
1

An Efficient Approach for Accelerating
Bucket Elimination on GPUs
Filippo Bistaffa∗, Nicola Bombieri† and Alessandro Farinelli‡

Department of Computer Science, University of Verona, Italy
Email: ∗filippo.bistaffa@univr.it, †nicola.bombieri@univr.it, ‡alessandro.farinelli@univr.it

Abstract—Bucket Elimination (BE) is a framework that en-
compasses several algorithms, including Belief Propagation (BP)
and variable elimination for Constraint Optimisation Problems
(COPs). BE has significant computational requirements that
can be addressed by using GPUs to parallelise its fundamental
operations, i.e., composition and marginalisation, which operate
on functions represented by large tables. We propose a novel
approach to parallelise these operations with GPUs, which
optimises the table layout so to achieve better performance in
terms of increased speedup and scalability. Our approach allows
us to process incomplete tables (i.e., tables with some missing
variables assignments), which often occur in several practical
applications (such as the ones we consider in our dataset). Finally,
we can process tables that are larger than the GPU memory. Our
approach outperforms the state-of-the-art technique to parallelise
BP on GPUs, achieving better speedups (up to +466% w.r.t. such
parallel technique). We test our method on a publicly available
COP dataset, measuring a speedup up to 696.02× w.r.t. the
sequential version. The ability of our technique to process large
tables is crucial in this scenario, in which most of the instances
generate tables larger than the GPU memory, and hence they
cannot be solved with previous GPU techniques related to BE.

Index Terms—GPU, Bucket Elimination, Constraint Optimisa-
tion Problem, Belief Propagation, Junction Tree.

I. INTRODUCTION

DYNAMIC Programming (DP) [1] is a well-known
method used to solve complex problems by exploiting

their optimal substructure property, i.e., the possibility of
efficiently decomposing the original problem into smaller
subproblems and then construct the global optimal solution.

Several popular DP algorithms used in many different fields
have been shown to fall under a general framework called
Bucket Elimination (BE) [2]. Some examples are Fourier and
Gaussian elimination for linear equalities and inequalities [3],
adaptive consistency for Constraint Satisfaction Problems
(CSPs) [4], directional resolution for propositional satisfia-
bility [5], Belief Propagation (BP) [6], DP for combinatorial
optimisation [7], variable elimination for Constraint Optimisa-
tion Problems (COPs) [2] and Distributed COPs (DCOPs) [8].
More precisely, BE operates by propagating messages over
a series of buckets, i.e., sets of constraints (or functions)
that depend on a given variable. Such messages, encoded by
functions in tabular form, are constructed by means of two
fundamental operators, ⊕ and ⇓, often referred as composition
and marginalisation. One of the main advantages of BE is its
generality, as such an algorithm can be applied to solve prob-

lems in several different fields by changing the fundamental
mathematical operations1 used by these two operators.

While the number of exchanged messages is usually rather
small (i.e., equal to the number of input variables minus one),
the computation of the messages themselves represents the
most computationally intensive task of the entire algorithm,
whose complexity can be precisely predicted and it is exponen-
tial w.r.t. a single parameter called induced width of the graph
representing the initial problem [2]. For this reason, having
a very efficient algorithm to perform such a computation is
of utmost importance when dealing with realistic problems,
which often require BE to exchange very large messages (i.e.,
up to 60 GB in our experiments).

In recent years, Graphics Processing Units (GPUs) have
been successfully used to speedup the computation in dif-
ferent cybernetic applications that feature a high level of
parallelism, achieving performance improvements of several
orders of magnitude [10] in fields including computer vi-
sion [11], human-computer interaction [12], and artificial in-
telligence [13]. In this work, we are interested in developing a
high-performance GPU framework that allows us to deal with
the computational effort inherent in the message passing phase
of several BE-based algorithms, so to favour its integration in
the development of cybernetic solutions, especially in fields
like BP, decision making, and scheduling [14]. To this end,
our main objective is to devise a solution that fulfils three key
requirements. First, since BE is a general algorithm that can be
applied to several problems, our framework should be likewise
general to allow a wide adoption among different domains, i.e.,
BP and COPs. Second, our approach should be able to achieve
a high computational throughput, by means of optimised mem-
ory accesses to avoid bandwidth bottlenecks, a careful load-
balancing to fully exploit the available computational power,
and the adoption of well-known parallel primitives [15], [16] to
reduce the CPU workload to the minimum. Third, our solution
should tackle large-scale real-world problems, and, hence, it
should not be limited by the amount of GPU global memory.

In this context, the work of Zheng, Mengshoel, and Chong
[17] (later improved by Zheng and Mengshoel [18]) represents,
to the best of our knowledge, the only approach that tackles
the high degree of parallelism of the BE composition and
marginalisation operators (specifically devised for BP) using
GPUs. Specifically, they exploit the fact that such opera-

1BE for COPs uses + as composition and max as marginalisation. Formally,
the mathematical concept that describes these operations is the commutative
semiring, discussed in detail by Aji and McEliece [9].



2

tors execute the same mathematical operation over a large
amount of input data and, therefore, they are suitable for the
Single Instruction Multiple Data (SIMD) model adopted by
these architectures [10]. However, this approach has several
drawbacks that hinder its applicability in general real-world
scenarios. In fact, it accesses input data in a non-regular way
by means of an indexing table, which introduces additional
overhead and causes the lack of coalescence and data locality
in memory transfers. Furthermore, as a consequence of this
lack of regularity, input tables must fit entirely into the GPU
global memory, since threads may need to access data that
could be anywhere in such tables. Therefore, this method is
not applicable to instances whose tables exceed this limitation.
Finally, since this approach has been specifically devised for
BP, where tables are complete (i.e., they include a row for
every possible assignment of the variables in their scope), it
is unable to cope with real-world problems with incomplete
tables, e.g., COPs, Weighted CSPs (WCSPs) [14] and Graph-
Constrained Coalition Formation [19], where some variable
assignments are unfeasible, i.e., they violate some sort of
hard constraint. Notice that, even if it is possible to model
incomplete tables as complete ones by representing unfeasible
assignments as explicit rows with special values (i.e., −∞ for
a maximisation task), this approach is not practical since it
results in tables whose size is not manageable.

Against this background, we propose a novel GPU parallel
approach for the BE message passing phase that achieves the
objectives set above. In more detail, we advance the state-of-
the-art in the following ways:

1) We propose an algorithm to preprocess input tables
by organising the columns in a specified order, thus
achieving full memory coalesced accesses in the mes-
sage passing phases. Such preprocessing phase can cope
with both complete tables and incomplete ones, and
can be realised using fully parallelisable operations. We
formally analyse such algorithm proving its correctness
and giving the worst case computational complexity.

2) We propose an implementation of the GPU kernel that
exploits the table layout specified before. We show that
such an arrangement enables pipelined data transfers
from the host to the GPU (hence optimising the transfer
time) and it allows the use of highly efficient routines
for crucial parts of the BE message passing phase (i.e.,
⊕ and ⇓ operators). Our method is not limited by the
amount of GPU memory, as our data layout allows us to
process large tables by splitting them into manageable
chunks that meet the memory capabilities of the GPU.

3) We empirically evaluate our approach on two particular
BE realisations, i.e., BP and COP, adopting standard
datasets in both cases. On the one hand, we compare
our approach against the one proposed by Zheng and
Mengshoel [18] on the same dataset. Our results show
significant improvements, by achieving speedups at least
56% higher than the alternative method (reaching peaks
of +466%). On the other hand, we employ our method to
solve standard, publicly available WCSPs datasets [14],
by modelling them as COPs and then by adopting the

BE algorithm to compute their solution. The tests show
that our method results in a speedup of 696× w.r.t. the
serial approach. We prove the importance of handling
tables that exceed the GPU global memory in this
scenario, which would otherwise be unsolvable given
the dimension of the instances.

