo generally reflects
parental cells and includes proteins, lipids, and nucleic acids, but
also metabolites and cellular organelles [20,60,72]. EVs act as cel-
lular signaling vehicles and exert pleiotropic effects on target cells
either through direct interaction with cell surface receptors or by
releasing their cargo into the recipient cells. Once inside their tar-
get cells, EVs can induce functional and epigenetic changes, influ-
encing different physiological and pathological processes and
exerting immuno-regulatory effects by acting as both immune
suppressors and stimulators [7,64,73,84,88].

In the context of hematological malignancies (HM) there is
growing evidence of the capacity of tumor EVs to favor the cross-
talk between tumor cells and bone marrow (BM) microenviron-
mental cells, thus enhancing tumor growth and proliferation; nev-
ertheless, the underlying molecular mechanisms are still unclear
[2,7,51]. EVs derived from malignant cells may suppress normal
hematopoiesis, thus contributing to the formation of leukemia-
modified niches. Furthermore, the immunomodulatory effect of
EVs is involved in the mechanisms of immune escape adopted by
neoplastic cells [6,63]. EVs exert their effects to target cells by deliv-
ering different bioactive molecules including growth factors,
cytokines and chemokines, enzymes and other genetic materials
[33]. Amongst them, microRNAs (miRs), which are non-coding
single-stranded RNAs of approximately 19–24 nucleotides in
length, are significantly represented in tumor-released EVs. In par-
ticular, aberrant levels of tumor-derived exosomal miRs have been
reported in patients affected by HM, confirming their pathogenetic
role [8]. Of note, because a single miR regulates multiple gene tar-
gets, the deregulation ofmiRsmay lead to awide range of transcript
alterations andmaymodulate several molecular pathways [74–75].

Recent studies suggested that miRs are also involved in drug
resistance, mainly by downregulating apoptotic genes or impairing
cell differentiation [82].

In addition, long non-coding RNAs (lncRNAs) have emerged
recently as essential gene regulators, with much evidence of their
involvement in cancer development and progression. Unlike miRs,
lncRNAs display high cell and tissue specificity, thus being suitable
for diagnostic and prognostic purposes [12,52,86].

High-throughput technologies, including mass spectrometry-
based approaches and next-generation sequencing, have permitted
a deep characterization of EVs content by identifying a variety of
miRs, lncRNAs and other molecules acting as potential disease
biomarkers and putative therapeutic targets [69].

The aim of this review is to discuss the recent data regarding the
functional role of EVs in HM, with a particular focus on multiple
myeloma (MM), chronic lymphocytic leukemia (CLL), and acute
myeloid leukemia (AML).
2. High-throughput technologies, analysis and data
interpretation of EV-associated molecules

EVs are considered a sub-repertoire of the cell of origin, because
they can store various proteins, mRNAs, miRs, and lncRNAs,
depending on the cell of origin; therefore, they can be exploited
as rich reservoirs of disease biomarkers that can be released into
body fluids. For this reason, the detection of tumor-derived exo-
somes (TEX) via blood tests are provided with clinical potential,
offering a more comprehensive assessment of cancer diagnosis,
prognosis, and progression [41,70].

The vast majority of the studies employed global high-
throughput analyses to dissect EVs content even starting from a
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tiny material, thus identifying the genomic, transcriptomic, pro-
teomic, lipidomic, and metabolomic profiles of EVs and leading
to a massive generation of EV-related OMICS data that are now
available in literature and in different free-to-use web databases.
Among these, ExoCarta (http://www.exocarta.org), Vesiclepedia
(http://www.microvesicles.org), and EVpedia (http://evpedia.info)
include an integrated database of high-throughput datasets from
both prokaryotic and eukaryotic vesicles. EVpedia also provides
an array of tools for global analysis of EVs content, such as Gene
Ontology analysis, network analysis of vesicular proteins and
mRNAs, and a comparison of vesicular datasets by ortholog identi-
fication. These resources represent a fundamental repository to
elucidate the novel functions of these complex extracellular orga-
nelles, underlying the molecular mechanisms of different disease
conditions from which EVs are isolated.

