
A Framework for the Design and Simulation
of Embedded Vision Applications

Based on OpenVX and ROS
Stefano Aldegheri, Nicola Bombieri, Nicola Dall’Ora, Franco Fummi, Simone Girardi, Marco Panato

Department of Computer Science
University of Verona

Email: name.surname@univr.it

Abstract—Customizing computer vision applications for em-
bedded systems is a common and widespread problem in the
cyber-physical systems community. Such a customization means
parametrizing the algorithm by considering the external environ-
ment and mapping the Software application to the heterogeneous
Hardware resources by satisfying non-functional constraints
like performance, power, and energy consumption. This work
presents a framework for the design and simulation of embedded
vision applications that integrates the OpenVX standard platform
with the Robot Operating System (ROS). The paper shows
how the framework has been applied to tune the ORB-SLAM
application for an NVIDIA Jetson TX2 board by considering
different environment contexts and different design constraints.

I. INTRODUCTION

Computer vision is a key component in modern cyber-
physical systems. Its main goal is the use of digital processing
and intelligent algorithms to interpret meaning from images or
video. Due to the emergence of very powerful, low-cost, and
energy-efficient processors, it has become possible to incor-
porate practical computer vision capabilities into embedded
systems.

Nevertheless, developing and optimizing a computer vision
application for an embedded system is far from straightforward
and fast. Such a class of applications generally consists of
communicating and interacting kernels, whose optimization
spans across two dimensions: the kernel-level and the system-
level optimizations. Kernel-level optimizations traditionally
involve one-off or single function acceleration. This typically
means that a developer re-writes, by using a language like
OpenCL or CUDA, a computer vision function (e.g., image
filter, geometric transform function) to be offloaded on a hard-
ware accelerator like a GPU [1]. System-level optimizations
target the overall power consumption, memory bandwidth
loading, low-latency functional computing, and inter-processor
communication overhead. These tasks are generally addressed
through frameworks [2], as the application knobs cannot be
set by using only compilers or operating systems.

OpenVX [3] is increasingly gaining consensus in the em-
bedded vision community as API library for system-level opti-
mizations. Such a platform is designed to maximize functional
and performance portability across different hardware plat-
forms, providing a computer vision framework that efficiently

addresses different hardware architectures with minimal im-
pact on software applications. Starting from a graph model
of the embedded application, it allows for automatic system-
level optimizations and synthesis on the target architecture
by optimizing performance, power consumptionm and energy
efficiency [4], [5], [6].

Nevertheless, the adoption of OpenVX targeting the appli-
cation tuning and validation for a given embedded system has
several limitations when both the tuning and validation have
to consider other systems, which are external to the embedded
board, and that interact with the application.

This paper presents a framework for the design and sim-
ulation of embedded video applications that integrates the
OpenVX standard platform with the Robot Operating System
(ROS) [7]. The goal of the framework is twofold. First, it
aims at combining OpenVX, CUDA/OpenCL, and OpenMP
to increase the parallelism and the portability of the embed-
ded application code. Second, it aims at co-simulating and
parametrizing the application by integrating different simula-
tion kernels thorough the ROS API library.

The paper presents the results obtained by applying the
proposed framework to customize the ORB-SLAM application
[8] for an NVIDIA Jetson TX2 board by considering a cam-
era sensor and a trajectory controller as external interacting
systems.

The paper is organized as follows. Section II presents the
background and the related work. Section III presents the key
concepts of the framework. Section IV presents the experi-
mental results, while Section V is devoted to the conclusions.

II. BACKGROUND AND RELATED WORK

OpenVX relies on a graph-based software architecture to
allow the embedded applications to be portable and optimized
to different and heterogeneous architectures. It provides a
library of primitives that are commonly used in computer
vision algorithms and data objects like scalars, arrays, matrices
and images, as well as high-level data objects like histograms,
image pyramids, and look-up tables.

