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Abstract Spatial join is an important operation in geo-spatial applications,
since it is frequently used for performing data analysis involving geographi-
cal information. Many efforts have been done in the past decades in order to
provide efficient algorithms for spatial join and this becomes particularly im-
portant as the amount of spatial data to be processed increases. In recent years,
the MapReduce approach has become a de-facto standard for processing large
amount of data (big-data) and some attempts have been made for extending
existing frameworks for the processing of spatial data. In this context, several
different MapReduce implementations of spatial join have been defined which
mainly differ in the use of a spatial index and in the way this index is built
and used. In general, none of these algorithms can be considered better than
the others, but the choice might depend on the characteristics of the involved
datasets. The aim of this work is to deeply analyse them and define a cost
model for ranking them based on the characteristics of the dataset at hand
(i.e., selectivity or spatial properties). This cost model has been extensively
tested w.r.t. a set of synthetic datasets in order to prove its effectiveness.

Keywords Spatial join · cost model · SpatialHadoop · MapReduce · Big
spatial data analysis

1 Introduction

In the last few years a large amount of effort has been devoted by researchers
to provide a MapReduce implementation of several operations that are usually
required for performing big data analysis. In particular, the join operation has
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attracted much attention, since it is frequently used in data processing, for
instance a join is necessary for linking log data to user records. This effort
has produced a set of different MapReduce implementations of the join oper-
ation [7,15], each one applicable to a particular situation. Therefore, several
works have followed in order to propose some sort of heuristics, which allow
the system to decide which implementation to apply, given some parameters
that characterize the specific case. More specifically, starting from a set of
parameters describing both the operation to perform (target parameters) and
the input datasets (data parameters), such heuristics are able to produce an
estimation of the cost for executing it on a cluster with a given configura-
tion (system parameters). This estimation engine is usually called cost model.
Only few studies are available in literature which propose a cost model for
MapReduce implementations of the join operation, like [7,15].

This paper concentrates on a particular kind of join, called spatial join,
namely a multi-dimensional join specifically tailored for spatial data [13]. Spa-
tial join is particularly important in GeoScience applications, since it allows to
combine several layers with geospatial information, e.g., city boundaries and
school district boundaries, and it is also the basis of the map overlay function-
ality in GIS software. Due to its complexity, many spatial join algorithms have
been developed for big data platforms. The performance of these algorithms
widely differ according to the characteristics of the input datasets, e.g., their
input size and whether or not they are indexed, and also of the cluster, e.g.,
number of available machines.

Motivating Example – In order to introduce the reader to the problem we
aim to address in this paper, we present the following example regarding a
geographer (Mary) that needs to compute the spatial join between two huge
datasets with the aim to identify the portions of the main roads of USA that
might be subject to a flooding risk. A colleague of her (Bob) is doing a similar
task in Australia in order to find out the density of the road network in each
state of the country, and again the spatial join between two huge datasets has
to be computed. Fig. 1 and 2 show the datasets considered in both cases.

Fig. 1 Case 1: spatial join between the main roads and the water area in USA.

In both contexts the adoption of a big data solution for performing the
operation as a MapReduce job can be a good choice, so both Mary and Bob
install a Hadoop-based system (the issue about which system to choose accord-
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Fig. 2 Case 2: spatial join between the main roads and the states of Australia.

ing to the context will be addressed in the next subsection) and, after loading
the datasets on the Hadoop File System (HDFS), they call the method for
computing the spatial join, with no clue about which spatial join algorithm to
use. Indeed there can be different available implementations of the required
join operation and they need to choose one of these. Available algorithms can
be for instance: the distributed join with no index (Djni), the distributed join
working on indexed datasets (Djgi), the distributed join with a preliminary
repartition phase for rebuilding the index on one dataset (Djre), and the
MapReduce implementation of the partition-based spatial merge join (Sjmr).
So both Mary and Bob try one randomly. In order to evaluate the impact of
this choice, we show in Tab. 1 the performance of the different spatial join
implementations when applied to both cases. Experiments were performed in
SpatialHadoop, since it allows very easily to select the algorithm to apply. We
can observe that: (i) the performance of the algorithms are different, so it is
worth looking for the best one; (ii) the best one is not always the same: the
best choice is Djre in Case 1 and Djgi in Case 2; (iii) the performance de-
pends on different factors: on one hand the characteristics of the two involved
datasets have an impact, on the other hand also the complexity of the applied
algorithms and the implementation choices in MapReduce have to be consid-
ered and finally the cluster resources (e.g., the number of nodes, the available
memory and disk, and so on) contribute to the final execution time.

The aim of this paper is to identify a set of estimation formulas, namely a
cost model, that allows us to produce an estimate of the cost for each spatial
join algorithm available in a MapReduce system, in order to choose the faster
one. Such estimate depends on: (i) some statistics about the input datasets

Spatial join version Total time
Case 1 (Mary) Case 2 (Bob)

seconds minutes seconds minutes
Djni 473 8 30,908 515
Djgi 426 7 31,296 521
Djre 1261 21 31,466 524
Sjmr 900 15 11,176 186

Table 1 Performance of various spatial join algorithms applied to Cases 1 and 2.
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(input parameters), (ii) the characteristics of the cluster that runs the experi-
ments (system parameters), and (iii) the details of the MapReduce implemen-
tation of the algorithms (implementation details). The proposed cost model
could become the building block of a spatial query optimizer for big data sys-
tems, namely the identified formulas can be implemented inside a MapReduce
framework and executed before the spatial join operation in order to determine
the best algorithm to apply.

System choice – The objective of this paper is to propose a technique for
effectively estimating the cost of different MapReduce implementations of the
spatial join. Therefore, the chosen system has to provide different implemen-
tations of such operation with the additional requirement that the user can
autonomously decide which one to apply. Moreover, different kinds of parti-
tioning techniques (indexes) should be available, so that different combinations
of indexes and spatial join implementations can be easily tested together.

Currently, two families of systems for the parallel execution of MapReduce
jobs can be considered: the Hadoop-based family and the Spark-based fam-
ily. The former is the older one and provides a pure implementation of the
MapReduce programming model, with less expensive requirements in terms
of resources, eventually at the expense of performances. Conversely, the lat-
ter is the newer one, it includes some optimizations to the classical approach,
thus it usually provides a greater efficiency, but with higher requirements in
terms of memory in each nodes of the cluster. In general, providing a pre-
cise cost model for a parallel spatial join execution has an intrinsic complex-
ity, since it combines both traditional estimation strategies, more tailored on
dataset characteristics, with other intertwined factors such as the architecture
of the MapReduce execution engine and the cluster configuration. Dealing with
complex optimization strategies from the early beginning can be detrimental.
Therefore, we choose to concentrate on a more pure MapReduce approach,
namely on Hadoop-based solutions, leaving the complexity of Spark optimiza-
tions to further investigations. Notice that, the results proposed in this paper
can be a good starting point for extending the approach also to the Spark-
based family of systems. The choice to concentrate on Hadoop-based solutions
has not to be intended as a limitation of the usefulness and importance of this
work. Indeed, we remark that the Hadoop-based solutions are particularly ef-
fective when the cluster is characterized by nodes having a reduced amount of
memory at disposal, or when the datasets are so “big” that cannot fit in the
distributed main memory of Spark. At this regard, some works can be found in
literature that perform an interesting comparison between Hadoop and Spark
concluding that the latter is faster than the former as long as the memory
size is big enough for the data size, but as the data size increases becoming
bigger than the memory cache, the considered Hadoop cluster outperforms
the Spark one [16]. Moreover, as expected, Spark has a higher utilization of
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memory resources than Hadoop [28], but in some cases it has also an higher
mean disk and network utilization which is instead quite unexpected [22].

MapReduce paradigm – The definition of the proposed cost model greatly
follows the architecture of the MapReduce programming paradigm which is il-
lustrated in Fig. 3. The MapReduce paradigm is a processing technique specif-
ically developed for processing huge amount of data in an efficient way. In par-
ticular, it requires to subdivide the desired analysis operation into two main
subsequent phases: the map and the reduce phase. During the map phase the
various computational nodes perform in parallel and independently from each
other the same operation on a particular chunk of the input data, producing
a set of intermediate results. These intermediate results are locally written
inside each node after each map task concludes, the intermediate results are
transferred over the network and sorted by the shuffler in order to feed the
reducers. This operation can be considered an additional intermediate phase
that is transparently performed by the framework in order to connect the two
main phases. Finally, during the reduce phase, the intermediate results are
combined to produce the final one that is written in the distributed file sys-
tem. In Fig. 3, the green boxes denote read and write operations performed
using a distributed file system, while the white boxes denote local I/O opera-
tions. A distributed file system is a file system built starting from the resources
of the cluster nodes and shared among them. In particular, Hadoop uses the so
called HDFS (Hadoop Distributed File System), in which data are automat-
ically subdivided into independent chunks and distributed among the nodes
with a given rate of redundancy (typically 3 copies are produced for each
chunk)

input

split 1

input

split 2

input

split 3

map

map

reduce

reduce

output

part 1

output

part 2

shuffle
copy

merge

sort

map

Fig. 3 Schema of a Map Reduce job.

Further details about the MapReduce paradigm and the Hadoop framework
can be found in [32]. The extension to more advanced patterns can be intended
as a future work that could start from the proposed cost model.

Cost model in summary – The cost model proposed in this paper can be
used to deal with the four different variants of spatial join generally avail-
able in big data platforms [12]. More specifically, these considered variants
are available in many big spatial data platforms, such as SpatialHadoop [11],
GeoSpark [34], Simba [33], and Sphinx [14]. They may be classified as: dis-
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tributed join with no index (Djni), distributed join with grid-based index
(Djgi), distributed join with repartition (Djre), and the MapReduce imple-
mentation of the partition-based spatial merge join (Sjmr).

