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AsstracT. We present a timed process calculus for modelling wiratessorks in which individual
stations broadcast and receive messages; moreover tlichstaare subject to collisions. Based on
a reduction semantics for the calculus we define a contegtpalalence to compare the external be-
haviour of such wireless networks. Further, we construadensional LTS (labelled transition sys-
tem) which models the activities of stations that can bectliy@bserved by the external environment.
Standard bisimulations in this LTS provide a sound prooftrodtfor proving systems contextually
equivalence. We illustrate the usefulness of the proof odilogy by a series of examples. Finally
we show that this proof method is also complete, for a largescbf systems.

1. INTRODUCTION

Wireless networks are becoming increasingly pervasivé ajiplications across many domains,
[42,[1]. They are also becoming increasingly complex, wiiteirt behaviour depending on ever
more sophisticated protocols. There aatent levels of abstraction at which these can be defined
and implemented, from the very basic level in which the comication primitives consist of send-
ing and receiving electromagnetic signals, to the highezlleshere the basic primitives allow the
initiation of connections between nodes in a wireless systad the exchange of data between them
[52].

Assuring the correctness of the behaviour of a wirelessoritivas always beenfticult. Sev-
eral approaches have been proposed to address this issnetfmrks described at a high level
[38,[33,[17,[16] 49, 27,17, 10]; these typically allow the fatrdescription of protocols at the
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network layerof the TCPIP reference model [52]. However there are few frameworks @nlith
erature which consider networks described at the MAC-Sblaf the TCPIP reference model
[28,(34,[8]54]. This is the topic of the current paper. We psmpa process calculus for describing
and verifying wireless networks at tihAC-Sublayerof the TCPIP reference model.

This calculus, called the Calculus of Collision-prone Commicating Processes (CCCP), has
been largely inspired by TCWS [34]; in particular CCCP intseits communication features but
simplifies considerably the syntax, the reduction semgntle notion of observation, and as we
will see the behavioural theory. In CCCP a wireless systewpissidered to be a collection of
wireless stations which transmit and receive messagestrdiemission of messageshwadcast
and it istime-consumingthe transmission of a messagean require several time slots (or instants).
In addition, wireless stations in our calculus are serssitcollisions if two different stations are
transmitting a value over a chanreat the same time slot then a collision occurs; as a result, the
content of the messages originally being transmitted is los

More specifically, in CCCP a state of a wireless network (onpdy network, or system) will
be described by eonfigurationof the formI"> W whereW describes the code running at individual
wireless stations and represents the communication state of channels. At any giget of time
there may bexposeccommunication channels, that is channels containing rgess@r values) in
transmission; this information will be recordedIin

Such systems evolve by the broadcast of messages betwéiensstthe passage of time, or
some other internal activity, such as the occurrence ofsamtis and their consequences. One of
the topics of the paper is to capture formally these completudions, by defining aeduction
semantics whose judgements take the foia » Wy — I'> » W,. We show that the reduction
semantics we propose satisfies some desirable time pegpsrich asime determinissnmaximal
progressandpatience[39,22,56].

However the main aim of the paper is to develop a behaviohedry of wireless networks
with time-consuming communications. To this end we needrmdb notion of when two such
systems are indistinguishable from the point of view of ssedaving a reduction semantics it
is now straightforward to adapt a standard notiorcafitextual equivalence™y > Wy ~ T'y > W,
Intuitively this means that either systei, » Wy or I', » Wh, can be replaced by the other in a
larger system without changing the observable behaviotmebverall system. Formally, we use
the approach of [23, 45], often calledduction barbed congruengceather than that of _E:ﬁ] The
only parameter in the definition of our contextual equivaters the choice of primitive observation
or barb; our choice is natural for wireless systems: the abilityrém$mit on an idle (or unexposed)
channel, that is a channel with no active transmissions.

As explained in papers such as|[43] 21], contextual equicate are determined by so-called
extensional actionghat is the set of minimal observable interactions whicistesn can have with
its external environment. For CCCP determining these mast®non-trivial. Although values can be
transmitted and received on channels, the presence fiooli means that these are not necessarily
observable. In fact the important point is not the transioissf a value, but its successful delivery.
Also, although the basic notion of observation on systenes dwt involve the recording of the
passage of time, this has to be taken into account exterisiamarder to gain a proper extensional
account of systems.

Isee page 106 of [47] for a brief discussion of thiatence.
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The extensional semantics determines an LTS (labelleditiam system) over configurations,
which in turn gives rise to the standard notion of (weak)rbigation equivalence between con-
figurations. This gives a powerful co-inductive proof teiciue: to show that two systems are
behaviourally equivalent it is $licient to exhibit a witness bisimulation which contains them

One result of this paper is that weak bisimulation in the esienal LTS is sound with respect
to the touchstone contextual equivalence: if two systeraseated by some bisimulation in the
extensional LTS then they are contextually equivalent. rolepto show the féectiveness of our
bisimulation proof method we prove a number of non-obvigistesn equalities. However, the main
contribution of the current paper is that completenessdiolda large class of networks, callell-
formed If two such networks are contextually equivalent thendhisrsome bisimulation, based on
our novel extensional actions, which contains them.

To the best of our knowledge, this is the first result of fultmlction for weak barbed congru-
ence, for a calculus of wireless systems where communitaisubject to collisions. Also, the
only other result in the field of which we are aware is the ohestitated in[[34]. Here a sound
but not complete bisimulation based proof method is dewldpr (a diferent form of) reduction
barbed congruence. In this paper, both soundness and demgse are achieved by simplifying the
calculus and isolating novel extensional actions.

We end this introduction with an outline of the paper. In 8 we present the calculus
CCCP. More precisely, Sectign 2.1 contains the syntax ofanguage; Sectiodn 2.2 introduces the
intensional semantics; here the adjectivensionalis used to stress the fact that the actions of this
semantics correspond to those activities which can be peeid by a network. Sectidn 2.3 provides
the reduction semantics, which models the intra-actioasdan be performed by a network when
isolated from the external environment.; Secfiod 2.4 defimar touchstone contextually-defined
behavioural equivalence for comparing wireless networks.

In Section_B we address the problem of defining the minimaénfable activities of systems.
These are defined as actions of an extensional semanticsiiorg88.1, while in Sectioh 312 we
consider the bisimulation principle induced by such adiddere the adjectivextensionals used
to stress the fact that the actions of such a semantics porrdgo those activities which can be
observed by the external environment of a network.

In Sectiori# we present the main results of the paper. Firgtrasge that our bisimulation proof
technique is sound with respect to the contextual equicaleBection 4]1. In Sectign 4.2 we prove
that, for a large class of configurations, called well-fodneur proof technique is also complete.

The usefulness of our bisimulation proof technique is shaw®ectior b, where we consider
simple case studies which model common features of wirglesgorks at the Mac-Layer.

Sectior[ 6 concludes the paper with a comparison with théechaork.

2. THE cALcULUS

As already discusses a wireless system will be represemtedricalculus as eonfigurationof the
form I" » W, whereW describes the code running at individual wireless statamil is a channel
environment containing the transmission information foarenels. A possible evolution of a system
will then be given by a sequence of computation steps:

IFivW) —-ToeWo — . ..., — e Wk... — ... (2.1)

where intuitively each step corresponds to either the pgass&time, a broadcast from a station,
or some unspecified internal computation; the code runnirggadions evolves as a computation
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Table 1 CCCP: Syntax

W:=P
| cx.P
| Wil W,
| veunv).w

PQ = cle.P

| [c?(9.PJQ
| o.P
| 7P
| P+Q
| [bIP.Q
| X

| il

| fixX.P

Channel Environment: T : Ch —- N x Val

station code

active receiver
parallel composition
channel restriction

broadcast

receiver with timeout
delay

internal activity
choice

matching

process variable
termination
recursion

proceeds, but so also does the state of the underlying chamvieonment. In the following we will

use the meta-variable to range over configurations.

2.1. Syntax. Formally we assume a set of chann@ls, ranged over bg, d, - - -, and a set of values
Val, which contains a set of data-variables, ranged oveq y - - and a special valuerr; this value
will be used to denote faulty transmissions. The setlo$ed valuesthat is those not containing

occurrences of variables, are ranged overhy, - - -.

We also assume that every closed value

v € Val has an associated strictly positive integgrwhich denotes the number of time slots needed
by a wireless station to transmit Finally, we assume a language of expressi@rp which can
be built from values invVal; we also assume a functidi], for evaluating expressions with no

occurrences of data-variables into closed values.

A channel environment is a mappiig: Ch — N x Val. In a configuration » W where
I'(c) = (n,v) for some channdt, there is a wireless station which is currently transntttine value
v for the nexin time slots. We will use some suggestive notation for chaangronmentsI +; ¢ : n
in place ofl’(c) = (n,w) for somew, T" +, ¢ : win place ofl’(c) = (n,w) for somen. If ' +; c: 0 we
say that channelis idle inT", and we denote it witli' ¢ : idle. Otherwise we say thatis exposed
in T, denoted by + ¢ : exp. The channel environmeitsuch thaf + ¢ : idle for every channet
is said to bestable Often we will compare channel environments according ¢éoaimount of time
instants for which channels will be exposed; we say that I if, for any channek, ' +; c : n

impliesI” + c : m, for somemsuch than < m.

The syntax for system ternW is given in Tablé€ 1L, wher® ranges over code for programming
individual stations, which is also illustrated in Table 1system ternW is a collection of individual
threads running in parallel, with possibly some channedériied. As we will see in Sectidd 5,
channel restriction can be used to model non-flat networiloges.
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Each thread may be either an inactive piece of d@dean active code of the forjx].P. This
latter term represents a wireless station which is recgigirvalue from the channel when the
value is eventually received the variabdavill be replaced with the received value in the cdele

The syntax for station code is based on standard procesgusiconstructs. The main con-
structs are time-dependent reception from a chajux).P]Q, explicit time delayo.P, and broad-
cast along a channel(e).P; here the value being broadcast is the one obtained by évejueavia
the function[-], provided that does not contain any occurrence of data-variables. Of thaireng
standard constructs the most notable is matchiold, 2 which branches t® or Q, depending on
the value of the Boolean expressibnSuch boolean expressions can be either equality teste of th
form e; = e, or terms of the form exjg§, which will be used to check whether chanoné exposed,
that is it is being used for transmission.

In the construcfix X.P occurrences of the recursion variabden P are bound; similarly in the
terms|c?(x).P]Q andc[x].P the data-variable is bound inP. This gives rise to the standard notions
of free and bound variables-conversion and capture-avoiding substitution; In a caméigon of
the formI" > W, we assume thaW/ is closed, meaning that all its occurrences of both datedvias
and process variables are bound. In general, we always asthana system teriw is closed,
unless otherwise stated. Sometimes we will need to consjdtem terms with free occurrences of
process variables, we will explicitly say that they are opgstem terms. System terms, both open
and closed, are identified up éeconversion. We assume that all occurrences of recursitablas
areguarded they must occur within either a broadcast, input residtimeout branch, time delay
prefix, or within an execution branch of a matching construthis ensures that recursive calls
cannot be used to build up infinite loops within a time slot

Example 2.1. Consider the configuration
C1=T»S1|S2| R
where
S1 = cl{vp).nil
S, = o.cl{vy).nil
Ri = [c?(X).P]nil

andT is the stable channel environment. Further, we assumesthat 2 andé,, = 1. This
configuration contains two sender stations, running the 8ac&ndS,, respectively, and a receiving
station, running the cod@;. In the first time slot, the station running the cdégbroadcasts the
valuevy along channet. The station running the cod® starts receiving such a value and it will
be busy in receiving it for the next two time slots. In the fiiste slot the station running the code
S, isidle. Itis only in the second time slot that this statiorl Wioadcast a value along chanreel
At this point the receiving station will be exposed to twongenissions; the transmission of value
Vp, Which is still in progress, and the transmission of valueAs a result, a collision happens, and
the value received by the receiver will be at the end erraresir.

The formal behaviour of the configuratign will be explained in Example 2.17. O

We use a number of notational conventiorlg;c; Wi means the parallel composition of all
stationsW, fori € I. We identify [ [;c; Wi with nil if 1 = 0. We will omit trailing occurrences dfil,
renderyc:(n,v).W asvc.W when the valuesn(v) are not relevant to the discussion, and u&§V
as an abbreviation for a sequertef Such restrictions. We writge?(x).P] for [c?(X).Pnil. Finally,
we abbreviate the recursive procéigsK.|c?(X).P|X with c?(x).P; as we will see this is a persistent
listener at channed waiting for an incoming message.
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2.2. Intensional semantics. Our first goal is to formally define computation steps amomnifigoir-
ations of the fornT'1 > Wy — I'> » W5, In order to do that, we first define the evolution of system
terms with respect to a channel environmgntia a set of SOS rules whose judgements take the

formI'> W, 4, W5, wereA is an intensional action taking one of the following forms:

(1) clv, denoting a station starting broadcasting valaong channet

(2) o, denoting the passage of one time slot, or time instant

(3) 7, denoting an internal action

(4) cv, denoting a station in the external environment startirgaticasting valug on channet.
These actiond will have an dfect also on the channel environment, which we describe bynsnea
of a functional upg(-) : Env — Env, whereEnv is the set of channel environments.

Definition 2.2. [Channel Environment update] LEte Env be an arbitrary channel environment
andc € Ch an arbitrary channel. Lét andv; be the exposure time and the value transmitted along
channelc in ', respectively, that i§ +; ¢ : t; andI’ +, c : vc. For any intensional action, we let
upd,(I') be the unique channel environment determined by the fd)ﬂg\definitionsﬁ

(1) upd,(I) Frc:te—1and upg () ky C: V¢,

(2) for any valuev € Val, let upd,,(I') be the channel environment such that

Oy if T'+c:idle
max@y,tc) if I'+c:exp

\ if C+c:idle
err ifTrC:exp

updy () Ft C: { updy () +y C: {

and for any channel, d # c, let upd,,(I') ¢ d : tg and upd,(I') Fv d : vg;
(3) for any valuev, upd.,,(I') = upd,,(I);
(4) upd(I) =T
L]

Let us describe the intuitive meaning of this definition. \Wliene passes, the time of exposure
of each channel decreases by one time unit. The predicatkg,(Uip and upd,,(I') model how
collisions are handled in our calculus. When a station Isbmoadcasting a valueover an idle
channelc this channel becomes exposed for the amount of time reqtoréénsmitv, that isé,.

If the channel is not idle a collision happens. As a consecgietine value that will be received by
a receiving station, when all transmissions over channetminate, is the error valugr, and the
exposure time is adjusted accordingly. Finally the debnitof upd(I') reflects the intuition that
internal activities do notféect the exposure state of channels.

Let us turn our attention to the intensional semantics ofesygderms. For the sake of clarity,

the inference rules for the evolution of system terins W, 4, W, are split in four tables, each
one focusing on a particular form of activity.

Table2 contains the rules governing transmission. Ruld)(8mdels a non-blocking broadcast
of a message along chanmelThe valuev sent by process!(e).P is the one obtained by evaluating
an expressiorg; note that here we are assuming tleas closed, hence we can evaluate it to a
closed value via the functioft]. A transmission can fire at any time, independently on thie sta
of the network; the notationv represents the time delay operatoiterateds, times. So when
the procesg {v).P broadcasts, it has to wai} time units (the time required to transmit before
the residualP is activated. On the other hand, reception of a message lyeaguarded listener
Lc?(X).P]Q depends on the state of the channel environment. If the ehamnfree then rule (Rcv)
indicates that reception can start and the listener evahteghe active receiver[x].P.

2For convenience we assume-@ to be 0.
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Table 2 Intensional semantics: transmission

[el =v [+c:idle

Snd Rev
G cer 2 ovp Y 0PI 2% P
=rev(T' > W, ¢) ToW, =5 W TsW. &W’
(Revign) N (Sync) : L ?
r-w—w > Wy | Wo — Wi | W,

ToWy — W, T W, — W

(RevPar) o
[>Wy [W, — W] | W)

Rule (Rcvign) states that if a system terlV is not waiting for a message along a channel
c, or if c is already exposed, then any broadcast alorng ignored by the configuratioh » W.
Herercv(l' » W.C) is a predicate which evaluates to true in the case that+nWV channelc is
not exposed, antlV contains among its parallel components at least one nordgdaeceiver of
the form | c?(xX).P]Q which is actively awaiting a message. Formally, we first definpredicate
rcv(W, c) for open terms, which is then lifted to configurations. Fpen terms we havev(I'> W, C)
is defined inductively as
rcv(P,c) =false provided P=cl{(e).Q,P=7.QorP=X
rev(ld?(X).P]Q.,c) =true ifandonlyif d=c
rcv(P + Q,c) = true ifand only if rcv(P,c) = true orrcv(Q, €) = true
rev(fix X.P,c) = true ifand only if rcv(P,c) = true

rcv(c[X].P, d) = false always
rcv(Wy | Wh, €) = true if and only if rcv(Wy, €) = true orrcv(W, €) = true
rcv(vd.W, ¢) = true if and only if rcv(W,c) = true, where we assuntk+ ¢
Then, for any configuratiol’ » W, we letrcv(l' » W.c) = true if and only ifT" + ¢ : idle and
rcv(W, ) = true.
The remaining two rules in Tablé 2 (Sync) and (RcvPar) semsynchronise parallel stations
on the same transmissidn [20/ 39| 40].

Example 2.3. [Transmission] LetCo = I'g » Wy, whereWy = cl{vp) | Ld?(X).nil](Lc?(X).Q]) |
[c?(X).P], with 6, = 2, andl'g a stable environment.

|
Using rule(Snd)we can infed’g > C!{Vvg) o, o?; this station starts transmitting the valug

along channet. Rule(Rcvign)can be used to derive the transitibge> | d?(X).nil](L.c?(X).Q]) S,
Ld?(x).nil|(Lc?(X).Q)), in which the broadcast of valug along channet is ignored. On the other
hand, RulgRcvign)cannot be applied to the configuratibge| c?(X).P], since this station is waiting

to receive a value on channelhowever we can derive the transitidg > | c?(x).P] o, c[X].P
using Rule(Rcv).
We can put together the three transitions above using tieg(8yInc), leading to the transition

Co ~=> Wi, whereWs = o | [d2(9.ni)(167(9.Q1) | c[.P. -
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Table 3 Intensional semantics: timed transitions

(TimeNil) (Sleep)

s nil - nil IsoP -5 P

I'rtc:nn>1 I'rec:lL, TH,C=wW
ol (EndRcv) ol
'>c[X.P — c[X].P I'ec[X.P — {"iIP

(ActRcv)

I'tc:idle
I'>[c?(X).PIQ -5 Q

(Timeout)

Example 2.4. [Ignored Receptions] Consider the configurat©e: I'> cl(v) | |c?(X).P]Q, where
6y =1 andl'is such thal + ¢ : exp, sayl" + c: 1. Using the rules introduced so far we can derive

¢ Yreo | [c?2X.PIQ (2.2)
describing the unblocked sending of the valualong the channet. This can be inferred using
Rule (Sync)from I' > cl(v) o, o, which can be inferred using Ru(&nd) and the judgement

I'> c?(X).P]Q A, Lc?(X).P]Q. This latter can be inferred using RyRcvign), becaus& + c : exp
means thatcv(I" > | c?(X).P]Q, ¢) = false.

In the transition[(2.2) above the receiye?(x).P]Q ignores the transmission wfalongc. One
might have expected it to accept this value. However theratlan already exposed, + ¢ : exp,
and thus the receptor can not properly synchronise propétlythe sender. We will see later, in
Exampld 2., that a transmission errors actually occurs. O

The transitions for modelling the passage of tifie,W 5 W, are given in Tablg]3. Rules
(TimeNil) and (Sleep) are straightforward. In rules (ActiRand (EndRcv) we see that the active
receiverc[x].P continues to wait for the transmitted value to make its wapugh the network;
when the allocated transmission time elapses the valuersdblivered and the receiver evolves
to {"A}P. Finally, Rule (Timeout) implements the idea the?(x).P]Q is a time-guarded receptor;
when time passes it evolves into the alterna@eHowever this only happens if the chancé$ not
exposed. What happens if it is exposed is explained in Table 4

Example 2.5. [Passage of Time] Le€1 = I'1 » Wq, wherel'1(c) = (2,vp), 1 + d : idle and
W; = o2 | [d?(X).nil]Lc?(X).Q] | c[X].P is the system term derived in Example]2.3. We show how
a o-action can be derived for this configuration. First notet thar o2 2, o this transition
can be derived using RulSleep) Sinced is idle inI'1, we can apply RuléTimeOut)to infer the
transitionI'y » [d?(X).nil |(Lc?(X).Q)) = Lc?(X).QJ; time passed before a value could be broadcast
along channetl, causing a timeout in the station waiting to receive a valoagd. Finally, since
I'1 +y C: 2, we can use Rul@ctRcv)to derivel'; > ¢[X].P AN c[X].P.

