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Abstract We propose the notion of weak simulation quasimetric as the
quantitative counterpart of weak simulation for probabilistic processes.
This is an asymmetric variant of the weak bisimulation metric of De-
sharnais et al. which maintains most of the properties of the original
definition. However, our asymmetric version is particularly suitable to
reason on protocols where the systems under consideration are not ap-
proximately equivalent. As a main application, we adopt our simulation
theory in a simple probabilistic timed process calculus to derive an alge-
braic theory to evaluate the performances of gossip protocols.

1 Introduction

Behavioural semantics, such as preorders and equivalences, provide formal instru-
ments to compare the behaviour of probabilistic systems [16]. Preorders allow us
to determine whether a system can mimic the stepwise behaviour of another
system; whereas equivalences require a sort of mutual simulation between two
systems. The most prominent examples are the simulation preorder and the
bisimulation equivalence [22,25]. Since probability values usually originate from
observations (statistical sampling) or from requirements (probabilistic specifica-
tion), both preorders and equivalences are only partially satisfactory as they can
only say whether a system can mimic another one. Any tiny variation of the
probabilistic behaviour of a system will break the preorder (resp. equivalence)
without any further information. In practice, many system implementations can
only approximate the system specification; thus, the verification of such im-
plementations requires appropriate instruments to measure the quality of the
approximation. To this end, metric semantics [9,4,6] have been successfully em-
ployed to formalise the behavioural distance between two systems.

Since metric semantics are inherently symmetric, they can be applied only
when dealing with systems which are approximately equivalent. In this paper,
we propose the notion of weak simulation quasimetric which is the asymmetric
counterpart of the weak bisimulation metric [10], and the quantitative analogous
of the weak simulation preorder [2,1]. We use the definition of weak simulation
quasimetric to derive a definition of weak simulation with tolerance p ∈ [0, 1]
between two probabilistic systems; being 0 and 1 the minimum and the maximum
tolerance, respectively. Thus, we will write S vp S′ if the system S′ is able to
simulate the stepwise behaviour of the system S with a tolerance (or distance)
p: for p = 0 the two systems are weakly similar in standard manner, while for
p = 1 they are potentially unrelated.



Our weak simulation with tolerance is suitable for compositional reason-
ings. The compositionality of a behavioural semantics with respect to the par-
allel operator is fundamental when reasoning on large-scale systems. Several
quantitative analogous of the well-known notions of precongruence (and con-
gruence) have been proposed [10,12] to ensure that systems are approximately
inter-substitutable. We prove that weak simulation with tolerance matches one
of the strongest one, namely non-expansiveness:

S1 vp1 S′1 and S2 vp2 S′2 entails S1 | S2 vp1+p2 S′1 | S′2 .

As (non-trivial) case study, we apply our simulation theory to study and esti-
mate the performance of gossip networks for Wireless Sensor Networks (WSNs).

Gossip protocols [17] rely on algorithms to deliver data packets in a network
from a source to a destination. They address some critical problems of flooding,
where each node that receives a message propagates it to all its neighbours by
broadcast. The goal of gossip protocols is to reduce the number of retransmissions
by making some of the nodes discard the message instead of forwarding it. Gossip
protocols exhibit both nondeterministic and probabilistic behaviour. Nondeter-
minism arises as they deal with distributed networks in which the activities of
individual nodes occur nondeterministically. As to the probabilistic behaviour,
nodes are required to forward packets with a pre-specified gossip probability
pgsp. When a node receives a message, rather than immediately retransmitting
it as in flooding, it relies on the probability pgsp to determine whether or not
to retransmit. The main benefit is that when pgsp is sufficiently large, the entire
network receives the broadcast message with very high probability, even though
only a nondeterministic subset of nodes has forwarded the message.

In this paper, we rely on our simulation with tolerance to develop an algebraic
theory for a simple probabilistic distributed timed calculus [19,23,24,5] which is
particularly suitable to represent gossip networks. Our algebraic theory is also
compositional as it allows us to join, and sometime merge, the tolerances of
different sub-networks with different behaviours. Last but not least, our algebraic
theory can be easily mechanised. In this extended abstract proofs are omitted.

2 A probabilistic timed process calculus

In Table 1 we define the syntax of the Probabilistic Timed Calculus for Wireless
Systems [19], pTCWS, in a two-level structure, a lower one for processes, ranged
over by letters P , Q and R, and an upper one for networks, ranged over by
letters M , N , and O. We use letters m,n, . . . for logical names; greek symbols
µ, ν, ν1, . . . for sets of names; x, y, z for variables; u for values, and v and w
for closed values, i.e. values that do not contain variables. Then, we use pi for
probability weights, hence pi ∈ [0, 1].

A network in pTCWS is a (possibly empty) collection of nodes (which represent
devices) running in parallel and using a common radio channel to communicate
with each other. Nodes are unique; i.e. a node n can occur in a network only
once. All nodes are assumed to have the same transmission range. The com-
munication paradigm is local broadcast ; only nodes located in the range of the
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Networks:
M, N ::= 0 empty network˛̨

M1 | M2 parallel composition˛̨
n[P ]ν node˛̨
Dead stucking network

Processes:
P, Q ::= nil termination˛̨

!〈u〉.C broadcast˛̨
b?(x).CcD receiver with timeout˛̨
τ.C internal˛̨
σ.C sleep˛̨
X process variable˛̨
fix X.P recursion

Probabilistic Choice:
C, D ::=

L
i∈I pi:Pi

Table 1. Syntax

transmitter may receive data. We write n[P ]ν for a node named n (the device
network address) executing the sequential process P . The set ν contains (the
names of) the neighbours of n. Said in other words, ν contains all nodes laying
in the transmission cell of n (except n). In this manner, we model the network
topology. Our wireless networks have a fixed topology. Moreover, nodes cannot
be created or destroyed. Finally, we write Dead to denote a deadlocked network
which prevents the execution of parallel components. This is a fictitious net-
work which is introduced for technical convenience (see Definition 9) and not for
specifying gossip protocols.