Several different factors have to be considered during the definition of the
mentioned cost model. First of all, some initial considerations have to be for-
mulated about the cost of the spatial join operation by adapting the results,
based on the selectivity estimation, coming from previous works, like [19]. An-
other important factor to consider is the binary nature of the spatial join,
namely the impact of transferring the second dataset over network, since the
MapReduce framework was originally born for parallel processing one big in-
put file at a time. At this regards, the locality of data, i.e., the probability
that a job is executed on same node where the data reside, has also to be
taken into account. Finally, the impact of the partitioning technique that di-
vides the input data into several splits with or without spatial criteria will be
considered. In order to give a general idea about the impact of different parti-
tioning techniques on the implementation of the spatial join in a MapReduce
context, we show in Fig. 4 the application of two spatial join algorithms to the
same pair of datasets containing rectangles: the distributed join with no index
(Djni) and the distributed join with grid-based index (Djgi). The datasets
are presented by means of their reference space (i.e., the Minimum Bounding
Rectangle containing all their geometries); dataset Di, with rectangles in blue,
and Dj , with rectangles in orange. In both cases, the files containing the ge-
ometries are divided into splits and this subdivision (partitioning) affects the
number of map tasks to be executed in parallel. Indeed, in the Djni case, no
spatial criterion has guided the partitionioning, so all possible combinations of
split pairs have to be considered. Conversely, in the Djgi case, spatial locality
has been considered as grouping criterion during the partitioning; so a reduced
number of split combinations has to be considered during the map phase.

The main contribution of the proposed approach is a specialization of the
cost models already developed for the classical spatial join operation, for their
application in a MapReduce framework, considering also the impact of data
partitioning (i.e., spatial indexes). Every algorithm mentioned above will be
discussed in details in a specific subsection of Sec. 5 taking as reference the
MapReduce implementation the one provided in SpatialHadoop. As already
mentioned, the choice of concentrating on SpatialHadoop is due to two main
factors: (1) it belongs to the Hadoop-based solutions, namely it exploits the
pure MapReduce approach, (2) it is the only system that provides an im-
plementation for all four considered algorithms, while the other mentioned
systems implement only some of them. In particular, the use of a repartition-
ing approach or the construction of a global index like the one built by Sjmr
are rarely available in other systems.

The structure of the proposed cost model greatly depends on the architec-
ture of the MapReduce paradigm previously described and illustrated in Fig. 3.
In particular, for each phase, three different metrics are produced: CPU pro-
cessing, local disk I/O, and network I/O. In this way, the cost model provides
a 3 × 3 cost matrix that characterizes each MapReduce implementation. In
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Fig. 4 Example of execution of the spatial join algorithm in the MapReduce framework.
The two input datasets are stored respectively into two files (shown on the left). In Djni
each split spliti of the first dataset will be compared with every split of the second dataset.
Indeed, a split can contain geometries belonging to any area of the reference space, since no
index has been built. Conversely, in Djgi only the splits covering areas with a not empty
intersection will be considered.

addition the cost model gives an estimate of the required number of map and
reduce tasks (see Sect. 3.2). The main goal of the cost model will be to rank
the spatial join implementations according to the matrix of cost estimates, and
define a partial order among them introducing a dominance relation, namely
a Pareto-set of non-dominated solutions.

The general approach and structure outlined by the proposed cost model,
could be applied and extended in order to support other kind of spatial oper-
ators, like the k-nn and range query. In particular, the extension to the range
query is straightforward and can take advantage of not only the proposed gen-
eral structure, but also of many of the proposed formulas. Simply, a range
query can be modeled as a spatial join where one dataset contains a single
geometry that represents the query range. As we will discuss in the following,
the definition of a cost model for the spatial join operation contains many crit-
ical issues to be solved that are related to the need of processing two datasets
at the same time.

We run an extensive experimental evaluation to verify our theoretical cost
model. Relatively to the partitioning phase, for each variant of spatial join
considered in this paper, we propose two different scenarios: in the first one
we suppose that indexes are already available for the input datasets, and in
the second one we assume that indexes have to be built. On the data side,
we consider different input sets of geometries with increasing cardinalities and
containing polygons with different characteristics w.r.t. the size and selectivity
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of the geometries (in terms of average MBR area), and the degree of spatial
overlapping of the datasets. As previously justified, all the experiments have
been executed in SpatialHadoop. The obtained results are reported in Sec. 6
and confirm the effectiveness of the proposed cost model in ranking the alterna-
tive algorithms. Indeed, on average the cost model chooses the best algorithm
in 89% of the cases.

2 Related Work

To the best of our knowledge, previous work only deals with the cost estima-
tion for implementations in MapReduce of the traditional join operation [7,
15], while relatively to the spatial case only a study about the convenience of
partitioning data before joining them has been done [27]. Additional details
about related work will be discussed in the following.

Spatial join algorithms – Many algorithms have been defined in literature
with the aim to efficiently perform a spatial join between two datasets, consid-
ering the cases in which none, one or both inputs have been previously indexed.
A comprehensive survey about all these variants can be found in [19]. At the
same time, to coupe with all these variants, several benchmarking studies have
been performed to evaluate their performance on the basis of the given input
[18,24,31,30]. Even if these studies cannot be directly applied to a MapReduce
context, they represent a starting point for the definition of the cost model
presented in this paper. An extension of the traditional spatial join operation
is represented by the multi-way spatial join [21], namely a spatial join where
the involved datasets can originate from more than two sources. In this paper,
we concentrate on the base case represented by the binary spatial join and left
as future work the extension of the formulas to the more general case. This
cannot be considered a great limitation, also because available MapReduce
systems rarely provides a support for such kind of operation where more than
two input files are required.

Cost model for map-reduce join algorithms – The MapReduce frame-
work has become a popular execution environment for the analysis of large
amount of textual data. Among all possible processing activities, the join be-
tween two inputs is one operation that requires particular attention and has
to be carefully studied. In [7] the authors perform an analysis of a number of
well-known join strategies in MapReduce and provide an experimental com-
parison between them. They also explore how the join algorithms can benefit
from certain types of preprocessing techniques, such as a repartition phase.
Another comparison between join algorithms in Hadoop can be found in [15].
The authors identify the various parts of a join operation and further subdivide
them into mappers, shufflers and reducers. An attempt to define an accurate
performance model for a generic MapReduce operation has been done in [20].
The authors analyze the composition of MapReduce tasks and relationships
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among them, they decompose the major cost items, and presented a vector
style cost model which inspired the cost model presented here.

Cost model for map-reduce spatial-join algorithms – A first attempt
to define a cost model for spatial-join algorithms in MapReduce can be found
in [27] where the authors propose a cost-based and a rule-based optimizer for
a generic spatial join. In particular, the authors abstract from any specific
implementation and consider a generic spatial join composed of two phases:
the partitioning (performed by mappers) and the joining (performed by re-
ducers). The work mostly evaluates the convenience to perform a preliminary
partitioning on only one or both datasets. The work in [27] and the one pre-
sented in this paper differ essentially for two things: (1) the former starts from
experimental results and tries to produce general recommendations using the
obtained results; conversely, the latter starts from a precise and detailed cost
analysis, producing a set of formulas that are then verified by experiments on
synthetic and real-world datasets. (2) The former concentrates only on cluster
characteristics during the experimental analysis, while the former is based also
on some dataset metadata, such as the selectivity, the dataset cardinalities,
and the average number of vertices of the geometries and others.

3 A General Cost Model Framework

This section lays the basis for the definition of a cost model for the various
MapReduce spatial join operators mentioned in Sect. 1. In particular, it starts
by defining a set of parameters that characterize the execution environment
and the input datasets, and then it provides a general notion of cost for a
given operator.

3.1 Characterization of the MapReduce Environment

The cost model proposed in this paper has been defined by considering some
parameters that characterize the environment in which the spatial join oper-
ator is executed. This set of parameters will be called Hadoop configuration
and is defined as follows.

Definition 1 (Hadoop conf) A Hadoop execution environment is defined by:

– #nodes: number of nodes in the cluster.
– #containers: number of execution containers in the cluster. The number of

containers is typically equal to the number of cores.
– #parMaps: maximum number of mappers that can be executed in parallel.

This number can be at most equal to the number of containers.
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– #parReds: maximum number of reducers that can be executed in parallel.
We can safely assume that all reducers can be executed in parallel, namely
only one reduce step will be performed in the cluster1.

– splitSz : default size of a split provided to a mapper. It usually corresponds
to the block size in the Hadoop Distributed File System (HDFS) (128
MBytes by default),

– #rep: number of file replications (3 by default).

Moreover, the cost model requires some additional statistical parameters
concerning the input datasets which will be called dataset statistics and are
defined as follows.

Definition 2 (Dataset statistics) Given a dataset D∗, the following pa-
rameters regarding the dataset content can be defined (the abbreviation MBR
is used to denote the Minimum Bounding Rectangle of a geometry):

– size(D∗): size of the dataset D∗ in bytes,
– #geo(D∗): number of geometries in the dataset D∗,
– mbr(D∗): MBR covering all geometries in D∗,
– mbrAreaavg(D∗): given the MBR of all geometries in D∗, it represents the

average area of such MBRs,
– lenavg

x (D∗) and lenavg
y (D∗): given the MBR of all geometries in D∗, they

represent the average length on the X and Y axis of such MBRs,
– #vertavg(D∗): average number of vertices of the geometries in D∗.

Parameters size(D∗) and #geo(D∗) can be obtained by querying the HDFS.
An estimate for parameters mbr(D∗), lenavg

x (D∗) and lenavg
y (D∗) can be ob-

tained by sampling the input datasets, or we can suppose that they were
computed during the scan of the geometries in a previous access, and that
the system collects these statistics for refining the quality of the cost model
predictions.

For the datasets that have an indexed structure, the following additional
parameters are assumed to be known. Notice that this paper concentrates
for simplicity on uniform grid-based indexes [23,26], however the extension to
other kind of indexes is straightforward. In particular, as we will discuss in
Sect. 4, independently from its kind, any global index is characterized by the
construction of grid through which geometries are redistributed among nodes.
The main difference resides on the way the grid cells are built and their final
shape. In case of a uniform grid index, all cells have the same shape and size.

– #cells(I∗): number of cells in a index I∗. Sometimes the abbreviation
#cells(D∗) is used to denote the number of index cells for the dataset D∗.

– lencel
x (I∗) and lencel

y (I∗): length on X and Y axis of the cells in the grid
index I∗. Sometimes the parameter D∗ can be used in place of I∗ to denote
its index.

1 From the official Hadoop documentation, the maximum number of parallel reducers
could be set equal to the number of available containers multiplied by a factor of 0.95.
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For obtaining more accurate estimations, we define the following two data-
related metrics regarding the selectivity between two datasets Di and Dj .

– σ(A): selectivity of the spatial join between two datasets Di and Dj w.r.t.
a reference space A. The selectivity of the spatial join is a real number
between 0 and 1 representing the probability that given a pair of geometries
(gi, gj), such that gi ∈ Di and gj ∈ Dj , this pair belong to the join result.

– σmbr(A): selectivity of the spatial join between the MBR of the geometries
in the datasets Di and Dj . This selectivity is similar to the previous one,
but here the MBRs are considered instead of the real geometries.