At this point we can use twice Rul@imePar)(which is given in Tabl€l5) to infer a-action

performed byC1. This leads to the transitiofi; = W5, whereW, = o | |c?(X).Q] | c[X].P. [

Tablel2 is devoted to internal transitiohss W — W’. Let us first explain rule (RcvLate).
Intuitively the processc?(x).P]Q is ready to start receiving a value on chanoelHowever ifc
is exposed this means that a transmission is already takawg.pSince the process has therefore
missed the start of the transmission it will receive an evatwe. Thus the rule (RcvLate) reflects the
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Table 4 Intensional semantics: - internal activity

revLat T'kC:exp .
(VL) T 200.PIQ - cX (1P ) rep S p
(Then) — LA = e (Else) —— Ll = 18i5e

s [b]P.Q - o-P I'>[bP,Q — ¢.Q

fact that in wireless systems a collision takes place ifdéhgia misalignment between the transmis-
sion and reception of a message. The remaining rules argtdfomward. Note that in the matching
construct we use a channel environment dependent evaluatiwtion for Boolean expressions
[blr (note that this has not to be confused with the funcfidh used to evaluate closed expres-
sions), because of the presence of the exposure prediqgts) exthe Boolean language. Formally
we have thafle; = e]Jr = true evaluates to true if and only[ig;] = [e], and[expC)]r = true

if and only if ' + ¢ : exp. We remark that checking for the exposure of a channel armadont
listening on the channel for a value. But in wireless systénsnot possible to both listen and
transmit within the same time unit, as communication is-daiflex, [42]. As a consequence in our
intensional semantics, in the rules (Then) and (Else), teewgion of both branches is delayed of
one time unit.

Example 2.6. LetT', be a channel environment such tiiafc) = (1, v), and consider the configura-
tion C2 = I'x » Wy, whereW, = o | [c?(X).QJ | ¢[X].P has been defined in Example2.5.

Note that this configuration contains both a receiver pmes®l an active receiver along the
exposed channel We can think of the receivec?(x).Q] as a process which missed the synchron-
isation with a broadcast which has been previously perfdraleng channet; as a consequence
this process is doomed to receive an error value.

This situation is modelled by RuléRkcvLate) which allows us to infer the transitiofi, >
[c?(X).Q] = c[X].{err/x}Q. As we will see, RulgTauPar)which we introduce in Tablg]5, en-
sures that-actions are contextual. This means that the transitioivelfabove allows us to infer
the transitionC, LN Wiz, whereWs = o | c[X].{err/x}Q | ¢[X].P. ]

Example 2.7.[On rules(Rcvign)and(RcvLate] Consider again the configuratighof Exampld 2.4.
Recall thatC = T' > cl{v) | |c?(X).P]Q, wherel" +, ¢ : 1 ands, = 1. In Example_ 24 we have

shown thatC 2, o | L[c?(X).P]Q, where the proof of the transition contains an applicatibRue
(Revign) This transition represents the unblocked transmissioth@fvaluev along the channel
¢, which also changes the channel environment fioto upd,,(I'). Now consider the resulting
configurationC’ = upd,,(I') » o | [c?(X).P]Q. As upd,,(I') + C : expwe can use Rul(aRchateﬁ,
to infer the transitiorC’ — o | c[X].{err/x}P, modelling the expected error in transmission along
channelk due to a collision.

Note also that we could have applied R@RevLate)directly to the initial configuratiorC =
I'>cl{v) | L[c?(X).P]Q, leading to the transitio® LN c(v) | c[X].{err/x}P, again reflecting an error
in transmission along the channetiue to the fact that it is already exposed. In fact we have the
transitionI' > W | [c?(X).P]Q S W c[X].{err/x}P, regardless of the form &. This emphasises

3An application of RulgTauPar)rom Tableb is also required.
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Table 5 Intensional semantics: - structural rules

ToWp —> W, TeW, — W TeW, — W

(TimePar) o (TauPar) -
FI>W1|W2 —>W1|Wé FI>W1|W2 —)Wile
P! P
i ]
(Rec) I' > {fix X.P/X}PA — W (Sum) r-P —W AAE {r,clv}
s fixXP — W r-P+Q —W
o , o , N
(SumTime) r-P—P al-"> Q —Q (SUmRcv) '-P — W I(’:S\\//(FI> P, c)
I'-P+Q — P +(Q r-P+Q —W
clv , A ’
(Res) I'lc e (n, vZ] >W — W ResV) Ic (n,v)] » W1—> W, cé¢aA
I'»>vc:(n,v).W — vc:upd,,(I')(c). W I'>vc:(n,v).W — vc:(n,v).W

the fact that the inability of the receiver to receive cotigethe value being transmitted is because
the channel is already exposed and not because anothensgatiilling to broadcast along it. [ ]

Remark 2.8. The previous example together with Exanipld 2.4 shows tleséetis a delicate inter-
play between the rulgRkcvign)and(RcvLate) particularly when modelling thefiect of an external
broadcast on receivers in the presence of exposed chanfle¢soverall goal of our intensional
semantics is to ensure that it has certain natural propesieh amput-enablednessThis ensures

that for any configuratiol > W and anyc?v there exists some transitidin- W A, W’'. HereW
records the fect of an external broadcastwélongc has on the configuration; if the broadcast is ac-
tually ignored by all stations in the configuration thét will coincide with W. Input-enabledness
also helps us in ensuring that broadcasts are independé¢meiofenvironment. For example, we
require the configuratiol'¢ cl{v) | W) to be able to perform the broadcast of vallelong channel
¢, regardless of the structure f, even ifc is exposed iff". Such a transition can only be inferred
from Rule(Sync)if we we match the output action along chanaglerformed by the configuration
I'>c!{v) with an input action performed Hy>W. Input-enabledneswill ensure that the latter input
action is always possible.

In Sectior 2.2 we will show that our intensional semantic&at satisfies a number of natural
properties, includingnput-enablednesssee Lemma 2]19. This would obviously be not true if, by
omitting Rule(Rcvign), we were to forbid inputs over exposed channels. L]

The final set of rules, in Tabld 5, are structural. Rule (Tiam@Pnodels howr-actions are
derived for collections of threads. Rules (TauPar), (Red) @um) are standard. Rule (SumTime)
is necessary to ensutine determinisn{see Propositioh 2.10). Rule (SumRcv) guaranteed that
only effective receptions can decide in a choice process. FinallgsRiResl) and (ResV) show
how restricted channels are handled. Intuitively movemftbe configuratiod” » vc:(n,v).W are
inherited from the configuratioh[c — (n, V)] » W; here the channel environmelifc — (n,v)] is
the same a¥ except that has associated with it (temporarily) the informationv). However if
this move mentions the restricted chano#ien the inherited move is rendered as an internal action
7, (Resl). Moreover the information associated with therresid channel in the residual is updated,
using the function upgl,(-) previously defined. Rules (TauPar), (Sum) and (SumRcvg lagir
symmetric counterparts.
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In the remainder of this section we illustrate some of thempaoperties enjoyed by the inten-
sional semantics illustrated in Sectlon]2.2. The contefiisi® part are purely technical and needed
only for the proofs of the results illustrated later in theoppa they may be safely skipped by the
reader not interested in detalils.

In broadcast process calculi transmission of a value isliysaadelled as a non-blocking
action [40,34[ 10], meaning that all configurations sholdags be able to receive an arbitrary
value along an arbitrary channel. This is a derived propefrtyur calculus:

Lemma 2.9. [Input enabledness] Lé&t> W be a configuration. Then for any changeind valuev
we have thaf’ > W ﬂ W for someW’; further

(1) —rev(I'> W, ¢) impliesW =W

(2) rev('> W, c) impliesW’ # W, and for every value, I'> W L w

Proof. See the Appendix, Pagel47. L]

Our model of time also conforms to a well-established apgraa the literature; see for ex-
ample [39[56]:

Proposition 2.10. [Time Determinism] Supposé — W; andC — Ws. ThenW; = Ws.

Proof. By induction on the proof of the transitian 25 W;. See the Appendix, Pagel49 for details.

L]
Proposition 2.11. [Maximal Progress] Suppose 25 W If A € {7, ¢!V}, for somec andv, then
there is ndA, such thatC A, W,

Proof. By induction on the proof of the derivatiofi 25 W;. See the Appendix, Pagel49 for
details. ]

Another important property concerns the exposure statearfreel environments. This property
states that non-timed transitions are identified up-to mbb@nvironments which share the same set
of idle channels.

Proposition 2.12. [Exposure Consistency] Lé&t,T'» be two channel environments such that-
c: expifand only ifT', + ¢ : exp for every channet. Then for any system terW/ and action

A+0,T1>W Lw impliesT> > W Lw.

Proof. By Induction on the proof of the derivatidry » W 4, W', See the Appendix, Pagel50 for
details. []

We end our discussion on the intensional semantics withkanteal result on the interaction
between stations in systems; this will be useful in lateretgsments.

Proposition 2.13. [Parallel components] Ldt> W, | W be a configuration.

(1) T>W; | W, — W if and only if
o either there iV such thal > Wy — W, with W = W, | W,
o or there isW; such thal" > W, — W with W = W | W,

(2) T'e Wy | W, 2, W if and only if there areV; andW, such thal'> W, =, W[, T>W, A,
W, andW = W, | W,.

(3) T'>W; | W, —% Wif and only if there aré\V; andW; such that



12 A. CERONE, M. HENNESSY, AND M. MERRO

e ToWy 25 W, To Wo —25 W5 andW = W, | W,
e OrT> Wy —25 W, o Wo ——5 W, andW = W, | W,
(4) T'>Wy | W, 5 W if and only if there ar&\V; andWj such thal > Wy —— W, T'>Wo — W}

andW = W; | W, L]
Proof. Details for (3) are given in the Appendix; see Pagk 50. Therdtiree statements can be
proved similarly. L]

2.3. Reduction semantics.We are now in a position to formally define the individual cargtion
steps for wireless systems, alluded to informally[inl(2 d)\ee.

Definition 2.14. [Reduction] We writd" > W — I » W’ if

() (TransmissionY > W ¥, W’ for some channe and valuev, wherel” = updy, (')
(ii) (Time) '>W — W’ andI” = upd, (I')
(ii) (Internal) T'>W -5 W andI” = upd. ().
The intuition here should be obvious; computation procestiger by the transmission of values

between stations, the passage of time, or internal actifeitther, the exposure state of channels is
updated according to the performed transition. ]

Sometimes it will be useful to distinguish between instaatais reductions and timed reduc-
tions; instantaneous reductiody,> Wy —; I'> > W, are those derived via clauses (i) or (iii) above;
timed reductions are denoted with the symbg} and coincide with reductions derived using clause
(ii). We use the notatiof > W —; (I'> W —) if there existd” » W’ such thal" > W —; I > W’
Te>W —,T">W), andl'> W £ (I'> W 4,,) to stress that there is no configuratibi- W’ such
thatl > W —i I > W (IT'> W —; IV » W),

Example 2.15. We show how the transitions we have inferred in the Exampldd25% and 216
can be combined together to derive a computation fragmerihéconfiguratiorCy considered in
Exampld 2.B.

LetCi =Ti»>W,i € 0,.,2, be as defined in the examples mentioned above. Notdthat

upd,,, (o) andl'z = upd, (I';1). We have already shown thap o, Wi, this transition, together
with the equalityl’; = upd,,,(I'o), can be used to infer the reductiGg —i C1. A similar argument

shows that; —», C». Finally, if we letCs denotel’; » W5 we also haveS, —i Cz sinceCr —s Ws
andl’; = upd,(I'2). L]

Example 2.16. [Time-consuming transmission] Consider a wireless systétimtwo stations, that
is a configuratiorCy of the formI'y » P, | Qq. Let us suppose

P1 is cl{iw).R, Q1 is [€?(X).S]T1
wherel'; is a stable channel environment afyd= 2. Then
C1—C2 (2.3)
whereC- has the fornT'> > P, | Q, and
P, is 2R Q is [X].S [oFC:2 ok CIW
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The move fromP; to P, is via an application of the rule (Snd), fro@y to Q, relies on (Rcv) and

they are combined together using (Sync) to obfair P; | Q; LN P, | Q.. The final step[(Z]3)
results from (Transmission) in Definition 2]14.

The next stef, — C3 = I'3»> 0.R| Q2 is via (Time) in Definitiol 2.1¥; here the only change
to the channel environment is tHaf +; ¢ : 1. The inference of the transition

Top P |Q > oR| Qo

uses the rules (Sleep), (ActRcv) and (TimePar).

The final move we considets — C4 = I'> R| {}S, is another instance of (Time). However
here the delay action is inferred using (Sleep), (EndRcd) @imePar). Thus in three reduction
steps the valugr has been transmitted from the first station to the second long ¢he channet,
in two units of time.

Now suppose we chand® to P} = ¢.P1, obtaining thus the configuratia®y = I'; > P | Q1.
Then the first stepC; — C; is a (Time) step, witfC, = I'; » P, | T;. Here an instance of the
rule (Timeout) is used in the transition fro@y to T;. In C), the stationP; is now ready to transmit
on channelc, but the second station has stopped listening. The nextdgppnds on the exact
form of Ty; if for examplercv(T1, €) is false then by an application of rule (Rcvign) we can deriv
C, — C; =T2» P, | T1. Here the transmission @f alongc started but nobody was listening.

Finally, supposé; is a delayed listener on chanrglsayo. T, whereT; is [ €?(y).S2]U». Then
we have the (Time) steg; — C, = I's>c.R | T and now the second statiofp, is ready to
listen. However, a§'; + € : exp, stationT; is joining the transmission too late. To reflect this we
can derive the (Internal) step

C,— Cg =T3»>0.R| cyl.{*"}}S>

using the rules (RcvLate) and (TauPar), among others. Agrigeof the transmission, in one more
time step, the second station will therefore end up with aorén reception.

In the revised syster@’ = I'; » 0.P; | Q1 the second station missed the delayed transmission
from P]. However we can change the code at the second station to auadae this delay, by
replacingQ; with the persistent listeng®; = c?(x).S. We leave the reader to check that starting
from the configuratiol’; » 0P | Q; the valuew will be successfully transmitted between the
stations in four reduction steps. L]

Example 2.17.[Collisions] Let us now consider again the configuraton=T>S; | Sy | Ry of
Example Z.1L. In this configuration the statiSn can perform a broadcast, leading to the reduction
C1— Co =T1»0?|S, | c[X].P, the derivation of which requires an instance of the (Revign)

I'>S; N S1; here the channel environmdni is defined as upg, (I'), leading ta"1(c) = (2, Vo).
We can now derive the reducti@» — C3 = I'2>0 | cl{vq) | c[X].P, wherel'; = upd,.(I'1) meaning
thatl's + c: 1.

In this configuration the second station is ready to broadesev; along channet. Since
there is already a value being transmitted along this cHamreeexpect this second broadcast to
cause a collision; further, since the amount of time reguioe transmitting valuer; is equal to the
time needed to end the transmission of valgleve expect that the broadcast performed by the first
station does notfiect the amount of time for which the chanma exposed.

Formally this is reflected in the reductiaty — C; = I',» o | o | ¢[X].P. Here the reduction of

the system term uses the sub-inferenceso C—Wl> o, Tascl{vy) & o andI'z>» c[X].P C—M>
c[X].P; the first and the third of these transitions can be derivetyusule(Rcvign), while the second
one can be derived using Rulgcast) Consequently”, = upd,,, (I'2), and sincd™ + c : exp we
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obtainT?(c) = (1,err); this represents the fact that a collision has occurred,taas the special
valueerr will eventually be delivered on.

At this point we can derive the reductiot§ —, C4 = > nil | nil | {err/x}P, meaning that
the transmission along channeterminates in one time instant, leading the receiving atato

detect a collision. The reduction above can be obtained thﬁfrtransitionsl"’2 >0 —s nil and

I, > c[X].P —Z, {err/x}P, obtained via rules (TimeNil) and (EndRcv) presented ind@o

Now, suppose we change the amount of time required to transtuie v, from 1 to 2, and
consider again the configuratiarz above. In this case the transmission of valuvill also cause a
collision; however, in this case the transmission of valuis long enough to continue after that of
valuevg has finished; as a consequence, we expect that the timeaddoirchannet to be released
rises when the broadcastwaf happens.

In fact, in this case we have the reductios — C; = I} » o | o? | JX].P, wherel] =
updy,, (I'2) and specifically™; (c) = (2, err). Now, two time instants are needed for the transmission
along channet to end, leading to the sequence of (timed) reduct@is+,—. Ca. ]

2.4. Behavioural Equivalence. In this section we propose a notion of timed behavioural el
ence for our wireless networks. Our touchstone system ipgisireduction barbed congruence
[23,/46, 35] 25], a standard contextually defined proceswaeuce. Intuitively, two terms are re-
duction barbed congruent if they have the sdrasic observablesn all parallel contexts, under all
possiblecomputations The formal definition relies on two crucial concepts, a tun semantics
to describe how systems evolve, which we have already defametia notion of basic observable
which says what the environment can observe directly of tesysThere is some choice as to what
to take as a basic observation, lmarb, of a wireless system. In standard process calculi this is
usually taken to be the ability of the environment to recaiwalue along a channel. But the series
of examples we have just seen demonstrates that this isgpnakit, in the presence of possible col-
lisions and the passage of time. Instead we choose a morepabe notion for wireless systems,
one which is already present in our language for station:ccagnnel exposure

Definition 2.18. [Barbs] We say the configuratidn- W has astrong barb on cwrittenI'>W |, if
I' + c: exp. We writeI'>W |, aweak barh if there exists a configuratia®y such thal'>W —* C’
andC’ |c. Note that we allow the passage of time in the definition ofkuesrb. ]

Definition 2.19. Let R be a relation over configurations.

(1) Ris said to bébarb preservingf I'y > Wy |l impliesTo > W, |, wheneverXy » Wi) R (T2 Ws).

(2) Itisreduction-closedf (I'1>W1) R (I'2>W,) andl'y > Wy — I} > W, imply there is somé?,> W,
such thal'y > W, —* T, > W, and (7 » W)) R ([, > W)).

(3) ltis contextualif I'y > Wi R T'2»>Wh, impliesI'y > (Wy | W) R To» (Wo | W) for all processes
W.

[

With these concepts we now have everything in place for adatandefinition of contextual
equivalence between systems:

Definition 2.20. [Reduction barbed congruence], writtenis the largest symmetric relation over
configurations which is barb preserving, reduction-closed contextual. ]
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In the remainder of this section we explore via examples riq@ications of Definitiori 2.20.
The notion of a fresh channel will be important; we say that freshfor the configuratiod™ > W
if it does not occur free iW andI” + ¢ : idle. Note that we can always pick a fresh channel for an
arbitrary configuration.

Example 2.21.Let us assume th@t+ c: idle. Then it is easy to see that
I'>cl{vp).P # I'>cl{vy).P (2.4)
under the assumption theg andv; are diferent values. For |€E be the testing context
Lc?(X).[x = vo]eurek&{ok), nil]

whereeurekais fresh, andok is some arbitrary value. Thdne> c!{\p).P | T has a weak barb on
eurekawhich is not the case fdr > c!(v;).P | T. Since= is contextual and barb preserving, the
statement(Z]4) above follows.

However such tests will not distinguish betwdenQ; andI’ » Q,, where

Q1 =cl{vp) | cKvp).P and Q2 = cl{v1) | cKvp).P

assuming thady, = éy,. In both configuration$ » Q1 andI' > Q. a collision will occur at channed
and a receiving station, such @swill receive the error valuerr at the end of the transmission. So
there is reason to hope tHat Q; =~ I'> Q.. However we must wait for for the proof techniques of
the next section to establish this equivalence; see ExdBple L]

The above example suggests that transmitted values carsbevet only at the end of a trans-
mission; so if a collision happens, there is no possibilitdetermining the value that was originally
broadcast. This concept is stressed even more in the folgpaxample.