Processes are sequential and live inside the nodes. The symbol nil denotes
terminated processes. The sender process !〈v〉.C broadcasts the value v, the
continuation being C. The process b?(x).CcD denotes a receiver with timeout.
Intuitively, this process either receives a value v, in the current time interval, and
then continues as C where the variable x is instantiated with v, or it idles for one
time unit, and then continues as D. The process τ.C performs an internal action
and then continues as C. The process σ.C models sleeping for one time unit. In
processes of the form σ.D and b?(x).CcD the occurrence of D is said to be time-
guarded. The process fix X.P denotes time-guarded recursion, as all occurrences
of the process variable X may only occur time-guarded in P . With an abuse of
notation, we will write ?(x).C as an abbreviation for fix X.b?(x).Cc(1:X), where
the process variable X does not occur in C.

The construct
⊕

i∈I pi:Pi denotes probabilistic choice, where I is a finite,
non-empty set of indexes, and pi ∈ (0, 1] denotes the probability to execute the
process Pi, with

∑
i∈I pi = 1. Notice that, as in [8], in order to simplify the

operational semantics, probabilistic choices occur always underneath prefixing.
In processes of the form b?(x).CcD the variable x is bound in C. Similarly,

in process fix X.P the process variable X is bound in P . This gives rise to the
standard notions of free (process) variables and bound (process) variables and
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α-conversion. We identify processes and networks up to α-conversion. A process
(resp. probabilistic choice) is said to be closed if it does not contain free (process)
variables. We always work with closed processes (resp. probabilistic choices): the
absence of free variables is trivially maintained at run-time. We write {v/x}P
(resp. {v/x}C) for the substitution of the variable x with the value v in the
process P (resp. probabilistic choice C). Similarly, we write {P/X}Q for the
substitution of the process variable X with the process P in Q.

We report some notational conventions.
∏

i∈I Mi denotes the parallel com-
position of all Mi, for i ∈ I. We write P1 ⊕p P2 for the probabilistic process
p:P1 ⊕ (1−p):P2. We identify 1:P with P . We write !〈v〉 as an abbreviation for
!〈v〉.1:nil. For k > 0 we write σk.P as an abbreviation for σ. . . . σ.P , where prefix
σ appears k times. Given a network M , nds(M) returns the names of M . If
m ∈ nds(M), the function ngh(m,M) returns the set of the neighbours of m in
M . Thus, for M = M1 | m[P ]ν | M2 it holds that ngh(m,M) = ν. We write
ngh(M) for

⋃
m∈nds(M) ngh(m,M).

Definition 1. The structural congruence over pTCWS , written ≡, is defined as
the smallest equivalence relation over networks, preserved by parallel composi-
tion, which is a commutative monoid with respect to parallel composition with
neutral element 0, and for which n[fix X.P ]ν ≡ n[{fix X.P/X}P ]ν .

The syntax presented in Table 1 allows us to derive networks which are
somehow ill-formed. With the following definition we rule out networks: (i) where
nodes can be neighbours of themselves; (ii) with two different nodes with the
same name; (iii) with non-symmetric neighbouring relations. Finally, in order to
guarantee clock synchronisation among nodes, we require network connectivity.

Definition 2 (Well-formedness). A network M is said to be well-formed if
(i) whenever M ≡ M1 | m[P1]

ν it holds that m 6∈ ν; (ii) whenever M ≡ M1 |
m1[P1]

ν1 | m2[P2]
ν2 it holds that m1 6= m2; (iii) whenever M ≡ N | m1[P1]

ν1 |
m2[P2]

ν2 we have m1 ∈ ν2 iff m2 ∈ ν1; (iv) for all m,n ∈ nds(M) there are
m1, ..,mk ∈ nds(M), s.t. m=m1, n=mk, and mi ∈ ngh(mi+1,M) for 1≤ i≤k−1.

Henceforth, we will always work with well-formed networks.

2.1 Probabilistic labelled transition semantics

Along the lines of [8], we propose an operational semantics for pTCWS associating
with each network a graph-like structure representing its possible evolutions: we
use a generalisation of labelled transition systems that includes probabilities.
Below, we report the mathematical machinery for doing that.

Definition 3. A (discrete) probability sub-distribution over a finite set S is a
function ∆ : S → [0, 1] with

∑
s∈S ∆(s) ∈ (0, 1]. We denote

∑
s∈S ∆(s) by |∆|.

The support of a probability sub-distribution ∆ is given by d∆e = {s ∈ S :
∆(s) > 0}. We write Dsub(S), ranged over ∆, Θ, Φ, for the set of all probability
sub-distributions over S with finite support. A probability sub-distribution ∆ ∈
Dsub(S) is said to be a probability distribution if

∑
s∈S ∆(s) = 1. With D(S) we
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denote the set of all probability distributions over S with finite support. For any
s ∈ S, the point (Dirac) distribution at s, denoted s, assigns probability 1 to s
and 0 to all others elements of S, so that dse = {s}.

Let I be a finite index such that (i) ∆i is a sub-distribution in Dsub(S) for
each i ∈ I, and (ii) pi ≥ 0 are probabilities such that

∑
i∈I pi ∈ (0, 1]. Then, the

probability sub-distribution
∑

i∈I pi ·∆i ∈ Dsub(S) is defined as:

(
∑
i∈I

pi ·∆i)(s)
def=

∑
i∈I

pi ·∆i(s)

for all s ∈ S. We write a sub-distribution as p1 · ∆1 + . . . + pn · ∆n when the
index set I is {1, . . . , n}. Sometimes, with an abuse of notation, in the previous
decomposition we admit that the terms ∆i are not necessarily distinct (for in-
stance 1 · ∆ may be rewritten as p · ∆ + (1−p) · ∆, for any p ∈ [0, 1]). In the
following, we will often write

∑
i∈I pi∆i instead of

∑
i∈I pi ·∆i.