These metrics are assumed to be known, indeed they can be estimated in
some way using different levels of information about the input datasets [1,2] or
in some contexts, system administrators can provide an educated guess based
on their experience with the data. In particular, without any knowledge about
the dataset characteristics, we can only assume that each geometry might
intersect any other geometry in the other dataset. Conversely, by knowing
some statistics about the two datasets and assuming a uniform distribution
for them, we can obtain a more precise estimation by generalizing the formula
proposed in [2] as discussed in [4], obtaining:

σ(A) ' 1

A

(
mbrAreaavg(Di) + mbrAreaavg(Dj) + (1)

(lenavg
x (Di) · lenavg

y (Dj) + lenavg
x (Dj) · lenavg

y (Di))
)

In the experiments, the cost model has been applied by considering the
selectivity estimation produced by this formula. Notice that the original for-
mula has been defined for rectangles while the proposed cost model is intended
for any kind of geometry. Therefore, the use of σ and σmbr can produce an
overestimation of the real selectivity.

Finally, some additional parameters characterize the size in bytes for stor-
ing a vertex of a geometry, an MBR and a record of a dataset: (i) vertSz
denotes the number of bytes that are needed for the representation of a single
vertex; (ii) mbrSz indicates the number of bytes required to represent a generic
MBR and recSz(D∗) denotes the bytes needed to store a record of the dataset
D∗. More specifically, mbrSz = 4·vertSz and recSz(D∗) = #vertavg(D∗)·vertSz.

3.2 Cost of a MapReduce Operator

This section provides a general definition for the cost of a MapReduce operator
op. The cost of each operator is divided in three components: (i) the cost of
the mappers; (ii) the cost of the shufflers and (iii) the cost of the reducers. The
shuffle phase is the process through which data is sorted by key and transferred
from the mappers to the reducers. Clearly, this phase is performed only if there
are some reducers in the considered job.
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The cost of each phase is further subdivided in three parts: CPU, local I/O
and network I/O. The measurement of these components is based on a set of
hypothesis:

– The unit of measure for the CPU cost is the time µ required to compare
the x (or y) component of two coordinates, namely to compare two double
values: µ = time(≤ (d1, d2)). From this, the time required to test the
intersection between two MBRs can be defined as 4 ·µ, since it requires the
comparison of 4 doubles.

– The measure of a disk I/O or network I/O operation is given by the number
of bytes read or written.

Given such hypothesis, the cost of a MapReduce operator can be defined
as follows:

Definition 3 (Cost of an operator) Given a MapReduce operator op and
a Hadoop configuration, the cost of op can be defined by the tuple: C(op) =
〈#mapop, #redop,Mop〉, where #mapop (#redop ) is an estimate of the number
of mappers (reducers) and Mop is a matrix describing the different cost com-
ponents (cpu, disk, net) for the different phases (M: map, S: shuffle, R: reduce)
of a job:

Mop =


Mopcpu Sopcpu Ropcpu

M
op
disk S

op
disk R

op
disk

M
op
net S

op
net R

op
net


Each elements ofMop refers to the cost of an single mapper, reducer or shuffler.

The matrix can be used to obtain the estimated total cost or the estimated
effective/parallel cost of a job.

Definition 4 (Estimated total and effective cost) Given a MapReduce
implementation op of an operator, an Hadoop configuration and the tuple C(op)
defining its cost. The estimated total cost of op can be obtained by multiplying
Mop by a vector containing the estimation of the number of mappers and
reducers, as in Eq. 2. In a similar way, the estimated effective cost of op can
be obtained by multiplying M by a vector containing the estimation of the
number of map and reduce runs, as in Eq. 3.

cvtot =Mop ×

#mapop

#redop

#redop

=

cputot

disktot
nettot

 (2)

cvpar =Mop ×

#mapRuns
#redRuns
#redRuns

=

cpupar

diskpar
netpar

 (3)
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#mapRuns has a lower bound equal to d#mapop/#parMapse, where #parMaps
denotes the maximum number of mappers that can be executed in parallel
using the current Hadoop configuration, while #redRuns is bound by d#redop/
#parRedse, which usually produces only one phase for the reducers. Sect. 4-5
present the cost model for each spatial join operator op available in Spatial-
Hadoop. The cost model focuses on the estimation of C(op), from which we
can obtain both cvpar and cvtot.

As already mentioned in Sect. 1, the proposed cost model produces a par-
tial order between the various spatial join algorithms, namely a Pareto-set of
non-dominated solutions. A total order between them can be obtained only
by assigning a weight to the various cost components (CPU, local I/O and
network I/O), such weight strictly depends on the cluster characteristics and
can be experimentally determined in each single configuration. Given a vec-
tor of weight and the estimation C(op), we can obtain the total time of each
algorithm in the following way.

Definition 5 (Estimated total time) Given a MapReduce implementation
op of an operator, an Hadoop configuration, a vector cvpar defining its effective
cost and a vector of weights W = [wcpu, wdisk, wnet] relating the various cost
components. The estimated total time of op can be computed as follows:

T = ‖W × cvpar‖1 (4)

where cvpar is defined in Equation 3 and ‖ · · · ‖1 is the L1 norm.

In Sect. 6 we provides a comparison between the various algorithms by
using both the partial order induced by C(op) and the total order obtained
with the computation of the total time.

3.3 Processing two Inputs in MapReduce

The join is an operation that requires particular attention when performed in
MapReduce, since it needs to process two datasets (files) at time, while Hadoop
traditionally processes only one argument. In [4] we describe the details of the
reader used by SpatialHadoop to process two input files at time generating
compound splits. The use of this reader induces another issue to solve, namely
the fact that it is not guaranteed that both splits, composing a compound split
and containing the geometries to be joined, reside in the same node. In order to
minimize the network I/O cost, the reader tries to put in the same compound
split data residing in the same node; in this way a mapper can be allocated
to that node and read the split locally. However, when this is not possible, a
mapper is assigned by Hadoop to a node where at least one of the two splits
resides. In the cost model we need to estimate the local and the network I/O
costs, thus given a node n chosen for the execution of a mapper which contains
a replica of a Di split, it is necessary to introduce the probability Ploc that



14 A. Belussi et al

also the split of Dj is located in n. This may be computed as:

Pnet =

(
#nodes−#rep

#rep

)(
#nodes
#rep

) , Ploc = 1− Pnet (5)

where Pnet is the ratio between the combinations corresponding to an alloca-
tion of the replicas of the second split on nodes that do not contain replicas
of the first split and all the possible combinations in which the replicas of the
second split can be allocated.

4 Spatial Index in SpatialHadoop

Before proceeding with the analysis of the various spatial join operators, we
first analyze the concept of spatial index in such environment and how it is
built. This section is useful to completely understand and compare the spatial
join operators, since some of them make direct use of indexes, while others
work without them.

SpatialHadoop has two level of indexes [10]: a global and a local one. The
global index determines how data is partitioned among nodes, while the local
index determines how data is stored inside each block. In particular, the con-
struction of a global index on a input dataset D, determines that D is stored
as a set of data files each one containing the records belonging to one cell (or
partition). Some spatial join operators are able to exploit the use of a global
index in order to efficiently retrieve the data to be processed.

SpatialHadoop provides different kinds of global indexes or partitioning
techniques which can be classified into three main groups: based on space
(grid and Quad-tree), based on data (STR, STR+, K-d tree), or based on
space filling curves (Z-curve, Hilbert curve) [10]. The selection of the global
index to apply is usually left to the user, only in [5] a first heuristic is proposed
for automatically selecting the best partitioning technique on the basis of the
dataset distribution. Notice that independently from the kind of considered
index, the application of a partitioning technique consists in the definition of
a grid composed of a certain number of cells which are used for subdividing
the dataset geometries. Therefore, the main difference between the various
indexes resides on the way such cells are built, namely on their number, shape
and dimension. However, the preliminary application of a spatial partitioning
technique comes with its cost and sometimes it is justified only if such new
organization of data can be reused several times, absorbing such initial cost.
In case of a uniformly distributed dataset, any partitioning technique will
produce the same subdivision of the data, so we can safely concentrate on the
more simpler and cheaper to construct, which is the uniform grid index. The
extension to other kind of indexes is straightforward, since the general job
structure is the same and only few estimation formulas have to be modified.

The construction of an index involves two MapReduce jobs, the first one
determines the grid to be used for the dataset partitioning (see Sect. 4.1), while
the second one partitions the data using the computed grid (see Sect. 4.2).
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4.1 Grid Construction

The index structure studied in this paper is the grid one which partitions the
data according to a uniform grid. A record that overlaps multiple grid cells is
replicated in all these cells. The grid is defined based on the minimum bounding
rectangle (MBR) of the input dataset. To compute the MBR, a MapReduce
job called Mbr is executed. During the map phase, the algorithm computes the
MBR of each geometry inside the splits. Thanks to an intermediate combiner,
the reducer receives only one MBR from each mapper and generates the final
MBR covering the whole dataset.

The cost for operator Mbr can be defined as C(Mbr) = 〈#mapMbr, 1,MMbr〉
where #mapMbr = dsize(D∗)/splitSze, since the data contained in D∗ are par-
titioned among mappers according to the split size, while only one reducer is
used to obtain the final result. The estimation of MMbr is discussed below.

Table 2 Estimation of the components of the matrix M for the grid index construction.
Column Mbr regards the operator which computes the dataset MBR, while column Part
regards the operator which partitions the dataset across the grid.

Cost Mbr Part
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p
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) #map

⌈
size(D∗)

splitSz

⌉ ⌈
size(D∗)

splitSz

⌉

cpu
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⌉
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cpu
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#mapMbr · 4µ
#cells(I∗)
#redPart

' 0

disk

reading

#mapMbr ·mbrSz +

writing

mbrSz

reading and writing

2 ·
(
#pairs(D∗, I∗)

#redPart
· recSz(D∗)

)
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writing

mbrSz · (#rep− 1)

writing

#pairs(D∗, I∗)
#redPart

· recSz(D∗) · (#rep− 1)
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Estimate 1 (MMbr estimate). The components ofMMbr are given in Tab. 2.
cpu rationale. (i) The CPU cost of each mapper corresponds to the com-
putation of the MBR for all geometries in a split, thus it linearly depends on
their average number of vertices. The total number of vertices in a split can
be estimated by dividing the split size by the dimension of a vertex in bytes
(dsplitSz/vertSze). (ii) The CPU cost of each shuffler is dominated by the or-
dering procedure it applies on the MBRs produced by the mappers. Thanks
to the use of a combiner, the number of MBRs to be ordered is equal to the
number of mappers (#mapMbr). (iii) The reducer only computes the global
MBR by scanning the MBRs received from the shuffler.
disk i/o rationale. (i) Each mapper reads locally one split of size splitSz and
writes locally one MBR of size mbrSz for each processed geometry. In partic-
ular, #geosp(D∗) is an estimates of the number of geometries of D∗ contained
in a split:

#geosp(D∗) =
splitSz

recSz(D∗)
(6)

(ii) The shuffler only writes locally one MBR of size mbrSz for each mapper.
(iii) The reducer reads locally what the shuffler has produced and writes locally
one copy of the global MBR of size mbrSz.
network i/o rationale. (i) The mappers do not read/write remotely, (ii) the
shuffler reads remotely one MBR of size mbrSz for each mapper, and finally
(iii) the reducer writes remotely (#rep− 1) copies of the result.