Furthermore, as the purity of EVs pools and the consequent
results strictly depend on the type of EVs isolation protocol, all
these databases display the information regarding the isolation
procedures employed. In addition, several free-to-use web-based
and commercial software packages are available for the analysis
of EVs datasets, in order to evaluate the biological functions of
EVs components. Such tools provide biological annotations in the
explored dataset, thus identifying the pathways and molecular
processes that may be influenced by EVs; among these, DAVID is
commonly used as Web-based enrichment analysis tool [31].
Cytoscape is an open-source tool for analysis and visualization of
interaction networks among proteins [68]. IPA� and MetaCoreTM

are commercially available softwares providing multiple options
for analyzing OMICS datasets. The peculiarity and reliability of
both softwares rely on customized datasets integrated through
the available scientific databases that can be updated with new
data from the literature. This aspect represents the major strength
of these software tools [25,53].
3. Functional interpretation of EVs content in HM

3.1. Multiple myeloma

EVs from different cells of origin usually have a peculiar protein
cargo. However, recent studies reported that EVs isolated from dis-
tinct cell lineages may share several proteins, irrespective of their
parental cells [17,48].

By using shotgun proteomics, Harshman et al. characterized the
protein composition of EVs derived from two different multiple
myeloma cell lines (MM.1S and U266). They found a high recipro-
cal similarity in protein content, consistently with other proteomic
studies [47,49]. Nevertheless, MM.1S and U266 differed for 32
(10%) and 13 (4%) proteins, respectively. Further application of
label-free spectral count relative quantification allowed the evalu-
ation of differences in protein abundance and showed that EVs had
a different protein abundance compared to their cell of origin.
These data suggest that EVs preserve a set of unique proteins
depending on their cell of origin as well as their biological func-
tions [24].

In order to define a specific set of MM-derived EV proteins, the
same Authors further performed a global systematic proteomic
analysis. This study aimed also at identifying circulating myeloma
associated markers, showing that EVs isolated from patients’
serum and MM cell lines had higher levels of Major Histocompat-
ibility Complex Class I (MCHI) and its binding protein b2.

Microglobulin (b2-MG) as compared to healthy donors. Further-
more, EVs isolated from corticosteroid-resistant MM cell lines
(MM.1R) and newly diagnosed MM patients showed higher expres-
sion of the single-chain transmembrane glycoprotein CD44 com-
pared to corticosteroid-sensitive cell lines (MM.1S), thus
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suggesting that serum CD44 could be a potential prognostic bio-
marker [23].

Several studies confirmed that the bone marrow microenviron-
ment strongly supports tumor growth in the majority of HM.
Growing evidence suggests that TEX are involved in the modula-
tion of bone marrow microenvironment and can induce malignant
transformation by transferring proteins and nucleic acids (miRs,
DNA and non-coding RNA) to target cells, thus affecting their phe-
notype and function [11,27,57,90]. Roccaro et al. highlighted the
contribution of MM bone marrow mesenchymal stromal cells
(MM BM-MSCs)-derived exosomes in tumor growth and disease
progression. They found that normal and MM BM-MSCs-derived
exosomes differed in the miR profile, observing a lower miR-15a
expression in MM versus normal BM-MSCs-derived exosomes.
Lower levels of miR-15a were also detected in MM cells, suggesting
its role as a possible tumor suppressor. Moreover, protein array
analysis was used to characterize the protein content of MM BM-
MSCs-derived EVs, thus showing an enrichment of oncogenic pro-
teins and regulators of adhesion and migration. Although this
study focused only on BM-MSCs-derived EVs and analyzed a lim-
ited spectrum of proteins, these results supported the hypothesis
of an active participation of MM BM-MSCs-derived exosomes in
MM growth and progression [65]. Subsequent studies have tried
to elucidate the deregulation of miR expression in MM. Zhang
et al. confirmed the participation of exosome-derived miRs in the
in vivo intercellular cross-talk in MM patients. Using microarray
profiling, this study highlighted the predictive value of serum
exosome-associated miRs expression in drug resistance in a large
cohort of MM patients. In particular, four exosomal miRs (miR-
16, miR15a, miR-20a, and miR-17) were downregulated in
bortezomib-resistant patients, suggesting their possible use as
drug resistance biomarkers [90].