Example 2.22.[Equating values] Lel’ be a stable channel environmeWy = cl(vg), Wy = cl{vy)
and consider the configuratiohs Wy, I'>W;; here we assume the andv; are two diferent values
with possibly diterent transmission times.

We already argued in Example 2121 that these two configmsian be distinguished by the
context

Lc?(X).[x = vo]eurek&{ok), nil]

However, the two configurations above can be made indisshgble if we add to each of them

a parallel component that causes a collision on channgs this end, let

Eq(Vo, v1) = o.cl(0k)

for some positive integen and valueok such thath < min (6y,, dv,) anddox > max @y, dy,) — h.
Now, consider the configuratior = I'> Wy | EQ(Vo, V1), C1 = T'> Wy | EQ(Vo, V1).

One could hope that there exists a context which is able tmdigsh these two configurations.
However, before the transmission wf ends inCp, a second broadcast along chanaaVill fire,
causing a collision; the same happens before the end ofiission of values; in C1. Further, the
total amount of time for which channelwill be exposed is the same for both configurations, so that
one can argue that it is impossible to provide a context whicble to distinguistCy from C1. In
order to prove this to be formally true, we have to wait urité hext section. ]
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Collisions can also be used to merge twfiehient transmissions on the same channel in a single
corrupted transmission.

Example 2.23.[Merging Transmissions] Ldt be a stable channel environmeWy = ¢!{Vg).cl{v1),

Wi = cl{vp).cl{vp). InT'>Wy a broadcast of valug along channet can fire; when the transmission

of vp is finished, a second broadcast of valu@long the same channel can also fire. The behaviour
of I' > W; is similar, though the order of the two values to be broadsastvapped. Note that it is
possible to distinguish the two configuratidns Wy andI’ > W, using the test

Lc?(X).[x = vo]eurek&{ok), nil]

we have already seen in the previous example.

However suppose now that we add a parallel component to lotfigarations which broad-
casts another value along chanadlefore the transmission of valwg (v1) has finished, and which
terminates after the broadcast of valud\vp) has begun. More formally, let

Mrg(Vo, v1) = o".cl{ok)

whereh = min(dy,, dv,) — 1 anddok = [0y, — Oy, | + 2.

Consider the configuratioris> Wy | Mrg(vo, V1), I'> Wy | Mrg(vo, v1). In both configurations
a collision occurs; further, once the transmission of vatubas begun in the former configuration,
channelc will remain exposed until the transmission of valyehas finished. A similar behaviour
can be observed on the second configuration. This leads tottligon thatl' > Wy | Mrg(vp, v1) =
" > W1 | Mrg(vo, v1); we prove this in Example 3.7, for a particular instancerah$mission values
for vo, vi. L]

A priori reductions ignore the passage of time, and theeefore might suspect that reduction
barbed congruence is impervious to the precise timing afites. But the next example demon-
strates that this is not the case.

Example 2.24.[Observing the passage of time] Consider the two procedsescl(vg) andQ, =
0.Q1, and again let us assume tliat ¢ : idle. There is very little diterence between the behaviours
of I'>Qq andI'>Qy; both will transmit (successfully) the valug, although the latter is a little slower.
However this slight dference can be observed. Consider theTedtfined by

[exp(C)] eurek&{ok), nil

In fact,I' > (Q1 | T) can start a transmission along changehfter which the predicate exg(will
be evaluated in the system tefim The resulting configuration is given By > 0% | o.eurek&(ok);
at this point, it is not dficult to note that the configuration has a weak barteoreka

On the other hand, theniquereduction fromC, = T'> (Q2 | T) leads to the evaluation of the
exposure predicate exg( sincel’ + c : idle the only possibility for the resulting configuration is
given byC’, = I'> Q2 | 0. Sinceeurekas a fresh channel, itis now immediate to note g eureka
and hence als@, Jeureka FOr the test to work correctly it is essential that c : idle. Here we
would like to point out that using the proof methodology deped in Section 312 we are able to
show that ifl” +; ¢ : nandn > 6y, thenI” > Q1 ~ I » Qo. ]

Behind this example is the general principle that redudtiarbed congruence is actually sens-
itive to the passage of time; this is proved formally in Preipon[4.17 of Sectioh 412.

Example 2.25. As a final example we illustrate the use of channel restrctidssume that; and
Vv, are some kind of values which can be compared via a (totaBrawlation<. Consider the
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Table 6 Extensional actions

rew -2 w _ rsW -2 W
(Input) N (Time) o -
> W — upd., () > W I'> W +— upd, () >W
clv , T 4
(Shh) [PW—W (Taukxt) W — W
I'> W +— upd,, (') » W reWir—Te>W
_ rc)=(1Lv) I>W -5 W I'+c:idle
(Deliver) ) (Idle) ()
F>W|—>upd0_(r)>W’ I'sWr—T>W
configuration

I'>vc: (0,).(cl{v1) | Pe | R) where the station code is given by
Pe = ofix X.([exp(©)] X, c{V2))
R=c?(X).Ry
Ry = c?(y).[y < X]dI(x), diy)

Intuitively the receiveR waits indefinitely for two values along the restricted chelrmand broad-
casts the largest on chanmklintuitively the use of channel restriction here sheltefom external
interference. Assuming + d : idle we will be able to show that

Ceve: (0,).(clvi).nil |[Pe|R) = I'sg®™1t%*2 d1(w).nil
providedw = maxy, Vo). []

3. EXTENSIONAL SEMANTICS

Proving that two configuration§; andC, are barbed congruent can bdfidult, due to the contex-
tuality constraint imposed in Definitidn 2120. Therefores want to give a co-inductive character-
isation of the contextual equivaleneebetween configurations, in terms of a standard bisimulation
equivalence over some extensional LTS. In this section \gegiesent the extensional semantics,
then we recall the standard definition of (weak) bisimulataver configurations. We show, by
means of a number of examples, the usefulness of the activmgluced in the extensional se-
mantics.

3.1. Extensional actions. The extensional semantics is designed by addressing tisti@quewhat
actions can be detected by an external observer? Exampglerzi2ates that the passage of time
is observable. Thefkect of inputs received from the external environment als® thabe taken
into account. In contrast, the discussion in Exaniple]2.®icates that, due to the possibility of
collisions, the treatment of transmissions is more suldtlaurns out that the transmission itself is
not important; instead we must take into consideration tleeessful delivery of the transmitted
value.

In Tablel® we give the rules defining the extensional actidhns(,’—> C’, which can take one of
the forms:
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e Input: C A C’, this is inherited directly from the intensional semantics

e Time:C +> C’, also inherited from the intensional semantics

e Internal: C — C’, this corresponds to the combination of the Internal anchdmrassion rules
from the reduction semantics, in Definitibn 2.14

e Delivery: C TE/)) C’, this corresponds to the successful delivery of the valuehich was in
transmission along the chanrel

e Free:C ﬂ C, a predicate indicating that chanreak not exposed, and therefore ready to start a
potentially successful transmission.

Remark 3.1. The rules provided in Tablgl 6 guarantee thaxtensional actions coincide with
instantaneous reductions. In fact, wheneveW — I > W’ then eithel” > W — W/, and hence
I'>W 5 I > W follows by an application of Rul€rauExt) withI'” = upd ('), orI'> W <, w
andl'> W +— I » W’ is ensured by Ruléshh) with T = upd,,(I'). The opposite implication can

be proved analogously.
Similarly, it is easy to check extensionatactions coincide with timed reductionE»> W —

I’ > W if and only if T> W+ T7 » W', O

3.2. Bisimulation equivalence. The extensional actions of the previous section endowgis\sst
in CCCP with the structure of an LTS. Weak extensional astionthis LTS are defined as usual,

T T T
with C — C’ denotingC +—* s —* C’. We will useC = C’ to denoteC —* C’, and the
formulation of bisimulations is facilitated by the notati¢ s C’, which is again standard: for
o = 7 this denote = ¢’ while fora # ritis C = C’. We now have the standard definition of
weak bisimulation equivalence in the resulting LTS whichdonvenience we recall.

Definition 3.2. Let R be a binary relation over configurations. We say fRat a bisimulation if for
every extensional actiom, whenevelC; R C2

(i) C1— C’ impliesC; == C, for someCy, satisfyingC’; R C,
(ii) conversely,C» s C’, impliesCy = C, for someC’, such thaC; R Cy,.
We writeC1 =~ C», if there is a bisimulatiorR such thatC; R Co. ]
Our goal is to demonstrate that this form of bisimulationvies a sound and useful proof
method for showing behavioural equivalence between vassdgstems described in CCCP; moreover
for a large class of systems it will also turn out to be conglet

The next two examples show that the introduction of the asti(c) andy(c, v) are necessary
for soundness.

Example 3.3. [On the rule(ldle)] Suppose we were to drop the rulele) in the extensional se-
mantics; then consider the configurations

I'1> W]_ 7.nil

IoeWo = civ)
wherel';1(c) = (1,v), T'2(c) = (0, ) andé, = 1.

If we were to drop the actiongc) from the extensional semantics then the extensional LTSs
generated by these two configurations would be isomorphkitalk that a broadcast action in the
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intensional semantics always corresponds toagtion in its extensional counterpart. Thus they
would be related by the amended version of bisimulationvedemce.

However, we also have thE{>W; # I';>W,. This can be proved by exhibiting a distinguishing
context. To this end, consider the syst&m: [exp(C)]nil, eurekalok). Thenl',>W, | T has a weak
barb on the channel eureka, which obvioushs W, | T can not match. ]

Example 3.4.[On the rule(Deliver) Consider the configuratioli,>W, from the previous example;
consider also the configuratidn > W3, whereWs = c!(w) for some valuav, different fromv, such
thaté, = 1. Finally, letT’ = | c?(X).[x = v]leurekalok), nil]. Then, assumingv is different fromv,
I',>W;s | T’ can not produce a barb on eureka. On the other Hand\W, | T’ can produce such a
barb. It follows that's > W5 # 'y » Wh.

Note also thal',> W3 % T'o>Wh, since the (weak) actior, > Ws yg) I'>nil cannot be matched
by I', » Wo. However, if we were to drop the rul@®eliver) in the extensional semantics, thereby
eliminating the actionsg(c, v), then it would be straightforward to exhibit a bisimulatioontaining
the pair (2 » W3, I'> > W,). Thus again the amended version of bisimulation equicaemould be
unsound. []

The two examples above show that both rule&) and (Deliver) are necessary to achieve the
soundness of our bisimulation proof method for reductioréd congruence.

In the remainder of this section we give a further series afigdes, showing that bisimulations
in our extensional LTSfder a viable proof technique for demonstrating behaviouyahalence for
at least simple wireless systems.

Example 3.5.[Transmission] Here we revisit Examjple 2.21. Ldie a stable channel environment,
and consider the configuratio® = I's W, C1 = I'>V, whereW = cKvg).P|cl{vy), V =
cl{vy).P| cl{vp); note that these two configurations are taken from the sepanidof Example
2.21.

Our aim is to show that ~ C1, whendy, = éy,; for convenience let us assume thgt= oy, =
1. The idea here is to describe the required bisimulation aiching up system terms. To this end
we define the following system terms:

Wo = o.P|clvy) Vi = o.P|cl{vp)
W, = clvp).P|o Vo = cln).P|o
E = oPlo E' = PInil
Then for any channel environmefitwe have the following transitions in the extensional semsant
A»W +5  updyy, (A) > Wo AV 5 updy, (A)> Vo
A»W +5  updy, (A)>W; AV > updy, (A)» Vs
AW lle> updy,(A) > W AsV lle> upty(A) » VvV
AeW ML AsWif Ard:idle AV Y AsViFA+d:ide
A>Wp +— updy,(A)>E A»Vo +— updy,(A)»>E
AsWo 25 Updiny(A) > Wo AsVo 28 updm(A) > Vo

d . . . .
ArWo % AsWoif Ard:idle ArVe F% AsVoif Ard:idle
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Table 7 A relation S for comparing the configuration, C1 of Exampld 3.6

AW S A»V
A-Wop S ArxVp
(Alc— (L)) »Wo S (Alc (2 v1)]) » V1
(Al[c— (Lem])»>Wo S (AlcH (2,em)])>V;
A>Work S A>Vyi
A>Wer S Av Ve
AW S AvV’

A arbitrary channel environment,
A arbitrary channel environment such tiagt) = (k, w) for somek > 2

T T

A>W; +— upd,,,(A)>E A»Vy — upd,,,(A)>E
AeWe % Updya(A) s Wi AV &% Upda(A) s Vi

o(d o(d
AvWy 2% AswWiifArdiidle AsV; £ AsViifAFd:idle

Hered ranges over arbitrary channel names, including
Then consider the following relation:

S={(A>WA>V), (A>Wy, A>Vp),(A>Wy1,A>V;) | Aisachannel environment

Using the above tabulation of actions one can now show&hata bisimulation; forC SC’ each
possible action of? can be matched b’ by performing exactly the same action, and vice-versa.
Since Co,C1) € S, it follows thatCq ~ Cj. O

Example 3.6. [Equators] Let us consider the configuratiat\s C; of Example[ 2.2P. Recall that
Co = I'> W, whereW = cl{vp) | o".cl{ok) andC;1 = I'> V, whereV = cl(v;) | o".cl{ok); further,
recall thafl" is a stable channel environment énak are a positive integer and a value, respectively,
such that < min (6y,, dv,), dok = Max Ey,, oy,) — h. Without loss of generality, for this example we
assume,, = 1,6y, = 2,h=0anddy = 2.

For the sake of convenience we define the following systemder

Wo = o |cl{ok Vi = o?|cl{ok)
Wok = clvo) | o2 Vok = ci{vi)]|o?
Werr = 0'|0'2 Ver = 0'2|0'2
W = nil|o V' = oo

E = nil|nil

Let us consider the relatioS depicted in Tabl€l7; note tha®{,C1) € S, so that in order to
prove thatCy ~ C1 it is suficient to show thatS is a bisimulation. Note that in the relatiad®ithe
system term&V,, Vok are always associated with a channel environment in whiglehiannet is
exposed. In fact, i\ were a channel environment such that c : idle, it would not be dificult to
prove thatA » Wer # A » Ve, this is because the values broadcast by these two confinsaire
different.
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Table 8 A relation S for comparing the configurationy, C1 of Exampld 3.7

AsW

Alc— (L, wW)]>W

Alc - (k+2,w) > W
Alc— (K+ 3, W) Wqee
Alc i (k+ 3, err) » Wy
Alc (k+ 2, err)> W
Alc (k+2,err)] > W, Alc (k+2,ermm)] >V’
AlcH (k+ 1, emm)]>E Alc (k+ 1 em)]>V”

A arbitrary channel environmen; arbitrary value (possiblgrr) andk > 0.

AV

Alc (2, W)] >V,

Alc (k+2,w)] >V,
Alc - (k+ 3,wW)] » Vo
Alc - (k+ 3,err)] > Verr
Alc (k+2,err) >V’

DL ULLuLuLu®

Let us list the main the extensional actions from configaratiusing these system terms:

AW — (Alc— (L, vo)]) »Wo if A+ c:idle
AsV —s (A[c — (2,v1)]) » V1 if Ak c:idle
AsW —s (A[c — (2, 0K)]) > Wik
AsV — (A[c — (2, 0K)]) > Vok
AsW i (UPGyny(A)) » W
AsV i (Updny(A)) » V
(Alc— (L)) » Wo +— (A[c - (2,ern)]) > Wer
(Alc— QW) »V1 +— (A[c - (2,ern)]) > Wer
AsWo S (Alc (L em)]) > Wo if AFc: exp,ow =1
NSV S (Alce 2em)]) > Viif AFc:exp,ow =1
AsWo S (Alc > (Gw, erm)]) > Wo if A F C: exp,ow > 1
NSV N (A[C — (S erm)]) > Vi if AFC: exp,ow > 1
A > Woi — (UPGyy, (A)) > Werr
A > Vok i (updc!vl (A)) > Verr
A > Wer — (upd,(4)) > W'
A > Verr — (upd,(A)) >V’
AsW o (upd,(A)) > E
AsV/ N (upd,(A)) > E

HereA, A are two arbitrary channel environments, ALt subject to the constraint thagfc) = (k, w)
for some valuav and integek > 2. This last requirement ensures that (WpdA)) = (upd,,, (A)).
With the aid of this tabulation one can now show tlsas indeed a bisimulation and therefore that
Co ~ C]_. D
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Example 3.7. [Merging] The last example we provide considers the merginigvo transmissions
in a single transmission as suggested in the Examplé 2.23C he a stable channel environment
andvp, v1 be two values such thaj, = 1,6,, = 2. Also letokbe a value such thatx = 3. Consider
the configurations

Co=T>W C1=I»>V

whereW = c!{vp).cl{v1) | c!{ok) andV = c!{v1).cl{vp) | c!{0K).
ThenCp ~ C1. As in previous examples, this statement can be proved fyrimgexhibiting a
bisimulation that contains the pa{, C1); to this end, define the following system terms:

Wy = o.cvy) | c{ok) Vi = o2.c{v) | cl{ok)
Wok = cl{vo).cliva) | o Vok = cliva).cl{vp) | o
Werr = o.c{vy) | o3 Werr = o2.c! (Vo) | o3

W = clvy)|o?

W, = 02|02 V' = o.cl{v) | o2

E' = oo V" = clw) | o
E = nil]|nil

Consider now the relatiof depicted in Tablgl8; note th@y S C;. Also, S is a weak bisimulation.
In order to show this, we list the non-trivial transitiong tmoth configurationgCo, C1 and their
derivatives, which are needed to perform the proof.

Al(c— (0,)]>W +— Alc — (1,vo)] » Wo
Allc = (0.)] >V + Alc (2,vi)] » V1
Alce (0,)]»W  +— Alc - (3, 0K)] » Wik
Alce (0,)]»V Alc — (3, 0K])] » Vok

Alck (k)] »W Alc - (k erm]»Wpif k>0
Alcw (k)]»V +> Alce (2.em)]»V1if0 <k <2
Al (k)] >V +— Alc - (k ern)] >V if k> 2

Alce (k)] »W = A[c (3,erm)] > Wy if 0 <k <3
Alc (k)] »W Alc — (K, ern)] » W if k > 3
Alce (k)]»V >  Alce (3,em)]»Voif 0 <k <3
Alc (k)]»V Alc - (K, err)] » Vo if k> 3
A>W |d—’>\/> updyn,(A) > W
AV A updy,(4) >V
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Al(c— (Lvo)l»Wo +— Al(c (3, err)] > Wer
Alc— (2,v)]» V1  +— Al(c (3,err)] » Verr

Alc (k)] »Wo = Alc (3 em)]>Way if0 < 3<k
Alc (k)] »Vi >  Alce (3,em)]» Ver if0 <3<k

Alc (k)] »Wo Alc — (K er)] » Wey if k> 3

Alce (K)]»V: Alc - (K, erm)] » Ve if k> 3
Av>Wp |le> Updd?w(A) > W
A» Vi a2 Py (A) » Vs

Alc (k)] > Wok +— Alc K ] > Wer if k>3
Alc (k)] »>Vok +—  Alc k][> Verif k>3

A > Wox
A> Vo

updd?w(A) > Wok
updya(A) > Vok

4. FULL ABSTRACTION

In this section, we show that the co-inductive proof methaskadl on the bisimulation of the previous
section is sound with respect to the contextual equival@fcgection[Z.#; this is the subject of
Sectior[4.L. Moreover it is complete for a large class ofeyst This class is isolated in Section
[4.2.1, and the completeness result is then given in Sdctibg.4

4.1. Soundness.In this section we prove that (weak) bisimulation equivagis contained in re-
duction barbed congruence. The maiffidulty is in proving the contextuality of the bisimulation
equivalence. But first some auxiliary results.

Lemma 4.1. [Update of Channel Environments]Tif>- W = I"" > W’ thenI” < T".

Proof. See the Appendix, Pagel51.
L]

Below we report a result on channel exposure for bisimyaria similar result for reduction
barbed congruence will also be proved, in Propos[fion]4.13.

Lemma 4.2. [Channel exposure w.r.&] Whenevel'; » Wy ~ I'>>W, thenI'y + ¢ : idle if and only
if I'> +c:idle.