The developer defines a computer vision algorithm by
instantiating kernels as nodes and data objects as parameters.
Each node of the graph can use any processing units of
target target heterogeneous board and, as a consequence, the



Color	
Convert

Sobel	
3x3gray

gradx

grady

grad outin Magnitude Threshold

Fig. 1. OpenVX sample application (graph diagram)

1 vx_context c = vxCreateContext();
2 vx_graph g = vxCreateGraph(context);
3 vx_enum type = VX_DF_IMAGE_VIRT;
4 /* create data structures */
5 vx_image in = vxCreateImage(c, w, h, VX_DF_IMAGE_RGBX);
6 vx_image gray = vxCreateVirtualImage(g, 0, 0, type);
7 vx_image gr_x = vxCreateVirtualImage(g, 0, 0, type);
8 vx_image gr_y = vxCreateVirtualImage(g, 0, 0, type);
9 vx_image gr = vxCreateVirtualImage(g, 0, 0, type);

10 vx_image out = vxCreateImage(c, w, h, VX_DF_IMAGE_U8);
11 vx_threshold threshold = vxCreateThreshold(c,

VX_THRESHOLD_TYPE_BINARY, VX_TYPE_FLOAT32);
12 /* read input image and copy it into "in" data object

*/
13 ...
14 /* construct the graph */
15 vxColorConvertNode(g, in, gray);
16 vxSobel3x3Node(g, gray, g_x, g_y);
17 vxMagnitudeNode(g, g_x, g_y, gr);
18 vxThresholdNode(g, gr, threshold, out);
19 /*verify the graph*/
20 status = vxVerifyGraph(g);
21 /*execute the graph*/
22 if (status == VX_SUCCESS)
23 status = vxProcessGraph(g);
24

Listing 1. OpenVX code of the example of Fig. 1

application graph can be be executed across different hardware
accelerators (e.g., CPU cores, GPUs, DSPs). Fig. 1 and Listing
1 give an example of computer vision application and its
OpenVX code, respectively. The programming flow starts by
creating an OpenVX context to manage references to all used
objects (line 1, Listing 1). Based on this context, the code
builds the graph (line 2) and generates all required data objects
(lines 4 to 11). Then, it instantiates the kernel as graph nodes
and generates their connections (lines 15 to 18). The graph
integrity and correctness is checked in line 20 (e.g., checking
of data type coherence between nodes and absence of cycles).
Finally, the OpenVX framework processes the graph (line 23).
At the end of the code execution, it releases all created data
objects, the graph, and the the context.

By adopting any vendor library that implements the graph
nodes as Computer Vision primitives, OpenVX allows apply-
ing different mapping strategies between nodes and processing
elements of the heterogeneous board, by targeting different de-
sign constraints (e.g., performance, power, energy efficiency).

Different works have been presented to analyse the use of
OpenVX for embedded vision [4], [5], [6]. In [5], the authors
present a new implementation of OpenVX targeting CPUs and
GPU-based devices by leveraging different analytical optimza-
tion techniques. In [6], the authors examine how OpenVX
responds to different data access patterns, by testing three
different OpenVX optimizations: kernels merge, data tiling
and parallelization via OpenMP. In [4], the authors introduce
ADRENALINE, a novel framework for fast prototyping and
optimization of OpenVX applications for heterogeneous SoCs
with many-core accelerators.

External	
system

C/C++
OpenMP

OpenVX stack
(CPU/GPU	
memory)

CUDA

OpenCL

C/C++

Heterogeneous	architecture

Vendor’s
primitives

p1
p2

p3

C/C++	stack
(CPU	memory)

Communication	
wrapper

OpenVX-C/C++
communication	

stack
DRAM

ROS
interface

ROS	
API

External	
system

External	
system

Embedded	Vision	Application

Fig. 2. Overview of the proposed framework

III. METHOD

Differently from all the work of the literature, the pro-
posed framework implements an extension of the OpenvX
environment to support: (i) multiple heterogeneous platforms
to parallelize the software application, (ii) the customization
of embedded vision applications that rely on concurrent and
communicating blocks, and (iii) the application tuning through
co-simulation with different simulation kernels based on the
ROS API library.