Definition 1 and Definition 2 generalise to sub-distributions in Dsub(pTCWS).
Given two sub-distributions ∆ and Θ, we write ∆ ≡ Θ if ∆([M ]≡) = Θ([M ]≡)
for all equivalence classes [M ]≡ ⊆ pTCWS. A sub-distribution ∆ ∈ Dsub(pTCWS)
is said to be well-formed if its support contains only well-formed networks.

We now give the probabilistic generalisation of labelled transition systems.

Definition 4 (Probabilistic LTS). A probabilistic labelled transition system
(pLTS) is a triple 〈S,L,→〉 where (i) S is a set of states; (ii) L is a set of transition
labels; (iii) → is a labelled transition relation contained in S × L×D(S).

The operational semantics of pTCWS is given by a particular pLTS 〈pTCWS,L,→〉,
where L = {m!v.µ, m?v, τ, σ} contains the labels denoting broadcasting, recep-
tion, internal actions and time passing, respectively. The definition of the rela-
tions

λ−−→, for λ ∈ L, is given by the SOS rules in Table 2. Some of these rules use
an obvious notation for distributing parallel composition over a sub-distribution:
(∆ | Θ)(M) = ∆(M1) ·Θ(M2) if M = M1 | M2; (∆ | Θ)(M) = 0 otherwise.

Furthermore, the definition of the labelled transition relation relies on a se-
mantic interpretation of (nodes containing) probabilistic processes in terms of
probability distributions over networks.

Definition 5. For any probabilistic choice
⊕

i∈I pi:Pi over a finite index set I,
we write Jn[

⊕
i∈I pi:Pi]

µK to denote the probability distribution
∑

i∈I pi ·n[Pi]
µ.

Let us comment on the most significant rules of Table 2. In rule (Snd) a node
m broadcasts a message v to its neighbours ν, the continuation being the prob-
ability distribution associated to C. In the label m!v.ν the set ν denotes the
neighbours of m. In rule (Rcv) a node n gets a message v from a neighbour node
m, the continuation being the distribution associated to {v/x}C. If no message
is received in the current time interval then the node n will continue according
to D, as specified in rule (Timeout). Rules (Rcv-0) and (RcvEnb) serve to model
reception enabling for synchronisation purposes. For instance, rule (RcvEnb) re-
gards nodes n which are not involved in transmissions originating from m. This
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(Snd)
−

m[!〈v〉.C]ν
m!vBν−−−−−−→ Jm[C]νK

(Rcv)
m ∈ ν

n[b?(x).CcD]ν
m?v−−−−→ Jn[{v/x}C]νK

(Rcv-0)
−

0
m?v−−−−→ 0

(RcvEnb)
¬(m ∈ ν ∧ rcv(P )) ∧ m 6= n

n[P ]ν
m?v−−−−→ n[P ]ν

(RcvPar)
M

m?v−−−−→ ∆ N
m?v−−−−→ Θ

M | N
m?v−−−−→ ∆ | Θ

(Bcast)
M

m!vBν−−−−−−→ ∆ N
m?v−−−−→ Θ µ:=ν\nds(N)

M | N
m!vBµ−−−−−−→ ∆ | Θ

(Tau)
−

m[τ.C]ν
τ−−→ Jm[C]νK

(TauPar)
M

τ−−→ ∆ N 6= Dead

M | N
τ−−→ ∆ | N

(σ-0)
−

0
σ−−→ 0

(Timeout)
−

n[b?(x).CcD]ν
σ−−→ Jn[D]νK

(σ-nil)
−

n[nil]ν
σ−−→ n[nil]ν

(Sleep)
−

n[σ.C]ν
σ−−→ Jn[C]νK

(σ-Par)
M

σ−−→ ∆ N
σ−−→ Θ

M | N
σ−−→ ∆ | Θ

(Rec)
n[{fix X.P/X}P ]ν

λ−−→ ∆

n[fix X.P ]ν
λ−−→ ∆

Table 2. Probabilistic Labelled Transition System

may happen either because the two nodes are out of range (i.e. m 6∈ ν) or be-
cause n is not willing to receive (rcv(P ) is a boolean predicate that returns true if
n[P ]ν ≡ n[b?(x).CcD]ν , for some x, C, D). In both cases, node n is not affected
by the transmission. Rule (Bcast) models broadcast of messages. Note that we
loose track of those transmitter’s neighbours that are in N . Rule (Sleep) models
sleeping for one time unit. Rule (σ-Par) models time synchronisation between
parallel components. Rules (Bcast) and (TauPar) have their symmetric counter-
parts which are not reported in the table. Finally, note that the semantics of
the network Dead is different from that of 0: the network Dead does not perform
any action and does prevent the evolution of any parallel component.

Extensional labelled transition semantics Our focus is on weak similarities,
which abstract away non-observable actions, i.e. those actions that cannot be
detected by a parallel network. The adjective extensional is used to stress that
those activities require a contribution of the environment. To this end, we extend
Table 2 by the following two rules:

(ShhSnd)
M

m!v.∅−−−−−→ ∆

M
τ−−→ ∆

(ObsSnd)
M

m!v.ν−−−−−−→ ∆ ν 6= ∅
M

!v.ν−−−−→ ∆

Rule (ShhSnd) models transmissions that cannot be observed because there is no
potential receiver outside the network M . Rule (ObsSnd) models transmissions
that can be observed by those nodes of the environment contained in ν. Notice
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that the name of the transmitter is removed from the label. This is motivated by
the fact that receiver nodes do not have a direct manner to observe the identity of
the transmitter. On the other hand, a network M performing the action m?v can
be observed by an external node m which transmits the value v to an appropriate
set of nodes in M . Notice that the action !v.ν does not propagate over parallel
components (there is no rule for that). As a consequence, the Rule (ObsSnd) can
only be applied to the whole network, never in a sub-network.