Given a global MBR for the entire dataset D∗, the number of grid cells (or
partitions) is determined by considering the size of D∗ so that the content of
each cell can fit inside a split. Since I∗ is an index with replication, namely a
geometry can be stored several times if it intersects multiple cells, the dataset
size is multiplied by a replication factor α in order to consider such situation.

#cells(I∗) = max

1,

⌈√
size(D∗) · α

splitSz

⌉2
 (7)

Notice that the number of required cells is enlarged to obtain a squared grid.
This way to define the number and shape of the grid cells is what distinguishes
a grid index from other kinds of indexes. Clearly, in order to consider in the
cost model other kinds of indexes, for instance a Quad-tree or an R-tree, a
more complex subdivision of the D∗ MBR is required. However, as already
mentioned, in case of datasets characterized by a uniform distribution of their
geometries, the final result is the same and such additional complexity is not
justified, making the use of a uniform grid the best choice.

4.2 Data Partitioning

The grid built by the previous job is used during the following phase which
performs the actual data partitioning. In particular, each mapper receives a
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split containing a set of geometries of D∗ and all cells of I∗, and it produces
as output the pairs 〈c, g〉 where the geometry g intersects the cell c. In order
to evaluate the result produced by the mappers, it is necessary to estimate the
average number of cells of I∗ that are intersected by a geometry g ∈ D∗:

#cell∩geo(D∗, I∗) =

⌈
lenavg

x (D∗)

lencel
x (I∗)

⌉
·

⌈
lenavg

y (D∗)

lencel
y (I∗)

⌉
+ β (8)

The formula takes care of both the fact that a geometry can span between
multiple cells because its extent on the X or Y axis is greater than the cor-
responding extent of a cell (first two terms) and/or it crosses a cell boundary
(see factor β).

Moreover, to consider the case when some geometries in D∗ are completely
outside the grid (as we will see in Sect. 5.3), we estimate the number of ge-
ometries intersecting the grid by multiplying the number of geometries (i.e.,
#geo(D∗)) by the factor rint:

rint(D∗, I∗) =
area(mbr(D∗) ∩mbr(I∗))

area(mbr(D∗))
(9)

It considers the size of geometries negligible w.r.t. the size of the reference
space. Moreover, when dataset D∗ completely overlaps the grid of I∗, rint is
equal to 1. In the typical case, the index I∗ is built starting from the dataset
D∗ and rint will be equal to 1; anyway, as we will see in Sect. 5.3, there can be
some cases in which the grid does not correspond to the MBR of D∗.

The cost of Part can be defined as C(Part) = 〈#mapPart, #redPart,MPart〉,
where #mapPart = dsize(D∗)/splitSze, since the number of mappers only de-
pends on the input size, while #redPart = max(1,min(#cells(I∗), #parReds)),
since the number of reducers can be greater than one only if #parReds is greater
that one with a maximum that is equal to the number of cells in the index I∗.
The estimation of MPart is discussed below.

Estimate 2 (MPart estimate). The components ofMPart are given in Tab. 2.
cpu rationale. (i) The CPU cost of each mapper is given by the cost of
checking the MBR intersection between the geometries in a split and all the
cells of its index #cells(I∗) (this check costs 4µ), where #geosp(D∗) is estimated
using Eq. 6 and #cells(I∗) using Eq. 7. (ii) The shuffler combines the results
produced by the mappers obtaining a list for each cell and orders such lists
based on their key (i.e., the cell geometry). The parameter #pairs(D∗, I∗) is
an estimate of the number of pairs 〈c, g〉 produced by all mappers. It can be
computed in different ways according to the available statistics, some possible
estimates are shown in Tab. 3. In the a priori case a geometry overlaps all grid
cells, while using Eq. 8-9 we can obtain a more precise estimate. The number of
cells to be ordered by each shuffler is computed by dividing the total number
of cells (#cells(I∗)) by #redPart. Insertion in the list and the test for ordering
cells cost both 2µ. (iii) Finally, the reducer simply writes to the HDFS the
result, so that a separate file split is generated for each partition. Therefore,
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its CPU cost can be considered negligible.
disk i/o rationale. (i) Each mapper reads locally its split of size splitSz
and writes locally the resulting pairs 〈c, g〉 whose number is estimated by
parameter #pairsmp(D∗, I∗) (see Tab. 3). (ii) Each shuffler writes locally the
total number of produced pairs, estimated by #pairs(D∗, I∗), divided by the
number of reducers (#redPart) and (iii) finally, the reducers read and write the
pairs produced by the shufflers.
network i/o rationale. These estimations regard only the reading phase
of the shufflers and the writing phase of the reducers, for which the same
considerations done in the previous paragraph apply.

Table 3 Estimates for parameters #pairs(D∗, I∗) and #pairsmp(D∗, I∗).

Par Estimate

#pairs(D∗, I∗)
a priori : #geo(D∗) · rint(D∗, I∗) · #cells(I∗)
with complete statistics: #geo(D∗) · rint(D∗, I∗) · #cell∩geo(D∗, I∗)

#pairsmp(D∗, I∗)
a priori : #geosp(D∗) · rint(D∗, I∗) · #cells(I∗)
with complete statistics: #geosp(D∗) · rint(D∗, I∗) · #cell∩geo(D∗, I∗)

5 Spatial Join Algorithms

SpatialHadoop provides four different operators for performing the spatial join.
The main differences between them are: (i) the use of indexed or not-indexed
data, (ii) the possibility to repartition one of the two datasets using the index
of the other, (iii) the execution of the intersection tests on the map or on
the reduce side. All operators share a plane-sweep like algorithm (PSalgo) for
checking the intersections between two list of geometries. The difference mainly
resides in the way they build the two lists.

PSalgo firstly orders the geometries in the two lists based on the minimum
X coordinate of their MBR. Then given the two ordered lists, it scans them
switching from one list to the other one according to the MBR distribution
along the X axis. Finally, for each pair of intersecting MBRs, the actual in-
tersection between the underlying geometries is checked. The estimate of the
PSalgo cost is presented below based on the study in [2].

Estimate 3 (CPU cost of PSalgo). Given two datasets Di, Dj and two sub-
sets of their geometries li ⊆ Di and lj ⊆ Dj , with cardinality ni and nj ,
respectively, the CPU cost for executing PSalgo on them is estimated as:

ps(li, lj , A) =

ordering li

ni log(ni) · µ +

ordering lj

nj log(nj) · µ +

MBR intersection

ni · nj · σmbr(A) · 4µ +

geometry intersection

ni · nj · σmbr(A) · T∩geo
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where A is the area of the reference space used to compute the selectivity in
Eq. 1.
Rationale: (i) The cost of the ordering phases depends on the cardinality
of the lists and is classically estimated as n log(n). (ii) The number of MBR
comparisons can be estimated by means of the MBR selectivity between the
two datasets (i.e., σmbr(A)), for which an estimate has been proposed in Eq. 1.
(iii) The number of intersection tests between geometries can be estimated
using the same parameter. (iii) T∩geo is the cost of testing the intersection be-
tween two geometries using a plane-sweep algorithm applied to their vertices.
Therefore, given v = #vertavg(Di) + #vertavg(Dj), T

∩
geo = v log(v) · 2µ.

The following sections provide a brief description of each algorithm and
an analysis of its costs. Tab. 4 summarizes the main differences between them
and provides a reference to the corresponding section. In the table, column
Reader indicates the use by the mappers of a binary reader, which accesses
two files at time; column Index reports the number of datasets that require
an index, column Join-side indicates if the join is done by the mappers or
the reducers, column Rep. indicates if a repartition is applied before the join,
and finally the column Sect. reports the subsection describing the algorithm.

Table 4 Summary of the various spatial join operators.

Op Reader Index Join-side Rep. Sect.
Djni X 0 map 7 5.1
Djgi X 2 map 7 5.2
Djre X 1 map X 5.3
Sjmr 7 0 reduce 7 5.4

5.1 Distributed Join with No Index

The first considered spatial join operator works on two input datasets that are
not indexed, it is the MapReduce implementation of the Block Nested Loop
Join (BNLJ) and it will be called Djni in the following. Djni is a map-only
job, namely it has no reducers, and clearly it is classified as a map-side join.

Given two input files Fi, Fj , the map input is prepared by the reader,
which generates one pair of splits for each mapper; overall all the pairs of
splits belonging to the Cartesian products Fi × Fj will be considered. Fig. 5
illustrates the behaviour of a mapper of Djni when it works on a “combined”
split s = (spliti, splitj) ∈ Fi × Fj . It initially loads the content of such splits
into two lists, then it applies PSalgo for checking the intersection between the
geometries in the two lists.

The cost for operator Djni(Di, Dj) can be defined as: C(Djni) = 〈#mapDjni, 0,
MDjni〉, where #mapDjni = dsize(Di)/splitSze · dsize(Dj)/splitSze, since all the
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Table 5 Estimation for the spatial join operators (map-side). Notice that MPart∗ , SPart∗ and
RPart∗ are obtained from column 3 of Table 2 by properly instantiating the input dataset and
grid index.