Proof. See the Appendix, Pagel51 L]
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In order to prove that weak bisimulation is sound with respeceduction barbed congruence
we need to show that is preserved by parallel composition.

Theorem 4.3. [~ is contextual] Supposié; » Wi ~ I',»Wh,. Then for any system teriW, 'y > (W |
W) = Tz» (W2 | W).
Proof. Let the relationS over configurations be defined as follows:

{(T1> Wy [W, T2oWo [W) 1 T1o Wy ~ T2 W, )

It is suficient to show thasS is a bisimulation in the extensional semantics. To do soybynsetry,
we need to show that an arbitrary extensional action

oW | W T W, (4.1)

can be matched by, » W, | W via a corresponding weak extensional action.
The action[(4.1) can be inferred by any of the six rules in @&l We consider only one case,

the most interesting ong@hh) So herex is r andI'y » Wy | W AN W, for somec andv, and
= upd,, (). This transition in turn can always be inferred by an agian of the rulgSync) or
its symmetric counterpart, from Takilé 2. Here we only comsttie former case; the proof for the
second case is slightly fiierent, though it uses the same proof strategies illustizéémv. For the
case we are considering, we have that

° 1"1 > W]_ i) Wi
o [1s W 25 W
o Wi=W, |W

By an application of rulgShh)it follows thatI'; » Wy s 1:1 >W;. Sincel't > Wy =~ I'2> W,
there isl";, » W; such thal'z> W, = T, » W, andl"; » W, ~ T, > W. Note that Lemma 412 ensures
that whenevel'; + d : expthen alsd’, + d : exp, for any channedtl . Similarly, ifCrd: expthen
I, - d: exp. Thatis,I'; agrees wit', on the exposure state of each channel; the same applies to
I; andTs.

Further, recall thaF; = upd,,(I'1). Therefore we have that, for any chandet ¢, I’y + d : exp
iff F1 + d : exp; for channelc, we have that“l F C: exp. Thatis, the exposure statesIQfandFl
differ only in the entry at channe] and only if such a channel was idlelih.

Sincel'’; andl; agree withl, T, respectively, on the exposure state of each channel, it has
also to be that the exposure state§"paindT, differ only at the entry at channel and only when
the latter is idle ifl; formally I'; + d : expiff [, - d : expwhend # ¢, andl; + ¢ : exp.

Next we show that the actidiy » Wy | W LN ﬁ >W] | W’ can be matched by a weak action
T2 Wo | W= T W, | W, Sincel'y » W, ~ [ » W), the above statement would imply that

(ﬂ>Wi |W)S (1?2>Wé | W), which is exactly what we want to prove. There are two pdssibses,
according to whethdr; > W is able to detect a value broadcast along chaanel

(2) —rev(l'y » W.c). By LemmdZ.8(1l), in the transmoﬂl s W -, W it must be thatV’ = W.
We have to show that the transitiba> W, = F2>W’ implies thatlo>Ws | W = F2>W’ | W.
To this end, we prove a stronger statement: whenever we hesguence of transitions

RS ANNS S VNLINSULING LR VA
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of arbitrary lengthn > 0, and such that for any # ¢, I'° - d : expif and only if " - d : exp,
and-rcv(I'o>W). Then
VO WS Tt VI WS o 5 T VI | W
Further,-rcv(I™ » W, ¢). By choosingl® » VO = I'; > W, andI™» V" = [, » W, we obtain that
[20 Wa | W= T2 W | W.
The proof of the aforementioned statement is by induction.on

(a) If n= 0 then there is nothing to prove.

(b) Letn > 0. By inductive hypothesis we assume that the statementésftmrn — 1. By
Lemma 4.l we know thdt® < ™1 <™. Letd # c; if I°+ d: exp, thenT™ 1+ d : exp
sincel® < -1, Conversely, it  d : expthenI™ ! < I implies thatl™ + d : exp,
and by hypothesis we get thet  d : exp.

Therefore we can apply the inductive hypothesis to obtarstguence of transitions

VO WS eV WS - S T e vl W

and infer that-rev(I™1»W, c). Consider now the transitidi™*> V"1 ~— "> V", There

are diferent ways in which this extensional transition could haserbinferred:

e if this transition has been obtained by an application ofeRTAuExt) of Table[6, then
we have thaf™ 1> V™1 55 v andI™ = upd (I"1). By Rule(TauPar)we also have
thatT™1s V1| W — V" | W, which can now be translated in an extensianattion
1o vl | WS s VN | W via an application of Rulé€TauExt)

e if the transition has been obtained by an application of Rsité)of Table[6, thed™ 1 »

d! .
yn-1 W, V", andI™ = upd,,,(I"1). Let us perform a case analysis on the chaunel
— If d = ¢, then since-rcv(I™ 1> W, ¢), Lemmd 2.9(1) ensures that we have the transition
1w 2, W. Note also that now™ r ¢ : exp, so that it follows—rcv(I™ > W, c).
Now by applying RuléSync)to the transitiong™2v1 —2%, vn andr-tew -2,
. d! .
W we obtainl™ 1> V™1 | W v, V" | W. The latter can be converted into an
extensionak-transition™1» V"1 | W+ I'» V" | W using Rule(Shh)and the fact
thatI™ = upd,,(I"1).
— It remains to check the cask# c. First note that if we hav&" ! r ¢ : exp then
alsoI™ + ¢ : exp (sinceI™! < I'M), so that-rcv(I™ » W.c). On the other hand, if
"1 c:idle, we can still prove thatrcv(I™ > W, ¢) via an induction on the structure
of W
Finally, note that sinc&" = upd,,(I"1) implies thatt™ + d : exp. By hypothesis
we get thatf® + d : exp, which leads td™ ! + d : exp (recalling thatr® < "1,
Therefore we have thatrcv(I'1 » W, d), and by Lemm&2]9(1) we obtain tHait* »
d- : . .
w o, W. Now we can proceed as in the cade= c to infer the extensional
transitionT™ 1 s> VN1 | W T"s V" | W.
(2) Suppose now thatv(l'; » W,c). By Lemma[2.8(R) the transitioh; > W Y, W leads to
W # W. Also, in this case we have thE{ + c : idle, which also giveg™; + ¢ : idle by Lemma
[4.2. Since we havE; + ¢ : exp, it has to be the case that we can unfold the weak transition

4Intuitively, we just need to check that there are no unguhréeeivers along channelppearing inw.
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20 W, = o> W) as

Tao Wy = T €0 WP L, pPOST WPOSt 1wy

pre post

whereT? . idle andT5 """+ c : exp. Note also that Lemma 4.1 ensures that, for any
channeld # c, 1"2 Fd: explmpliesrgre Fd:exp andl"'lzjre Fd:exp impliesl"Az Fd:exp,
which by hypothesis leads 1& + d : exp. Similarly we can show thdeOStk d: expif and

only if 1:} +d:exp. Thatis,Iy, I, agree witH‘E re, FE OSton the exposure state of each channel,
respectively. Now, in a way similar to the first case, we casverthat we have the following
transitions: e e
o T2oWo | W= TP WP w,
o« DS WPOSh W e i W
so that it remalns to show thﬁfre Wpre| W i+— FpOSt WpOStl W’. Note that, S|nc<Fpre
:idle andFE F C: exp, it has to be the case that the transm?fn >Wf e Fg ost WE ost
has been induced by the intensional 65e° > WP'® 2%, WPOSt angrPOSt_ yng, (rP'9),
Now note that, sinc&; > W -25W’ we also have thal; > W— 2w/ by Lemma 2.D(2).
Finally, note that for any channe| 'y + d : expiff T2 + d : exp (asT1> Wy =~ T'a > W,) iff
Fgre + d : exp. By Propositiori 2.1 it follows thdt; » wW-w impliesFEre> w -, w

We can now apply RuI@ync)to such a transition, and the transitiEBre> Wpre ow WpOSt

to infer l_pre Wpre| W — Wp05t| W’. The last transitions induces the extensional action

FE OSt post| W — E OSt> WpOStl W, as we wanted to prove.

We have built the sequence of transitions
Lo W | W= TR wP'® w55 rPOSL WPOSt W s o v | W/

which can be synthesised Bs> W, | W = 1"2 >W, | W, which is exactly the transition that
we wanted to derive.

[

Theorem 4.4. [Soundness{1 ~ C, impliesCy = Co.

Proof. It suffices to prove that bisimilarity is reduction-closed, barbserving and contextual.
Reduction Closure: Note that ifC; — C7, then we have two possible cases; eitigr—; C; or

C1 —o C}. If C1 —i C) then itis not dfficult to see thaC; +—— C; (see Remark31). Similarly,
if C1 —» C} thenCl N C}. SinceC1 = Cy, it follows that there existe, such thatC, = C,,

(respectivelyC> = C %) with C| ~ C),. By Remark 3.1l the last transition can be rewritten as
a sequence of reductlomsz * A (respectively,Cz ——,— C5), from which it follows
Co —" Cy,

Barb Preservation: LetC; = I'; > Wy andC, = I' » Wh. Suppose that; | ¢ for some channet;

by definition we have thdf — 1 + ¢ : exp. By Lemmd4.R2 we also have thBs + ¢ : exp. This
ensures thaf, |¢, and more generallg, |c.

Contextuality: contextuality has already been proved as Thedrei 4.3.

[
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4.2. Completeness.Having proved soundness, it remains to check whether oimbiiation proof
technique is also complete with respect to reduction bacbedruence; that is, whenever we have
' » Wy = I'> » W5, then there exists a bisimulation that contains the gais Wy, I'; » W5). Unfor-
tunately, this is not true for arbitrary configurations, hewen by the following Example:

Example 4.5. LetT’; + ¢ : exp, I'2 + ¢ : idle and consider the two configurations = I'y > vd:

(0, ).(d[x].nil) andC2 = T'2 > cl{v) | vd:(0,-).(d[X].nil). Note that both configurations include an
active receiver placed along an idle, restricted channké gresence of such an active receiver is
somewhat problematic, as it does not allow the passage efitimoth configurations, according to
our definition of timed reductions. Indeed, the reader cacklthat, in the intensional semantics,
no transition — is defined for a configuration of the forfr{d — (0, -)] » d[X].P; consequently,
o-transitions are not allowed for the configuratibr vd : (O, V).(d[X].P) either. Similarly, weak
o-transitions are note enabled@n.

Now note that, since any occurrence of charthisl restricted in botiC;, C», we cannot enable
the passage of time for them via the composition with a sys¢éemT. That is, for any system term
T, and configuratiorCy, Cz, such thaiCy | T — C1, C2 | T —* C,, we have thaC; #», and
Cy 4> 0.

Now it is not dificult to show thatC; ~ C». At least informally, the only dference between
these two configurations lies in the exposure state of chamaed in the fact that, can broadcast
along channet. Such a broadcast ensures that the strong barb at chgrerv@bled inCq, can be
matched by a weak barb enabledCat On the other hand, theftierence in the exposure state of
channekin C1, C2 could be detected via a teBtwhich contains an exposure check ejpbiowever,
this construct requires the passage of time in order to mhéterthat channet is free (exposed) in
C1 | T (respectivelyC» | T). But, as we have already noticed, time is not allowed to passich
configurations. Formally, to prow@; ~ C» it suffices to show that the relation

{ (A»vd:(0,-).(d[X].nil), A" > vd:(0,-).(cl{v) | A[X].P) |
| Arc:expArd:expiffA’rd:expford#c }

is barb-preserving, reduction closed and contextual.
Therefore we have shown th@i ~ C»; howeverI'; + c : idle, whileI's> + ¢ : exp. Therefore,
by Lemmd4.2 it also has to l§& # C. []

4.2.1. Well-formed systemslhe counterexample to completeness illustrated in Exadhpleelies

on the existence of configurations which do not let time p&lkese can be built by placing an active
receiver along an idle, restricted channel. However, sactiigurations are not interesting per se,
as it is counter-intuitive to allow wireless stations toaiwe a value along a channel, when there is
no value being transmitted.

It is interesting, in fact, to ask ourselves if our proof nathlogy based on bisimulations is
complete, if we were to restrict our focus to a setting wherté/a receivers along idle channels
were explicitly forbidden. These take the namendl-formedconfigurations, and can be defined
as below:

Definition 4.6. [Well-formedness] The set of well-formed configurations @dlis the least set such
that
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I'> P € WNets for all processe?
I'-c:exp implies T'»c[X].P € WNets
I'>W;,I's Wo € WNets implies T'>W; | W, € WNets
I'[c— (n,v)] » W e WNets implies T'>vc: (n,v).W € WNets
L]

A configurationI” > W is well-formed if it does not contain any receiving statidorey an idle
channel. Note that the configurations from Exaniplé 4.5 ateved-formed. Clearly, well-formed
configurations are preserved at runtime.

Lemma 4.7. Suppose& is well-formed andC — C’. Then(C’ is also well-formed.
Proof. See the Appendix, Pagel51. L]

The main property of well-formed systems is that they allbe passage of time, so long as all
internal activity has ceased:

Proposition 4.8. [Patience] LeC be a well-formed configuration for which there is@bsuch that
C —j C’; thenC —, C”, for some configuratio” .

Proof. Details for the most important cases are given in the Appersaie Page 52. L]

However, Patience alone does not preclude the possibiléytabiting a configuration in which
time never passes. In fact, it only ensures the passage ®fdimen instantaneous reduction are not
possible anymore. However, it could be the case that a caafign C enables an infinite sequence
of instantaneous reductions, and by maximal progress @Bitgn[2.11) the passage of time would
be forbidden. As we will prove presently, this phenomenoastot arise for CCCP configurations;
we recall in fact that, in recursive processes of the ftixrX.P, we require all free occurrences of the
process variabl&X in P to be guarded by a time-consuming construct. This limiteisosuficient to
prevent the existence of configurations which do not allometto pass; further, it is also necessary,
as shown by the following example.

Example 4.9. Suppose we remove the constraint in the syntax that pro@egbles have to be
guarded by time-consuming constructs in fixed point praegsketW denote the codéx X.(r.X).
Then we have an infinite sequence of internal actions

FDW—Di Cl —j Ck —>j

Indeed one can show thatlif- W —* C’ thenC’ —;. Maximal progress then ensures tliat/s, .
]

Example 4.10. Again, suppose we remove the constraint on guarded reouisithe syntax of
CCCP. Then our bisimulation proof principle would not be pbete; to see this, it is fhicient to
consider the two configuratioris» fix X.(7.X) andT” » fix X.(7.X) | cl{v), wherel" + ¢ : exp and

I + c: idle. By Lemmd4.P these two configurations are not bisimilarhag tltfer in the exposure
state of channad. On the other hand, none of these two configurations alloy&lssage of time. As
we have already argued in Examplel4.5, when the passageeiginot allowed in a configuration,
it is not possible to provide a context that determines thposure state of a channel. Then it is not
difficult to show thal > fix X.(7.X) =~ T » fix X.(7.X) | cl{v). This can be done by simply showing
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that the relation
S = {(Asfix XX A > fix X2.X | cl{W)), (Ac > fix X.2.X, AL > fix X.7.X | %) |
A+d:expifandonly if A" +d:expd#c,
Ac+d:expifand only if A, + d : exp, with d arbitrary}
is a bisimulation. []

Let us state precisely what we mean when we say that infingeesees of instantaneous re-
ductions are not allowed in our calculus. In practice, we@islightly stronger definition, requiring
that the amount of instantaneous reductions that can berpetl in sequence by a configuratiGn
is bounded.

Definition 4.11. [Well-timed configurations] A configuratio@ is well-timed [32], if there exists
an upper bound € N such that wheneveag (—;)" ¢’ for someh > 0, thenh < k. O

Contrarily to well-formedness, which is a simple syntactimstraint,well-timednessneans
that the designer of the network has to ensure that the cedeglat the station nodes can never
lead to divergent behaviour. As we already argued, howekerconstraint we have placed on
the syntax of system terms that each recursive definitioneiakly guarded irP, is suficient to
ensure well-timedness. One simple method for ensuringishig only use recursive definitions
fix X.P where X is weakly guarded irP; that is, every occurrence of is within an input, output
or time delay prefix, or it is included within a branch of a nitig construct. These are exactly
the conditions that we placed for recursion variables whefimihg our calculus. Thus, we would
expect every configuration in our calculus to be well-timed.

Proposition 4.12. Any configurationl” » W is well-timed.
Proof. See the Appendix, Pagel53. L]

Next we prove a very useful result for well-defined configiarat; the proof emphasises the
roles of well-formedness and well-timedness in the confiions being tested.

Proposition 4.13. Supposd’; » Wy = I'> » W5, where both are well-formed. Thdn + ¢ : idle
impliesT's + ¢ : idle.

Proof. LetI'1 » Wy = I', » W, and supposé&; + ¢ : idle for some channet. Consider the testing
code:

T = [exp(©)]nil, eurek&{ok)
From the definition ok we know thatl’'y > Wy | T = T'2»> W, | T. Sincel'; » W, is well-timed, by
definition there is a configuratiodl such that"; » Wy —; C andC #»j. Becausd'; » W, is well-
formed so iC. By Propositiori 4.8 there is a configuratiGhsuch thatC —, C’. LetC’ =T"> W/,
for somel” andW’. Now, if we defineC” = upd,exao(I”) > W andT’ = o.eureké(ok), it is easy
to see that there exists a sequence of reductions of thevinticshape:

CioWi [T =i Tis Wy | T =7 C| T —, C' | eurek&(ok) —; C"" | oo«

whereC” | 0% | eureka By definition this implies thaly > Wy | T Jeureka

Note that the existence of the sequence of reductions aleties on the fact thaf, > W; is
well-timed.The timed transitio® | T" —, C’ | eurek&{ok) in such a sequence is derived from the
timed transitions performed by their components( #vere not able to perform a-transition, in
fact, we would have not been able to derive the timed redudtiothe overall configuratio® | T'.
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Sincel'y > Wy | T 2T >W, | T we also have thdto > Wo | T Jeureka This is only possible if

oo Wo | T = Toe W) | T/ —f o) Ty > Wy | g%

whereTI” is a channel environment such thgf + c : idle. From Lemmé 4]l (recall that-
extensional actions coincide with instantaneous redus}iwe get the requirel, + ¢ : idle. [

We remark once again that restricting our attention to Wehred configurations is crucial in
order to ensure the validity of Proposition 4.13. In factzimampld 4.5 we have already provided an
example of two (ill-formed) configurations which are redostbarbed congruent, but whichfldir
in the exposure state of a channel.

Another important property that we will need from well-foeth configurations concerns the
definition of reduction barbed congruence itself; the réidacclosure property which we used to
define~ can be strengthened by requiring instantaneous redudbadms matched by sequences of
instantaneous reductions, and timed reductions to be edtol timed reductions, possibly pre-
ceded and followed by sequences of instantaneous ones.oVe {tris property we will need the
following technical result, which will also be used later:

Lemma 4.14. Supposd’1 > W, | T = T'>»>W, | T where each channel occurring freelirdoes not
occur free inWy, nor inW, and is idle in botl'; andI'y; thenI'y » Wy =~ I’y » W,

Proof. See the Appendix, Pagel55, for an outline. L]
Proposition 4.15. LetI'1>Wy, I'o>W, be two well-formed configurations such thas W, ~ T'o>Ws.
Then
() whenever';>W; —; I';»W] there exists a configuratidri,>W, such thal'z>W, — I';>W,,
andl"’l > Wi ~ F’z > Wé,
(i) wheneverl';>W; — I »W] there exists a configuratidri,> W, such thal oW, —/—,—
I, > W, andl’; » W, =~ T > W,
Proof. See the Appendix, Pagels55. L]

4.2.2. Proving CompletenessiVe are now in the position to prove that, for well-formed cguft
ations, our proof methodology is also complete. Given twd-feemed configurationg; =~ Co,
there exists a bisimulatio§ such thatC; S C».

To prove completeness, we show that reduction barbed cengeuis a bisimulation. That is,

we need to show that for any extensional aciigrif C1 ~ C, andCy +— C}, then there exist€,

such thatC, — C, andC’ = C. The special cases= 7 anda = o follow as a direct consequence
of Propositiori 4.15. However, we state the results for the sé consistency.