In the rest of the paper, the metavariable α will range over the following four
kinds of actions: !v.ν, m?v, σ, τ . They denote anonymous broadcast to specific
nodes, message reception, time passing, and internal activities, respectively.

3 Weak simulation up to tolerance

In this section, we introduce weak simulation quasimetrics as an instrument to
derive a notion of approximate simulation between networks. Our goal is to define
a family of relations vp over networks, with p ∈ [0, 1], to formalise the concept
of simulation with a tolerance p. Intuitively, we will write M vp N if N can
simulate M with a tolerance p. Thus, v0 will coincide with the standard weak
probabilistic simulation [2,1], whereas v1 should be equal to pTCWS× pTCWS.

In a probabilistic setting, the definition of weak transition is somewhat com-
plicated by the fact that (strong) transitions take processes (in our case networks)
to distributions; consequently if we are to use weak transitions α=⇒, which ab-
stract away from non-observable actions, then we need to generalise transitions,
so that they take (sub-)distributions to (sub-)distributions.

For a network M and a distribution ∆, we write M
τ̂−→ ∆ if either M

τ−−→ ∆

or ∆ = M . Then, for α 6= τ , we write M
α̂−−→ ∆ if M

α−−→ ∆. Relation
α̂−−→ is

extended to model transitions from sub-distributions to sub-distributions. For a
sub-distribution ∆ =

∑
i∈I piMi, we write ∆

α̂−→ Θ if there is a set J ⊆ I such

that Mj
α̂−−→ Θj for all j ∈ J , Mi 6

α̂−−→, for all i ∈ I \ J , and Θ =
∑

j∈J pjΘj .
Note that if α 6= τ then this definition admits that only some networks in the
support of ∆ make the

α̂−−→ transition. Then, we define τ̂=⇒= ( τ̂−→)∗, while for
α 6= τ we let α̂=⇒ denote τ̂=⇒ α̂−→ τ̂=⇒.

In order to define our notion of simulation with tolerance, we adapt the
concept of weak bisimulation metric of Desharnais et al.’s [10]. In [10], the be-
havioural distance between systems is measured by means of suitable pseudo-
metrics, namely symmetric functions assigning a numeric value to any pair of
systems. Here, we define asymmetric variants, called pseudoquasimetrics, mea-
suring the tolerance of the simulation between networks. Both approaches require
the lifting of these functions to distributions. In [10], this is realised by means of
linear programs, relying on the symmetry of pseudometrics. Since pseudoquasi-
metrics are not symmetric, we need a different technique. Thus, to this end, we
adopt the notions of matching [26] and Kantorovich lifting [7].

Definition 6 (Pseudoquasimetric). A function d : pTCWS× pTCWS→ [0, 1] is
a 1-bounded pseudoquasimetric over pTCWS if (i) d(M,M) = 0 for all M ∈ pTCWS,
and (ii) d(M,N) ≤ d(M,O) + d(O,N) for all M,N,O ∈ pTCWS.
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Definition 7 (Matching). Given a pair of distributions (∆, Θ) ∈ D(pTCWS)×
D(pTCWS), a matching of (∆, Θ) is a distribution ω ∈ D(pTCWS × pTCWS) s.t.:
(i)

∑
N∈pTCWS ω(M,N) = ∆(M), for all M∈pTCWS, and (ii)

∑
M∈pTCWS ω(M,N) =

Θ(N), for all N ∈ pTCWS. Ω(∆, Θ) denotes the set of all matchings for (∆, Θ).

A matching for (∆, Θ) may be understood as a transportation schedule for
the shipment of probability mass from ∆ to Θ [26].

Definition 8 (Kantorovich lifting). Let d : pTCWS×pTCWS→ [0, 1] be a pseu-
doquasimetric. The Kantorovich lifting of d is the function K(d) : D(pTCWS) ×
D(pTCWS) → [0, 1] defined as:

K(d)(∆, Θ) def= minω∈Ω(∆,Θ)

∑
M,N∈pTCWS ω(M,N) · d(M,N) .

Note that since we are considering only distributions with finite support, the
minimum over the set of matchings Ω(∆, Θ) is well defined.

Definition 9 (Weak simulation quasimetric). We say that a pseudoquasi-
metric d : pTCWS × pTCWS → [0, 1] is a weak simulation quasimetric if for all
networks M,N ∈ pTCWS, with d(M,N) < 1, whenever M

α−−→ ∆ there is a sub-
distribution Θ such that N

α̂==⇒ Θ and K(d)(∆, Θ +(1− |Θ|)Dead) ≤ d(M,N).

In the previous definition, if |Θ|< 1 then, with probability 1− |Θ|, there is no
way to simulate the behaviour of any network in the support of ∆ (the special
network Dead does not perform any action).

As expected, the kernel of a weak simulation quasimetric is a weak proba-
bilistic simulation [2,1].

Proposition 1. Let d be a weak simulation quasimetric. The binary relation
{(M,N) : d(M,N) = 0} ⊆ pTCWS× pTCWS is a weak probabilistic simulation.

A crucial result in our construction process is the existence of the minimal
weak simulation quasimetric, which can be viewed as the asymmetric counterpart
of the minimal weak bisimulation metric [10].