Further studies enhanced the prognostic significance of circu-
lating exosomal miRs in MM (Table 1). A recent study assessed
Table 1
EV-associated biomarkers in multiple myeloma (MM), chronic lymphocytic leukemia (CLL

MM Methods Source of EVs Bio

miRNA
microarray
analysis

Normal and MM BM MSCs mi

Proteomic
analysis

MM cell lines, PB and BM from MM patients CD

miRNA
microarray
analysis

MM cell lines, serum from MM patients mi
mi

RNA-sequencing Serum from MM patients and healthy donors let
miRNA
microarray
analysis

Plasma from MM patients and healthy donors mi

CLL RNA-sequencing Primary CLL cells and CLL cell lines mi

LNA miRNA
microarray
analysis

Primary CLL cells and cell lines mi

nCounter miRNA
expression assay

Plasma from CLL patients and healthy donors mi

Mass
spectrometry

Plasma from CLL patients S1

AML miRNA
microarray
analysis

AML cell lines and AML-conditioned stroma, serum
and plasma from AML patients and healthy donors

mi
12

Bioanalyser
electropherogram

BM MSCs and cells from AML patients and healthy
donors

mi

miRNA
microarray
analysis

AML cell lines (HL60 and HL60/AR) mi

Next-generation
sequencing

BM MSCs from AML patients and healthy donors mi
3p

LEGEND: MM, multiple myeloma; PB, peripheral blood; BM, bone marrow; MSCs, m
progression free survival; EFS, event free survival; CLL, chronic lymphocytic leukemia; E
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the relationship between miR levels and outcome in a cohort of
156 newly diagnosed patients, uniformly treated with bortezomib
and dexamethasone as frontline regimen. Small RNA sequencing of
serum circulating exosomes and subsequent quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) array allowed
the identification of two circulating miRs, let-7b and miR-18a, both
paired with dismal outcomes. In particular, the low expression of
let-7b and miR-18a was significantly associated with decreased
overall survival (OS) and progression free survival (PFS) [44]. Sev-
eral studies have shown that miR-125b-5p directly regulates the
expression of p53, thus supporting tumor cell proliferation
(Fig. 1) [40,54,83].

Jiang et al. performed miR microarray analysis and found that
12 miRs were differentially expressed in MM patients (n = 6) and
healthy controls (n = 6). Of note, high expression of miR-125b-5p
was associated with extramedullary involvement and shorter
event-free survival (EFS) in patients uniformly treated with Borte-
zomib -Thalidomide-Dexamethasone containing regimen [36].

Other miRs, such as miR-21, miR17-92, and miR-34, are altered
in MM [13–14,37,42]. Considering their natural capability to trans-
port miRs and anti-miRs [66], several preclinical and clinical trials
have used exosomes to restore normal levels of tumor suppressor
miRs (‘‘miRs mimics”) or to inhibit overexpressed oncogenic miRs
(‘‘antagomiRs”) [1,21,32,80,89,91].

Further investigations are needed to assess the possible use of
miRs as therapeutic targets in clinical practice.

3.2. Chronic lymphocytic leukemia (CLL)

Several studies explored the role of CLL-derived exosomes in
the pathogenesis of this disease, strongly associated with both per-
missive microenvironment and disrupted immune response. As
demonstrated for other HM, CLL-derived exosomes can modify
the transcriptional profile of the recipient cells, thus enhancing
) and acute myeloid leukemia (AML).

marker Effect Reference

R-15a Tumor suppressor [65]

44 Drug resistance [23]

R-16-5p, miR-15a-5p,
R-20a-50, miR-17-5p

Drug resistance [90]

7-b, miR-18a Decreased OS and PFS [44]
R-125b-5p Increased risk of extramedullary

involvement, decreased EFS
[36]

R-21, miR-146a Enhanced MSC proliferation, EC angiogenic
activity, CLL cell survival and proliferation

[55]

R-202-3p Influence on clinical outcome [15]

R-150, miR-155 Drug resistance [87]

00-A9 Tumor growth [59]

R-150, miR-155, miR-
46

Correlation with disease status and
minimal residual disease (MRD)
persistence

[29]

R-155, miR-375 Drug resistance and increased risk of
relapse

[79]

R-19b, miR-20a Drug resistance and tumor growth [5]

R-26a-5p, miR-101- Leukemogenesis [3]

esenchymal stromal cells; RNA-seq, RNA sequencing; OS, overall survival; PFS,
Cs, endothelial cells; AML, acute myeloid leukemia; MRD, minimal residual disease.