Proposition 4.16. [Preserving extensionak] Supposd’y > Wy = 2> W, andly » Wy +— T » W,
ThenTy» W, = =W, such thair’l > W] = 17> W, ]

Proposition 4.17. [Preserving extensionats] Supposé&’1>W; =~ I'o»>Wo. Thenl'y>W, N [ >Wj
impliesI's > W» N > W, such thaﬂ“’1>W1 ~T7%>W,. ]
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Let us turn our attention to the remaining cases {c?,((c), y(c,Vv)}. For each of them we
define a distinguishing contefi,; these are defined so that, given a well-formed configuraiion

C = C' ifand only if C | T, —* C’ | T, whereT/ is uniquely determined by the action
a. Intuitively, the latter corresponds to the first state heatby the testing component when it
has detected that the configuratiorhas performed a weak-action; the systerTY is called the
successful state for the actian

The testsT, are defined below; here we assume thatekafail are fresh channels, while
0ok = 0no = 1.

Ty = vdi(0,).(c[x].([(x=v]dI{oky, nil) + faill(no) | o2 [exp(d)] eureka(ok), nil)

Tew %' (clv).eureka(oky + faill(no))
Ty def ([exp@)]nil, eurek&(oky) + fail'{noy.

We also list their respective successful staigs

Tew) ©1d:(0,).(o-d!(oknil | o-.[exp(d)] eureka(ok, nil)
T4, €' (0%.eureka(ok)
T e eureka(ok

As an example we consider in detail the behaviour of thertgstontextT, ). This is de-
signed to detect whether a configuration W has performed a weal{(c, v)-action. Let us discuss
informally how the testing context, ) operates. The fresh channelsreka fail play a diterent
role: fail ensures that the reception along charmnkds finished, whileurekaguarantees that the
received values is actually

We provide a possible evolution of the testing contékjic, v) when running in a channel
environment such that'(c) = (1, v), and then we discuss how it works.

I'> Ty
-5, I'1»Tq

I} » vd:(0, -).(([v=Vvld!{0Kk), nil) + fail'{no |
| o.[exp(d)]eurek& ok), nil)

— VTV > > vd:(0, -).(o.d!(0k) | o-.[exp(d)]eurek&(ok), nil)

—, I'3»T3 = T3>vdi(0,-).(d'(0k) | [exp(d)]eurek&{ok), nil)
—i TaeTs = Ty4evdi(L, 0K).(o | [expd)]eurekoky, nil)
—i I5eTs = TI'sevdi(l, 0K).(o0 | o.eurek&(ok))

—, IgrTg = Igp vd:(O, )(nll | eurekzh(ok))

Initially a configuration of the forni"> W | T, has a weak barb at chanrfall. Further, the
testing component has an active receiver over charjnete that the configuratiofi> W | T, c)

is well-formed only ifT" - c - exp. If T> W | T)(cy) Tg) ' > W, that is ifI"(c) = (1,v), then after

time passes the reception along charmielthe testing componeft, ) terminates. Formally, we
have the sequence of reductidns W | T,(c\) =/ —+—; I'1> W’ | T1. Note that the componeiiy
compares the received value along chammeith v; this test can only succeed, and as a consequence
we obtain a further instantaneous reductign W’ | Ty —; I’V » W' | T; In practice here we have

[V = T4). At this point we have detected that the configuratign- Wy has performed the weak
v(c, v)-action, ending i1 » W'. The rest of the computation is already determined, at feashe
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part concerning the testing compon@at and lead$™ >W’ | T to output a barb oeurekafurther,
in this configuration it is not possible to output a barbfaifanymore.

To see why this is true, note thatlitf > W’ | T the testing componert” is waiting for time
to pass, before broadcasting valkealong a restricted channdl Formally, we have the sequence
of reductionsI™ > W’ | TV ——, T3> Ws | T3 — T4 > Wy | T4, wherelY » W —* T > W,
andWs = W, (note that each instantaneous reduction performed by sthed€omponent does not
affect the test at this point).

Finally, inT'4 > Wy | T4 the test checks whether the restricted chamhisl exposed. As this
channel is fectively restricted ifT4, the test can only succeed, leadingte W, | T4 —j I's>Ws |
Ts, wherel's = I'y andWs = Wj. At this point we can let time pass, via a sequence of redustd
the formI's > W5 | Ts ——,— I's > Wg | Ts. Now it is trivial to see that this configuration has a
barb oneureka

Note that in the computation & W | T, discussed above, there are two crucial checks that
lead to enabling a barb over chaneeireka

e The received value is exactly

e The check that a broadcast along the restricted chahieperformed after two time instants.
Since the broadcast along chandek performed only one time instant after valudas been
delivered, this check ensures that such a value has beaillpctelivered after one time instant.

" , _ _ N
Proposition 4.18. [Detecting Inputs] For any well-formed configuratibeW we have thal>W —
I’>W ifand only if [> W | Tey —7 T/ > W' | TS, .

Proof. See the Appendix, Pagel56. L]

Proposition 4.19. [Detecting Exposure Checks] For any well-formed configarel’ » W we have

thatT' > W 5 I » W’ if and only if ' W | Ty = T'>W [ Ty

Proof. See the Appendix, Pagel57. L]

Proposition 4.20. [Detecting Delivery of Values] For any well-formed configtionI">W we have
v(ey) / /a H * ® T ’

thatl'> W = I > W’ if and only if [ > W | Ty —f— 0 —; T > W' | TY .

Proof. See the Appendix, Pagel58. L]

Note that in Propositioris 4.118, 4119 dnd 4.20, we emphasibether the reductions needed to
reach the successful configuratibe W’ | T({ fromI'> W | T, are instantaneous or timed.
We have stated all the results needed to prove completeness.

Theorem 4.21. [Completeness] On well-formed configurations, reductiarbbed congruence im-
plies bisimilarity.

Proof. It is suficient to show that the relation

SE ((Ty> Wy, T2oWy) : Tyo Wy = oo Wh)

is a bisimulation. To do so, suppose that- Wy — I'; » Wh, and thafl'y > Wy =~ To e Wh. If @ = 7
or a = o, the result follows directly from propositiofs 4116 dnd#.fespectively.

Now suppose that = y(c,V) for some channet and valuev. LetT; > W, )|/(ﬂ/>) I = W, by
Propositior 4.20 it follows thaty > Wy | Ty cy) —{—¢— T[> W] | Tyf(cv). By the contextuality of
reduction barbed congruence, and by Proposition 4.15]aide thatl's > Wa | Tycy) —f —o—>7 C2
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for someC, such thatl > W, | Tyf(c’v) ~ Cp. LetCy = I'y» Wy; note thatl’; + eureka: idle
(recall that we assumed thatirekais a fresh channel), so that by Proposition #.13 it followet th
I, + eureka idle. Further,l"l>W’ | T ey Veurekea@NdI' >WIT y(cv) Y 1ai; therefore, we also have that
I > Wh Ueureka@ndI™, > Wa Yair. Now, by inspecting all the possible evolutions of the catrrmon
F2 > Wz | Tycy it follows that the sequence of reductiong> Wa | Tycy) —f—=o—] 5> W,
wherel, + eureka: idle, I, » W, UeurekaandI, » Wo Y, is possible only |1W2 = W | T

Consequently, Propositign 4120 ensures that W, )'/(:>) I, > W,

We also need to show thaf > W; =~ I'), > W,; but this foIIows immediately from Lemnia 4114
and the fact thal’; > W] | Ty(cv) I >W’ | Ty(cv)

It remains to check the cases= c’?v anda = «(c); these can be proved analogously to the
previous case, using proposition 4.18 and .19, respégtindieu of Propositiori 4.20. ]

y(ev)

5. APPLICATIONS

In this section, we show how our calculus CCCP can be used ttehatiferent interesting beha-
viours which arise at the MAC sub-layer |26] of wireless netivg. Then, we exploit our bisimu-
lation proof technique to provide examples of behavioyrafjuivalent networks. In particular we
give some examples comparing the behaviour of routing podécandTime Division Multiplexing
We start with some simple examples. The first show that statiwhich do not transmit on

unrestricted channels can not be detected. To this end wien(¥¥) to denote the set of unrestricted
channel names in the cod® which have transmission occurrences. Formally\fénis defined
inductively on (a possibly open system terfi)as the least set such that

fsn(il) = fsn(X) =0
fsn(Kcy).vP) = {c} U fsn(P)
fsn@@.P) = fsn(e.P) = fsn(c[X].P) = fsn(fix X.P) = fsn(P)
fsnP+ Q) = fsn(b]P,Q) =fsn(c?(X).P]Q) = fsn(P) U fsn(Q)

fsnWi | Wp) = fsn(Wh) U fsn(Wy)
fsnpc: (n,v)W) = fsn\Wy) \ {c}

Example 5.1.[Unobservable systems] Consider a wireless system in wioatation can broadcast
on any free channel. Intuitively none of its behaviour sddug observable. In CCCP this means
that the system should be behaviourally equivalent tethptysystemnil.

Formally consider the configuratidne nil whereI is an arbitrary channel environment. This
configuration has non-trivial extensional behaviour. Fareple it is input enabled, and so can
perform all extensional actions of the fo®v. It can also perforna- actions, indicating the passage
of time.

Now let W be arbitrary station code such that f8f)(= 0, that is it can not broadcast on any
free channel. The configuratidh- W has similar behaviour. Indeed I§tbe the relation

{(C>W, T nil) | fsn(W) = 0}

Then it is straightforward to show th&tis a bisimulation in the extensional LTS. Our soundness
result therefore ensures that
>W =~ T'»nil
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whenever fsi{) = 0. L]

Next we consider what happens when a channel becomes pearttiyasgosed. This situation
can be modelled by using two statiogg s; which repeatedly send a value along charmedach
broadcast performed Igy takes place before the transmissiorspénds, and vice versa. In this case
we say that the channelis corrupted Clearly, if a system transmits only on corrupted channels;
then it cannot be detected. Let us see how this scenario éstedl in our behavioural theory.

Example 5.2. [Noise obfuscates transmissions] hebe a value such tha, = 2 and let Sndf)
denote the codéix X.c!{v).X, which continually broadcasts an arbitrary valualongc. To model
the two stationsy ands; discussed informally above we use the code Ngjse(Sndg) | o.Sndg).

Then, consider a configuratidn> W such that fsr\{Y) C {c}; that is does not transmit on free
channels dterent fromc. Then

I'>W | Noise(c) ~ I' > Noise(c)
To prove this, it is sfficient to exhibit bisimulation containing the pair of configtions "> W |
Noise(c) I'> Noise(c)).

We use the following abbreviations:
Nois€(c) = ¢2.Snd¢) | o~.Snd¢)

Nois€’(c) = .Snd€) | SndE)

Nois€” (c) = o.Sndg) | o->.Snd¢)
Then letS denote the following set of pairs of configurations:

{(A>W | Noise(c) A’ > Noise(c))
(A>W |Nois€(c) ,  A’»Nois€(c)),
(A>W|Noise”c) ,  A’»>Nois€’(c)),

(A>W | Noise™(c) , A’ >Nois€”(c)) |
AN +c:exp fsn(W) C {c} }

Then itis possible to check th&tis a weak bisimulation in the extensional LTS. At least itively,
this is because in the extensional LTS all outputs fired atbegpbfuscated channelcorresponds
to internal actions; further, in the configurations incldde S, channelc is never released, so that
neither:(c)-actions nory(c, v)-actions can be performed by any configuration includef.in  []

TheCarrier Sense Multiple Acce$€SMA) schemel[24] is a widely used MAC-layer protocol
in which a device senses the chanrmlysical carrier sengebefore transmitting. More precisely,
if the channel is sensed free the sender starts transmittimgediately, that is in the next instant of
timd; if the channel is busy, that is some other station is tratiggj the device keeps listening to
the channel until it becomes idle and then starts transmgiitnmediately. This strategy is called
1-persistentCSMA and can be easily expressed in our calculus in termsedbilowing process:

cll(w).P = fix X.[exp(©)] X, c{v).P

So, by definition CSMA transmissions are delayed whenewechtiannel is busy.
In the next example we prove a natural property of CSMA trassions.

Example 5.3. [Delay in CSMA broadcast] Suppogét+; ¢ . nfor somen > 0. Then, for any
k<n+1

Iscll(W.P =~ T'» X cli(v).P (5.1)

SRecall that in wireless systems channels are half-duplex.
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Table 9 A simple topology for a network

g

No N1

Intuitively, sincel” += n, the transmission of valuein I'> c!!{v).P can take place only after at least
ninstants of time. The same happenginoX.cll (v).P.

Formally, to prove[(5]1) we need to exhibit a bisimulatiSrwhich contains all pairs of the
form (T > c!l(v).P, o®.cll(v).P), wherel is such thal +;: n > 0 for somen satisfyingk < (n + 1).
One possibleS takes the fornR U 7d whereZd is the identity relation over configurations aRds
given by:

R = {(An> NP, Ap > o".c(W.P) | Apkicinh<n}
L]

In our calculus the network topology #&ssumed to b#at. However, we can exploit the pres-
ence of multiple channels to model networks with a more caraf#d topological structure. The
idea is to associate a particular channel with a collectiostations which are in the same neigh-
bourhood.

Example 5.4. [Network Topology] Suppose that we want to model a networthwio stationss,
r with the following features:

e the range of transmission sfis too short to reach external agents,
¢ the statiorr is in the range of transmission ef
¢ the range of transmission ofis long enough to also reach external agents.

A graphical representation of the network we want to modegjiven asNy of Table[9. We can
model this network topology by using a specific restrictedratel, sayd, for the local communica-
tion between stationsandr. In CCCP a wireless system running 6fy would therefore take the
form

Co=T»vd:(0,)).(S|R
where

e S represents the code running at stat®it can therefore only broadcast and receive along the
restricted channal (recall that we do not want stati@to be able to communicate directly with
the external environment)

e Rrepresents the code running at statipit can only receive values along the restricted channel
d (since in Ny stationr can receive messages broadcast by statjdout not by the external
environment), while it is free to broadcast on other chamfghce statiom is able to broadcast
messages to the external environment)

As a specific example we could I8tdenote the single broadca#{v), andR = fix X.[d?(X).cl{x)|X.
Then in the configuratio® the stations broadcasts as a value and stafioaicts as a forwarder;
this behaviour is reminiscent of range repeaters in wisglesninology.

Suppose now that we want to add a second sta&iorthe above network topology, so that
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e broadcasts frone can be detected hy this can be accomplished by allowing the process used to
model statiore to broadcasts along a restricted charthel

¢ broadcasts frome can not reacls, nor the external environment. For this to be true, it iisient
to require that the process which models the behaviour tibata can broadcast values only
along the restricted channgl further, in order for ensuring that the statienannot detect values
broadcast by, we require that the process used to represent statdoes not use receivers along
channeld.

The network topology we wish to model is depicted/sisin Table[9 and so a wireless system
running on this network takes the form

C1 = vd:(0,-).(S | R| E)

whereE is the code running at statiam As an example we could take to be the faulty code
di{v) + 7.nil.

Then inC; stationr still acts as a forwarder for statias) however statiore can non-
deterministically decide whether to corrupt the transiors$rom nodesto r, causing a collision.

Let us assume that the transmission time of the value usdubgethetworksy, satisfiess, =
derr. Then we can show

Co =~ I'> ™.cl(v)
C1 = I['> 1.0%.cl{V) + T.o%.cl{err)

Intuitively the reasons for these equivalences are obvidlse transmission along chanrelis
restricted inCo, so it cannot be observed by the external environment. Theaativity which can
be observed is the broadcast of valuglong channet, which takes place afte¥, instants of time.
ForC, a collision can happen along chandelvhich is again restricted; the only activity that can
be detected by the external environment is a transmissiachvidékes place aftef, instants of time.
Such a transmission will contain either the valuer an error message of lengii

The formal proof of these identities involves exhibitingothisimulations, containing the relev-
ant pairs of configurations. Here we exhibit a bisimulationghowing thaC; ~ I' > 7.0%v.cl{V) +
r.0%.cl{err). For the sake of simplicity, lef., = §, = 1 and define the system terms

W = vd:(0,).(SIEIR Ws = vd: (L V).(c| E|[X.c{x))
We = vd:(Lem).(S|o|X.cl{x)) w vd: (0,)).(S|nil| R)

W7’ = vd:(Ler).(o]|o]|c[X.clKx)) Wok = vd: (0,-).(nil | nil | cl{v))
Werr = vd: (0,-).(nil | nil | ciKerr)) W, = vd:(0,).(nil|nil| o)
Then it is easy to show that the relation
S = { (AW Av 1.0.CV) + T.0.Cl(err))
(A>Ws Av» 1.0.CV) + T.o.Cl(err))
(A>We Avo.clerr))
A>W Av>o.c(v))
A>W" Avo.clerr))
(A>Wok Avcl(v))
(A>Werr Avcl(err))
(A>We Av o)
| A arbitrary channel environment}

is a weak bisimulation. O
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Table 10 Two transmitting stations usingfiirent time slots to broadcast values

!v8 loa !Vé o o !\/(1) foa !v}
S $1
d d
2X o u o o X o N
o ry

-
"

The next example shows how the TDMA modulation technigué ¢a# be described in CCCP.
Time Division Multiple Acces€TDMA) is a type of Time Division Multiplexing, where instdaof
having one transmitter connected to one receiver, thermaltiple transmitters. TDMA is used in
the digital 2G cellular systems such @®bal System for Mobile Communicatiofi8SM). TDMA
allows several users to share the same frequency channaliiyng the signal into dferent time
slots. The users transmit in rapid succession, one afteottier, each using his own time slot.
This allows multiple stations to share the same transmgsiedium (e.g. radio frequency channel)
while using only a part of its channel capacity.

As a simple example let us describe how two messagesdv; can be delivered in TDMA
style; for simplicity, we assum&,, = éy, = 2. The main idea here is to split each of these values
into two packets of length one, transmit the packets indiily, which will then be concatenated
together before being forwarded to the external envirodm®a let us assume valug v5, v, vi,
each of which requires one time instant to be transmitted,aahinary operatos for composing
messages such that

Voovp = Vo
Viovi = wi
voerr = errov=err

wherev is an arbitrary value; in this case we assume fhat= 2.

IVAIoreAspgcifigaIIy, for this example we assume foufatient stationssy, si, ro, r1, running the
codeSy, S1, Ry, Ry respectively. The network we consider for modelling the TANMansmission
is then given by o

Co=T>vd:(0,")(So|S1IRo | Ry)
where
So = diVQy.odivg)
S; = cdiW).o.div)
Ry = [d?(X).0.ld?(y).c.cl{Xx o V)]
Rl = 0.ld?(X).0.d?(y).c%.cl{(x 0 V)]]
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Table 11Forwarding two messages to the external environment

The intuitive behaviour of this network is depicted in Tdb Stationsy wishes to broadcast value
Vo, While s; wishes to broadcast valwe. They both use the same (restricted) chauitelbroadcast
their respective values; however, both stations split tieevto be broadcast in two packets. Value
Vo is split inv3 andv}, while vy is split inv0 andv}.

The two stations run a TDMA protocol with a time frame of lemgwvo. Stations, takes control
of the first time frame, hence transmitting its two packugtandvcl) in the first and the third time
slot, respectively. Statios, takes control of the second time frame; hence the two pam@e&ed
v} are broadcast in the second and fourth time slot, respéctive

Stationsrg andry wait to collect the values broadcast along chamhdfiowever, the former is
interested only in packets sent in the first time frame, wiigelatter detects only values sent in the
second time frame. At the end of their associated time frdmaestationsg andr; have received
two packets which are concatenated together and then lastadcthe external environment along
channelc. Note that statiom; is a little slower thamg, for we have added a delay of two time units
before broadcasting the concatenated values.

As an alternative to TDMA, the two valueg, v; can be also be delivered to the external
environment by means of a simple routing, along the linegssigd in Example 5.4. Here we
consider the configuration

Ci1=TI» le(o, )(So | Sl | R)

where
So = o*.cl(vp)
S = otdivy)
R = d?(X).cl{x)

Intuitively, the configuratior®; models three wireless statiogg s, r, running the cod&g, S1,
R, respectively, and connected as in Tdble 11. Stadjomaits four instants of time, then it broad-
casts valuevy directly to the external environment via the free charmelSimilarly, after four
instants of time the statiosy broadcasts value, to stationr via the restricted channdl Finally, r
forwards the message to the external environment via tieecfiannet.

From the point of view of the external environment the configjonC, performs the following
activities:
e it remains idle for the first four instants of time
e it transmits valuey in the fifth and sixth time instants
e it transmits valuer; in the seventh and eighth time instants.