Theorem 1. There is a weak simulation quasimetric d s.t. d(M,N) ≤ d(M,N)
for all weak simulation quasimetrics d and all networks M,N ∈ pTCWS.

Now, we have all ingredients to define our simulation with tolerance p.

Definition 10 (Weak simulation with tolerance). Let p ∈ [0, 1], we say
that N simulates M with tolerance p, written M vp N , iff d(M,N) = q, for
some q ≤ p. We write M 'p N if both M vp N and N vp M .

Since the minimum weak simulation quasimetric d satisfies the triangle in-
equality, our simulation relation is trivially transitive in an additive sense:

Proposition 2 (Transitivity). M vp N and N vq O imply M vp+q O.

As expected, if M
τ̂=⇒ ∆ then M can simulate all networks in d∆e.

Proposition 3. If M
τ̂=⇒ (1−q)N +q∆, for some ∆ ∈ D(pTCWS), then N vq M .

8



Clearly the transitivity property is quite useful when doing algebraic reason-
ing. However, we can derive a better tolerance when concatenating two simula-
tions, if one of them is derived by an application of Proposition 3.

Proposition 4. If M vp N and O
τ̂==⇒ (1−q)N +q∆, for some ∆ ∈ D(pTCWS),

then M vp(1−q)+q O.

Intuitively, in the simulation between M and N the tolerance p must be weighted
by taking into consideration that O may evolve into N with a probability (1−q).

In order to understand the intuition behind our weak simulation with tol-
erance, we report here a few simple algebraic laws (we recall that 1:P = P ).

Proposition 5 (Simple algebraic laws).
1. n[P ]µ v1−p n[τ.(P ⊕p Q)]µ

2. n[Q]µ vr n[τ.(τ.(P ⊕q Q)⊕p R)]µ, with r = (1− p) + pq
3. n[!〈v〉.

(
τ.(P ⊕q τ.P )⊕p Q

)
]µ '0 n[!〈v〉.(P ⊕p τ.Q)]µ

4. n[!〈v〉.!〈w〉]µ vr n[τ.
(
!〈v〉.τ.(!〈w〉 ⊕q P ) ⊕p Q

)
]µ, with r = 1− pq.

The first law is straightforward. The second law is a generalisation of the first
one where the right-hand side must resolve two probabilistic choices in order to
simulate the left-hand side. The third law is an adaptation of the CCS tau-law
τ.P = P in a distributed and probabilistic setting. Similarly, the fourth law
reminds a probabilistic and distributed variant of the tau-law a.(τ.(P + τ.Q)) +
a.Q = a.(P + τ.Q). This law gives an example of a probabilistic simulation
involving sequences of actions.

A crucial property of our simulation is the possibility to reason on parallel
networks in a compositional manner. Thus, if M1 vp1 N1 and M2 vp2 N2 then
M1 | M2 vp N1 | N2 for some p depending on p1 and p2; the intuition being that
if one fixes the maximal tolerance p between M1 | M2 and N1 | N2, then there
are tolerances pi between Mi and Ni ensuring that the tolerance p is respected.
Following this intuition, several compositional criteria for bisimulation metrics
can be found in the literature [10,12,13,14,15]. Here, we show that our weak
simulation with tolerance complies with non-expansiveness: one of the strongest
criteria, requiring p ≤ p1 + p2.

Theorem 2 (Non-expansiveness law). M1 vp1 N1 and M2 vp2 N2 entails
M1 | M2 vp1+p2 N1 | N2.

Another useful property is that a network is simulated by a probabilistic
choice whenever it is simulated by all components.

Proposition 6 (Additive law). Let M vsi n[Pi]
µ | N , for all i ∈ I, with I a

finite index set. Then, M vr n[τ.
⊕

i∈I pi:Pi]
µ | N , for r =

∑
i∈I pisi.

Finally, we report a number of algebraic laws that will be useful in the next
section when analysing gossip protocols.

Proposition 7 (Further algebraic laws).
1. n[σk.nil]µ '0 n[nil]µ
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2.
∏

i∈I mi[Pi]
µi 'r

∏
j∈J nj[Qj]

νj entails
∏

i∈I mi[σ.Pi]
µi 'r

∏
j∈J nj[σ.Qj]

νj

3. n[?(x).C]µ '0 n[σ.?(x).C]µ, if nodes in µ do not send in the current round
4. m[nil]µ |

∏
i∈I ni[Pi]

µi v0 m[τ.(!〈v〉⊕p nil)]µ |
∏

i∈I ni[Pi]
µi if µ ⊆

⋃
i∈I ni,

and for all ni ∈ µ it holds that Pi 6= b?(x).CcD.

Intuitively: (1) nil does not prevent time passing; (2) equalities are preserved
underneath σ prefixes; (3) receptions will timeout if there are not senders around;
(4) broascast has no effect if there are not receivers around.

4 A case study: reasoning on gossip protocols

The baseline model for our case study is gossiping without communication colli-
sions, where all nodes are perfectly synchronised. For the sake of clarity, commu-
nication proceeds in synchronous rounds: a node can transmit or receive only one
message per round. In our implementation, rounds are separated by σ-actions.

The processes involved in the protocol are the following:

snd〈u〉pg

def= τ.(!〈u〉 ⊕pg nil) fwdpg

def= ?(x).resnd〈x〉pg resnd〈u〉pg

def= σ.snd〈u〉pg .

A sender broadcasts with a gossip probability pg, whereas a forwarder rebroad-
casts the received value, in the subsequent round, with the same probability.