Figure 2 shows the framework overview. Starting from a
library of OpenVX primitives (e.g., NVIDIA VisionWorks
[9], INTEL OpenVX [10], AMDOVX [11], Khronos OpenVX
standard implementation [12]), developers can quickly and
efficiently define a large variety of embedded vision applica-
tions. When a graph node is not implemented in the library or
its implementation does not satisfy a given design requirement,
the primitive can be re-implemented or optimized by the user
(i.e., user-defined primitives) in CUDA or in OpenCL and
integrated in the OpenVX environment. Then, the framework
allows adopting any of the several solutions available at the
state of the art to map the graph nodes to the processing
elements of the board (e.g., [4], [5], [6]).

Nevertheless, OpenVX is limited to embedded vision algo-
rithms that can be represented by a data-flow synchronous ap-
plication. To extend its applicability, the proposed framework
provides a communication wrapper that allows concurrent
blocks of the application to interact and communicate with
data-flow OpenVX blocks. Such concurrent blocks can be
implemented in C/C++ and, to better exploit the multi-core
processor tipically available in the hardware boards, they are
parallelized through directive-based platforms (e.g., OpenMP).
The main memory of the target hardware board is partitioned
into different stacks, to support the concurrent execution of
OpenVX, the parallel C/C++ code, and the communication
between them.

The OpenVX runtime manager synchronizes the parallel
execution of the data-flow synchronous blocks with those
implemented in C/C++ and parallelized with OpenMP. The
actual mapping between application blocks and processing



Local MappingTracking Loop Closure

Route 
Controller

VisionWorks

CUDA C++ROS

ROS MAP

C/C++
OpenMP

C/C++
OpenMP

Vision sensor Jetson TX2

Fig. 3. Overview of ORB-SLAM implementation

elements of the board is first performed by the operating
system and, with the remaining free processing units, by the
OpenVX runtime manager. It is important to note that the
optimization strategies adopted in OpenVX do not include the
(parallel) C/C++ block implementations. As a consequence,
the proposed framework allows performing a two-level map-
ping exploration: at system level, which includes the whole
application blocks, and at OpenVX level, which is performed
by the OpenVX runtime manager.

Finally, embedded vision applications require ad-hoc
parametrizations by considering both the application environ-
ment (e.g., input streams, concurrent interactive systems) and
the characteristics of the target platform. Thus, the framework
adopts ROS to implement the communication between the
application under analysis and external modules (e.g., sen-
sors, controllers, etc.). ROS implements the messages passing
among nodes by providing a publish-subscribe communication
model. Every message sent through ROS has a topic, which
is a unique string known to all the communication actors. The
topic is assigned by the node that publishes the message and
the receiving nodes subscribe to the topic.

The adoption of ROS, which relies on a message passing
interface, provides different advantages. First, it allows the
platform to model and simulate blocks running on different
target devices. Then, it implements the inter-node communica-
tion in a modular way, thus guaranteeing the code portability.
It also implements the inter-node communication by adopting
a standard and widespread protocol. Finally, it implements
the inter-node communication with minimum intervention or
modifications to the original code of the embedded application.

IV. EXPERIMENTAL RESULTS

The proposed framework has been applied to customize the
ORB-SLAM application [8]. ORB-SLAM aims at computing,
in real-time, the camera trajectory and a sparse 3D reconstruc-
tion of the scene in a wide variety of environments, ranging
from small hand-held sequences of a desk to a car driven
around several city blocks. It aims at closing large loops and
performing global re-localisation from wide baselines.

The application consists of three main blocks (see Figure
3). The tracking block has a twofold task: it updates the agent
localization in the environment and it detects any significant
discrepancies of the map w.r.t. the input stream. The mapping
block updates the internal state of the algorithm and of the
generated map by comparing new and already read frames.