In this manner, at least informally the observable behavid@1, which uses direct routing, is the
same as that afy, which uses TDMA.
Formally, we can prove

Co=~C1 (5.2)
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However, instead of proving this by giving a bisimulatiomtaining this pair of configurations, we
prove them individually bisimilar to a simpler specificatid_etS1 denote the configuratiofi> Sy
whereS; is the code

a?.cl{(Vp).c1{vyp).

Then we can show thaly ~ S; andC1 ~ S1, from which [5.2) follows by soundness. Let us show
thatCy ~ S1; for the sake of simplicity, it will be convenient to definestfollowing system terms:

&n - on.di(vdy s = di).odi¢vh

S = o.di(vy) (|§>10)act = d[X.o.ld?(y).o.cl{x o y)]
R = Ld?).0.cl(vg oY) (R = dlyl.o.ci¢oy)
: = vl o vd) R = |d?(X).0.Ld?@).02.cl{x o Y]]
(R)* = d[¥.0.[d?@y).c2.cl(X o y)] Ajf' = [d?@).c% (R oy)]
(Rt = dy].sigme.cl() o y) R, = c(Movh
Wh = on.cl{vp).cl{vy)
Then the relation
R = { (A>Vd(0,)(Sq|S]’_\|RQ\| 1)}\ s A>W4) ,
(Awd:(l,vg).(SSLSllRStl ) , AvWy)
(A>vd: (0)(SF ]S | Ry | R , Ae W)
(A»vd: (1, v")(sl|sz|aR0 (Rf)“’) , AvWa)
(A>Vdi(0)(d'<Vo>|SllR0I0'R’) , AvWp)
(Asvd: (L) S]] (R)™ | R AsW)
(A»vd: (O, )(n|I|c'(v1>|o-R0|R”) , AvWp)
(A»vd 2 (L vg).(nil | civ >|aRO|(R")aC‘) , Ae W)
(A>vd: (O, )(nn | nil | c'<v0> | o2.c(v)) ., Ascl(vo).clivy))
(Asvd : (0,-).(nil | nil | o | o72.c1(v1)) , Avo?.cl(vy))
(Asvd: (0,-).(nil | nil | o | o.cl(vy)) : Avo.cli{vy))
(Asvd: (0,-).(nil | nil | nil | c!(v1)) : Ascli{vy))
(A»vd: (0,-).(nil [ nil | nil | o) , Avo?)
(A>vd: (0,-).(nil | nil | nil | &) , Avo)
(A>vd: (0,-).(nil | nil | nil | nil) , Avnil)
| A arbitrary channel environment }

is a bisimulation. Below we also show th@i ~ Si; for the sake of simplicity, define the
following terms:

S; = o".civo) S} = o"divi)

R = d[X.cx) W, = o".cl{vg).cl{vy)
for anyn € N. Then the relation

R = { (A»vd:(o,‘).(5§|SQ|R) , AvW,)
(Asvd:(0,).(c? | diiv) |R) Avs?.cl(vy))
(Avvd: (2,v1).(cl(Vo) | 02 | R) , Ascl{Vo).cl{vy))
(Avvd: (2,v1).(0% | 0? | R) , Avs?.cl(vy))
(Avvd: (Lvi).(c|o|R) , Avo.cl{v1)) ,
(Asvd: (0,-).(nil | nil | cl¢vy)) Avcl(vy)) |
| A arbitrary channel environment }

is a relation which contains the most relevant couples reeéateshowing thatC; ~ Si.
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Example 5.5. As a final example we can modify the behaviour of the two coméijonsCy and
C1 seen above by adding the possibility of gettingadlision when delivering valuesy, v; to the
external environment. In the routing case, this is accahplil by requiring that both statioss 5
can either broadcast their value directly to the externatenment or to the forwarder nodewhile
in the TDMA case it is sflicient to allow both the stations, s; to non-deterministically choose
the time slot to be used to broadcast packets.

To this end, let

Sy = 7.0 cl{vp) + 1.0°*.d (Vo)

S = .ot clivy) + 1.0t dl(vy)

S¢ = diW).odi(vg) + .od (D). ondi(vg)
S¢ = diW).odivp) + Tond ).ondl(vp)

and consider the configurations
(6] I'>vd:(0,-).(S§ 1 S5 I R)
cs I'>vd:(0,-).(S§ 1SS I Ro | R)
It is not difficult to see informally that the observable behaviour ofeht®g configurations is
the same. Specifically
e either valueyg is broadcast in the fifth and sixth time slots ands broadcast in the seventh and
eighth instants of time slots, or
e valuev; is broadcast in the fifth and sixth time slots, while valgds broadcast in the seventh
and eighth time slots, or
e a collision occur in the fifth and sixth time slots, or
e a collision occur in the seventh and eighth time slots.
This informal behaviour can be described by the term

S, = rotclvy.cl{vi) +
r.ot.clivi).clivg) +
r.0%.cl{err) +
r.08.cl(err)

and once more we can exhibit bisimulations to estallishS, ~ Cj andT' > S; ~ C§. Then
soundness again ensures that
Cy = C
U]

6. CONCLUSIONS AND RELATED WORK

In this paper we have given a behavioural theory of wirelgstesns at the MAC level. In our frame-

work individual wireless stations broadcast informatiorttieir neighbours along virtual channels.
These broadcasts take a certain amount of time to compledegra subject to collisions. If a broad-
cast is successful a recipient may choose to ignore thennaftoon it contains, or may act on it,

in turn generating further broadcasts. We believe that eduction semantics, given in Sectian 2,
captures much of the subtlety of intensional MAC-level vt of wireless systems.
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Then based on this reduction semantics we defined a natursxtoal equivalence between
wireless systems which captures the intuitive idea thatsyséem can be replaced by another in a
larger network without fiecting the observable behaviour of the original networkh&nmain result
of the paper, we then gave a sound and complete charadtamigditthis behavioural equivalence
in terms ofextensional actionsThis characterisation is important for two reasons. Kiisgives
an understanding of which aspects of the intensional bebais important from the point of view
of external users of these wireless systems. Secondlyesgvpowerful sound and complete co-
inductive proof method for demonstrating that two systemesb&haviourally equivalent. We have
also demonstrated the viability of this proof methodologyalseries of examples.

Let us now examine some relevant related work. We start wahliterature on process cal-
culi for wireless systems. Nanz and HankKinl[37] have intostlthe first (untimed) calculus for
Mobile Wireless Networks (CBS, relying on a graph representation of node localities. fiaén
goal of that paper is to present a framework for specificatiod security analysis of communica-
tion protocols for mobile wireless networks. Merro[33] meposed an untimed process calculus
for mobile ad-hoc networks with a labelled characterisatibreduction barbed congruence, while
[17] contains a calculus called CMAN, also with mobile ad:hmetworks in mind. This latter pa-
per also gives a characterisation of reduction barbed cemnge, this time in terms of a contextual
bisimulation. It also contains a formalisation of an attackthe cryptographic routing protocol
ARAN. Kouzapas and Philippou_[27] have developed a theorgooffluence for a calculus of dy-
namic networks and they use their machinery to verify a leatiction algorithm for mobile ad
hoc networks.

Singh, Ramakrishnan and Smolkal[48] have proposed tbalculus, a conservative extension
of the n-calculus. A key feature of the-calculus is the separation of a node’s communication
and computational behaviour from the description of itsgitgl transmission range. The authors
provide a labelled transition semantics and a bisimulatiaypenstyle. Thew-calculus is then used
for modelling the AODV ad-hoc routing protocol. Anotheremsion of ther-calculus for modelling
mobile wireless systems may be found.in [7]; the calculuseiuo verify reachability properties of
the ad-hoc routing protocol LUNAR. Fehnker et al.|][13] havepgmsed a process algebra for wire-
less mesh networks that combines novel treatments of looatoast, conditional unicast and data
structures. In this framework, they also model the AODV mgiprotocol and (dis)prove crucial
properties such as loop freedom and packet delivery. Vigd.453] have proposed a calculus of
broadcasting processes that enables to reason aboutcitesoinessages and lacking of expected
communication. Moreover, standard cryptographic medmsican be implemented in the calculus
via term rewriting. The modelling framework is complemehtsy an executable specification of
the semantics of the calculus in Maude.

All the calculi, mentioned up to now, except for [37], remestopological changes of mobile
networks in the syntax. In contrast Ghassemi etlall [14] lmeposed a process algebra called
RBPT where topological changes to the connectivity graghimplicitly modelled in the opera-
tional semantics rather than in the syntax. They proposetiamof bisimulation for networks
parametrised on a set of topological invariants that musebpected by equivalent networks. This
work in then refined in[[15] where the authors propose an éuuattheory for an extension of
RBPT. Godskesen and Nariz [18] have proposed a simple tinledlws for wireless systems to
express a wide range of mobility models.

A simple notion of time is also adopted in the calculus foralss systems by Macedonio and
Merro [31] to verify key management protocols for wirelesasor networks by applying semantics-
based techniques. In_[30] this notion of time is extendedh wibbabilities. In this paper a prob-
abilistic simulation theory is proposed to evaluate thégrarances gossip protocols in the context
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of wireless sensor networks. Paper|[50] also presents abilitic broadcast calculus for wire-
less networks where, unlike_[30], nodes are mobile; due tbiliyothe connection probabilities
may change. The authors examine the relation between anrmftiveak bisimulation and a minor
variant of PCTL*. Papel[10] investigate in detail the prbitiatic behaviour of wireless networks.
The paper presents a compositional theory based on a plisbalgeneralisation of the well known
may-testing and must-testing pre-orders. Also, it prowide extensional semantics to define both
simulation and deadlock simulation preorders for wireleestsvorks. Gallina et all [8] propose a pro-
cess algebraic model targeted at the analysis of both covitleand communication interference
in ad hoc networks. The framework includes a probabilistiecpss calculus and a suite of ana-
Iytical techniques based on a probabilistic observati@oaigruence and an interference-sensitive
preorder. In particular, the preorder makes it possibleviduate the interference level offtér-
ent, behaviourally equivalent, networks. They use th@imiwork to analyse the Alternating Bit
Protocol. Song and Godskesén|[51] introduce a continuows stochastic broadcast calculus for
mobile and wireless networks. The mobility between nodesriatwork is modelled by a stochastic
mobility function which allows to change part of a networpdtogy depending on an exponentially
distributed delay and a network topology constraint. Thefijng a weak bisimulation congruence
and apply their theory on a leader election protocol.

All the calculi mentioned up to now abstract away from thestaifity of interference between
broadcasts. Lanese and Sangiorgi [28] have instead prappbeeCWS calculus, a lower level un-
timed calculus to describe interferences in wireless systdn their operational semantics there is
a separation between the beginning and ending of a broadcetstere is some implicit representa-
tion of the passage of time. A more explicit timed generéitisaof CWS is given[[34] to express
MAC-layer protocols such as CSMBA, where the authors propose a bisimilarity which is proved
to be sound but not complete with respect to a notion of réoluttarbed congruence. We view the
current paper as a simplification and generalisation_cf. [34]

The research we have mentioned so far has been focused oalifing various aspects of
ad-hoc networks. However other than|[L8] 34], these vamalsuli abstract away from time. Nev-
ertheless there is an extensive literature on timed proglgebras, which we now briefly review.
From a purely syntactic point of view, the earliest propssak extensions of the three main pro-
cess algebras, ACP, CSP and CCS. For example, [2] presea&-time extension of ACP,_[44]
contains a denotational model for a timed extension of C3HewCCS is the starting point for
[36]. In [2] and [44] time is real-valued, and at least sertatly, associated directly with actions.
The other major approach to representing time is to intreduspecial action to model the pas-
sage of time, and to assume that all other actions are iast@ots. This approach is advocated in
[19,(5,[36) 39] and [55, 56], although the basis for this apphomay be found i [6]. The current
paper shares many of the assumptions of the languages @ $erhese papers; in particular we
have been influenced by [22] which contains a timed versioB@$% enjoying time determinism,
maximal progress and patience. All the just mentioned pag&sume that actions are instantaneous
and only the extension of ACP presented(inl [19] does not puate time determinism; however
maximal progress is less popular and patience is even rarer.

From this early work on timed process calculi a flourishirigrature has emerged. Here we
briefly mention some highlights of this research. Prasadl 4% proposed a timed variant of his
CBS [40], called TCBS. In TCBS a timeout can force a proceshing to speak to remain idle for
a specific interval of time; this corresponds to have a giofliCBS also assumes time determinism
and maximal progress. Corradini et al. [11] deal wdtlrational actionsproposing a framework
relying on the notions of reduction and observability tounally incorporate timing information in
terms of process interaction. Our definition of timed reducbarbed congruence takes inspiration
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from theirs. Corradini and Pistorie [12] have studied doretl actions to describe and reason about
the performance of systems. Actions have lower and upper iounds, specifying their possible
different durations. Theitime equivalenceefines the untimed one. Baeten and Middelbuig [3]
consider a range timed process algebras within a commorefvam, related by embeddings and
conservative extensions relations. These process akjehE#2 ACP", ACP%aand ACP'", allow

the execution of two or more actions consecutively at theesaoint in time, separate the execution
of actions from the passage of time, and consider actionaue ho duration. The process algebra
ACP*%s a real-time process algebra with absolute time, ¥G#a real-time process algebra with
relative time. Similarly, ACP& and ACP'" are discrete-time process algebras with absolute time
and relative time, respectively. In these process algdtardoicus is on unsuccessful termination or
deadlock. In[[4] Baeten and Reniers extend the framewor]ofiof model successful termination
for the relative-time case. Laneve and Zavattaro [29] havpgsed a timed extension oicalculus
where time proceeds asynchronously at the network levelgvithis constrained by the local ur-
gency at the process level. They propose a timed bisinyilauiitose discriminating is weaker when
local urgency is dropped.
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APPENDIX A. TEcHNICAL DEFINITIONS AND PROOFS OF SOME LEMMAS AND PROPOSITIONS

Definition A.1. [Process Environments] A process environment, is a mapiparg process vari-
ables to system terms. In the following we yséo range over process environments. Given an
open system teriV and a process environmemntthe (possibly open) system telvo correspond

to the system term obtained froWl by replacing each free occurrence of any process variéble
with p(X). L]

Lemma A.2. LetT be a channel environment, aMdbe an (open) system term whose free occur-
rences of process variables are time guarded. Then, givearselc and two process environments
0,0’ such that bothWp) and Wp’) are closedicv(I" > Wp, ) = rev(I" > Wp', ©).

Proof. Note that ifT" + ¢ : expthen, for any channel environmemsuch thaWWp is closed, we have
thatrcv(I" » (Wp), ) = false, and there is nothing else left to prove.
Suppose then that+ ¢ : idle, and leto, o’ be two process environments such tat andWp’
are closed. We proceed by induction on the structuné/ of
e W =[c?(X).P]Q. In this case we havev(I'> (L.c?(X).P1Q)p, €) = rev('>(Lc?(X).P]Q)o’, C) = true,
e W = X. This case is vacuous, as it contains an unguarded freerencerof a process variable.
e W = cle).P. In this casecv(l' » (c!{e).P)p,c) = rcv(I' > c!(e).(Pp),c) = false, andrcv(T >
(ce).P)o’,c) = rev(I'» cl{e).(Pp’), c) = false,
e W=1P,W=0.P,W=[b]P,Q, W = nil or W = d[X].P whered is an arbitrary (possibly equal
to ¢) channel; this case is analogous to the previous one,
e W =P + Q.Then we have that

rev(l'> (P + Q)p, )

rev('> (Pp), c) Vv rev(l' > (Qp), ©)

rev(I'> (Pp’),c) v rev(l > (Qp’), ©)

rev(C> (P + Q)p’, )

where the equalitiescv(I' » (Pp), c) = rev(I" > (Pp’), c) andrcv(T > (Qp), c) = rev(l » (Qp’), C)
follow by induction.
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e W = fix X.P. Then we have that
rev(l > (fix X.P)p, )

rev(I"> (Pp), ©)
rev(l'> (Pp’), ©)
rev(l" > (fix X.P)p’, €)
Again, the equalityrcv(I" > (Pp), ) = rcv(I" > (Pp’), ¢) follows by induction.
e W =W, | W,. This case is analogous to the c&8e- P + Q,
e W=vc:(t,-).W. Inthis casecv(I'> (vc: (t,-).W)p,C) = rev(['> (vc: (t,-).W)o’, c) = false,
e W=yvd:(t-).W, whered # c. Then we have
rev(U's (vd @ (t,).W)p,c) = rev('>(Wp),C)
= rev(l'> (W'p'),0)
= rev([» (vd: (t,-).W)p’,0) O
Lemma A.3. Let T be a channel environment aidl be an open system term where every free

occurrence of process variables is guarded. Let@lsa channel andbe a value. There exists an
open system teri’ such that, for any process environmerior which (\Wp) is closed, therid”p

. N
is also closed, and > Wp AN Wp.

Proof. Note that ifrcv(I" » (Wp), ¢ = false) for some environmemt, it suffices to choos&V' = W.

In fact, by Lemm&A.R we have thatv(I" > Wp’, ¢) = false for any environment’ such thatp’ is

closed. By applying RuléRcvign)we obtain the transitiolr » (Wp') 2, (Wp).

Therefore, suppose the is such thatcv(I" > (Wp), ¢) = true for some process environment
(and, as a consequence of Lemimal A(T" » (Wp’), ¢) = true for any other process environment
o). Note that in this case we have that c : idle, andW cannot take the form(t).eP, 7.P, o.P,
[b]P, Q, nil or d[X].P. We check the remaining cases, by performing an inductioonn the
following p is an arbitrary process environment.

e Suppose thatV = [c?(x).P]Q for some processeR Q. In this case we leW = c[x].P. By
definition (c?(X).P1Q)p = Lc?(X).(Po")1(Qp), wherep’ = p[x — X]; by applying Rule(Rcv) we
obtain that>(|.c?(X).(Po”)1(Qp) N c[X].(Pp’). note that the latter system term can be rewritten
as [X].P)p; note in fact that the process environmemtndp’ differ only at the entry for variable

X, which is bound irc[X].P. Therefore we have the transitidre (L.c?(X).P1Q)p &, (c[¥].P)p.
e Suppose thatV = P + Q. Note that, in order to ensure thav/(I'> (P + Q)p, €) = true, it must be
eitherrcv(I'>(Pp), ¢) = true orrcv(I'>(Qp), ¢) = true. We consider only the first case, as the second

one can be handled similarly. iév(I" > (Pp), ¢) = true then by inductive hypothesis we have that

there exists a system teti’ such that" > (Pp) N, (W'p). By Rule (SumRcv) we can derive

the transitiorl" » (Pp) + (Qp) N Wp, which can be rewritten d3> (P + Q)p o, Wp. Note
also that ifrcv(I" > (Pp), €) = true, therrcv(I" > (Pp’), €) = true for any other process environment
©’, as a consequence of LemmalA.2, so that the choid#’db independent from the process
environment.

e Suppose thatV = fix X.P. By inductive hypothesis, there exists a procéés$ such that, for
any process environmept, T > Po’ A, W”p’. In particular, leto’ = p[X — (fix X.P)p],

wherep is an arbitrary process environment. We obtain thatPpo[X — (fix X.P)p] A,

W”p[X > (fix X.P)p]. T'»> Po[X > (fix X.P)p] = ({fix X.P/X})Pp, andW"p[X > (fix X.P)p] =
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({fix X.P/XIW")p. Let thenW’ = {fix X.P/X}W’. It suffices to apply Rulg¢Rec)to obtain the
transitionI” > (fix X.P)p 2, Wiop.
e Suppose thaty = W, | W>. By inductive hypothesis there exiat;, W, such thal"»> (Wyp) X,

Wjp, andI’ > (W>p) 2, W,p. In this case we letV' = W] | W,. In fact, by Rule(RcvPar)it

follows thatl" > (Wap) | (Wap) —s (Wip) | (Wip), or equivalentlyl” > (Wi | Wo)o ——os (W |

W))p.
2
o Finally, suppos&V = vd : (n,v).W;, whered # c. By inductive hypothesis we have thgid —

(n, v)]>(W1p) A, W p for someW’. Now it sufices to apply RuléResl)to obtainl'>(Wp) A,
(Wp). O

Proof of Lemmal[2.9.LetI'> W be a configuration. First note thétis a closed system term, hence
Wp = W for any process environmept Given an arbitrary channe&l and an arbitrary valueg,

. N
LemmdA.3 ensures that there exists a system Wfrauch thaf" > W S we

It remains to show that whenevEnr- W i W’ for someW’, if rev(I' » W.c) = true then
W’ = W, conversely, ifrcv(I' > W, ¢) = false thenW’ = W. This last statement can be proved by

performing an induction on the proof of the derivationW -, W’; the proof is relatively simple,
and the details are left to the reader.