We apply our simulation theory to develop algebraic reasonings on message
propagation. As an introductory example, let us consider a fragment of a network
with two sender nodes, m1 and m2, and two forwarder nodes, n1 and n2 which
are both neighbours of m1 and m2. Then, the following holds:

m1[snd〈u〉p1 ]
ν | m2[snd〈u〉p2 ]

ν | n1[fwdq]
ν1 | n2[fwdr]

ν2 ws
m1[nil]ν | m2[nil]ν | n1[resnd〈u〉q]ν1 | n2[resnd〈u〉r]ν2

with tolerance s = (1 − p1)(1 − p2). Here, the network on the left-hand-side
evolves by performing two τ -actions (via rule (ShhSnd)). Thus, the algebraic law
follows by an application of Proposition 3 being 1 − s the probability that the
message u is broadcast to both forwarders.

This simple law can be generalised to an arbitrary number of senders and
forwarders, under the hypothesis that parallel contexts are unable to receive
messages in the current round. The following theorem relies on Proposition 3.

Theorem 3 (Message propagation). Let I and J be pairwise disjoint subsets
of N. Let M be a well-formed network defined as

M ≡ N
∣∣ ∏

i∈I mi[snd〈v〉pi ]
νmi

∣∣ ∏
j∈J nj[fwdqj ]

νnj

such that, for all i ∈ I:
– {nj : j ∈ J} ⊆ νmi

⊆ nds(M), and
– the nodes in νmi ∩ nds(N) cannot receive in the current round.

Then, M rw N |
∏

i∈I mi[nil]νmi |
∏

j∈J nj[resnd〈v〉qj
]νnj , with r=

∏
i∈I(1−pi).
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Theorem 3 represents an effective tool to deal with message propagation in
gossip networks. However, it requires that all forwarders nj should be in the
neighbouring of all senders mi (constraint {nj : j ∈ J} ⊆ νmi), which may
represent a limitation in many cases. Consider, for example, a simple gossiping
network GSP, with gossip probability p, composed by two source nodes s1 and
s2, a destination node d, and three intermediate nodes n1, n2 and n3:

GSP def=
∏2

i=1 si[snd〈v〉p]νsi
∣∣ ∏3

i=1 ni[fwdp]
νni

∣∣ d[fwd1]
νd (1)

with topology νs1 = {n1}, νs2 = {n1, n2}, νn1={s1, s2, n3}, νn2={s2, n3}, νn3 =
{n1, n2, d} and n3 ∈ νd.

Here, we would like to estimate the distance between GSP, and a network
DONE, in which the message v has been delivered to the destination node d.

DONE def=
∏2

i=1 si[nil]νsi
∣∣ ∏3

i=1 ni[nil]νni
∣∣ d[σ3. snd〈v〉1]νd (2)

Unfortunately, we cannot directly apply Theorem 3 to capture this message prop-
agation because node s2, unlike s1, can transmit to both n1 and n2. In this case,
before applying Theorem 3, we would need a result to compose estimates of par-
tial networks. More precisely, a result which would allow us to take into account,
in the calculation of the tolerance, both the probability that a sender transmits
and the probability that the same sender does not transmit. The following result
follows from Proposition 6.

Theorem 4 (Composing networks). If M
σ−→6 then

N
∣∣ m[snd〈v〉p]νm

∣∣ ∏
j∈J nj[b?(xj).PjcQj]

νnj
rw M

with tolerance r = ps1 + (1−p)s2, whenever
– N | m[nil]νm |

∏
j∈J nj[{v/xj}Pj]

νnj ws1 M

– N | m[nil]νm |
∏

j∈J nj[b?(xj).PjcQj]
νnj ws2 M

– {nj : j ∈ J} ⊆ νm ⊆ {nj : j ∈ J} ∪ nds(N)
– nodes in νm ∩ nds(N) cannot receive in the current round.3

Intuitively: (i) in the network N
∣∣ m[snd〈v〉p]νm

∣∣ ∏
j∈J nj[b?(xj).PjcQj]

νnj

node m has not performed yet the τ -action that resolves the probabilistic choice
between broadcasting v or not; (ii) in N

∣∣ m[nil]νm
∣∣ ∏

j∈J nj[{v/xj
}Pj]

νnj node
m has resolved the probabilistic choice deciding to broadcast v; (iii) finally, in
the network N

∣∣ m[nil]νm
∣∣ ∏

j∈J nj[b?(xj).PjcQj]
νnj node m has has resolved

the probabilistic choice deciding not to broadcast v.
Now, we have all algebraic tools to compute an estimation of the tolerance

r, such that GSP rw DONE. In practise, we will compute the tolerance for two
partial networks and then will use Theorem 4 to compose the two tolerances.

For verification reasons we assume that the environment contains a node test ,
close to the destination node, i.e. νd = {n3, test}, to test successful gossiping.
For simplicity, the test node can receive messages but it cannot transmit.
3 We could generalise the result to take into account more senders at the same time.

This would not add expressiveness, it would just speed up the reduction process.
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As a first step, we compute an estimation for the network GSP in which the
sender s2 has already broadcast the message v to its neighbours n1 and n2. To
this end, we derive the following chain of similarities by applying, in sequence,
(i) Proposition 7(4), (ii) Proposition 7(3), (iii) Theorem 3 and Proposition 7(2),
(iv) Proposition 7(1) and Proposition 7(3), (v) Theorem 3 and Proposition 7(2),
and (vi) Proposition 7(1). In all steps, we have reasoned in a compositional
manner, up to common parallel components (Theorem 2).