II. BACKGROUND

The purpose of this section is threefold. First, in Sec-
tion II-A, we define the theoretical concepts and the algorithms
related to BE and BP on JTs. An in-depth discussion of such
algorithms can be found respectively in [2] and [6]. Second,
Section II-B outlines the features of GPU architectures, used to
implement our highly-parallel approach. Finally, Section II-C
discusses previous works related to BE on GPUs.

A. Bucket Elimination

Bucket Elimination (BE) [2] is a unifying algorithmic
framework, which generalises DP to accommodate algorithms
for many complex problem-solving and reasoning techniques.
BE usually accepts inputs in the form of a knowledge-base
theory and a query encoded by several functions or rela-
tions over subsets of variables (e.g., clauses for propositional
satisfiability, constraints, or conditional probability matrices
for belief networks). In this paper, we will focus on the
resolution of Constraint Networks (CNs), which consist of a
set X = {x1, . . . , xn} of n variables such that x1 ∈ D1, . . . ,
xn ∈ Dn, where Di represents the domain of the variable xi,
together with a set of m constraints {C1, . . . ,Cm}, denoting
the variables simultaneous legal assignments. Non-legal as-
signments are denoted as unfeasible. In this article, we are
interested in the version of BE that computes the optimal
solution for COPs (Algorithm 1) [2]. COPs can model several
realistic problems [8] such as WCSPs [14].

Definition 1: A Constraint Optimisation Problem (COP) is
a CN augmented with a set of functions. Let F1, . . . , Fl be
l real-valued functional components defined over the scopes
Q1, . . . ,Ql, Qi ⊆ X , let ā = (a1, . . . , an) be an assignment

Algorithm 1 BUCKETELIMINATIONCOP (CN, F1, . . . , Fl)
1: Partition {C1, . . . ,Cm} and {F1, . . . , Fl} into n buckets
2: for all p← n down to 1 do
3: for all Ck, . . . ,Cg over scopes Xk, . . . ,Xg , and

for all Fh, . . . , Fj over scopes Qh, . . . ,Qj ,
in bucket p do

4: if xp = ap then
5: xp ← ap in each Fi and Ci

6: Put each Fi and Ci in appropriate bucket
7: else
8: Up ← ⋃iXi − {xp}
9: Vp ← ⋃iQi − {xp}

10: Wp ← Up ∪ Vp
11: Cp ← πUp (&g

i=1Ci)
12: for all tuples t over Wp do
13: F p (t)← ⇓ap ∣ (t,ap) satisfies

{C1,...,Cg}
⊕j

i=1 Fi (t, ap)

14: Place F p in the latest lower bucket with a variable in Wp,
and Cp in the latest lower bucket with a variable in Up

15: Assign maximising values for the functions in each bucket
16: return F (ā∗) and ā∗



3

of the variables, where ai ∈ Di. The global cost function
F is defined by F (ā) = ∑li=1 Fi (ā) , where Fi (ā) means
Fi applied to the assignments in ā restricted to the scope
of Fi. Solving the COP requires to find ā∗ = (a∗1, . . . , a

∗
n),

satisfying all the constraints, such that F (ā∗) = maxāF (ā)
(or F (ā∗) =mināF (ā), in case of a minimisation problem).

In Algorithm 1 the ⊕ operator is instantiated in Lines 11
and 13 with the relational join and the join sum operation
respectively. Moreover, these lines instantiate the ⇓ operator
with the project and the maximisation operations respectively.
This difference is due to the fact that constraints are rela-
tions [2], as they contain one row per legit assignment of
their input variables (while excluding the unfeasible ones).
On the other hand, a cost function Fi also specifies a value
for each row, representing the cost of that particular variable
assignment. In the context of the scope of this article, it
is crucial to note that the presence of constraints in all
these problems inherently makes some variable assignments
unfeasible. As a consequence, all the rows in the exchanged
messages corresponding to such assignments can be dropped,
greatly reducing the memory requirements of the algorithm.
This is not a mere performance optimisation, but it is often
necessary to achieve a manageable size of the tables. In fact,
the size of such tables is exponential in the induced width of
the COP [2], which usually makes this approach not practical
if all the rows are explicitly represented in the tables (e.g.,
assigning −∞ to the unfeasible rows). In order to better
understand our contribution to the GPU parallelisation of BE,
in the following sections we provide a brief description of how
composition and marginalisation are realised in Algorithm 1.

1) Composition: We now discuss how the ⊕ composition
operator is implemented in Algorithm 1 by the join sum,
an operation closely related to the inner join of relational
algebra. For the remainder of this thesis, tables are represented
according to Definition 2. Moreover, if L is a tuple of
elements, we refer to its kth element with L[k]. We adopt the
zero-based numbering convention, i.e., tuples start at index 0.

Definition 2: A table Ti = ⟨Qi, di,Ri, φi⟩ is defined by:

● Qi ⊆X , a tuple of variables called the scope of Ti;
● di, a tuple of natural numbers such that di[k] =Dj is the

size of the domain Qi[k] = xj , where k ∈ {1, . . . , ∣Qi∣};
● Ri, a tuple of rows: in particular, each row Ri[k] is a

tuple of natural numbers, defining a particular assignment
of the variables in Qi, where k ∈ {1, . . . , ∣Ri∣};

● φi, a tuple representing the actual values of the function,
one for each row Ri[k]: in particular, φi[k] is the
value associated to the variable assignment represented
by Ri[k], where k ∈ {1, . . . , ∣Ri∣}.

T1

x1 x3 x5 x8 φ1

0 1 0 1 α0

1 0 0 1 α1

1 1 0 1 α2

0 1 0 0 α3

0 0 0 1 α4

1 1 1 1 α5

⊕

T2

x1 x2 x3 x4 x6 x10 φ2

1 0 0 1 1 0 β0

1 0 1 1 1 0 β1

0 1 0 0 1 1 β2

1 1 0 1 0 1 β3

0 0 0 1 1 0 β4

1 1 1 1 1 1 β5

Fig. 1: Original tables T1 and T2.

Suppose we want to compute the join sum between T1

and T2 (shown in Figure 1), respectively associated to
two tuples of variables Q1 = ⟨x1, x3, x5, x8⟩ and Q2 =
⟨x1, x2, x3, x4, x6, x10⟩, with Q1 ∩Q2 = ⟨x1, x3⟩ representing
the shared variables between T1 and T2. Notice that, as
previously stated, some variable assignments are missing in
T1 and T2, i.e., the unfeasible assignments.