Fig. 4. KITTI sequence 11

Fig. 5. KITTI sequence 13

The loop closing block aims at adjusting the scale drifting
during the input analysis, which is unavoidable when using a
monocular vision system.

The application receives the input stream by a camera
thorough ROS. We tested the application on the KITTI dataset
[15], which is a standard set of benchmarks for computer
vision applications. For the sake of space, we present only
the results obtained with the KITTI sequences 11 and 13 (10
frames per second -FPS- each). They have been chosen as
they represent inputs with different workload on the three
blocks. In particular, sequence 11 mostly relies on the tracking
block while it never uses the mapping and loop closure blocks
(see Fig. 4). In contrast, sequence 13 also runs the other two
computing intensive blocks each time the trajectory returns on
an already visited point in the map (see Fig. 5).

The application processes the stream and generates the map
of the visited external environment. A route controller, which
is run on an external board, queries the map generated by
the ORB-SLAM application to elaborate trajectories toward a
target position.



The application has been customized and run on an NVIDIA
Jetson TX2 board. Such an heterogeneous low-power embed-
ded system is equipped with a quad-core ARM CPU, and a
256 CUDA cores Pascal GPU.

Tables I and II report the obtained results in terms of number
of CPU cores used by the application blocks, whether the
GPU has been used by any application block, the average
time required for processing one frame, the corresponding
performance i.e., the maximum FPS, the average time required
by the mapping phase, the total energy consumption for the
whole stream analysis, the peak power of the board, and
the result accuracy. The result accuracy expresses how many
frames the application has been able to elaborate over the
whole sequence and, among them, how many frames gave
correct mapping information. For example, 54/675 accuracy
with sequence 1 means that 675 over 921 frames have been
elaborated and only 54 of them were useful. The result
accuracy is exponentially related to the supported FPS.

Performance information has been collected through the
CUDA runtime API to measure the execution time and through
the clock64() device instruction for throughput values to
ensure clock-cycle accuracy of time measurements. Power and
energy consumption information have been collected through
the Powermon2 power monitoring device [13].

All these information are reported for four different versions
of ORB-SLAM we developed and analysed. The first version
is the original code retrieved from [8], which is run on a
single core of the CPU. The second version is the original
code with the multi-threading feature enabled (i.e., each block
is mapped on a corresponding thread and run on a different
CPU core). The third version is the original code enriched
with OpenMP directives. In this version, the mapping and loop
closure computations are parallelized when the map exceeds
a given threshold and requires more computational power to
be processed. The fourth version consists of the original code,
in which the feature detection and ORB algorithms of the
tracking block have been implemented by using OpenVX and
CUDA, respectively. We adopted the NVIDIA VisionWorks
primitive library for implementing the OpenVX blocks. We
parallelized the CUDA code of ORB from scratch.

The table underlines that different customizations can be
considered starting from the same applications, and that the
best version depends on the selected design constraints and on
the input stream. Considering sequence 11 and targeting per-
formance, version OpenVX that adds the GPU computation to
the multithreaded original version provides the best frame per
second at the cost of the highest peak power. In this context,
OpenMP does not provide any benefit as it is never applied
(mapping and loop closing phases almost never run in seq. 11)
while it introduces overhead. In contrast, OpenVX+OpenMP
provides the best performance with sequence 13, in which the
two phases are efficiently parallelized in the CPU cores. If the
application is run in an energy-saving context, and considering
the characteristics of the input stream (10 FPS), the multi-
threaded version limited to three CPU cores provides the best
energy efficiency and the most limited power consumption.