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3

∣∣ d[fwd1]
νd

0w
∏2

i=1 si[nil]νsi
∣∣ ∏2

i=1 ni[resnd〈v〉p]νni
∣∣ n3[fwdp]

νn3
∣∣ d[fwd1]

νd

0w
∏2

i=1 si[nil]νsi
∣∣ ∏2

i=1 ni[σ.snd〈v〉p]νni
∣∣ n3[σ.fwdp]

νn3
∣∣ d[σ.fwd1]

νd

(1−p)2w
∏2

i=1 si[nil]νsi
∣∣ ∏2

i=1 ni[σ.nil]νni
∣∣ n3[σ.resnd〈v〉p]νn3

∣∣ d[σ.fwd1]
νd

0w
∏2

i=1 si[nil]νsi
∣∣ ∏2

i=1 ni[nil]νni
∣∣ n3[σ2. snd〈v〉p]νn3

∣∣ d[σ2. fwd1]
νd

1−pw
∏2

i=1 si[nil]νsi
∣∣ ∏2

i=1 ni[nil]νni
∣∣ n3[σ2. nil]νn3

∣∣ d[σ2. resnd〈v〉1]νd

0w
∏2

i=1 si[nil]νsi
∣∣ ∏3

i=1 ni[nil]νni
∣∣ d[σ3. snd〈v〉1]νd

= DONE .

Then, by more applications of Proposition 2 and Proposition 7(1), one applica-
tion of Proposition 4, and one application of Proposition 7(2) we derive:

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3

∣∣ d[fwd1]
νd

1−2p2+p3w DONE
(3)

with tolerance 1− 2p2 + p3, obtained by solving the expression (1− p)(1− (1−
p)2) + (1− p)2.

Similarly, we compute an estimation of the tolerance which allows the net-
work GSP, in which the sender s2 did not broadcast the message v to its neigh-
bours, to simulate the network DONE. To this end, we derive the following chain
of similarities by applying, in sequence, (i) Theorem 3 and Proposition 7(3), (ii)
Proposition 7(3), (iii) Theorem 3 and Proposition 7(2), (iv) Proposition 7(1)
and Proposition 7(3), (v) Theorem 3 and Proposition 7(2), and (vi) Proposi-
tion 7(1) and Proposition 7(4). In all steps, we have reasoned up to common
parallel components (Theorem 2).

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏3
i=1 ni[fwdp]

νni
∣∣ d[fwd1]

νd

1−pw
∏2

i=1 si[nil]νsi
∣∣ n1[resnd〈v〉p]νn1

∣∣ ∏3
i=2 ni[fwdp]

νni
∣∣ d[fwd1]

νd

0w
∏2

i=1 si[nil]νsi
∣∣ n1[σ.snd〈v〉p]νn1

∣∣ ∏3
i=2 ni[σ.fwdp]

νni
∣∣ d[σ.fwd1]

νd

1−pw
∏2

i=1 si[nil]νsi
∣∣ n1[σ.nil]νn1

∣∣ n2[σ.fwdp]
νn2

∣∣ n3[σ.resnd〈v〉p]νn3
∣∣ d[σ.fwd1]

νd

0w
∏2

i=1 si[nil]νsi
∣∣ n1[nil]νn1

∣∣ n2[σ2. fwdp]
νn2

∣∣ n3[σ2. snd〈v〉p]νn3
∣∣ d[σ2. fwd1]

νd

1−pw
∏2

i=1 si[nil]νsi
∣∣ n1[nil]νn1

∣∣ n2[σ2. resnd〈v〉p]νn2
∣∣ n3[σ2.]νn3

∣∣ d[σ2. resnd〈v〉1]νd

0w
∏2

i=1 si[nil]νsi
∣∣ ∏3

i=1 ni[nil]νni
∣∣ d[σ3.snd〈v〉1]νd

= DONE .
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Then, by more applications of Proposition 2 and Proposition 7(1), one ap-
plication of Proposition 4, and one application of Proposition 7(2) we derive:

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏3
i=1 ni[fwdp]

νni
∣∣ d[fwd1]

νd
1−p3w DONE . (4)

Finally, we can apply Theorem 4 to (3) and (4) to derive the following esti-
mation for the tolerance:

GSP 1−(3p3−2p4)w DONE

Since the tolerance is 1− (3p3−2p4), it follows that the gossip network GSP will
succeed in propagating the messages to the destination d, with probability at
least 3p3−2p4. Thus, for instance, for a gossip probability p = 0.8 the destination
will receive the message with probability 0.716, with a margin of 10%. For p =
0.85 the probability at the destination increases to 0.798, with a margin of 6%;
while for p = 0.9 the probability at destination rises to 0.88, with a difference of
only 2%. So, p = 0.9 can be considered the threshold of our small network.4

Note that in the previous example both messages may reach the destination
node in exactly three rounds. However, more generally, we could have different
message propagation paths in the same network which might take a different
amount of time to be traversed. The algebraic tools we developed up to now do
not allow us to deal with paths of different lengths.

As an example, we would like to estimate the distance between the network

GSP2
def= s1[snd〈v〉1]νs1

∣∣ s2[snd〈v〉p]νs2
∣∣ n[fwdp]

νn
∣∣ d[fwd1]

νd

with topology νs1 = {d}, νs2 = {n}, νn={s2, d} and νd = {s1, n, test}, and the
networks defined as follows:

DONE2
def= s1[nil]νs1

∣∣ s2[nil]νs2
∣∣ n[nil]νn

∣∣ d[τ.(σ.snd〈v〉1 ⊕p σ2.snd〈v〉1)]νd

in which the message v propagated up to the destination node d following two
different paths. Thus, d will probabilistically choose between broadcasting v after
one or two rounds.

The following result provide the missing instrument.

Theorem 5 (Composing paths). Let M be a well-formed network. Then,

M
∣∣ m[τ.

⊕
i∈I pi:Qi]

νm
rw

∏
j∈J nj[nil]νnj

∣∣ d[τ.
⊕

i∈I pi:Pi]
νd

with r =
∑

i∈I pisi, whenever:

– M | m[Qi]
νm

si
w

∏
j∈J nj[nil]νnj | d[Pi]

νd , for any i ∈ I;
– νm ⊆ nds(M).