A row in T1 matches a row in T2 if all the shared variables
have the same values in both the rows (matching rows have
been highlighted with the same colour in Figure 1). It is
important to note that this is a many-to-many relationship,
because multiple rows in the first table can match multiple
rows in the second table. For instance

x1 x3 x5 x8 φ1

1 0 0 1 α1
matches

x1 x2 x3 x4 x6 x10 φ2

1 0 0 1 1 0 β0

1 1 0 1 0 1 β3

because they all have x1 = 1 and x3 = 0. Thus, the result table
will have a row for each couple of matching rows in the input
tables. In the above example, the corresponding rows in the
result table T1 ⊕ T2 will be:

x1 x3 x5 x8 x2 x4 x6 x10 φ⊕
1 0 0 1 0 1 1 0 α1 + β0

1 0 0 1 1 1 0 1 α1 + β3

These resulting rows are obtained combining the second
row of T1 and, respectively, the first and the fourth rows of
T2. They both have the same values for the shared variables
(x1 = 1 and x3 = 0). The values of the non-shared variables
(i.e. x5 and x8 for T1, and x2, x4, x6 and x10 for T2) are
copied from the corresponding matching rows. Hence, in the
above example, x5 = 0 and x8 = 1 for both the resulting rows
(since there is only one matching row in T1), and x2 = 0,
x4 = 1, x6 = 1 and x10 = 0 for the first resulting row (since
it results from the match with the first matching row in T2),
and so on. Thus, the variable set of the resulting table is the
union of the variable sets of the input tables. Finally, the values
of the resulting rows are obtained summing the values of the
corresponding matching rows, i.e. α1 + β0 and α1 + β3. Is it
easy to see that if n rows in T1 match m rows in T2, they
will result in n ⋅m rows in the resulting table (Figure 2).

x1 x3 x5 x8 x2 x4 x6 x10 φ⊕
0 0 0 1 1 0 1 1 α4 + β2

0 0 0 1 0 1 1 0 α4 + β4

1 0 0 1 0 1 1 0 α1 + β0

1 0 0 1 1 1 0 1 α1 + β3

1 1 0 1 0 1 1 0 α2 + β1

1 1 0 1 1 1 1 1 α2 + β5

1 1 1 1 0 1 1 0 α5 + β1

1 1 1 1 1 1 1 1 α5 + β5

Fig. 2: Join sum result T⊕.

2) Marginalisation: The second fundamental operation,
which implements the ⇓ marginalisation operator in Algo-
rithm 1, is the maximisation. Suppose that, as a result of the
inner join sum operation at line 13 of Algorithm 1, we obtain
the table T in Figure 3.

Now, suppose that xp = x8. Then, Algorithm 1 requires to
maximise such table marginalising out x8, i.e., removing the
column corresponding to x8. As a result of this removal, some



4

x1 x3 x5 x8 φ
0 0 0 0 α0

0 0 0 1 α1

1 0 0 0 α2

1 0 0 1 α3

1 1 0 1 α4

1 1 1 1 α5

Fig. 3: Initial table T .

x1 x3 x5 φ⇓
0 0 0 max (α0, α1)

1 0 0 max (α2, α3)

1 1 0 α4

1 1 1 α5

Fig. 4: Maximisation result.

rows may now be equal considering the remaining columns
(e.g., R[1] and R[2] both contain ⟨0,0,0⟩ in the first three
columns, as well as R[3] and R[4], which contain ⟨1,0,0⟩).
Since one cannot have duplicate rows, the maximisation
operations computes a single row that, as a value, stores
the maximum of the original values.2 The final result of the
maximisation of T can be seen in Figure 4.

Composition and marginalisation operators are also em-
ployed by more modern versions of BE, e.g., Bucket-Tree
Elimination (BTE) proposed by Kask, Dechter, Larrosa, et al.
[20], hence our contributions are valuable also in the context
of these newer algorithms. Here we focus on BE since it was
the first version of these message-passing techniques to tackle
constrained optimisation, and its performance is generally
comparable with BTE, which, in turn, is optimised for some
specific problems, i.e., singleton-optimality problems.

Notice that DP (and in particular BE) is not the only
approach to solve COPs, which can also be tackled with
DFS-based approaches [21]. While they represent important
techniques in the context of constrained optimisation, we do
not focus on these algorithms in the context of this paper, since
DFS is known to be difficult to parallelise [22].

We now discuss BP on JTs, which is a close variation of
BE [2] that is also based on composition and marginalisation
operators (i.e., scattering and reduction respectively).

3) Belief Propagation on Junction Trees: Belief Propaga-
tion on Junction Trees [6] (BP on JTs) is used to propagate
inference on a Bayesian Network (BN), a representation of
a joint distribution over a set of n random variables X ,
structured as a directed acyclic graph whose vertices are the
random variables and the directed edges represent dependency
relationships among the random variables. The propagation of
beliefs (or posteriors) runs over a Junction Tree (JT), generated
from a BN by means of moralisation and triangulation [6].
Every vertex Ni of the JT contains a set Qi ⊆ X of random
variables that forms a maximal clique in the moralised and tri-
angulated BN, each associated to a potential table represented
by Ti = ⟨Qi, di,Ri, φi⟩ according to Definition 2. In standard
BP, Ri contains all the possible variable assignments over their
domains, hence ∣Ri∣ = ∣φi∣ =∏∣Qi∣

k=1 di[k]. Assuming that Ti and
Tj are potential tables associated to adjacent vertices in the
JT, we associate a separator table Sepij = ⟨Qij , dij ,Rij , φij⟩
to the edge (Ni,Nj), whose scope Qij is represented by the
shared variables between the two tables, i.e., Qij = Qi ∩Qj .

BP on JTs is then invoked whenever we receive new
evidence for a particular set of variables E ⊆ X , updating the
potential tables associated to the BN in order to reflect this new
information. To this end, a two-phase procedure is employed:

2If we marginalise out xi, we maximise over up to di rows.

first, in the evidence collection phase, messages are collected
from each vertex Ni, starting from the leaves all the way up to
a designated root vertex. Then, during evidence distribution,
messages are sent from the root to the leaves. In both phases,
each recursive call comprises a MESSAGEPASS procedure,
which implements the propagation of beliefs between the
potential tables Ti and Tj in two steps:

1) Reduction: the potential table Sepij is updated to Sep∗ij .
In particular, each row of Sep∗ij is obtained summing
the corresponding rows of Ti, i.e., the ones with a
matching variable assignment. Reduction implements
the ⇓ marginalisation operator of BE, which is achieved
with a summation in this case.

2) Scattering: Tj is updated with the new values of Sep∗ij ,
i.e., every row of Tj is multiplied for the ratio between
the corresponding rows in Sep∗ij and Sepij . Following
Zheng and Mengshoel [18], we assume that 0

0
= 0.

Scattering implements the composition with the product
operation, and it corresponds to the ⊕ operator of BE.

In both BE and BP on JTs, it is easy to see that the mes-
sage passing phase require several independent computations
spanning over multiple rows of the tables, suggesting a multi-
threaded algorithm in which such degree of parallelism can be
exploited by means of GPUs.

B. GPU Architecture

GPUs are designed for compute-intensive, highly parallel
computations. To this end, more transistors are devoted to
data processing rather than data caching and flow control.
These architectures are especially well-suited for problems
that can be expressed as data-parallel computations where data
elements are mapped to parallel processing threads. The GPU
(device) is mainly employed to implement compute-intensive
parts of an application, while control-dominant computations
are performed by the CPU (host). In our approach, the GPU is
programmed using the CUDA programming framework [10],
which requires the definition of a kernel, a particular routine
executed in parallel by thousands of threads on different
inputs. Threads are organised in thread blocks, sharing fast
forms of storage and synchronisation primitives. On the other
hand, physical and design constraints limit the number of
threads per block, since all the threads of a block are expected
to reside on the same Streaming Multiprocessor (SM) and
must share limited memory resources. Memory management
is a crucial aspect in the design of efficient GPU algorithms,
since memory accesses are particularly expensive and have a
significant impact on performance. As a consequence, memory
accesses must be carefully devised to achieve high compu-
tational throughput (see Section V-A). In what follows, we
discuss previous approaches for BE-related algorithms that can
be found in the parallel computing literature.