Fig. 1. Bioactive miRs released by EVs. Through the secretion of EVs, tumor cells may modulate several processes in recipient cells, including cell survival and proliferation.
They are also able to influence drug sensitivity thus affecting patients’ outcome and survival. miRs isolated from MM-derived EVs are highlighted in red, miRs from CLL and
AML-derived EVs are in violet and green, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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tumor survival and favoring progression [18]. CLL-derived exo-
somes often show a peculiar miR profile by which they play a cru-
cial role in the bidirectional cross-talk between CLL cells and their
microenvironment, as previously shown for other HM.

In 2012, Willimott andWagner performed a microarray analysis
to compare miR expression profile of circulating CLL cells with that
of cultured stromal cells, demonstrating that stromal cells induced
the expression of 20 miRs that were undetectable in peripheral
blood cells [81].

Paggetti et al. demonstrated that CLL-derived exosomes could
induce phenotypical changes in stromal cells, both in vivo and
in vitro. After active internalization by BM-MSCs and endothelial
cells (ECs), circulating exosomes deliver their cargo, including
functional miRs and proteins, thus activating a variety of signaling
pathways involved in leukemic cells survival. Moreover, stromal
cells exposed to CLL-derived exosomes showed an inflammatory
phenotype similar to cancer-associated fibroblasts and had higher
proliferative properties. Through a small RNA sequencing, this
study compared the miRs profile of CLL exosomes with that of
the CLL cells of origin, showing that exosomes enriched in miR-
21 and miR-146a were capable of inducing MSC proliferation and
EC angiogenic activity, consequently promoting cell survival and
proliferation. Furthermore, a proteomic characterization of exo-
somes through mass spectrometry analysis confirmed that exo-
somes are endowed in proteins implicated in several cellular
processes, such as migration and RNA synthesis, and participate
to the phenotypical modification of tumor microenvironment
(Table 1) [55].
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Farahani et al. performed a locked nucleic acids (LNA) array to
compare exosomal miRs cargo to CLL intracellular miRs. CLL-
derived exosomes exhibited similar miR profiles than parental
CLL cells, but they were specifically enriched in miR-202-3p,
miR-628-3p, and miR-1290. Moreover, this study showed that
internalization of CLL exosomes by stromal cells promoted cell pro-
liferation. miR-202-3p is associated with cell differentiation, by
downregulating Sonic Hedgehog Signalling pathway (Hh) and
increasing its target Sufu (Suppressor of Fused), as well as to poor
prognosis in CLL. These findings suggest that the secretion of miR-
202-3p and consequent uptake from recipient stromal cells may
influence the disease aggressiveness by regulating Sufu levels in
CLL cells [15].

Recently, Reiners et al. applied next-generation sequencing to
characterize and compare the miR content in CLL cells and B cells
from healthy donors. This study confirmed that CLL-derived EVs
displayed a disease-related signature and were enriched in miRs
encoding for genes frequently mutated in CLL, such as B-cell recep-
tor (BCR) kinases, apoptosis-related genes, and splicing factors
[62].

Interestingly, the secretion of CLL-derived exosomes seems to
be influenced by the activation of the BCR signaling and is there-
fore sensitive to the therapeutic effect of Ibrutinib, a Bruton’s tyr-
osine kinase (BTK) inhibitor. Yeh et al. showed after 28 days of
Ibrutinib therapy that CLL patients had significantly lower exo-
some concentration in plasma. Moreover, CLL patients displayed
higher levels of exosomes and a unique microRNA signature com-
pared to healthy donors. In particular, the nCounter microRNA
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allowed the identification of two disease-associated miRs: miR-
150 and miR-155, whose levels were significantly increased in
CLL as compared to normal B cells [87].

All these studies have evaluated the content of CLL-derived exo-
somes irrespective of the clinical stage of the disease. To under-
stand whether CLL-derived exosomes derive from a cargo
modification according to the evolution of the disease, Prieto
et al. performed a comprehensive proteomic analysis through liq-
uid chromatography-tandem mass spectrometry of plasma-
derived exosomes isolated from patients with both indolent and
progressive disease. Intriguingly, exosomes isolated from progres-
sive CLL exhibited a protein cargo associated with inflammation
and tumor progression and had higher expression levels of S100-
A9 as compared to exosomes from indolent disease. Furthermore,
this study showed that increased expression of S100-A9 in CLL
patients induced the activation of the canonical NF-kB (nuclear fac-
tor kappa-light-chain-enhancer of activated B cells) pathway, thus
promoting tumor survival and proliferation [59].