Cost Djni Djgi Djre (Rep) Djre (join)

M
a
p

(M
)

#map

⌈
size(Di)

splitSz

⌉⌈
size(Dj)

splitSz

⌉ #cells(Ii)·
#cells(Ij)·
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∩cells

#mapPart(Di, Ij)
#cells(Ii)·
#cells(Ij)·
Prep

∩cells

cpu

plane-sweep algorithm

ps(#geosp(Di),
#geosp(Dj), A)

filtering phase

(#geocl(Di, Ii)+
#geocl(Dj , Ij))4µ+
plane-sweep algorithm

ps(#geo
sel
cl (Di, Ii),

#geosel
cl (Dj , Ij), Ammbr)

MPartcpu (Di, Ij)
MDjgi
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disk

read.Di

splitSz +
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cellSz(Di) +
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cellSz(Dj) · Ploc +
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joinSzmap(Ammbr)

MPartdisk (Di, Ij)
MDjgi
disk

Ammbr = Acl

net

reading Dj

splitSz · Pnet +
writing

joinSzmap(A) ·
(#rep− 1)

reading Dj

cellSz(Dj) · Pnet +
writing

joinSzmap(Ammbr)·
(#rep− 1)

MPartnet (Di, Ij)
MDjgi
net

Ammbr = Acl

Shuffle 0 0 SPart(Di, Ij) 0

Reduce 0 0 RPart(Di, Ij) 0

Di 

Dj 

File i File j 

spliti 

splitj Join spliti x splitj 

spliti 

splitj 

Fig. 5 Example of execution of the Djni algorithm. The two input datasets Di and Dj are
stored respectively into two files. Each split spliti of Di will be compared with every split
of Dj . A generic split can contain geometries belonging to any area of the reference space,
since data is not indexed.

possible pairs of splits are generated and each pair is processed by one mapper.
Djni is a map-only job, thus the number of reducers is 0.

Estimate 4 (MDjni estimate). The components ofMDjni are given in Tab. 5.
cpu rationale. Notice that this cost is influenced only by the application
of PSalgo to the two input lists for which the reference area A is the area
of the entire reference space, A = area(mbr(Di) ∪ mbr(Dj)). Thus, the cost
only depends on the number of geometries contained in the lists #geosp(D∗),
which derives directly from the split size (see Eq. 6). The total CPU cost is
dominated by the number of mappers (#mapDjni).
disk i/o rationale. Each mapper certainly reads locally one split of size
splitSz, and with probability Ploc (see Eq. 5) also the second one. Moreover, it
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writes locally the result of the join between the two lists of geometries. The size
in bytes of such result (i.e., joinSzmap(A)) depends on the selectivity between
the input datasets and can be estimated as follows where A = area(mbr(Di)∪
mbr(Dj)):

joinSzmap(A) = #geosp(Di) · #geosp(Dj) · σ(A) · (recSz(Di) + recSz(Dj)) (10)

network i/o rationale. Each mapper reads the second split of size splitSz
from the network with a probability Pnet (see Eq. 5) and it writes remotely
(#rep− 1) copies of the join result (joinSzmap(A)).

5.2 Distributed Join with Grid Index

The second spatial join operator considered in this paper works on two indexed
datasets, it will be called Djgi and is a MapReduce adaptation of the Grid File
Spatial Join algorithm [17]. This operator is similar to the previous one, it is
again a map only job (and consequently a map-side join) However, in this case
the reader work on indexed data, namely the key of each record represents an
index cell, and a filter is used for preparing the input splits, so that only the
pairs of splits regarding intersecting cells are generated. Therefore, the number
of generated combined splits, and consequently the number of mappers, is
equal to the number of pairs of intersecting cells. With reference to Fig. 6,
given a cell ci ∈ Ii, it is combined only with the cells of Ij for which the
intersection is not empty (i.e., kh, ki, kj , kk).

Di 

Dj 

Index i Index j 

Join ci x kh 

ci 

kh 

Di 

Dj 

ki 

kj 

kk 

ci 

kh 

Fig. 6 Example of execution of the Djgi algorithm. The two input datasets Di and Dj

have been indexed using a grid. Each cell ci of Ii will be compared only with any other
cell of Ij for which the intersection is not empty (i.e., kh, ki, kj and kk). In this case only
geometries that reside in a nearby space will be compared.

In order to estimate the number of mappers, we need to introduce a formula
to compute the probability Pgrid

∩cells that given two index cells, ci ∈ Ii and
cj ∈ Ij , their intersection is not empty. Suppose that the cells of Ij are smaller
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than the cells of Ii, this probability can be defined as:

Pgrid
∩cells = rint(Dj , Ii) · rint(Di, Ij) · (11)⌈

lencel
x (Di)

lencel
x (Dj)

⌉
·
⌈

lencel
y (Di)

lencel
y (Dj)

⌉
·(((((((((
#cells∩(Ii,mbr(Dj))

#cells∩(Ij ,mbr(Di)) ·(((((((((
#cells∩(Ii,mbr(Dj))

where rint(D∗, I◦) has been defined in Eq. 9 and is the percentage of cells of
I◦ that falls inside the MBR of D∗, while #cells∩(I◦, mbr(D∗)) is the number
of cells of I◦ that intersect the MBR of D∗ and it can be computed from the
available statistics.

The formula is obtained by considering the conjunction of the event corre-
sponding to the choice of a cell of Ii that falls in the intersection mbr(Di) ∩
mbr(Dj) (namely, rint(Dj , Ii)) with the event corresponding to the choice of a
cell of Ij that falls in the same intersection (namely, rint(Di, Ij)); then among
all the possible pairs of cells that fall in the intersection (denominator), we
count the number of intersecting cells (numerator), producing the fraction
that appears in the formula.

The cost for the operator Djgi can be defined as C(Djgi) = 〈#mapDjgi, 0,

MDjgi〉, where #mapDjgi = #cells(Ii) ·#cells(Ij) ·Pgrid
∩cells, while the components

ofMDjgi are discussed below. Notice that if the two datasets occupy the same
region, namely their MBRs completely overlap, the terms rint(D∗, I◦) are equal
to 1 and #cells∩(I◦, mbr(D∗)) = #cells(I◦), so the estimation of the number of
mappers becomes: #mapDjgi = dlencel

x (Di)/ lencel
x (Dj)e·dlencel

y (Di)/lencel
y (Dj)e·

#cells(Ii). Djgi is again a map-only job, thus the number of reducers is 0.
Notice that Djgi and all the other algorithms that we will study in the

following implement the reference point duplicate avoidance technique [9]. This
technique allows to avoid the production of duplicated results even if the same
geometry is replicated in several index cells. This is basically a constant-time
computation added to each result that prevents the need for a subsequent
duplicate check. Therefore, we can safely ignore such problem in the cost
model estimation.

Estimate 5 (MDjgi estimate). The components ofMDjni are given in Tab. 5.
cpu rationale. The CPU cost of a Djgi mapper is very similar to the cost
of a Djni mapper; the only difference is the presence of the preliminary filter
phase that reduces the number of geometries that are contained in the lists
received by PSalgo. This filter is applied at the beginning of each map iteration:
the intersection between two cells is computed (called mmbr) and only the
geometries that intersect mmbr are considered during the plane-sweep. The
filter cost is dominated by the number of geometries of Di and Dj contained in
each cell of their corresponding indexes Ii and Ij . The number of geometries in
each cell of I◦, namely #geocl(D∗, I◦), can be estimated, considering a uniform
distribution, by dividing the number of geometries in D∗ by the number of cells
of I◦. In the general case, the overlap between a grid I◦ and the MBR of D∗
can be only partial (as we will see for Djre in Sect. 5.3), thus in the following
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formula we use the number of intersecting cells (i.e., #cells∩(I◦,mbr(D∗)))
instead of the total number of cells, even if in the Djgi case they coincide:

#geocl(D∗, I◦) =
#geo(D∗) · α

#cells∩(I◦,mbr(D∗))
(12)

The replication factor α > 1 introduced in Tab. 3 is also used here to determine
the geometries per cell.

The filter phase reduces the number of geometries to be considered by
PSalgo. In particular, parameter #geosel

cl (D∗, I◦) is an estimate of the average
number of geometries of D∗ that survive after the filter phase. It is obtained
by multiplying #geocl(D∗, I◦) by a filter factor, denoted as ψ(D∗), that can
be estimated by considering the dimension of the index cells. Let us assume
that Ij has cells that are smaller than the cells of Ii, then ψ(Dj) = 1, while
ψ(Di) = area(cells of Ij)/area (cells of Ii). This can be an over-estimation of
the selectivity, since it considers only the cell dimensions and not their dis-
placement. For Djgi the estimation of PSalgo considers a selectivity computed
on an area equal to the average area of the not empty mmbr (called Ammbr).
disk i/o rationale. As for Djni, each mapper reads locally the first dataset
and with a probability Ploc the second one, the only difference is that the split
size is not fixed but it depends on the number of geometries in each index
cell, namely cellSz = #geocl(D∗, I) · recSz(D∗). Moreover, it writes locally one
copy of the join result (i.e., joinSzmap(Ammbr)) whose dimension depends on the
selectivity computed using Ammbr.
network i/o rationale. As in the case of Djni, each mapper reads remotely
the second dataset with a probability Pnet and the split size is the same of the
one used for the local I/O. Moreover, it writes remotely (#rep − 1) copies of
the join result with the same size estimated for the local I/O.

5.3 Distributed Join with Repartition

A variant of Djgi is the operator denoted as Djre, which additionally per-
forms a repartition of one of the two datasets w.r.t. the index of the other. It
is a MapReduce adaptation of the Bulk-Index Join [6]. In particular, if both
input datasets are indexed, the smaller one is repartitioned using the index of
the bigger one; conversely, if only dataset Dj (Di) is indexed, then Di (Dj)
is repartitioned using the index of Dj (Di). This operator consists of two
map-reduce jobs, the first one performs the repartition and the second one is
similar to Djgi. The repartition phase can be particularly useful when the two
datasets have a partial overlapping, in this case the geometries of the repar-
titioned dataset that do not intersect the MBR of the other one are filtered
out, since they certainly will not participate to the join result. Moreover, only
pairs of fully overlapping cells will be considered, thus leading to a reduced
number of balanced mappers.
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Fig. 7 Example of execution of the Djre algorithm. In this case dataset Di is repartitioned
using the grid index of Dj . After such repartition any cell ci ∈ Ii will be compared only
with the corresponding cell ci ∈ Ij .

5.3.1 Repartition Phase

Without loss of generality, we consider that Di has to be repartitioned w.r.t.
the index of Dj . The repartition is performed by a job, called Rep, composed
of a map and a reduce phase. The mappers scan each geometry of Di and
build a pair 〈c, g〉 for each cell c ∈ Ij that intersects a geometry g ∈ Di. This
job is similar to the Part job performed during the index construction and
illustrated in Sect. 4.2. However, in this case the dataset to be partitioned is
Di while the considered index is Ij , namely the index of Dj . Therefore, with
reference to Eq. 9, factor rint could be different from 1.