C. Related Work

BP on JTs represents a well-known inference algorithm,
which has received significant attention in the parallel com-
puting literature due to its high computational demands. In



5

particular, Xia and Prasanna [23] propose a distributed ap-
proach that combat this by decomposing the initial JT into a
set of subtrees, and then they perform the evidence propagation
in the subtrees in parallel on a cluster. In this paper we also
focus on exploiting parallel architectures for BP on JTs, but,
in contrast, we aim at parallelising the single propagation
operation, which is the most computationally intensive task
of the entire algorithm.

The most recent work addressing the parallelisation of BP
on GPUs is presented by Zheng, Mengshoel, and Chong [17].
In particular, the authors pursue the same goal tackled by our
approach discussed in Section III, i.e., parallelise the atomic
operations of propagation so that it could be embedded in
different algorithms. On the other hand, such an approach
proposes a different parallelisation strategy, devising a two-
dimensional parallelism, in which an higher level element-
wise parallelism is stacked on top of a lower level arith-
metic parallelism, to better exploit the massive computational
power provided by modern GPUs. In particular, element-
wise parallelism is achieved by computing each of the ∣Rij ∣
reduction-and-scattering operations in parallel, which require
∣Rij ∣ mapping tables (one per row of Sepij) to allow each
concurrent task to correctly locate its input data from the
corresponding potential tables. On the other hand, arithmetic
parallelism represents the multi-threaded computation of each
reduction-and-scattering operation, by means of well known
parallel algorithms that can be found in literature [10].

Although this approach represents a significant contribution
to the state-of-the-art, there are some drawbacks that hinder
its applicability. In particular, the proposed memory layout is
not optimised for GPUs, for three main reasons:

● Threads need to access data in sparse and discontin-
uous memory locations using an additional indexing
table, breaking coalescence and drastically reducing the
throughput of memory transfers (Figure 8). Coalescence
is crucial and it should be exploited in order to reduce
memory accesses to the global memory, improving the
compute-to-memory ratio and achieving a greater com-
putational throughput.

● Since input data is organised in a discontinuous pattern
rather than in continuous chunks, it is mandatory to trans-
fer the entire potential tables to the global memory of the
GPU before starting the computation of the BP algorithm,
hindering two desirable properties: i) this approach is
not applicable to potential tables that do not fit into
global memory, since the sparsity of the data prevents
any possibility of splitting them into smaller parts, and
ii) since the computation cannot be started before the
entire input data has been copied to the GPU, the cost
of memory transfers cannot be amortised by means of
technologies like NVIDIA CUDA streams.

Moreover, the authors devise this technique for BP, where
tables are complete (i.e., they include a row for every possible
assignment of the variables in their scope). Thus, this approach
cannot be applied to problems in which tables are incomplete,
e.g., COPs and WCSPs.

In the context of COPs, the only work that specifically
focuses on the implementation of the BE algorithm for many-

cores architectures is the one by Fioretto, Le, Pontelli, et
al. [24], in which the authors devise an algorithm to realise
the join sum and the maximisation operations (referred as
aggregate and project) on GPUs, by exploiting the high degree
of parallelism inherent in these operations. Although this
approach represents a significant contribution to the state-of-
the-art, there are some drawbacks that hinder its applicability.
First, the indexing of the tables is executed by using a Minimal
Perfect Hash function, i.e., a hash function that maps n keys
to n consecutive integers, which can be easily adopted as the
indices of such keys. Although minimal perfect hash functions
can be used in parallel by different threads to index the input,
their construction is inherently sequential, since the index
of a key depends on the indices assigned to the previously
considered keys [25]. This aspect reduces the efficiency of
this approach especially on big instances, as shown by our
experiments in Section VI-B.

To overcome these limitations, we propose a better way to
tackle the GPU computation of the message-passing phase of
BE. In particular, we first present a technique that improves the
parallelisation of BP with complete tables (already published
in [26]), and then we extend it in order to be applicable to the
more general case of incomplete tables.

III. PROCESSING COMPLETE TABLES

In this section, we detail our contribution to the GPU
computation of messages in BP, exploiting the fact that, in such
problem, tables are complete. In particular, we first discuss
how we preprocess potential tables in order to index their rows
efficiently and achieve coalesced memory accesses. Then, this
table layout is exploited by the actual CUDA kernel, which
executes the actual message passing phase of BP through
highly efficient routines.

A. Table Preprocessing

Suppose we have to propagate new evidence from the poten-
tial table T1 to the potential table T2, respectively associated to
two tuples of variables Q1=⟨x3, x2, x1⟩ and Q2=⟨x5, x4, x1⟩,
with the shared variables Q12=Q1∩Q2=⟨x1⟩. We assume that
x1, x3 and x5 are binary variables, while x2 and x4 can assume
3 values. In the approach by Zheng and Mengshoel [18], each
row of the separator table Sep12 is assigned to a different block
of threads, which are responsible of the reduction of the rows
of T1 with a matching variable assignment and the subsequent
scattering on matching rows in T2. In Figure 5, rows associated
to different blocks of threads have been marked in different
colours, i.e., white and grey for x1 = 0 and x1 = 1 respectively.
The organisation of input data provided by these tables is
undesirable for GPU architectures. In fact, threads responsible
of the computation of white rows cannot access consecutive
memory addresses, as their data is interleaved with grey rows,
thus breaking memory coalescence. Moreover, even if the
computation of white rows requires half of the input data,
its sparsity forces us to transfer the entire tables to the global
memory before starting the algorithm. We propose to solve
these issues by means of a preprocessing phase, in which
rows associated to the same row in Sep12 (i.e., rows of the



6

T1

x3 x2 x1 φ1

0 0 0 α0

0 0 1 α1

0 1 0 α2

0 1 1 α3

0 2 0 α4

0 2 1 α5

1 0 0 α6

1 0 1 α7

1 1 0 α8

1 1 1 α9

1 2 0 α10

1 2 1 α11

T2

x5 x4 x1 φ2

0 0 0 β0

0 0 1 β1

0 1 0 β2

0 1 1 β3

0 2 0 β4

0 2 1 β5

1 0 0 β6

1 0 1 β7

1 1 0 β8

1 1 1 β9

1 2 0 β10

1 2 1 β11

Fig. 5: Original tables.

Tp
1

x1 x3 x2 p(φ1)

0 0 0 α0

0 0 1 α2

0 0 2 α4

0 1 0 α6

0 1 1 α8

0 1 2 α10

1 0 0 α1

1 0 1 α3

1 0 2 α5

1 1 0 α7

1 1 1 α9

1 1 2 α11

Tp
2

x1 x5 x4 p(φ2)

0 0 0 β0

0 0 1 β2

0 0 2 β4

0 1 0 β6

0 1 1 β8

0 1 2 β10

1 0 0 β1

1 0 1 β3

1 0 2 β5

1 1 0 β7

1 1 1 β9

1 1 2 β11

Fig. 6: Preprocessed tables.

same colour, in the above example) are stored in consecutive
addresses in the corresponding potential tables, as shown in
Figure 6. Threads responsible of white rows execute coalesced
memory accesses, and start the computation while grey rows
are still being transferred to the GPU. Each block of threads
easily retrieves its input data without any costly mapping table,
in contrast with the approach by Zheng and Mengshoel [18].

Consider T p1 = ⟨Qp1, d
p
1,R

p
1, φ

p
1⟩ in Figure 6, resulting from a

permutation σ of Q1 in which the variables in Q12 are brought
to the Most Significant3 (MS) positions in Qp = σ (Q). In this
way, we can assure that rows with the same assignment of the
variables in Q12 form a contiguous chunk of memory.