Altogether, these data suggest that EVs are markedly implicated
in the cross-talk between CLL cells and their microenvironment; in
particular, EV protein and miR content seems to play an essential
role in promoting tumor survival, proliferation, and eventually pro-
gression of CLL (Fig. 1).

3.3. Acute myeloid leukemia (AML)

Acute leukemia-derived EVs contain a variety of non-coding
RNAs supporting leukemogenesis and influencing the outcome
and response to therapy through the regulation of several genes
involved in the pathogenesis of this disease [56]. In addition, sev-
eral studies have highlighted the promising role of circulating miRs
as biomarkers in acute myeloid leukemia (AML) (Table 1)
[4,34,74,82,85]. For instance, Marcucci and colleagues, by using
nCounter assay, demonstrated that miR-155 overexpression was
independently associated to poor prognosis in a large cohort of
adult AML patients with normal karyotype [45].

Leukemia cells can suppress normal hematopoiesis and trans-
form the BM niche into a permissive niche through exosomes
secretion [39]. The formation of a protective niche probably repre-
sents the underlying mechanism of late relapse, occurring months
or years after first-line treatment in a significant proportion of AML
patients. To identify the miRs involved in leukemic progression,
Barrera-Ramirez and colleagues profiled miRs of MSCs from AML
patients and healthy controls using next-generation sequencing.
Five miRs were found to be differentially expressed, two of them
being significantly overexpressed in AML-MSC-derived exosomes,
i.e. miR-26a-5p and miR-101-3p. The quantification of their target
genes expression levels allowed the recognition of three molecules,
namely KRBA2, RRBP1, and HIST2H 2BE, which have not been pre-
viously associated with leukemogenesis. Consequently, miR profil-
ing of AML-MSCs- derived exosomes allows the identification of
new molecular pathways involved in the leukemic process [3].

Exosomes are released by both AML cells and components of
the BM microenvironment. Hornick et al. performed a comparative
microarray analysis of AML cells and stroma-derived exosomes
and proposed a set of miRs related to disease status, providing pre-
clinical evidence that serum exosomal miRs might represent a clin-
ical tool for the detection of occult disease [29].

Numerous studies have established that miRs may be responsi-
ble for chemoresistance. Chen and colleagues, carried out microar-
ray analysis of OCI-AML3 cells demonstrating that overexpression
of CXCR4, whose expression has been associated to a higher risk of
relapse and decreased survival in AML patients [10,38,71], was
associated to let-7a downregulation and, consequently, to overex-
pression of antiapoptotic BCL-XL protein in AML cells [9]. Some
studies showed that higher expression of anti-apoptotic proteins,
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i.e., BCL2, BCL-XL. MCL-1 and BAX, was associated with reduced
disease-free survival (DFS) in AML patients [77–78].

Wojtuszkiewicz and colleagues compared through label-free
comparative proteomics the secretome protein profile of AML cells
resulting either apoptosis-resistant or sensitive, thus unraveling
novel proteins with regulatory properties involved in the apoptotic
process. Interestingly, this study showed that the secretomes of
apoptosis-resistant AML cells were enriched in apoptosis-related
proteins involved in global gene regulations. In particular, the most
represented protein cluster was associated with miR splicing pro-
cess, which is known to regulate apoptosis-related proteins. The
second top cluster was represented by proteins mainly involved
in RNA processing, including NPM1 (Nucleophosmin-1), whose
overexpression leads to apoptosis resistance. These findings were
subsequently endorsed by EVs proteomic analysis and suggested
that vesicle-mediated transfer of apoptosis-regulatory proteins
may represent a novel mechanism of apoptosis-resistance gain
[82].