5.3.2 Join Phase

The cost of the join job is the same as the cost of the Djgi operator except
for the formula which computes the P∩cells, since in this case the two datasets
share the same index grid. In other words, the number of combined splits that
will be generated is equal to the number of cells that intersect the MBR of
both datasets. P∩cells can be obtained by simplifying Eq. 11 as follows:

Prep
∩cells =

#cells∩(Ij ,mbr(Di))

#cells∩(Ij ,mbr(Dj)) · #cells∩(Ij ,mbr(Di))
(13)

Moreover, as regards to the selectivity used for computing the result dimension,
namely joinSzmap(Ammbr), since the cells of both indexes are the same, for each
mapper it always occurs that: Ammbr = Acl, where Acl is the area of a cell.

5.4 Spatial Join Map Reduce

The last operator considered in this paper is called SJMR (Spatial Join Map
Reduce) and has been designed to perform spatial join efficiently for non-
indexed datasets. It is the map-reduce implementation of the Partition Based
Spatial Merge Join [25] and it will be denoted as Sjmr in the following. It uses a
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Table 6 Estimation for the spatial join operators (reduce-side).

Cost Sjmr (Di MBR) Sjmr (Dj MBR) Sjmr (join)

M
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#map #mapMbr(Di) #mapMbr(Dj)

⌈
size(Di) + size(Dj)

splitSz

⌉
cpu MMbr

cpu (Di) MMbr
cpu (Dj)

cell-geom pairs

#pairsmp(D∪, I∪) · 4µ

disk MMbr
disk (Di) MMbr

disk (Dj)

reading

splitSz +
writing

#pairsmp(D∪, I∪)recSz(D∪)

net MMbr
net (Di) MMbr

net (Dj) 0

S
h
u
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e

(S
)

cpu SMbr
cpu (Di) SMbr

cpu (Dj)
2 · (

list constr.

#pairs∪ +
ordering

#cellsred∪ log #cellsred∪ )µ

disk SMbr
disk (Di) SMbr

disk (Dj)

writing

#pairs∪ · recSz(D∪)

net SMbr
net (Di) SMbr

net (Dj)

reading

#pairs∪ · recSz(D∪)

R
ed

u
ce

(R
)

#red #redMbr(Di) #redMbr(Dj)
max(1,

min(#cells(I∪), #parReds))

cpu RMbr
cpu (Di) RMbr

cpu (Dj)

#cellsred∪ ·
intersection test

ps(#geocl(Di, I∪),

#geocl(Dj , I∪)), Acl

disk RMbr
disk (Di) RMbr

disk (Dj)

reading

#pairs∪ · recSz(D∪) +
writing

#cellsred∪ · joinSzcl(Acl, I∪)

net RMbr
net (Di) RMbr

net (Dj)

writing

#cellsred∪ · joinSzcl(Acl, I∪)·

(#rep− 1)

uniform grid for performing the spatial join which is computed from the union
of the MBR of the two datasets, while the cell dimension is automatically
determined based on the input files size.

5.4.1 Grid Computation

The uniform grid is built by using two map reduce jobs, each one is responsible
for determining the MBR of a dataset. The cost of the each Mbr job can be
estimated as described in Sect. 4.1. The two MBRs are then merged into a
global one and the number of required cells is determined so that the content
of each cell can fit into a split. In particular, #cells(I∪) denotes the number of
cells for this uniform grid and it is computed using Eq. 7 where D∗ = Di∪Dj .
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Fig. 8 Example of execution of the Sjmr algorithm. In this case a global index I∪ is
build which includes the union of the MBRs of the two datasets. Each cell cij is separately
processed considering the geometries coming from both datasets.

5.4.2 Join Phase

As regards to the join phase, each mapper receives in input a set of geometries
coming from both datasets. Notice that Sjmr does not use the binary reader
introduced in Sect. 3.3 for combining the input files. Conversely, the input files
are merged into a single one by concatenating them. For each geometry g in
input, a mapper directly computes the set of cells that intersect its MBR.
For each match cell-geometry found in this step, it writes in output the pair
〈c, 〈f, g〉〉, where the key is the grid cell c, and the value is again a pair con-
taining the identifier f of the file from which the geometry comes from and
the geometry g itself. Each reducer can work on one or more cells. For each
cell, it builds two lists by dividing the geometries in a cell based on the file
from which they come from. Given the two lists, PSalgo is performed on them
for producing the final result. Fig. 8 illustrates the behaviour of Sjmr when
it processes a grid cell cij belonging to the global grid built considering the
union of the two datasets.

The cost of operator Sjmr can be defined as C(Sjmr) = 〈#mapSjmr, #redSjmr,
MSjmr〉, where #mapSjmr = d(size(Di) + size(Dj))/splitSze, since it works on
the union of the two input datasets, while #redSjmr = max(1,min(#cells(D∪),
#parReds)), since the number of reducers can be greater than one only if the
Hadoop configuration allows more than one reducers, with a maximum equal
to the number of cells. The components of the MSjmr are discussed below.

Estimate 6 (MSjmr estimate). The components ofMSjmr are given in Tab. 6.
cpu rationale. (i) Each mapper works on a split coming from the union of the
two input datasets: D∪ = Di∪Dj . The operation performed on each geometry
takes a constant time (i.e., 4µ) to determine the intersecting cells, since it only
uses some comparisons between the MBR coordinates and the cell lengths. The
average number of geometries contained in a split is represented by the param-
eter #geosp(D∪), which can be estimated as #geosp(D∪) = splitSz/recSz(D∪),
where recSz(D∪) is the average record size computed considering the records
of both datasets. Moreover, the estimated number of matches cell-geometry
(#pairsmp(D∪, I∪)) is computed as in Tab. 3. (ii) The shufflers collect the pairs
produced by the mappers, combines the record related to the same cell into
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lists and order such lists based on the key (i.e., the cell). The number of records
to be combined by the shuffler is estimated by the parameter #pairs∪:

#pairs∪ =
#pairs(Di, I∪) + #pairs(Dj , I∪)

#redSjmr

The number of cells ordered by each shuffler is estimated by #cellsred∪ :

#cellsred∪ =
1

#redSjmr
· (#cells∩(I∪,mbr(Di)) + #cells∩(I∪,mbr(Dj))−

#cells∩(I∪,mbr(Di ∩Dj))

where the term #cells∩(I∪, D∗) is the number of cells of I∪ that intersect D∗.
Notice that in the formula #cells∩(I∪, mbr(Di ∩Dj)) has been subtracted for
not counting twice the same cell. (iii) Finally, the reducers perform the spatial
join using PSalgo inside each cell. Each reducer works on a number of cells

equals to #cellsred∪ (see Eq. 14).
disk i/o rationale. (i) Each mapper reads locally a union split of size
splitSz and writes locally a record for each intersecting pair of geometry-
cell. The average number of intersecting pairs has been estimated above by
the parameter #pairsmp(D∪, I∪), while the size of each record is estimated as
recSz(D∪) = #vertavg(D∪) · vertSz, where #vertavg(D∪) is the average num-
ber of vertices of the geometries contained in the union of the two datasets
Di ∪Dj . (ii) Given the output produced by the mappers, each shuffler writes
locally its combined records whose number is estimated by #pairs∪ and whose
size by recSz(D∪). (iii) Each reducer reads locally the input produced by its
corresponding shuffler and writes a portion of the result whose size is obtained
by multiplying the number of its cells (#cellsred∪ ) by joinSzcl(Acl, I∪)

joinSzcl(Acl, I∪) = #geocl(Di, I∪) · #geocl(Dj , I∪) · σ(Acl) ·
(recSz(Di) + recSz(Dj)) (14)

network i/o rationale. Only the shufflers and the reducers performs network
I/O. In particular, each shuffler reads a portion of the data produced by all
mappers (of size #pairs∪ ·recSz(D∪)) and the reducers remotely write (#rep−1)
copies of the results.

6 Validation and Experiments

The cost model presented in the previous sections has been validated using a
set of experiments on synthetic datasets. The choice of using synthetic datasets
is justified essentially by two reasons: the need to ensure a uniform distribution
of the geometries inside the dataset, and the need to vary in a controlled
way the various characteristics discussed in Sect. 3.1. Experiments have been
performed on a cluster composed of one master node and three slave nodes in
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which 2 containers can be potentially instantiated in parallel, for a maximum
number of parallel mappers or reducers equal to 6 (i.e., #parMaps, #parReds).
Notice that the cost model is parametric on the cluster characteristics, different
cluster configurations can lead to different rankings in the join algorithms,
anyway here we are interested in evaluating the accuracy of the cost model,
not the algorithm performances.

We initially evaluate the quality of the cost model by comparing the esti-
mated costs and the actual measured costs, considering a representative case
where geometries in each dataset have an MBR area equal to 1e−8 w.r.t. the
area of the reference space and five vertices, while the size of a dataset is
128 MBytes and the size of the other one varies from 128 MBytes to 5120
MBytes. During this comparison we try to keep the various cost components
as much separated as possible. However, as regards to the I/O, we compare
the sum of the local and network I/O estimates with the total number of
bytes read and written as reported in the Hadoop logs (HDFS/File: Number

of bytes read/written); indeed, the statistics that we can find in the logs
do not distinguish between network and local I/O performed on HDFS. The
actual comparison regarding this overall I/O cost can be done directly, since
the estimates and measured values are both in bytes, while for the CPU cost
we can only compare the trend of the estimates with the trend produced by
the log value CPU time spent. Fig. 9 reports the estimated cost for the over-
all I/O, while Fig. 10 reports the number of bytes read and written by each
algorithm as reported in the Hadoop logs. The two trends are very similar: the
average difference between the two is about 9%. As you can notice, Sjmr has
the greater I/O since it initially repartitions both datasets using a common
grid, while Djre has the lower I/O for two reasons: it repartitions only the
smaller dataset and then, having a common grid, the number of intersecting
cells to read during the join phase is reduced. Similarly, Fig. 11-12 report the
estimated and actual CPU costs; again the two trends are very similar. How-
ever, the estimated CPU costs are sightly different from the measured one,
since the logs include the time required to instantiate the MapReduce jobs,
while we omit it in the proposed cost model formulation. Notice that, since
the setup cost is uniform for all algorithms, we can safely ignore this additional
setup cost, because it will not alter the choice of the best algorithm. Relatively
to the CPU, Sjmr is the algorithm with the least number of comparisons to
perform, while Djni is the one with the highest CPU cost.