Our table representation by means of ordered tuples imposes
that dp, Rp and φp are coherently defined, to guarantee the
equivalence to the original table. While the former can be
easily obtained by applying σ to d, the computation of Rp can
be avoided, therefore only φp requires a particular dissertation,
which is covered in the following sections.

1) Table Indexing: Since in any table T = ⟨Q,d,R,φ⟩, R
contains all the possible variable assignments, we can avoid
storing R in memory. In fact, since the order of variables is
fixed, given any row r = R[k], k can be computed with:

k =
∣Q∣−1
∑
i=1

(r[i]
∣Q∣
∏

j=i+1
d[j]

D[i]

) + r[∣Q∣] =
∣Q∣−1
∑
i=1

(r[i] ⋅D[i]) + r[∣Q∣] (1)

where r[i] represents the value assumed by the variable Q[i]
in r. Each D[i] represents the product of all the elements
starting from position i + 1 in d, hence we refer to the tuple
D as the exclusive postfix product of d. Such an operation
can be seen as a variation of the standard exclusive prefix sum
operation, in which the result is computed by summing all
the elements up to i − 1. We define D[∣Q∣] ∶= 1 (the identity
element for the product), similarly to the definition of the first
element of the exclusive prefix sum as 0.

On the other hand, each r[i] can be retrieved from k as
r[i] = ⌊k/D[i]⌋ mod d[i]. Thus, R can be dropped from our
representation in memory, hence, as previously claimed, the
computation of Rp is unnecessary. For a better understanding,
let r with Q = ⟨x1, x2, x3⟩, and d = ⟨2,16,10⟩:

r = x1 x2 x3 φ
1 10 7 v267

3Variables are listed from the most significant to the least significant.

From Equation 1, r is in position k = 1⋅d[2]⋅d[3]+10⋅d[3]+
7 = 267 in φ. Moreover, x1 = 1 = ⌊267/D[1]⌋ mod d[1], x2 =
10 = ⌊267/D[2]⌋ mod d[2] and x3 = 7 = ⌊267/D[3]⌋ mod d[3].

As mentioned before, to maintain a coherent representation
of the preprocessed table T p = ⟨Qp, dp,Rp, φp⟩, the values in
φ must be correctly permuted into φp.

2) Table Reordering: This section will cover our approach
to achieve the column reordering detailed in Section III-A. As
mentioned before, we do not store R, since each row r ∈ R can
be retrieved from its index with the above detailed technique,
hence the computation of Rp will not be covered. On the other
hand, for any φ[k] at index k in φ it is necessary to compute
its index kp in the preprocessed table T p to compute φp.

A naive approach would require to apply the permuta-
tion σ on each row r = R[k], which comprises 3 steps:
for each k, compute the corresponding variable assignment
⟨r[1], . . . , r[i], . . . , r[∣Q∣]⟩, apply σ on the now available
sequence of r[i] and, finally, obtain kp using Equation 1.
Since each of the 3 above mentioned steps has a complexity
of O (∣Q∣), such approach requires O (3∣φ∣∣Q∣).

In what follows, we show a more efficient approach to
calculate kp. For simplicity, we first explain how to compute
the index resulting from swapping the variables at positions i
and j. Then, we provide an algorithm to compute kp by means
of a sequence of swaps.

Proposition 1: Given T = ⟨Q,d,R,φ⟩ and T s = ⟨Qs, ds,
Rs, φs⟩, where Qs and ds has been respectively obtained
swapping Q[i] with Q[j] and d[i] with d[j] (with i > j),
φs is a permutation of φ, i.e., φ[k] = φs[k′] and k′ is:

k′ = r[1]⋅d[2]⋯d[i]⋯d[j]⋯d[∣Q∣]+⋯ (2a)
+ r[i]⋅d[j+1]⋯d[j]⋯d[∣Q∣] (2b)
+ r[j+1]⋅d[j+2]⋯d[∣Q∣]+⋯+r[i−1]⋅d[j]⋯d[∣Q∣] (2c)
+ r[j]⋅d[i+1]⋯d[∣Q∣] (2d)
+ r[i+1]⋅d[i+2]⋯d[∣Q∣]+⋯+r[∣Q∣] (2e)

Then, k′ = f (k, i, j) can also be calculated as:

k
′
=

(2a)

k−k mod D[j−1]+

(2b)

D[j]⋅d[j]/d[i]⋅⌊k/D[i]⌋ mod d[i]+

(2e)

k mod D[i]

+ d[j]/d[i]⋅

(2c′)

(k mod D[j]−k mod D[i−1])

(2c)

+D[i]⋅⌊k/D[j]⌋ mod d[j]

(2d)

Proof: The proof is in the supplementary materials.
Proposition 1 is then used to reorder any potential table

T according to the layout detailed in Section III-A. More
formally, let S = ⟨S1, . . . ,Sn⟩ be a sequence of n swaps, each
represented by an ordered4 pair of positions S[i] = ⟨ai, bi⟩, so
that we permute Q into σ (Q) (moving the desired subset of
variables to the MS positions) by means of the sequence of i
swaps of the variables in positions ai and bi, as described in
Proposition 1. Then, φp is computed with Algorithm 2.

The tuple of swaps S required to move ∣Q12∣ variables to the
MS positions of the tables T1 and T2 is computed as follows.
Consider T1 and let us assume that s shared variables (with
0 ≤ s ≤ ∣Q12∣) are already within the first ∣Q12∣ positions of the
corresponding variable tuple Q1. Then, it is sufficient to swap

4We assume that, for every pair ⟨ai, bi⟩, ai > bi.



7

Algorithm 2 REORDERTABLE(φ,S)
1: for all k ∈ {1, . . . , ∣φ∣} do in parallel
2: kp ← k
3: for all ⟨ai, bi⟩ ∈ S do {For every swap in S}
4: kp ← f (kp, ai, bi) {Proposition 1}
5: SWAP (Q[ai],Q[bi]) {Swap variables}
6: SWAP (d[ai], d[bi]) {Swap variable domains}
7: φp[kp]← φ[k] {Write φ[k] in position kp of φp}
8: return φp

the ∣Q12∣−s shared variables with index greater than ∣Q12∣ with
the non-shared ones which are placed within the first ∣Q12∣
positions. On the other hand, table T2 can be preprocessed by
swapping each shared variable Q2[h] with Q2[k] such that
Q2[h] = Q1[k] for k ∈ {1, . . . , ∣Q12∣}. This algorithm ensures
the same order of the variables in Q12 in both tables.

As an example, we reorder the row R1[10] = ⟨1,2,0⟩ in
position k = 10 of T1 in Figure 5 and compute its index kp

in T p1 . In this case, the desired order is obtained with S[1] =
⟨3,1⟩ and S[2] = ⟨3,2⟩5, i.e, by swapping Q[3] = x1 with
Q[1] = x3, then swapping Q[3] = x3 with Q[2] = x2. Initially,
d[3] = d[1] = 2, D[3] = 1 and D[1] = 6. Then, applying
Proposition 1 to the row with index k = 10 results in (2a) =
(2e) = 0 (since there are no variables before x3 and after x1),
(2b) = 6 ⋅ 2/2 ⋅ 0 = 0, (2c) = 2/2 (10 mod 6 − 10 mod 2) = 4
and (2d) = 1 ⋅ 1 = 1, hence f (10,3,1) = 5, meaning that α10

would have index 5 after S[1]. To compute its final index, we
apply S[2] = ⟨3,2⟩. At this point Q1 = ⟨x1, x2, x3⟩, D[3] = 1,
D[2] = d[3] = 2 and d[2] = 3, hence (2c) = (2e) = 0 (since
there are no variables after x3 and between x2 and x3). On
the other hand, (2a) = 5 − 5 mod 6 = 0, (2b) = 2 ⋅ 3/2 ⋅ 1 = 3
and (2d) = 1 ⋅ 2 = 2, thus φp[5] = α10 (see T p1 ).