As a first step, we compute an estimation of the tolerance which allows GSP2

to simulate the first probabilistic behaviour of DONE2. To this end, we derive
the following chain of similarities by applying, in sequence, (i) Theorem 3, (ii)
4 Had we had more senders we would have estimated a better threshold.
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again Theorem 3, (iii) Proposition 7(2) and Proposition 7(4). In all steps, we
reason up to parallel components (Theorem 2).

s1[snd〈v〉1]νs1
∣∣ s2[snd〈v〉p]νs2

∣∣ n[fwdp]
νn

∣∣ d[fwd1]
νd

0w s1[nil]νs1
∣∣ s2[snd〈v〉1]νs2

∣∣ n[fwdp]
νn

∣∣ d[resnd〈v〉1]νd

1−pw s1[nil]νs1
∣∣ s2[nil]νs2

∣∣ n[resnd〈v〉p]νn
∣∣ d[resnd〈v〉1]νd

0w s1[nil]νs1
∣∣ s2[nil]νs2

∣∣ n[nil]νn
∣∣ d[σ.snd〈v〉1]νd .

By an application of Proposition 2 we derive:

s1[snd〈v〉1]νs1
∣∣ s2[snd〈v〉p]νs2

∣∣ n[fwdp]
νn

∣∣ d[fwd1]
νd

1−pw s1[nil]νs1
∣∣ s2[nil]νs2

∣∣ n[nil]νn
∣∣ d[σ.snd〈v〉1]νd .

(5)

Then, we compute an estimation of the tolerance which allows the network
GSP2 to simulate the second probabilistic behaviour of DONE2. To this end, we
derive the following chain of similarities by applying, in sequence, (i) Theorem 3,
(ii) Theorem 3 again, Proposition 7(1), Proposition 7(2) and Proposition 7(3).
Again, in all steps, we have reasoned up to parallel components (Theorem 2).

s1[nil]νs1
∣∣ s2[snd〈v〉p]νs2

∣∣ n[fwdp]
νn

∣∣ d[fwd1]
νd

1−pw s1[nil]νs1
∣∣ s2[nil]νs2

∣∣ n[resnd〈v〉p]νn
∣∣ d[fwd1]

νd

1−pw s1[nil]νs1
∣∣ s2[nil]νs2

∣∣ n[nil]νn
∣∣ d[σ2.snd〈v〉1]νd .

Then, by more applications of Proposition 2 and one application of Proposi-
tion 4 we derive:

s1[nil]νs1
∣∣ s2[snd〈v〉p]νs2

∣∣ n[fwdp]
νn

∣∣ d[fwd1]
νd

1−p2w s1[nil]νs1
∣∣ s2[nil]νs2

∣∣ n[nil]νn
∣∣ d[σ2.snd〈v〉1]νd .

(6)

Finally, we can apply Theorem 5 to (5) and (6) to derive

GSP2 rw DONE2

with r = p(1 − p) + (1 − p)(1 − p2). Thus, the network GSP2 will succeed in
transmitting both messages v to the destination d, with probability at least 1−r.

We conclude by observing that, in order to deal with paths of different length,
one should apply Theorem 5 for all possible paths.

5 Conclusions, related and future work

We have introduced the notion of weak simulation quasimetric as a means to
define weak simulation with tolerance, i.e. a compositional simulation theory
to express that a probabilistic system may be simulated by another one with
a given tolerance measuring the distance between the two systems. Basically,
weak simulation quasimetric is the asymmetric counterpart of weak bisimulation
metric [10], and the quantitative analogous of weak simulation preorder [2,1].
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We applied our proposal to develop an algebraic theory to estimate the per-
formance of gossip networks in terms of the probability to successfully propagate
messages up to the desired destination. The algebraic theory is compositional
as it allows us to estimate the performance of gossip networks in terms of the
behavioural distance of its sub-networks.

Our work has been inspired by [9,10,4,6], where the notion of behavioural
distance between two probabilistic systems is formalised in terms of the notion
of bisimulation metric. Bisimulation metric works fine for systems being ap-
proximately equivalent. However, when the simulation game works only in one
direction, as in the gossip protocols analysed in the current paper, an asymmetric
notion of simulation pseudometric is required.

The current paper is the ideal continuation of [19]. In that paper, the au-
thors developed a notion of simulation up to probability to measure the closeness
rather than the distance between two probabilistic systems. Then, as in here,
simulation up to probability has been used to provide an algebraic theory to
evaluate the performance of gossip networks. Despite the similarity of the two
simulation theories, the simulation up to probability has a number of limitations
that have motivated the current work: (i) the simulation up to probability is not
transitive, while simulation quasimetrics are transitive by definition; (ii) in or-
der to work with a transitive relation, paper [19] introduces an auxiliary rooted
simulation which is much stronger than the main definition; (iii) that rooted
simulation (and hence the simulation up to probability) is not suitable to com-
pose estimates originating from paths with different lengths (as we do here by
means of Theorem 5), and, more generally, to deal with more transmissions.

A nice survey of formal verification techniques for the analysis of gossip
protocols appears in [3]. Probabilistic model-checking has been used in [11] to
study the influence of different modelling choices on message propagation in
flooding and gossip protocols, and in [18] to investigate the expected rounds
of gossiping required to form a connected network and how the expected path
length between nodes evolves over the execution of the protocol.

As future work, we intend to study gossip protocols with communication
collisions, random delays and lossy channels. We then plan to apply our metric-
based simulation theory to investigate the behaviour of IoT systems and cyber-
physical systems [20,21]. In the context of probabilistic process calculi, we want
to investigate which of the compositionality properties proposed in [13] hold for
the operators that are usually offered by probabilistic process calculi.

Acknowledgements. We thank the anonymous reviewers for valuable comments.
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