In order to compare the results produced by the cost model with the one
obtained from the experiments, we introduce a relation of dominance. This
relation produces a partial order among the operators which considers the
three cost components in a separate way and can be use used as a first hint to
choose the best candidate abstracting from the specific cluster characteristics.
In other words, the cost model will produce a Pareto-set of non-dominated
solutions.

Definition 6 (Dominance) Given two cost vectors cv∗(op1), cv∗(op2) (Def. 4),
representing the estimates of the cost for operators op1 and op2 respectively,
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Fig. 9 Estimated trend for the local and
network I/O in MBytes.

Fig. 10 Experimental trend for the local
and network I/O in MBytes.

Fig. 11 Estimated trend for the CPU cost. Fig. 12 Experimental trend for the CPU
cost.

where * stands for tot or par, we say that op1 dominates op2 according to the
cost model (op1 ≺ op2), if the following conditions hold: (i) ∀i ∈ {1, 2, 3} :
cv∗(op1)[i] ≤ cv∗(op2)[i], and (ii) ∃j ∈ {1, 2, 3} : cv∗(op1)[j] < cv∗(op2)[j],
where cv∗(op)[i] denotes the i-th elements of vector cv∗(op).

The cost model has been tested in various scenarios by varying different
characteristics of the involved datasets such as: the cardinality of the two
datasets, the dimension of the geometry MBRs and the rate of dataset over-
lapping. However, as mentioned above, the dominance relation produces only
a partial order among the operators and in some cases it is not enough selec-
tive to produce a unique choice. For instance, referring to the cases depicted
in Fig. 10-12, we noticed that Sjmr is the one with the best CPU cost while
it is the worst considering the I/O cost, conversely Djre is the best for the
I/O cost and they have higher CPU costs. Therefore, the final choice between
them can be performed only considering the specific performance characteris-
tics of the cluster at hand. More specifically, the choice among the algorithms
in the Pareto-set can be refined through the formula in Eq. 2 by assigning a
different weight to the various cost components. For this reason, we performed
a set of micro-benchmarks on the used cluster in order to determine the rela-
tion existing between the CPU, local I/O and network I/O costs. Moreover,
such micro-benchmarks reveal that the use of the binary reader described
in Sect. 3.3 takes more time per byte in producing the next value w.r.t. the
Hadoop default reader that processes a single file at time. Therefore, from
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these benchmarks we obtain a set of constants that compare the unitary cost
(i.e., per byte) of performing a local read using a binary or default reader
(brio, srio), a network read using a binary or default reader (brnet, srnet), a
local write (wio), or a network write (wnet), w.r.t. the cost of a unitary CPU
operation (i.e., an MBR comparison). These constants can be used as weights
in Eq. 2 in order to combine the three cost components and produce a total
order among the members of the Pareto-set.

The remainder of this section describes the various performed experiments
and the obtained results using both the dominance relation and the cumula-
tive effective cost. In particular, we compare the effective time taken by the
algorithm in each test with the parallel cost introduced in Eq. 3 considering 6
as the maximum number of parallel mapper and/or reducers.

Experiment 1 (Cardinality – ExpCard). Given two datasets with the same
reference space (i.e., percentage of overlapping equals to 100%) and whose
elements are polygons with the same number of vertices (i.e., 5) and an MBR
of size 1e−8 w.r.t. the reference space, in ExpCard experiments we changed
the cardinality of the two datasets starting from 128 MBytes (1 split) to 5120
MBytes (40 splits).

Tables 7-8 describe the detailed results for one of the groups of cardinal-
ity considered during ExpCard, in particular the case in which |Di| = 3584
MBytes (i.e., 28 splits). In the tables, column # contains the number of splits
for the dataset Dj , whereas the other four columns are relative to each con-
sidered join operator and report: (i) the ordering obtained from the experi-
ments as a number, (ii) the set of non-dominated operators returned by the
cost model, labelled by a green square, (iii) the operator dominated by all
the other ones, labelled by a red square, and (iv) the positions suggested by
the cumulative cost between round brackets. For instance, with reference to
the first row of Tab. 7, the experiments produce the following order: Djre,
Djgi, Sjmr and Djni, which is represented by the values 4, 2, 1, and 3. The
cost model instead produces a Pareto-set containing two algorithms: Djre
and Sjmr, the ones with a green cell background. By applying the formula in
Eq. 2, the cost model produces the following total order: Djre, Sjmr, Djgi
and Djni. As you can notice, in this case there is not an algorithm dominated
by all the others, conversely, in all the other rows there is an algorithm with a
red cell background. Tab. 7 does not consider the cost of index construction,
while Tab. 8 considers also the cost of index building (+2in or +1in mean
that an algorithm requires the preliminary construction of two or one index,
respectively). Further results computed considering different cardinalities can
be found in [4].

As you can notice, the suggestions obtained considering also the cost of
index construction are more accurate, since this additional cost produces a
clearer separation between the operators. Conversely, Tab. 7 reveals that the
dominance relation is not always sufficiently selective to perform a choice,
while the cumulative cost can sometimes suggest an algorithm which is not
the best, but is for instance the second one. This is particularly true when Djgi
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Table 7 Results of ExpCard without con-
sider the index cost for |Di| = 28 splits.

# Djni Djgi Djre Sjmr

1 4(4) 2(3) 1(1) 3(2)

3 4(4) 1(3) 3(1) 2(2)

6 4(4) 1(3) 3(1) 2(2)

9 4(4) 1(3) 2(1) 3(2)

12 4(4) 1(3) 3(1) 2(2)

15 4(4) 1(3) 3(1) 2(2)

18 4(4) 2(4) 3(1) 1(2)

21 4(4) 2(3) 3(2) 1(1)

24 4(4) 2(3) 3(2) 1(1)

28 4(4) 2(3) 3(2) 1(1)

32 4(4) 2(3) 3(2) 1(1)

36 4(4) 2(2) 3(3) 1(1)

40 4(4) 2(2) 3(3) 1(1)

Table 8 Results of ExpCard consider also
the index cost for |Di| = 28 splits.

# Djni Djgi Djre Sjmr

+2in +1in

1 2(2) 4(4) 3 1(1)

3 2(3) 4(4) 3(2) 1(1)

6 4(4) 3(3) 2(2) 1(1)

9 4(4) 3(3) 2(2) 1(1)

12 4(4) 3(3) 2(2) 1(1)

15 4(4) 3(3) 2(2) 1(1)

18 4(4) 3(3) 2(2) 1(1)

21 4(4) 3(3) 2(2) 1(1)

24 4(4) 3(3) 2(2) 1(1)

28 4(4) 3(3) 2(2) 1(1)

32 4(4) 3(3) 2(2) 1(1)

36 4(4) 3(3) 2(2) 1(1)

40 4(4) 3(3) 2(2) 1(1)

is the best choice. Indeed, the experimental evaluation revels that the estimate
for Djgi is a bit conservative and this may produce an over-estimation of its
cost. This is due to the fact that Djgi is the only algorithm that can have
unbalanced maps even when applied to uniformly distributed datasets. Indeed,
while for Djre and Sjmr the cell dimensions are always the same for the two
datasets, with Djgi the two indexes can have different cells and the filtering
phase can produce intersections with very different areas. As mentioned in
Estimate 5, the filter factor ψ captures an average behaviour, and this can
produce an over-estimation in the parallel execution cost, since we have no
control about the scheduling of heavy and light maps inside the same node.

Tab. 9 reports the results of ExpCard without and with considering the
index construction. In particular, column G is the cardinality in MBytes of
the first dataset Di, for each of them the cardinality of the second dataset
Dj is changed from 128 MBytes (1 split) to 5120 MBytes (40 splits) and the
averages are computed. Column b∈F is the percentage of cases in which the
operator b, which is the best in the experiments, is contained in the set F of
non-dominated solutions. Similarly, as regards to the cumulative cost, column
b = f/s contains the percentage of cases in which its suggestion f corresponds
to the best operator b or the second one s, while w=l reports the percentage of
cases in which the operator w, which is the worst in the experiments, is equal
to the last algorithm for the cumulative cost. Column %DL is the average
percentage of delay w.r.t b obtained by selecting the operator f (the lower the
better), while columns %GW and %GR are the average percentage of gain
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Table 9 Results of ExpCard. Column “G” is the cardinality in MBytes of Di, for each of
them the cardinality of Dj is changed from 1 to 40 splits.

G without index construction
b ∈ F b = f b = s w = l %DL %GW %GR

128 92% 85% 8% 100% 5% 92% 36%
1152 100% 62% 0% 100% 9% 72% 45%
2304 100% 85% 0% 100% 6% 76% 51%
3584 100% 62% 8% 100% 7% 79% 55%
5120 100% 62% 23% 100% 9% 82% 59%

G with index construction
b ∈ F b = f b = s w = l %DL %GW %GR

128 100% 38% 62% 100% 17% 56% 36%
1152 100% 85% 8% 100% 7% 69% 51%
2304 100% 100% 0% 100% 0% 78% 60%
3584 92% 100% 0% 100% 0% 81% 64%
5120 100% 100% 0% 100% 0% 83% 66%

in choosing f w.r.t. the experimental worst operator and a randomly chosen
operator (the higher the better), respectively.

Experiment 2 (MBR size – ExpMBR). Given the datasets considered in
Exp. 1, ExpMBR changes the MBR size of each geometry to 1e−7 w.r.t. the
reference space.

Tab. 10 reports the results of ExpMBR without and with considering the
cost of the index construction, the column meanings is the same of ExpCard.
Detailed results about each specific case can be found in [4].

Table 10 Results of ExpMBR. Column “G” is the cardinality in MBytes of Di, for each of
them the cardinality of Dj is changed from 1 to 40 splits. “IC” stands for index construction.

G without index construction
b ∈ F b = f b = s w = l %DL %GW %GR

128 100% 92% 8% 100% 9% 48% 34%
1152 100% 54% 23% 100% 13% 68% 39%
2304 100% 92% 0% 100% 1% 77% 51%
3584 100% 69% 31% 100% 13% 78% 52%
5120 85% 54% 46% 100% 18% 80% 49%

G with index construction
b ∈ F b = f b = s w = l %DL %GW %GR

128 100% 92% 8% 100% 8% 53% 37%
1152 100% 92% 8% 100% 0% 72% 53%
2304 100% 100% 0% 100% 0% 77% 58%
3584 100% 100$ 0% 100% 0% 80% 62%
5120 100% 100% 0% 92% 0% 81% 62%

Experiment 3 (Overlapping – ExpOver). Given the datasets considered in
Exp. 1, ExpOver changes the percentage of overlapping of the two datasets
to 50% and 25%.