Algorithm 2 provides a method to rearrange any couple
of potential tables Ti and Tj such that the variables of their
separator are moved to the MS positions (see Section III-A).
We now analyse the impact of this preprocessing phase on the
overall performance of the algorithm, by showing how it is
more efficient than the naive approach mentioned above.

3) Computational Complexity:
Proposition 2: Algorithm 2 has a time complexity of

O (∣φ∣∣S ∣) ≤ O (∣φ∣∣Q12∣/2) < O (∣φ∣∣Q∣).
Proof: The proof is in the supplementary materials.

In our experimental evaluation, we performed the variable
ordering with an average of ∣S ∣ = 3 swaps, resulting in an im-
provement of an order of magnitude w.r.t. the naive approach,
which, in contrast, requires tens of operations for each row.
It is important to note that this preprocessing phase is done
once for all, while compiling the BN in the corresponding JT.
In fact, the acquisition of new evidence does not change the
structure of the network itself, hence we can avoid to reorder
each potential table at each BP by storing and updating the
couple of corresponding reordered tables for each separator.
Even if Algorithm 2 does not reorder φ in-place, the additional
space required to store φp is amortised by discarding the
original table, since it is not needed in any subsequent phase
of the algorithm. Furthermore, each iteration of the external

5Swapping x3 and x2 is not necessary since neither of them belongs to
Q12, but it has been included in our example to better explain the algorithm.

loop (Lines 1–7) of Algorithm 2 is independent and can be
computed in parallel. As a consequence, the worst-case time
complexity of the parallel version of Algorithm 2 is O(∣φ∣∣S∣/t),
where t is the number of threads. Given a JT = (V,E), our
algorithm needs to store a couple of potential tables for each
separator. Since threads can index input rows on-the-fly, map-
ping tables can be avoided. Thus, the memory requirements
are O (2 ⋅ ∣E∣). In contrast, the approach proposed by Zheng
and Mengshoel [18] maintains one potential table for each
clique, but it needs two mapping tables for each separator
table. Hence, it requires O (V + 2 ⋅ ∣E∣) tables.

B. GPU Kernel Implementation

In our approach to BP on GPUs, each block of threads
is responsible for one element of the separator table, which
is associated to a corresponding group of rows in potential
tables. Such high-level organisation of the computation allows
us to carry out the entire reduction and scattering stages within
a single thread block, hence avoiding any costly inter-block
synchronisation structure. On one hand, the performance of
our algorithm clearly benefits from the lack of interdepen-
dence among different blocks, which would reduce the overall
computation parallelism. On the other hand, since the size of
thread blocks has an intrinsic limit imposed by the hardware
architecture (e.g., 2048 threads in Kepler GPUs), the proposed
organisation may serialise part of the workload if the number
of rows to manage exceeds such limit. Nevertheless, such an
issue is not problematic in our test cases, since the above
mentioned case rarely verifies. In fact, in our experimental
evaluation, each block has to reduce an average of 14 ele-
ments,6 hence allowing a full parallelisation.

If the serialisation is small (i.e., each thread has to reduce
and scatter few rows), the effect on the overall performance
is negligible. This is due to the fact that the task is computed
extremely efficiently in thread-private memory space using
registers. In what follows, we explain the actual implemen-
tation of the above mentioned concepts in detail.

1) Reduction: Once the input data is in the shared memory,
the kernel starts the reduction phase that, in our approach, is
implemented with the NVIDIA CUB library7 by means of a
block reduce raking algorithm. The algorithm consists of three
steps: i) an initial sequential reduction in registers (if each
thread contributes to more than one input), in which warps
other than the first one place their partial reductions into shared
memory, ii) a second sequential reduction in shared memory,
in which threads within the first warp accumulate data by
ranking across segments of shared partial reductions, and iii)
a final reduction within the raking warp based on the Kogge-
Stone algorithm [27] produces the final output. This scheme is
particularly efficient, since it involves a single synchronisation
barrier after the first phase it incurs zero bank conflicts8 for
primitive data types. On newer CUDA architectures (e.g.,

6This is the average, over all BNs, of the ratio between the average potential
table size and the average separator table size (see Table I).

7Available at http://nvlabs.github.io/cub.
8If multiple memory accesses map to the same memory bank, the accesses

are serialised and split into as many separate conflict-free requests as neces-
sary, thus decreasing the effective bandwidth.



8

NVIDIA Kepler), such implementation exploits shuffle in-
structions, which are a new set of primitives provided by
the CUDA programming language. Shuffle instructions enable
threads within the same warp to exchange data through direct
register accesses, hence avoiding shared memory accesses and
improving the computational throughput of the algorithm.

In particular, such scheme is collectively performed by the
block of threads associated to a particular element of the
separator table, in order to compute its updated value as the
sum of the corresponding rows of the first potential tables,
i.e., the ones with a matching variable assignment. Once the
reduction of the entire chunk has been completed, the first
thread computes the value of Rij assigned to the considered
block, which serves as input for the subsequent scattering
phase of belief propagation.

2) Scattering: The final stage of BP consists of the scat-
tering operation, which performs the actual update of T p2 by
means of Rij computed in the above mentioned phase. The
implementation of such operation benefits from the proposed
memory layout, since it is realised with maximum parallelism
and computational throughput. Each row of T p2 is assigned
to one thread, which multiplies its current value for Rij ,
computed in the reduction phase. Once the kernel has been
executed by all blocks, the propagation of belief has completed
the inclusion of new evidence in T p2 , which can be finally
transferred back to the CPU memory.

Notice that our method of computing the message passing
phase of BP does not affect the semantic of the algorithm,
hence the results computed by our techniques are correct.

It is important to note that all the techniques described
in the current section are based on the fact that, in BP on
JTs, tables are complete, i.e., they contain all the possible
variable assignments. Therefore, this approach cannot be di-
rectly applied to solve COPs with BE, where, as explained
in Section II-A, constraints make some variable assignments
unfeasible and, hence, tables are incomplete. To overcome
this issue, we propose a generalised approach able to process
incomplete tables, as explained in the following section.

IV. PROCESSING INCOMPLETE TABLES

In this section we elaborate our contribution to the paral-
lelisation of the BE algorithm to solve COPs. We propose a
novel method to implement the join sum and the maximisation
operations (Line 13 of Algorithm 1) on GPUs, to tackle their
computational complexity and speedup the execution of BE.

A. Table Preprocessing

In order to explain our approach, we contextualise it on the
example introduced in Section II-A1 (Figure 1). The goal is
to rearrange the rows of these tables so to have the same final
placement discussed in Section III-A, since the current data
organisation suffers from very poor data locality.