TABLE I
RESULTS WITH SEQUENCE 11 (921 FRAMES)

ORB-
SLAM
Version

#CPU
cores

GPU
us-
age

Avg.
time
per
frame
(ms)

Avg.
FPS

Avg
map
(ms)

Total
En-
ergy
(J)

Peak
power
(W)

Accu-
racy
(frames/
frames)

Sequent. 1 N 133 7,5 335 488 9.4
54/675

(8%)

Multith. 3 N 105 9.5 250 534 9.5
586/837

(71%)

OpenMP 4 N 111 9.0 240 519 11.0
392/803

(49%)

OpenVX 4 Y 68 14,7 288 599 13,2
894/916

(98%)

OpenVX+

OpenMP
4 Y 70 14,3 292 601 13,5

894/916

(98%)

TABLE II
RESULTS WITH SEQUENCE 13 (3,281 FRAMES)

ORB-
SLAM
Version

#CPU
cores

GPU
us-
age

Avg.
time
per
frame
(ms)

Avg.
FPS

Avg
map
(ms)

Total
En-
ergy
(J)

Peak
power
(W)

Accu-racy
(frames/
frames)

Sequent. 1 N 137 7.3 336 1,758 9.8
95/2,336

(5%)

Multith. 3 N 122 8.2 338 1,815 9.9
750/2,617

(29%)

OpenMP 4 N 111 9.0 240 519 11.0
392/803

(49%)

OpenVX 4 Y 124 8.0 447 1,814 10.3
397/2,576

(16%)

OpenVX+

OpenMP
4 Y 83 12,1 320 2116 13,4

1,904/3,269

(59%)

This is due to the fact that this version, for both sequence 11
and 13 provides the maximunm FPS most similar to the FPS
of the streams read in input.

V. CONCLUSION

This paper presented a framework for the design and simu-
lation of embedded video applications that integrates OpenVX
with ROS. Two contributions have been underlined: First,
the framework extends the OpenVX environment to support
the customization of embedded applications that rely on
concurrent and communicating blocks. Second, the extended
OpenVX environment has been integrated with ROS, in order
to simulate and validate embedded vision applications by
considering the environment in which they are embedded.
The paper presented the results obtained by applying the
framework to explore different configurations of ORB-SLAM
for the NVIDIA Jetson TX2 by considering the performance,
power, and energy consumption design constraints.



REFERENCES

[1] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime
computer vision with OpenCV,” vol. 10, no. 4, 2012.

[2] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill,
“Addressing system-level optimization with OpenVX graphs,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops, 2014, pp. 658–663.

[3] Khronos Group, “OpenVX: Portable, Power-efficient Vision Processing,”
https://www.khronos.org/openvx.

[4] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Adrenaline:
An openvx environment to optimize embedded vision applications on
many-core accelerators,” in International Symposium on Embedded
Multicore/Many-core Systems-on-Chip, 2015, pp. 289–296.

[5] K. Yang, G. A. Elliott, and J. H. Anderson, “Analysis for supporting
real-time computer vision workloads using openvx on multicore+gpu
platforms,” in Proceedings of the 23rd International Conference on Real
Time and Networks Systems, ser. RTNS ’15, 2015, pp. 77–86.

[6] D. Dekkiche, B. Vincke, and A. Merigot, “Investigation and performance
analysis of openvx optimizations on computer vision applications,” in
14th International Conference on Control, Automation, Robotics and
Vision, 2016, pp. 1–6.

[7] Open Source Robotics Foundation, “Robot Operating System,”
http://www.ros.org/.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[9] NVIDIA Inc., “VisionWorks,” https://developer.nvidia.com/embedded/
visionworks.

[10] INTEL, “Intel Computer Vision SDK,” https://software.intel.com/en-
us/computer-vision-sdk.

[11] AMD, “AMD OpenVX - AMDOVX,” http://gpuopen.com/compute-
product/amd-openvx/.

[12] Khronos, “OpenVX lib,” https://www.khronos.org/openvx.
[13] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Powermon:

Fine-grained and integrated power monitoring for commodity computer
systems,” in Proc. of IEEE SoutheastCon, 2010, pp. 479–484.

[14] ——, “Powermon: Fine-grained and integrated power monitoring for
commodity computer systems,” in Proceedings of the IEEE Southeast-
Con, 2010, pp. 479–484.

[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.