The case wherecv(I' » W.c) = true is slightly more complicated. In practice, we define a
function #Rcv(-, ¢) which maps any system term into its number of active receisong channel

c and we show that, whenev&r- W N, W, then Rev(W’) > #Rcv(W). As an immediate
consequenca)’ # W. Formally, the function Rcv(:, ¢) is defined inductively on the structure of
system terms, by letting for any proceBsnd system termé/;, Wo,

(a) #Rev(P,c) =0,

(b) #Rcv(d[X].P,c) = 1if d = ¢, 0 otherwise,

(c) #Rcv(vd.(Wh), €) = #Rcv(W4, ¢), whend # c,

(d) #Rcv((W1 | W), ©) = #Rcv(Wiy, ) + #Rcv(Wa, ©).

We proceed by induction on the proof of the derivationW LN W’

e The last rule applied in the proof df » W N, W is Rule (Rev). It follows thatW =
Lc?(X).P]Q for some processd’ Q, hence Rcv(W, ¢) = 0. FurtherW’ = ¢[X].P, which leads to
#Rev(W',c) = 1;

¢ the last Rule applied in the proof of> W 2, W is (SumRcv) ThenW = P + Q for some

processe®, Q such thatrcv(I" > P,c) = true, andl’ > P N, W'. By definition we have that
#Rcev(P + Q,c) = 0; also, #Rev(P, ¢) = 0, hence by inductive hypothesi®é& (W', c) > 0, as we
wanted to prove; the symmetric case of R(#amRcv)is handled similarly.

e the last rule applied in the proof &f> W o, W’ is Rule(Rec) this case is analogous to the
previous one,

e the last rule applied in the proof df> W —% W’ is Rule (ResV) thenW = vd.(W;) and
W’ = vd.(W]) for somed # ¢, W; andW; such thal" > [d — (-, -)]W AR W]. In this case

we have that Rev(vd.(Wh),c) = #Rcv(Wi,c) > #Rcv(W], ) = #Rcv(vd.(W)), c), where the
inequality fRcv(Why, €) > #Rcv(W, ¢) follows from the inductive hypothesis,
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e the last case to analyse is the one in which RBevPar)has been applied last in the proof
cN N

of > W —— W. ThenW = W; | W, for someW;, W, such thatl' » Wy —— W,
andT' > W, 2, W,. Further, since we are assuming thet(I' > Wy | W, c) = true, then
eitherrcv(I" » Wy, ¢) = true orrcv(I" > Wy, ¢) = true. Without loss of generality, suppose that
rcv(I' » Wi, c) = true. Note that in this case, tv(I' » W5, ) = false then we know that
W, = W, hence Rcv(W,,c) = #Rcv(W>,c). Otherwise, by inductive hypothesis it follows
that #Rcv(W, €) > #Rcv(Wh, €). In any case, we obtain thaR#v(W,, c) > #Rcv(Wh, ¢). Also,

by inductive hypothesis we have thaRév(W;,c) > #Rcv(Wy,C). By these two statements,
and the definition of Rcv(:, ¢), it follows that #Rcv(W1 | Wa, €©) = #Rcv(Wi, €) + #Rcv(Wh, C) >
#Rcv(W, ©) + #Rev(Wa, ¢) = #Rev(W] | W, ). ]

Lemma A.4. Suppose that > W -5 W’;

() if W= P+Qfor some processd3 Q then there exists two proces$¥sQ’ such thal>P SN
P.T>»Q - Q andW =P + Q,

(i) if W = W; | W, for someW,, W>, then there exists two system terMg§, W, such that
W =W, | W), T[> Wy — W, andy > Wo —— W,

Proof. Both statements can be proved by induction on the structuk&.oWe only provide the

details for [((i}), since the proof fof ((]i)) is identical style.

e First note that ifW is a basic process, that is, it has either the failpt!{e).P, [b] P, Q, | c?(X).P]Q,
7.P, fix X.P or o.P then there is nothing to prove, as the assumption\Wat P + Q for some
processe®, Q is not valid;

e suppose then th&t = P+Q for some processd3 Q, and thal>P+Q W, By inspecting the
rules of the intensional semantics, it is clear that theRage applied in a proof of the transition
above is(SumTime) Thus, there exist processes, Qi, P}, Q] such thatP + Q = Py + Q,

W = P, +Q;,I'>P; — P, andl'>Q; — Q}. We need to show that there exist two processes

P’,Q such thal » P — P',I'> Q — Q andP’ + Q' = P} + Q}. Note that the assumption

P+ Q= P; + Q1 leads to three possible cases:

(1) there exists a proce$ssuch thatP; = P+ R, Q = R+ Qq; In this case we can apply the
inductive hypothesis to the system tefn (note thatP; is a smaller term tha® + Q, as

P+ Q = P;+ Qq). Thus the transitiod" » P; — P ensures that there exist two system
termP’, R such thal'»>P - P’,'>R — R andP} = P’ + R’. Further, by applying Rule
(SumTime)to the transitiond » R — R andT'» Q; — Q/, we obtainl» R+ Q; —

>R + Q. BylettingQ = R + Q}, we can rewrite this last transition &s- Q SN Q.
Finally notice thatwe have/ = P} + Q; = (P +R)+Q; =P '+ (R + Q) =P+ Q', as we
wanted to prove,

(2) otherwiseP = P; andQ = Qq; this case is trivial, as it stices to choos®” = P}, Q" = Q,

(3) the last case possible is that there exists a proRessch thatP = P1 + R, Q1 = R+ Q;
the proof here is symmetrical to the first case, as now it iessary to apply the inductive
hypothesis td1, rather than td°,

¢ the last remaining cases are those in which eifler vc.W; or W = Wy | W,. Again, these cases
invalidate the hypothesis the is a non-deterministic choice of processes, hence thehsg

to prove. L]
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Proof of Proposition[2.10.We proceed by induction on the proof of the derivatidn-— Wj.
e The last rule applied in the derivatiah — W is rule (EndRcv) ThenC = I'» ¢[x].P for some
channelc, processP, channel environmerit for whichT + ¢ : 1 andI’ +, ¢ : w for some

closed valuen. Also W, = {w/x}P. Suppose now that SN W, for some system tertw.,. By
inspecting the rules of the intensional semantics we hatdlle only rule which could have been
applied to infer this transition is again RuEendRcv) It follows thatW, = Wy = {w/x}P,

¢ the cases where the last rule applied in the proaf ofs W; is either(TimeNil), (Sleep) (ActRcv)
or (Timeout)can be proved similarly to the previous one,

e if the last rule applied in the proof @ —— W; is (SumTime) thenC = I'»> P + Q for some
processe®, Q. By Lemma A 4((i)) we also know that; = P; + Q; for someP1, Q; such that

r-P -5 PLI»Q -5 Q.
Suppose that — W, for someW,. Then again, Lemma Al[A([i)) leads W, = P, + Q- for

someP,, Q, such thal'» P —— P, andl'> Q — Q,. But by the inductive hypothesis we have
that Pi =Py, Ql = Qz. HenceW, = P, + Q2 =P+ Q]_ =W,

¢ if Rule (Rec)has been applied last, thitt = fix X.P for some process variabk and proces#;
further,I" > {fix X.P/X}P 4 Wi. Suppose now hdt» fix X.P SN W, for someWs,; then again
the last rule applied has beéRec) so thatcon fI'{fix X.P/X}P A, W,. Now, by the inductive
hypothesis, we get th&t, = W,

¢ the case whergResV)is the last one in the derivatian 5 W is similar in style to the previous
one, and is therefore left to the reader,

¢ the last case is the one in which the last rule applied fovoeyiC 25 Wy is Rule(TimePar) the
proof in this case is analogous to the one wh@eeI'> P + Q, using Lemma A} ((ij)) instead of

[A.4((0). 0

Proof of Proposition[2.11.By induction on the proof of the transition. We only supply tthetails
for the most interesting cases.

e The last Rule applied in the proof of the derivatién— Wj is Rule(TimeOut) It follows that
C =T'»[c?(X).P]Q for somel’, channek and processe’ Q such thaf” + ¢ : idle. By inspecting
the rules of the intensional semantics we note that no Rulébeaapplied to obtain a transition

of the formC &, W5, nor a transition of the forrg BLIN Ws; for this last case, note in fact that
ar-action can be inferred for a configuration of the fdrm | c?(x).P]Q only via Rule(RcvLate)
which however requireB + ¢ : exp. This is in contrast with our assumption that c : idle.

e The last Rule applied in the proof of the transition — W is Rule (SumTime) ThenC =
I'> P+ Qfor someP,Qsuch thal > P — P',T»Q — Q andW; = P’ + Q..
We show, by contradiction, th&it P+ Q 2 for any channet and valuev, andI'>P+Q o

So suppose thdt > P + Q 4, W, for some system terriV, and actiond € {r,clv | c €
Ch, v closed valug Then the last rule applied in the proof of such a transitsogither RulgSum)

or its symmetric counterpart. In the first case we havelthaP 4, W5, but this contradicts the
inductive hypothesid;>P L p impliesI'>P ﬂ». Similarly, in the second cagée Q LR Ws,
which contradicts the inductive hypothesis applied to taaditionI" > Q N Q. Therefore
IsP+Q . O
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Proof of Proposition[2.12.The proof is performed by induction on the structure of theopof the

derivationl'; » W w Again, we only consider the most interesting cases:

e The last rule applied in the proof of the derivatibp- W L wis Rule(Rcv). Thena = c?v for
some channet and valuev, I'1 + ¢ : idle, W = [ c?(X).P]Q for someP, Q andW’ = ¢[X].P. By
Hypothesis we have thab + ¢ : idle, so thatl» » | c?(X).P]Q A, c[X].P.

e The last Rule applied in the proof bf > W A wis Rule(RcvLate) Thend =7,T1 + C: exp
for some channet, W = [c?(X).P]Q andW’ = ¢[x].{err/x}P. By hypothesid, + ¢ : exp, so that
Rule (RevLate)can be applied leading 16 » [c?(X).P|Q -5 c[x].{err/x}P.

e The last rule applied in the proof df » W A wis Rule(Then) ThenW = [b]P, Q for someb
such thaf[b]lr, = true,A = r andW’ = ¢.P. Here it is necessary to make a case analysis on the

form of the boolean expressidmthe most interesting case, and the only one which we anag/se
b = exp(c) for some channed. Since[[b]r, = true then; + ¢ : exp. By hypothesis it follows that

I'> + c: exp, thereforeb]r, = true. Now we can apply Rul@hen)to inferI'2»> [b]P, Q - o.P.

e The last rule applied in the proof &f > W A wis Rule(Sync) It follows thatA = clv for
some channet and valuev, W = Wy | W> andW’ = W] | W, for someW;, W, W], W; such that

I'i>W; v, Wi, I'2> W, &, W,. Then by inductive hypothesis we have that W, v, W]
andI'; » W, 2, W,. An application of RulgSync)givesI'z > W &, wW'. L]

Proof of Proposition[2.13(3). Note that the proof of this statement uses Lenima 2l 13(dghwdan
be proved independently. For the if implication,supposd Itk Wy &, W] andl’> W, AR W,.

clv

Then, by an application of Rulgsync)we obtain thaf" > Wy | W, —— W] | W), Similarly, if
I'sW; 2, W, andW, v, W., we can obtain the transitidn> W, | W, &, W] | Wj using
the symmetric counterpart of Rulgync)

For the only if implication, suppose that> Wy | Ws ¥, W’. Note that we can rewrite
Wy | W, asH!‘:l Py for somek > 2. We proceed by induction da

e k= 2. ThenW; = Py, W, = P,. The last rule applied in the derivation B Py | P, —0 W’
is either Rulgsync)or its symmetric counterpart. In the first case we obtain EhalP, RN

I'sPy &, P, andW’ = P | P, so that there is nothing to prove. The second case is anasogo
e k> 2. Suppose that the statement is true for any indexX. Again, the last rule applied in the

proof of the transitio™>W; | W» Y, W is either RulgSync)or its symmetric counterpart. We
consider only the first case, as the second one is treatelhdimif Rule (Sync)has been applied

last, then there exist two system terivg, W, such thatv; | Wo = W, | Wy andIl > W, AN W,

I's W, AN W) andW’ = W, | W/. SinceW, | Wy = W | W2, we have three possible cases:

— Wy = W, | Wy, Wp = Wy | W, for some system teriy. Then we can apply Proposition 2113

to the transitiod” > Wy | W» <, W/ to show thatl” > Wy <, W, T'> W, 2, W,
b X 2

for someW;, W, such thatVj, = Wy | W;. Now we can apply Rul¢Sync)to the transitions
FoW, 5 W, andl > Wy 0 W to inferI's Wy s Wy | WL, LetW, = W, | W,. Then
we have

W= W | W = WE | W | W = W | W,
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- W, = W;,Wp, = Wa. In this case there is nothing to prove, as iffie@s to choos&V; =
W, Wé = Wt’) to obtain the result.
— W, = Wy | Wy, W = W, | W, for someW,. By the inductive hypothesis we obtain that either

! N
x T'> W o, W, T > Wy AN W, for someW;, W, such thatV; = W, | W, or

* I'> Wy AR Wi, T Wy o, W, for someW;, W such thatV; = W, | W;.
We consider only the first case. In this case we can apply Revar)to the transitions

> Wy —0 W, andl > Wh —o W, to obtainl s Wo —s Wy | WY, Let W) = W | W,
Then we have proved that- W; oV, Wi, T'> W, <, W.; further we have that

W’ = Wy [ W = W [ Wy | W, = W | W,
as we wanted to prove. ]

Proof of LemmalZ.1.We first prove that if’>W — I">W’ thenT” < I”. Note that such a transition
could have been inferred in twoftirent ways:

¢ via an application of RuléTauExt) from which it follows thatl” = upd.(I') = T', or

e via an application of Ruléshh) applied to a transition of the forin- W iR W’; it follows that
I'" = upd,, (), from which we obtain thaf < I".

Now suppose thaf » W = T s W. By definition, there exists an integer > 0 such that
I'>W =To»Wp — Ty» Wy — - — Tne W, = I7 = W', By applying the result proved above to
each step in this sequence, we obf@in I'o <T'y <---<I'hy =T, hencd <T". O]

Corollary A.5. For any channet, I'> W .ﬁ, impliesT" > W nﬂ

Proof. By Definition,I'> W = I'" » W’ ﬂ for someIl”, W. Since,I” » W nﬂ we obtain that
I + c:idle. Now Lemmd4.]l give§ < I, hencel + c: idle. Therefore we can apply Ru(&lle)

of the extensional semantics and delive\W ﬂ '>W. ]

Proof of Lemmal[4.2.Supposd’; > Wy = I', > Ws. If 'y + ¢ : idle then by definition of Ruléldle)
of Tablel® it follows thatly » Wy 5. AsTy > Wy ~ s> W, it follows thatly > Ws . From
CorollarylAB we have that, > W, “%, and by the definition of Rul@dle) thatl, r ¢ : idle. [

Proof of Lemmal4.7.We have to show that & is well-formed andC 4, W', thenC’ = upd,(I) »
W is also well-formed. We provide the details of the most iesting cases of a rule induction on
the proof of the aforementioned transition.

e The last rule applied is Rul@cv). Thena = ¢ for some channet and closed valug. Further,
C =T»|c?(x).P]Q, W = c[X].P and updg,,(I) + c : exp. The second equation in Definitidn 4.6
ensures tha®’ € Wnets,

e the last rule applied is RuléeEndRcv) in this casel = o, W = ¢[X].P for somec such that
I'+ c: exp, andW = {w/x}P, wherew is the closed value such th&t-, ¢ : w. It follows from
the first equation in Definition 4.6 th&Y = upd,(I') > W’ is well formed,

¢ the last rule applied is Rul@ctRcv). In this caseV = W’ = ¢[X].P for somec such thal” +; ¢ : n,
wheren > 1. To show thaC’ = upd,(I') > c[X].P, it suffices to prove that updl') + c : exp; but
this is true, since by Definition of upg-) we have that updI’) +; c: n— 1, and nown—-1> 0,
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e the last rule applied is Rulgsync) Thena = clv, W = Wy | Wo, W = W] | W, for some

Wi, Wo, W,, W5 such thatl' > Wy —5 W2, T's Wo —0s W, andW’ = W, | Wj. By inductive
hypothesis the configuratios = upd,,(I') > W] andC> = upd,,(I') » W, are well formed, so
by the third equation in Definition 4.6 we have tigite Wnet. ]

Proof of Proposition[4.8.LetI'>W be a well-formed configuration. We give the details of the mos

important cases of a structural induction performed on thegire of a system terivv.

e W = cl{v).P, or W = 1.P; this case is vacuous, since by definition of instantaneedaations
I'sW —,

e W = ¢.P; this case is trivial, since by applying Ru{8leep)we inferI" > W -2, P, hence
> W —, upd,(I) > P,

e W = ([X].P. By definition of well-formed networks we have tHat c : exp. Then there are two
possible cases:

— T+ c:landl +, c: vfor some valuer. We can apply Rul¢EndRcv)to infer the transition
I'>c[X].P 2, {v/x}P, which in turns gives the reductidn c[X].P —, upd,(') » {v/Xx}P,

— I'+¢ ¢ : nfor somen > 1; in this case we can apply RulectRcv)to inferI'>c[X].P N c[X].P,
leading tol" > ¢[X].P —, upd, (I") » c[X].P.

e W = fix X.P. Recall that in this case every occurrence of the procesablaiX in P is (time)
guarded, so that we can apply the inductive hypothesis toetime {fix X.P/X}P. Now suppose
thatI » fix X.P £». Then it follows thatl’ > {fix X.P/X}P +4;, and by inductive hypothesis »
{fix X.P/X}P —,. Now it is easy to show thdts fix X.P —.

e W =P+ Q. Suppose thaf » P + Q £»j. Thatis,I'> P /4, I'> Q £, By inductive hypothesis
we have thal'» P -5 P/, T» Q — Q for someP’, Q. It follows from Rule(SumTime)that
I'>P+Q —5 P’ +Q, hencel'> P+ Q —, upd, (I > P’ + Q. O

Proposition A.6. For any channel environment (possibly open) proced? and process environ-
mentp such thatPp is closed, the > Pp is well-timed.

Proof. We give the details of the most important cases of an indageformed on the structure of

the proces$V. In the following we assume thatis a process environment such thp is closed;

recall that we are assuming that free occurrences of proeesbles are time guarded W.

e W = |c?(X).P]Q. Then we have thdf > (|c?(X).P]1Q)p +»i; it follows thatI" > (Lc?(X).P]Q)p is
well-timed.

e W = X for some process variablg; this case is vacuous, since it violates the assumption that
free occurrences of process variables are (time) guardéd in

e W = fix X.P for some procesP. Letp’ be the environment defined apX — (fix X.P)p]. By in-
ductive hypothesis we have tHatPo’ is well-timed. Further, by definitioRo” = ({fix X.P/X}P)p.
Now note thatl" > (fix X.P)o —" ¢’ if and only if I' > (fix X.P/X}P)o —" C’. It follows that
I'> (fix X.P)p is well-timed.

e W = P+Q. Suppose that bothPE Q)p is closed; that is, botRpo andQp are closed. By inductive
hypothesis they are well timed, meaning that there ekists 0 such that whenevdts> Pp —"
I > P’ thenh < kp; similarly, there exist&qg > 0 such that whenevéi> Qp —N I > Q for some
h, thenh < kq. Choosek = maxp, ko). Itis easy to show that whenevis (P + Q)p - sW
then eithel » Pp —" I » W, in which caséh < kp < k, orI'> Qp —" I » W, in which case
h < kp < k. It follows thatI" > (P + Q)p is well-timed. L]

SRecall that upg,(I') = upd.,(I).
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Proof of Proposition[4.12.We give the proof for a fragment of the language where chamsttic-
tion is omitted. This limitation is needed only to avoid teaal complications in the proof of the
statement. In fact, when channel restriction is presentyeeg to introduce a structural congruence
= between system terms; the main property required by thagioel is that it preserves transitions

of configurations, meaning that wheneWgy = W, andI’ > W, 2 W/, thenI' > W, 4, W, with
W, = W,. Also, the relation= needs to be defined so that any system t&/ncan be rewritten
in the formv&. (TT7, Pi). Seel[9], Definitior9.1.2at Page 174, for the definition of the structural
congruence .