In particular, the preprocessing of these tables aims at
achieving two fundamental requirements: i) rows of the same
colour should be in consecutive memory addresses, to have full
coalescence in memory accesses and to reduce the sparsity
of data; ii) coloured groups should be in the same order

(considering the set of shared variables) in both tables, to
locate them efficiently when computing the join sum result.
This is required since tables can be incomplete. We achieve
these objectives by means of Algorithm 3. The first step of the
preprocessing phase requires to move the ∣Q12∣ columns corre-
sponding to the shared variables to the ∣Q12∣ Least Significant3

(LS) places. Notice that this step is an embarrassingly paral-
lel [10] task, and it can be trivially divided among ∣R∣ threads,
each independently processing a single row. Subsequently, the
algorithm reorders R and φ by means of a LSD radix sort
algorithm [15] (implemented with the NVIDIA CUB library7).
It is not necessary to adopt a radix sort algorithm in this phase
(as every sorting algorithm that operates on the basis of the
LS ∣Q12∣ places would work). However, we decide to use such
an algorithm since it can be parallelised very efficiently [15].
As a final step, the algorithm remove the non-matching groups
of rows (white rows in Figure 1), since they do not generate
any output row in the result table, obtaining the preprocessed
tables T p1 and T p2 in Figure 7. Notice that none of these three
steps requires to have an entire table stored in the global
memory, thus it is possible to easily split the input tables into
manageable chunks meeting the memory capabilities of the
GPU and preprocess them.9

T p
1

x5 x8 x1 x3 φp1
0 1 0 0 α4

0 1 1 0 α1

0 1 1 1 α2

1 1 1 1 α5

⊕

T p
2

x6 x10 x2 x4 x1 x3 φp2
1 1 1 0 0 0 β2
1 0 0 1 0 0 β4
1 0 0 1 1 0 β0
0 1 1 1 1 0 β3
1 0 0 1 1 1 β1
1 1 1 1 1 1 β5

Fig. 7: Final preprocessed tables.

We now discuss how it is possible to exploit this row layout
to index these tables and have multiple thread efficiently locate
their input to compute the join sum in parallel on the GPU.

B. Join Sum GPU Computation

Join sum implements the composition operation of BE. Our
method adopts a gather paradigm [10], in which each thread
is responsible for the computation of exactly one element of
the output. Such a paradigm offers many advantages w.r.t. the
counterpart approach, i.e., the scatter paradigm, in which each
thread is associated to one element of input and contributes
to the computation of many output elements. Scatter-based
approaches have a reduced independence of the operations and
they require atomic primitives (which serialise parts of the

9If it is necessary to sort a table larger that the GPU global memory, it is
possible to split it into chunks, sort each of them (using the above mentioned
radix sort algorithm), and then merge the sorted chunks (adopting the merge
sort algorithm) on the CPU.

Algorithm 3 PREPROCESSINCOMPLETE (T1, T2)
1: Move shared variables in Q1 and Q2 to the ∣Q12∣ LS places
2: Sort R1, R2, φ1, φ2 using a LSD radix sort on the ∣Q12∣ LS places
3: Remove row groups that do not match between T1 and T2



9

computation) to avoid race conditions, when multiple input
elements concurrently modify the same output element.

In our particular case, one thread computes one particular
output row at index i (i.e., both R[i], the variable assignment
part, and φ[i], the value part), on the basis of the two input
rows associated, which can be identified as explained below.
First, we compute the number of rows in each coloured group
for T1 and T2. As a result, we obtain a tuple H such that
H[i] is the number of rows of the ith coloured group. This
operation can be seen as the computation of the histogram of
the rows of the tables, which is a well-know primitive that
can be parallelised very efficiently. In the above example,
H1=⟨1,1,2⟩, and H2=⟨2,2,2⟩. These histograms are also
useful to compute the number of rows of the result table, a
crucial information when we have to allocate the exact amount
of memory to store the result. Each group of output rows has
a number of elements equal to the product of the numbers of
rows of the corresponding input groups. Hence, the histogram
of the result table, namely H⊕, is computed as the element-
wise product10 (denoted as ∗) of the input histograms. It is easy
to verify that ⟨1,1,2⟩ ∗ ⟨2,2,2⟩ = ⟨2,2,4⟩ is the histogram of
the result table in Figure 2. The sum of the values of such
histogram is the total number of rows of the result table.

Algorithm 4 JOINSUMKERNEL (H1,H⊕,P1,P2,P⊕)
1: bx← block ID
2: tx← thread ID
3: if tx <H⊕[bx] then
4: idx1 ← P1[bx] + tx modH1[bx]
5: idx2 ← P2[bx] + ⌊tx/H1[bx]⌋
6: idx⊕ ← P⊕[bx] + tx
7: Compute the join sum of input rows at indices idx1 and idx2

in T1 and T2
8: Store the results in R⊕[idx⊕] and φ⊕[idx⊕]

These histograms also allow each thread to efficiently locate
its input rows, as well as the index of the output row it is
responsible for, by indexing the coloured groups in T1 and T2.
As a first step, we compute the exclusive prefix sum of the input
and output histograms, which can be done very efficiently on
the GPU [16] and, in our case, it is implemented with the
NVIDIA CUB library. Given an histogram H, its exclusive
prefix sum P is a tuple in which each element P[i] represents
the index of the first row of the ith coloured group. With these
data structures, each thread can compute its row in the join
sum result. Algorithm 4 represents the actual kernel function
executed by the GPU, which receives as inputs the histograms
of T1 and the output histogram (i.e., H1 and H⊕),11 as well
as the corresponding prefix sum tuples (i.e., P1, P2, P⊕). The
variable assignment and the value parts of the output table are
respectively denoted as R⊕ and φ⊕.

It is important to note the absence of divergence in Algo-
rithm 4, thanks to the fact that the only branch instruction
(Line 3) is used to limit the number of running threads to the
amount needed, i.e., H⊕[bx]. For the sake of clarity, we made
a number of simplifications in Algorithm 4. First, here we

10Element-wise product is an embarrassingly parallel operation.
11We do not explicitly provide H2 to the kernel, since this information is

implicitly included in H1 and H⊕, i.e., H2[i] = H⊕[i]/H1[i].

do not explicitly mention the use of shared memory, which
is used to exploit the data reuse12 inherent to the join sum
operation, so to avoid unnecessary memory accesses to the
global memory. The properties of these memory transfers be-
tween shared and global memory are discussed in Section V-A.
Furthermore, we assume that each coloured group of rows is
computed by exactly one block of threads. In contrast, our
actual implementation realises a dynamic load balancing by
assigning the appropriate number of groups to each block, in
order to achieve a higher GPU occupancy and computational
throughput. This number is determined by the amount of
shared memory of the GPU and the maximum number of
threads per block. It is possible that a single group of rows is
larger than the available shared memory: this case is managed
by splitting such a group into a number of sub-groups, once
again with the objective of maximising the GPU occupancy.

C. Maximisation GPU Computation

In this section, we describe how we implement the max-
imisation (which corresponds to the marginalisation operation
of BE) on GPUs, exploiting the data layout discussed in
Section IV-A. In particular, we adopt the same preprocessing
phase detailed by Algorithm 3, with the sole difference that the
set of shared variables is represented by all the variables in the
scope of the table, excluding the one we want to marginalise.
Intuitively, this corresponds to move such a variable to the
Most Significant (MS) place. In this case, if we compute the
histogram H and the exclusive prefix sum P as previously
described, we are able to index the groups of rows that must
be considered when computing the maximum for the output,
denoted by Rmax and φmax for the variable assignment and the
value part. Algorithm 5 implements the maximisation kernel.

Algorithm 5 MAXIMISATIONKERNEL (H,P)
1: tx← thread ID
2: if tx < ∣H∣ then
3: idx← P[tx]
4: Rmax[tx]← R[idx] without the column in the MS place
5: φmax[tx]←max of the H[tx] values starting at φ[idx]

Algorithm 5 shows a simplified version of our actual im-
plementation, in which we generate the appropriate number
of threads and blocks on the basis of the size of the input.
In contrast with the join sum operation, we do not have any
data reuse (i.e., each input row is accessed by exactly one
thread), hence the use of shared memory is not necessary. As
a final performance remark, notice that the maximisation of
the H[tx] elements at Line 5 is sequentially executed by the
thread. Nevertheless, this aspect has a negligible impact of the
computational throughput of our approach, since H[tx] de-
pends on the size of the domain of the marginalised variable2

and, in our experiments, it is usually a small value. When the
considered variable has a binary domain, Line 5 collapses to
one single max operation.