Another interesting study pointed out the ability of apoptosis-
resistant leukemia cells to confer their chemoresistance to sensi-
tive cells via EVs. Bouvy and colleagues performed a microRNA
array analysis to compare the miR cargo of EVs derived from
HL60 (chemo-sensitive) and HL60/AR (chemo-resistant) AML cell
lines, respectively. Although both cell lines were capable of releas-
ing EVs, there was a difference in the miR cargo of EVs released by
either sensitive or chemo-resistant cells. In particular, among 29
microRNAs that were differentially expressed, miR-19b and miR-
20a were more expressed in EVs from resistant cells. These two
miRs, belonging to the miR-17–92 cluster, are overexpressed in
solid cancers and seem to act as oncomiR by targeting the TGFb sig-
naling pathway and enhancing cell proliferation [58]. Furthermore,
they may contribute to the constitutive activation of PI3 kinase/Akt
signaling, frequently described in AML and associated with poor
outcome, by targeting PTEN [5,46,76].

Viola and colleagues used a Bioanalyser electropherogram and
evaluated the content of AML-MSC-derived exosomes, showing a
statistically significant enrichment in miR-155 and miR-375 com-
pared to parental cells and suggesting that exosomes released from
AML-MSCs are endowed with prognostically significant miRs. Both
miR-155 and miR-375 have been associated to the increased risk of
relapse in AML patients [45,61]. The same study evaluated the exo-
somal cytokine concentration and showed that AML-MSCs-derived
exosomes had a higher concentration of TGFb1 as compared to nor-
mal BMMSCs. Furthermore, after exposure of FLT3-ITD + AML cells
to exosomes from AML-MSCs and normal BM MSCs or control
media, only AML-MSCs-derived exosomes provided protective
effect from a tyrosine kinase inhibitor (AC220), confirming the
hypothetic mechanism of extrinsic chemoresistance provided by
exosomes trafficking [79].

Finally, chemo-resistance in AML cells may also derive from
exosome-induced immune dysregulation, through the release of
immunosuppressive proteins or inhibitory ligands [28]. Thanks to
novel immunotherapeutic agents, these features are particularly
interesting and might provide new insights into immunotherapy
resistance.

3.4. Other HM

Jiang and colleagues recently explored the miRs expression pro-
file in pediatric patients affected by acute lymphoblastic leukemia
(ALL) using qRT-PCR-based TaqMan low-density microRNA arrays.
Interestingly, newly diagnosed and relapsed patients had lower
levels of circulating miR-652-3p than healthy controls, while its
level was restored in patients achieving complete remission (CR).
These results were confirmed in ALL cell lines, where overexpres-
sion of miR-652-3p significantly increased the sensitivity to
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vincristine and cytarabine, indicating that this miR might enhance
chemosensitivity and promote apoptosis in ALL cells [35].

Likewise, Giudice et al. screened a large number of circulating
exosomal miRs through miRNA PCR array, in plasma samples from
patients with aplastic anemia and myelodysplastic syndromes;
miRs were differentially expressed, one of them (miR-126-5p)
being negatively associated with therapy response in aplastic ane-
mia [19].

Another recent study performed RNA-seq to identify five circu-
lating miRs (miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-
5p, and miR-199a-3p), whose expression had a predictive value
in terms of response to hypomethylating agents [30].

The role of EVs in the pathogenesis of diffuse large B-cell lym-
phomas (DLBCLs) is mostly unknown. A recent study characterized
the content of EVs secreted by five different DLBCL cell lines by
using RNA sequencing, showing that EVs cargo contained a variety
of coding and non-coding RNAs involved in B-cell development.
Moreover, exome sequencing of DLBCL cell lines and DLBCL-
derived EVs demonstrated that secreted EVs harbor the same
mutational profile than their cell of origin, thus suggesting new
strategies for disease monitoring [67].
4. Summary and outlook

In this review, we gave a quick overview on the current status of
functional characterization of the EVs content by using high-
throughput analysis. Altogether, these studies highlight the poten-
tial of EVs as promising biomarkers in HM, both as prognostic indi-
cators and predictors of chemosensitivity. Table 1 A challenging
issue is still the discrimination of tumor-derived EVs from their
nonmalignant counterpart, while EVs reliability as biomarkers is
still partial due to the lack of standardized protocols for collection
and processing. Nevertheless, EVs present a number of peculiari-
ties, due to their structural stability and long-lasting action, that
may be exploited to overcome drug resistance and increase sur-
vival rates in hematological patients by delivering drugs directly
to target cancer cells.

In conclusion, further validation is required to use of EVs as
diagnostic and prognostic biological markers as well as novel tar-
geted therapy; to this aim, high-throughput analysis may be
employed for accurate functional characterization of EVs content
in HM, thus providing new insights for future applications.
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