Let us focus on the case in which channel restriction is nesgmt in our language First note
that the result holds for any well-formed configuration & formT'>P, whereP is a closed process;
in fact we have thafl’ > P = "> Pp for any process environmept and the latter is well-timed by
Propositior A.6.

Otherwise, we can rewrite> W asI > i”:l P;, for some processd?, - - - , P,. Note that each
configurationI’; » P; is well-formed, hence well-timed; by definition there egishn indexkp, > 0
such that, whenevdt» P; —!I"» P/, thenh < kp,. Now suppose that> [T, P; " I"» [T, P;
we show thah < ( L kpi) by induction orh.

The casén = Qs trivial; suppose then that> 0, and the statement is valid for 1; in this case
we can rewrite the (weak) reduction aboveas[[, P; —i I’ >[I, P/ =M1 1"+ []", P/, and
by inductive hypothesib — 1 < 3i_1n kpr. Let us focus on why > [T, P —i T » T, P/’ —n-1

() T'>TI%, Pi — I, P/, andl”” = T; in this case it is not diicult to note that there exists an
index j : 1 < j < nsuch thaf"» P; — P/, and for any index # j,1 <i<n, P = P In
this case we have thkﬁjf <kp -1

Without loss of generality, lef = 1. Then we have that
n
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Henceh < (Zi“:l kpi), as we wanted to prove;

(i) Otherwisel'» [T, P &, [1", P/, andI”” = upd, (). In this case we can partition the
i=1 i=1" i Y]
clv

set{1,---,n}into three setgl}, | andJ such thafa) I'> Py — I'">P/" andP” = o%v.Q for
some proces®, (b) for anyi € I, rev(I' > Pj, ¢) = true andP{” = c[x].Q; for some proces&),
(c)foranyj € J, rev(I' > Pj,c) = false andP]’ = Pj. Note that(a) implies thatkpl’/ =0and
1 < kg, (b) implies thatkpr = O for anyi € I and(c) implies thatkp/j' = kp, foranyj € J.
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Without loss of generality, suppose tHat 1,1 = {2,---,m} for somem < n, and
J = {m+ 1, -n}. In this case we have

h-1< ankpi// =
i=1

m: n
= kpi’-i- (Zz kpi’/]+ ( Z kpi//) =
i=

i=m+1
n
= 0+ O+ Z kp, <
i=m+1
n
< (kp, — 1)+ 0+ D ke <
i=m+1
n
< Z kPi
i=1
Again the last inequation givds< (Zi”:l kpi). O

Lemma A.7. Let us say that a system teffnis behaviourally independent frowy if each channel

name appearing free ih does not appear free W, and vice versa.

If T is independent from a configuratiM, then whenever > W | T —; C, then either
() C=T">W|T,andl'>T —; I">W, or
(i) C=T">W |T,andl'> T —; "> W',

Proof. Suppose thal is a system term independent from a configuralionW, and thafl’ > W |

T —; C. By the definition of instantaneous reductions, there acegossibilities:

(L)T>W | T — W, andC = I' > W. By Propositior Z.13(1) then eith&/ = W’ | T, and
I'sW - W,orW =W | T/, andT'>T — T’; in the first case we obtain the reduction
I'sW|T —; I's>W | T, while in the second onewe gt W | T — I'>W | T’,

(2) the second possibility is that- W | T —-% W7, andC = I » W, wherel” = updy,(I). In this
case, by Propositidn 2.[IB3 thevi= W’ | T’ and either

@TIT>W &, W, T»>T 2, T’; the first transition is possible only dappears free iV,
which by assumption gives thatdoes not appear free if; it follows thatrev(I'> T, C) =
false, and by Lemn{a 2.9 we obtain tidt= T. By converting the intensional transition in
a reduction (recalling thdt’ = upd,,(I')), we obtain thal > W | T —; I"> W’ | T,

(b) orT'>W 2, W, Te>T S, T’; this case can be handled symmetrically to the previous
one, and leads tb- W | T —i "> W | T". ]

Lemma A.8. LetT'; » W be a configuration, and I&b be a channel environment such that, for any
channelc appearing free iW, I'z(c) = I'y(c). Then if['y » W — I'; » W, there exists a channel
environment™, such thal’z > W — I, » W}, andI (c) = I';(c) for anyc appearing free ilW.

Outline of the proof.The reductiori’y » W —; I’} » W’ can be converted in a transition of the form

I'isW 4, W, wherea takes either the form, c!'v or o. Note here that ift takes the forne!v, then
c appears free iW. By performing an induction on the proof of the derivationtlofs transition

we can infer a transition for the configuratida > W, namelyI', > W 4w Also, by letting
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I, = upd,(I'2), we obtain the reductioh, > W — I';, > W’. Now it remains to note that i appears
free then, by hypothesi§;(c) = I'2(c); hencel”;(c) = upd,(I'1)(c) = upd,(I'2)(c) = [';(c). L]

Corollary A.9. [Independence of Computations] LEt>- W be a configuration, and I€k be a
system term which only uses fresh channels. Then wherdevd | T —* I » W it follows that
W = W | T/ for someW’, T’ such tha" > W —* T » W, whereI” is such thal”(c) = I'”’(c) for
anyc appearing free inv.

Outline. By induction on the number of derivatiofsin a sequence df reductionsI'> W | T —K
I’ >W: in the inductive step it is necessary to distinguish whetthe first reduction of the sequence
is instantaneous or timed. In the first case, the resultallrom lemmag$ Al7 and”Al8. In the
second case, we need to recover the timed transitions fimdhedual components>W andIl'>T,
then apply LemmpaAlS. O

Proof of Lemmal[4.14 (Outline).This is a variation on analogous results already given idithe
ature, for a number of flierent process calculi. We show that the relation

S={T1> W, To>W) :
1> Wi | Ty =T > W, | T, for someTy, T2 independent from botivy, W
andI'y » (c) = I'}(c), I'2(c) = I',(c) wheneverc appears free iV}

is barb preserving, reduction closed and contextual. Nwieit is necessary to employ Corollary
[A.9to prove thatS is reduction closed. []

Proof of Proposition [4.15:The two statements are proved separately. Iiyet Wy, I’ » W, be
well-formed, and suppose thgf > Wy ~ 'y > W,

(1) Suppose that; » Wy —; I'; » W]. We have two possible cases, according to the definition of
—>j.
(i) T1>W; — W, andI, = upd,(I'1) = '3, by an application of ruléTauExt)
(i) T1>Wp &, W] andI'; = upd,,(I'1), by an application of rul¢shh)
We consider the first case; the proof for the second casetisllir identical. Leteurekabe a
fresh channel; that is it does not appear fre®inand must satisf¥'; + eureka: idle. Let ok

be a message which requires one time unit to be transmittedoi = 1. By an application of
rules(TauPar)and(TauExt)we derive

Iy > W, | eurek&(oky — T > W | eureka(ok)

with T » W] | eurek&(ok) leureka@ndI”; + eureka: idle. By Definition[2.14 this transition
corresponds in the reduction semantics to

1> Wi | eurek&(oky — T » W] | eureka(ok)
AsT1>W; ~ I',»W, and= is contextual, this step must be matched by a sequence aftiealsl
I'> > Ws | eurekd(oky —* C (A.2)

such thafl”} » W] | eurek&(ok) ~ C. Depending on whether the transmissioreatekas part
of the sequence of reductions or not, the configuraftanust be one of the following:
C1 = TIy»>W,|eurek&ok)y with T+ eureka idle
7> W, | o.nil with T + eureka exp
7> W | nil with T + eureka idle

a0
w N
o
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As eurekas a fresh channel (hence not appearing fréd/nit follows thatCs Yeureka therefore
C cannot beCs. Sincel’; » W] | eurek&(ok) ~ C andTI’; + eureka: idle, by Propositiori 4.13
(which can be applied since we are assuming@hatwell-formed, hence well-timed) it follows
that C cannot beC,. So, the only possibility i€© = C1. By Lemmal4.14 it follows that
[ » W] = T% > W,. It remains to show thdf, > Wy — I}, > W,

To this end we can extract out from the reduction sequéncB) éhove a reduction sequence

F2>W2 —l>>‘< FIZDWé

We show that each step in this sequence,Isayv — I'" > W’, corresponds to an instantaneous
reductionI' > W —; I » W’, from which the result follows.

Recall from Definition 2.14 that there are three possible smayinfer the reduction step

I'>W — I'">W. Ifitis either (Internal), i.eI'> W W, ora (Transmission), i.&.>W <,
W, then by definition" > W —; IV > W’ follows. Condition (ii), (Time), is not possible because
in the original sequencgé(A.1) above the testing compoeergk&(ok) can not make a move,
hence it cannot perform a timed reducties,.

(2) Suppose now thdt; » Wy —, I”) » W]. In this case we will use the testing context:

T = o.(r.eurek&(ok) + fail'(noy)

where eurekaand fail are fresh channels. Sinég » Wy —, I"] » W] we also havd’y » W |
T —,—i C1, whereCy> = I'] » W' | eurek&(ok)). Note that, sincdail is a fresh channel, we
have thaC1 Jeureka@NdC1 Yfail-

The contextuality ok gives thatl'y > W, | T = T'> > W, | T, so that we must have the series
of reduction steps

oo Wo | T =" Co (A.2)

whereCy ~ C,. Because&: Jeureka@NdC1 J1ail, the same must be true 6b. AsT| + eureka
idle, it follows thatC, must take the fornfi, > W, | eurek&(ok). By Lemma 4.14 we have that
[ > W] = T% > W,. It remains to establish thap > Wo ——,—7 T, » WS,

We proceed as in the previous proposition, by extractingpb@.2)) the contributions from
I', » Ws; we know that because of the presence of the time deldy, mne time unit needs to
pass before the broadcast alosgrekais enabled i, > W, | T; also, by maximal progress
(Propositior Z.111), we know that such a broadcast must b iiefore time passes. S6_(A.2)
actually takes the form

LooWo [T—T">sW | ... =, T">W"'|... = T,>W, | eureka(ok)
Each individual reduction step can now be projected on tditekecomponent, giving the re-
quired
F2>W2—>;‘F>W»L>F’>W'—>;‘F'2>Wé O

Proof of Proposition[4.18.The two implications are proved separately; firstIletW be a config-

uration such thaF » W e T” » W’: that is, "> W == [Pre s WPre (©2 [post, \\post —, [, W,

Since T, does not contain any receiver, nor do'éév, we have the sequences of transitions
I'>W | Tep = TPes WP | Tep, andlPOSts WPOSH T, == TV > W/ | TS,

Next we show thaf P®»> WP | Ty, s [POst,, \\/post | TC“W. Combined with the two (weak)
transitions above, this gives the extensional transifielW | Tep, = T's W | TC“,N, which can be
rewritten ad"> W | Tea, — T> W' | TS,
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Consider then the transitidrP™® » Wpre 7, poost,, WPOst this can only have been obtained by
the intensional transitioﬁ"’re»W'“re N, W, and the equalityP°t = upd.,,(T'P"®). For the tesT ¢,
we have the transitiofiP™®> Ty, —> TC,,V, Now we can combine the two transitions together, using
Rule (sync) and gefPe» WP'e | Ten, —22s WPOSt| T2, also, we know thaFP°st = upd,, (I'P") =
upd,, (I'?"), hence we can infer the required transitio¥® > WP™ | Ty, s TPOSt, \\POSt | T({,_,v.

For the other implication, suppose that W | Teoy — I > W' | TC“W. This is possible only if,
at some point in the sequence, the test compomngnffired the broadcast along chanmein fact,
we have that the broadcast along charaekkas guarded by a broadcast actionTig,, while it is
guarded by a delay @, instants of time |nT“ Also, by Maximal Progress (Propositibn 2.11) the
broadcast performed bi», must happen before time elapses; formally, we have the sequaf
reductions

T>W | Ty —f TP WP | Tep, —j TP WP T " TV W | T,
Now note that the sequence of instantaneous reductions
I'> W | Tc’)\/ —DI* rpre> Wpre | ch/ (A.S)
induces the extensional transitibm W = I'P"®»> WP', This can be proved using the facts that, for
any channel environmeit, and channetl, whenevey > Tex — I, » T, thenT’ = Tea, and
whenevel 'y » Teoy — [>T thenT” # Teoy.

Similarly, we can prove that the weak reduction

FpOSt> WpOSt| T(}/’)\/ _DI* FI b WI | T(}/’)\/
induces the extensional transitibR°St> WPOSt— T » W', "

It remains to show that we can infer the transitidfes WP =— [PoSt\WPOstirom the reduction
[Pre s WP | Tep, —»j IPOSts WPOSE| T Note that inT», we have a station which is ready to
broadcast along channel while this is not true anymore |'rﬁ“ By performing a case analysis

on the intensional transition which could have led to theumadn above, we find that the only

possible case is thEPr%Wpre | Tew v, WPOst| T -, and, more specifically, thaP"»> Wr'e A,

WPOSt gnd TP » T, —22s T, Also, [Posh = upddv(npfe). By an application of Rulélnput)

in the extensional semantics, we get the required transiit » WP =, ppost,, WPOst which
can be combined with the two weak transitions already dérimemelyl’ > W = T'P"®»> WP and

. N
[POSt, \WPOSt— T » W/, to obtainl’ > W e T s W, ]

Proof of Proposition [4.19.Suppose thaf » W nﬁ) I’ > W. This can be rewritten as» W =

[P'€p \\Pre ., [POst, \\POSt — T >W’ Since the only rule of the extensional semantics that could

have been used to deriv@>were % post, \ypostis (Idle), we obtain thaf P> \Wrre = 1"'005‘1>W|“°St

4

oW
Thus, we havd » W = TP/ WP'® = [POSt, \WPOSt — TV » W', or equivalentlyl” > W X n
terms of the reduction semantics, this can be rewrittensad/ —; I > W’.

By CorollarylA.B we know thaf' > W ng impliesT"'> W ., I'>W; thereforel™ + c : idle. Now
it is easy to see that we have the reductionW | T, —i ['> W | TL{C) — "> W' | Ty, Where
the first reduction has been obtained by letting the preglieap€) be evaluated ifT,), while the
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rest of the sequence can be derived using the factdtha/ —; I » W’, and for any channel

environment'y we have thaf’y » T{C) foi, Ty > TL{C) I ¥ impliesT’ = TL{C)

Conversely, suppose thEt- W | T, —L I" > W’ | T(C) In this sequence of reductions, the
evolution of the test component fromy) to TL(C) is possible only if eventually the exposure check
on channet is evaluated to true. That is, we have the sequence of redscti

oW Tyq — TP, WP | T () i Post,, Wpost| TV ot F, > W | T/
wherel P+ c: idle.

Since the evaluation of the exposure check in the redu@®tsie WP'™ | T,y —»j [POSt> WPOSt|
TL{C) corresponds to a-intensional transition whichfiects only the system teri ), that isT?"»

T — T,y Propositio 2.3(1) ensures thaPos' = WP, andIP°s' = upd, (") = T""®, Using

the facts thaf P> WP = TPOSL \WPoStandIPe 1 ¢ : idle, we can apply Rul@dle) of the extensional

semantics and infer the transitidR™» \WP'e LG [Post,, \p\/post

Next, note that for any configuratidry, we have thal'y» T, ﬂ T’ impliesT" = T,(¢, and
x> T, (C) —i [>T impliesT” # T,c). Similar results hold for the system ter‘F[fC). Using these
facts, it is not dificult can derive the extensional transitiba W = I'P"®» WP'® from the sequence
of reductionsI" > W | T,y — I'™®»> WP, and the transitiodP°s'> WPo! — " » W’ from the

sequence of reductiod®°st- WPOStl TL(C) — > W | TL(C)
()

Thus we have proved thait- W = I'Pr¢» WPre 5 [POSt, WPOSt— TV » W', or equivalently
I'-W l: I's>W. ]

L(C) (c)

Proof of Proposition[4.20.For any valuew, let T,, be the system term
Tw = vd : (0,-).(([w = v]di{ok), nil) + fail'(no) | o.[exp(d)] eurek&{ok), nil)

Suppose thal’ > W ¥(=>) I > W. In particular, we have thdt » W = TPf¢» WP'® 1y

[Post, WPOSt— T » W', From the transitiod > WP™® +— ey [Post, WPostyye get thal ™ = (1, V),
o

andIP®> WP — WPOSt |n particular, note thafP™® + ¢ : exp, hencel »P"® WP | T, is
well formed. Note also thafy > T,y 7> for any environment'y with I'y + ¢ : exp, and that

x> Tyew G % implies thatT” = T,(cy). Also, sincel*¢(c) = (1,v), we obtain the transition
[Pre s TL(C) T, Finally, note that, for any channel environmé&itwe also have the transition

Iye Ty — T“(CV) Using these facts, we can build the sequence of transitions

ToW | Ty = TP®0 WP'®| Tycy) =0 TPOS WPOSH Ty I T o W [ Ty — TV > W | T
Now suppose thdt>-W T, cy) —; —o—; T>W’ | T (cy); We need to show that-W yn(=>) I'>W'.
Note that, in order for the testing componé"r;tC \) to evolve intoT?, ey then

(1) when the first time instant passes, the test evolvesTigtior some valuew; this is because in
Ty“(cv) the active receiver along chanrehas vanished, and in CCCP active receivers along a
channelc can only disappear after a timed reduction has been perthramel only if the state

of channelc changes from exposed to idle,
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(2) at some point, in the remaining of the computation, th&chiag constructy = v] is evaluated
in Ty, leading to the test component to evolvél'gf(\ Y- Note that the matching construgt E V]
cannot be evaluated to false, as this would cause the tegtarmnt to evolve to a system term
different fromT“ )" Thereforew = v, and more specifically,, = T,.

(3) The evaluation of the matching construet] v] to true is modelled as atrintensional action,
hence it does notftect the tested componewt.

Formally, we have a sequence of reductions
[e W Tyey = TP WP Ty —o

—»,  [POSt, \\poSt| T, = T W [Ty

—i I">W’|TY — I'sW | TY

y(ev) ¥(cV)
wherel P¢(c) = (1, V).

Let T be eitherT,c, Ty or Ty“cv, and letl'y be an arbitrary channel environment; note that we

have thal'y > T v, T impliesT’ = T, andl'yx> T —; I, > T’ implies thatT” # T. Using these
facts, it is not dificult to derive the transitions

(a) T'> W = I'Pres WP

(b) FpOSt> Wpost = I > W”,

()T W =T W

Thus, we only need to show thag™ » Wr'® TE/)) [POSt, \WPOSt The timed reductiod™®"® > WP'® |

(o

T,cy) —>o TPOS'> WPOSt| T, can only be inferred ifPe» WPe 2, wpost pere, T 75 T, and

[Post= upd_ (I'P"®). Also, note that the only possibility for inferring the tigitionP"®- T, ¢ ST
is by using an instance of RWEndRcv)(where the channel environment contains valaéchannel
c); therefore, we obtain that¢(c) = (1, v).

We have proved thatP™®(c) = (1,v), TPe» WPre L, WPostand[Post = ypd (I'P'®); therefore,

we can apply RulgDeliver) to infer thatI'P™ » WP'® ey [Post, WPost 35 we wanted to show.
By combining this transition with the weak transitionsétin (a), (b), (c), above, we obtain the

. yey) ,
requiredl > W = I > W', L]

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to
Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher
Strasse 2, 10777 Berlin, Germany



	1. Introduction
	2. The calculus
	2.1. Syntax
	2.2. Intensional semantics
	2.3. Reduction semantics
	2.4. Behavioural Equivalence

	3. Extensional Semantics
	3.1. Extensional actions
	3.2. Bisimulation equivalence

	4. Full abstraction
	4.1. Soundness
	4.2. Completeness

	5. Applications 
	6. Conclusions and related work
	References
	Appendix A. Technical Definitions and Proofs of some Lemmas and Propositions