Cost Estimation of Spatial Join in SpatialHadoop 33

Tab. 11 reports the results of ExpOver without and with considering the
cost of the index construction and applying an overlap of 50% and 25% (column
OV), the meaning of other columns is the same of ExpCard. Detailed results
about each specific case can be found in [4].

Table 11 Results of ExpOV. Column “G” is the cardinality in MBytes of Di, for each of
them the cardinality of Dj is changed from 1 to 40 splits. “IC” stands for index construction.

G OV without index construction
b ∈ F b = f b = s w = l %DL %GW %GR

128 0.50 92% 85% 8% 100% 23% 55% 45%
1152 0.50 100% 54% 38% 100% 26% 76% 53%
2304 0.50 100% 85% 8% 100% 10% 84% 64%
3584 0.50 100% 62% 15% 100% 14% 85% 64%
5120 0.50 100% 69% 23% 100% 12% 86% 66%
128 0.25 92% 92% 0% 100% 4% 72% 54%
1152 0.25 100% 69% 31% 100% 53% 85% 67%
2304 0.25 100% 69% 31% 100% 33% 88% 71%
3584 0.25 100% 92% 8% 100% 6% 91% 79%
5120 0.25 100% 62% 38% 100% 37% 85% 63%

G OV with index construction
b ∈ F b = f b = s w = l %DL %GW %GR

128 0.50 100% 15% 85% 100% 36% 52% 32%
1152 0.50 100% 85% 0% 100% 9% 65% 46%
2304 0.50 100% 92% 8% 100% 2% 75% 56%
3584 0.50 100% 92% 8% 100% 2% 79% 60%
5120 0.50 100% 92% 8% 100% 1% 81% 63%
128 0.25 100% 15% 77% 100% 62% 46% 25%
1152 0.25 100% 85% 0% 100% 13% 62% 42%
2304 0.25 100% 92% 8% 100% 4% 73% 52%
3584 0.25 100% 92% 0% 92% 2% 78% 55%
5120 0.25 100% 92% 0% 100% 2% 79% 61%

These experiments confirm the good behaviour of the proposed cost model,
which is able to detect the best algorithm in 88% of cases and it always gains
from a minimum of 21% to a maximum of 67% w.r.t. a random choice.

7 Extension to Skewed Distributions

This paper concentrates on datasets which present a uniform distribution of
their geometries. This assumption has two main effects: the first one is keeping
the various formulas simpler and the second one is the possibility to concen-
trate on only one kind of partitioning technique, or global index. Anyway, the
overall structure of the cost model and the majority of the estimation formu-
las do not depend on the dataset distribution and can be applied to all kinds
of datasets. In this section, we want to take a look about which estimation
formulas are general and which ones require some adaptation in order to be
applicable in the general case.
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The first formula that requires to be adapted in case of skewed datasets is
certainly the selectivity estimation presented in Eq. 1 of Sect. 3. As done for
the uniform case, some previous studies about selectivity estimation [29,8] can
be considered and adapted for using them in a MapReduce context, namely
by adjusting the notion of reference area.

A second aspect to be considered is the choice of the global index. As we
already mentioned, in case of skewed datasets, such choice can have a great
impact on the overall spatial join performances. Moreover, some works have
been done in order to determine the best partitioning technique to apply based
on the dataset distribution [5]. Regardless of the kind of considered index, the
application of a partitioning technique requires the definition of a grid, namely
a set of cells on which geometries will be accommodated. What differentiates
one index from another is the way such cells will be produced and their re-
sulting shape and dimension. Notice that the aim of the more sophisticated
partitioning technique is to produce balanced splits even in presence of non-
uniformly distributed datasets. In other words, the shape and dimensions of
such cells will be determined so that the number of geometries inside each
cell is quite the same, this is achieved for instance by enlarging or shrink-
ing cells with respect to the ones produced by a uniform subdivision of the
dataset MBR. From this considerations, it follows that the estimated number
of geometries per split (#geosp) can be estimated as in Eq. 6. Conversely, the
estimation of the number of generated cells (#cells) has to be appropriately
adapted w.r.t. to the one proposed in Eq. 7. All the other estimation formulas
in Sect. 4 can be applied also in presence of other partitioning techniques.

Relatively to the spatial join algorithms, great importance is covered by
the cost of the plain sweep algorithm presented in Estimation 3. The general
structure of this formula can be applied also to skewed datasets, but it depends
on the selectivity estimation which has to be adapted as previously discussed.
This holds also for other estimation formulas defined for the various spatial
join algorithms which have a direct or indirect dependency to the selectivity.
In case of the Djni algorithm, since its geometry subdivision does not depend
on spatial properties, the estimation formulas are all valid, except for the
estimation of the number of pairs produced by each map (joinSzmap) reported in
Eq. 10 which depends on the selectivity. In case of the Djgi, we can assume that
a more sophisticated partitioning technique is applied, namely one that takes
into consideration the skewed nature of the dataset distribution. Therefore, as
discussed above, each cell will contain an equal amount of geometries (#geosp),
while a different number of cells (#cells) and cell dimensions can be produced
(lenavg

x and lenavg
y ).

The situation could become worse in case of the Djre algorithm, because as
already mentioned, the choice of the best partitioning technique will depend on
the specific dataset distribution. Therefore, if two datasets with really different
distributions have to be joined, the choice to use the index of one dataset
to repartition the other one can produce very unbalanced compound splits.
Moreover, the assumptions made about the number of geometries per split
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could not hold for the repartitioned dataset. Therefore, for this dataset also
the estimation #geosp has to be properly extended.

Finally, the Sjmr can be considered the algorithm most disadvantaged by
the presence of skewed dataset, because it always applies a uniform subdivi-
sion of the space. In this case, the estimations that require to be adapted is
the number of geometries per cell, that could be very different from one cell
to another, while the estimation of the number of cells remain the same. Fi-
nally, the selectivity estimation used in the various other formulas have to be
properly extended for capturing the average, best and worst case scenario.

From all these considerations, it is clear that the general structure of the
cost model and the majority of the defined estimation formulas are applicable
also in presence of skewed datasets.

7.1 Experiments on skewed datasets

The last set of experiments we have performed involves real-world datasets,
that are skewed in nature. In particular, we consider again the case studies
described in the motivating example of Sect. 1 and we compare the suggestions
produced by the proposed cost model with the results reported in Tab. 1. In
addition we use two different clusters with different characteristics. Tab.12
describes both the datasets and the clusters characteristics.

Table 12 Real-world datasets. (DUsaWa denotes the water areas of USA, DUsaPr the pri-
mary roads of USA, DAuStates the states of Australia and DAuRoads the roads of the Aus-
tralian network. From the second column, the size, cardinality of each dataset, the average
area of the MBR of their geometries, and the average number of vertices of their geometries
are shown. As regards to the cluster characteristics, the number of nodes and the number
of containers for each nodes are reported.

Dataset Cluster
Name size #geo AVG AVG #nodes #containers

MBR(geo) #Vert(geo) per node

DUsaWa 2.07 GB 2,281,276 1.8e-8 42.88
3 2

DUsaPr 0.91 GB 12,393 3.4e-6 2,089.7
DAuStates 18.3 MB 8 9.2e-2 61,126

10 1
DAuRoads 146 MB 335,701 4.74e-7 14.57

The proposed cost model has been applied to estimate the cost of the join
operators in the two configurations. The results are summarized in Tab.13:
column b∈F reports if b, which is the best operator in the experiments, is
contained in the set F of non-dominated solutions. Similarly, as regards to the
cumulative cost, column b = f/s reports if the suggestion f corresponds to
the best operator b or to the second one s, while w=l reports if the operator
w, which is the worst in the experiments, is equal to the last algorithm for
the cumulative cost. Column %DL is the average percentage of delay w.r.t
b obtained by selecting the operator f (the lower the better), while columns
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%GW and %GR are the average percentage of gain in choosing f w.r.t. the
experimental worst operator and a randomly chosen operator (the higher the
better), respectively. Since a different cluster has been used in each situation,
some micro-benchmarks on each of them have been preliminary performed in
order to obtain the weights to be used in the total cost estimation. From the
obtained results, we can notice that:

– In the first case, the two datasets not only have different sizes (the first
one is twice the size of the second one), but they also present very different
spatial characteristics, like the number of vertices. Moreover, the datasets
are not uniformly distributed. Therefore, the application conditions are far
from the ideal hypothesis stated for the applicability of the cost model.
However, the cost model is able to detect the best algorithm and also the
gain with respect to the random choice is very good, about 52%. Conversely,
the last predicted algorithm is not the last one in the experiments.

– In the second case, the differences between the two datasets are exhacer-
bated, they are tremendously different with respect to all parameters. In
this case the cost model still behaves well, even if the conditions are far
from the hypothesis. Indeed, the other positions in the ranking produced
by the cost model are not consistent with the experiments.

Table 13 Results of experiments on real datasets. Columns “DS1” (“DS2”) is the first
(second) dataset name (DUsaWa denotes the water areas of USA, DUsaPr the primary roads
of USA, DAuStates the states of Australia and DAuRoads the roads of the Australian network.

DS1 DS2 b ∈ F b = f b = s w = l %DL %GW %GR

DUsaWa DUsaPr yes yes no no 0% 66.2% 52.6%
DAuStates DAuRoads yes yes no no 0% 64.5% 78.7%

From the obtained results, we can essentially conclude that: the cost model
is able to correctly capture and taking into consideration the spatial charac-
teristics of the datasets, since it is able to work with very different datasets,
in terms of cardinality, number of vertices and geometry extensions. Secondly,
it works quite well also in presence of skewed distributions, but it has to be
refined in order to better deal with this situations.

8 Conclusion

In this paper we present a cost model for ranking four MapReduce imple-
mentations of the spatial join. The cost model proposes for each algorithm
some formulas for estimating the cost of the map, shuffle and reduce tasks
distinguishing three components: CPU, Local I/O and Network I/O cost. The
estimates vary according to the properties of the input datasets in terms of:
cardinality, extent and number of vertices of the geometries, and the spatial
overlapping of the datasets. Exhaustive experiments have been done using syn-
thetic datasets with variable characteristic, considering both the dominance
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relation and a cumulative cost obtained from the relations existing between
the three cost components in the considered cluster. These experiments con-
firm the good behaviour of the proposed cost model. Future work will regard
the extension of the cost model to other index types and dataset distributions
on the basis of the considerations made in Sect. 7. Moreover, the cost model
can be used as a basis for both implementing a spatial query optimizer for
MapReduce frameworks and for improving the currently available partition-
ing techniques [3].
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