Notice that Algorithms 4 and 5 correctly implement the ⊕
and ⇓ operations of BE, hence preserving its optimality.

12Blue rows in Figure 2 both refer to the same input row in T1, hence both
the corresponding threads can reuse the same input data.



10

2

Background

Global Shared

...
...

...
...

thread1

thread
2

thr
ea

d3

th
re
ad

n

thread
i

Global Shared

thread1←−−−−−−−−−−→
thread2←−−−−−−−−−−→
thread3←−−−−−−−−−−→

...
...

threadi←−−−−−−−−−−→
...

...
threadn←−−−−−−−−−−→

Fig. 8: Uncoalesced vs. coalesced memory accesses.

V. DATA TRANSFERS

In the following sections we detail how our technique allows
an optimised management of data transfers, thanks to full
memory coalescence and pipelining.

A. Global-Shared Memory Transfers

Memory hierarchy in GPUs follows a widely adopted design
in modern hardware architectures, in which very fast but small-
size memories (i.e., registers, cache and shared memory),
which are designed to assist high-performance computations,
are stacked above a slower but larger memory (i.e., global
memory), suitable to hold large amounts of rarely accessed
data. In particular, shared memory resides on each SM and can
deliver 32 bits per two clock cycles. To increase performance,
it is mandatory to exploit such a low latency memory to store
information that needs to be used very often. On the other
hand, accessing global memory is particularly costly (400–
800 clock cycles), and should be minimised to achieve a good
compute-to-memory ratio.

A common programming pattern suggests to split input
data into tiles that fit into shared memory (i.e., 48 Kilobytes
of information) and to complete all the computational tasks
using only such data. This allows to minimise global memory
accesses for each kernel execution. Coalesced accesses are the
optimal way to carry out such data transfers, which is related
to the principle of spatial locality of information.

Memory coalescing refers to combining multiple transfers
between global and shared memory into a single transaction,
so that every successive 128 bytes (i.e., 32 single precision
words) can be accessed by a warp (i.e., 32 consecutive threads)
in a single transaction. In general, sparse or misaligned data or-
ganisation may result in uncoalesced loads, serialising memory
accesses and reducing the performance, while consecutive and
properly aligned data chunks enable full memory coalescing
(Figure 8). Thanks to the previously explained preprocessing
phase, the portion of input data needed by each thread block
is read from global memory with fully coalesced memory
accesses, since such data is already organised in consec-
utive addresses. The transfers are further optimised using
vectorised13 memory accesses in order to increase bandwidth,
reduce instruction count and improve latency.

13Vectorised memory instructions compile to single LD.E.128 and
ST.E.128 instructions to transfer chunks of 128 bits at a time.

B. Host-Device Data Transfers

The table layout presented in Sections III and IV allows
tables to be split into several data segments and threads to
independently operate in each segment. This leads to a twofold
improvement: i) we devise a pipelined flow of smaller copy-
and-compute operations, by amortising the cost of CPU-GPU
data transfers on the overall algorithm performance; ii) we can
process tables that do not fit into global memory, by breaking
them into more manageable chunks. This allows our approach
to perform BE even on problems that were intractable for
previous approaches [17], [18].

1) Pipelining: The standard pattern of GPU computation
requires the whole input to be transferred to the global memory
before starting the kernel execution. The results are then
copied back to the host memory. Such synchronous approach
can be improved if the kernel can start on a partial set of input
data, while the copy process is still running.

Figure 9 shows the proposed pipelined model of computa-
tion, in which a single GPU message passing operation has
been split into four stages (marked by different colours). Each
computation kernel Ki executes as soon as the corresponding
input data subset has been transferred by means of H→Di.
This solution applies to GPU architectures that feature only
one copy engine (i.e., data between host and device can be
transferred through a single channel only). Data segments for
table processing are necessarily serialised, thus allowing over-
lapping between one kernel execution and one data transfer
only. In our experiments focusing on BP, we found that, in
average, this approach achieves a performance improvement
of 50% w.r.t. synchronous data transfers. Most recent and
advanced GPUs (e.g., NVIDIA Kepler) feature an additional
copy engine, which enables a further degree of parallelism
between data transfers and computation. On these architec-
tures, this approach exploits the supplementary channel to
overlap input and output data transfers (see Figure 10). Such
a fully pipelined model of computation achieves, in average,
a performance improvement of 75% w.r.t. synchronous data
transfers, achieved in our experiments on WCSPs.

2) Large Tables Processing: Our technique can be applied
to execute BE-based algorithm even when tables do not fit into
the GPU global memory, by splitting large tables into smaller
data structures. In particular, this division is achieved by com-
puting the maximum number of kernels, namely maxs, which
can execute at the same time without exceeding the memory
capabilities of the device. In our implementation, maxs is
dynamically determined at runtime as the maximum number
of kernels whose total amount of input and output data can
be stored into global memory. In addition, we also take into
account the space constraints deriving from the use of shared
memory (see Section IV-B), by enforcing that single coloured
chunks of data can fit in such memory. Figure 11 shows an
example, in which maxs = 2. Each kernel Ki is enqueued in
stream i mod maxs. Transaction H→D3 cannot be scheduled
in parallel with D→H2 (unlike the example of Figure 10), as it
would violate the above mentioned memory constraint. Thus,
one time slot is skipped in order to complete the copy D→H1

and to free an adequate amount of memory before starting



11

Kernels

Transfers H→D1 H→D2 H→D3 D→H1 D→H2 D→H3

K1 K2 K3

Fig. 9: Asynchronous data transfers.

Device → Host

Kernels

Host → Device H→D1 H→D2 H→D3

D→H1 D→H2 D→H3

K1 K2 K3

Fig. 10: Full pipeline.

H→D1 H→D2 H→D3 H→D4

D→H1 D→H2 D→H3 D→H4

K1 K2 K3 K4

maxs

Fig. 11: Limited number of streams.

H→D3. The serialisation of these two operations is a direct
consequence of their execution in the same stream (i.e., stream
1). Even though the hardware constraints limit the size of data
to be processed, the proposed approach allows oversized tables
to be processed in multiple steps, improving scalability. As an
example, 5 out of 7 instances in the considered WCSP dataset
(see Section VI-B) cannot be solved without this capability of
handling large tables.

VI. EXPERIMENTAL RESULTS

In order to evaluate appropriately our approach presented
in Sections III and IV, we conducted two different set of ex-
periments, discussed respectively in Sections VI-A and VI-B.
First, we discuss the results obtained executing BP on JTs
(using complete tables), then we test our approach that handles
incomplete tables to solve WCSPs. Our approach is imple-
mented in CUDA14 and all our experiments are run on a
machine with an AMD A8-7600 processor, 16 GB of memory
and an NVIDIA Tesla K40.

A. BP on JTs

In this section we benchmark the approach described in
Section III, i.e., CUDA-BP, which exploits the completeness
of tables to achieve a better indexing of potential tables when
executing BP on JTs. We compare our approach with the
best approach (i.e., the SVR regression model) published by
Zheng and Mengshoel [18], using the authors’ implementation.
We use the same BN dataset,15 which comprises various
BNs with heterogeneous structures and variable domains. We
compile each BN into a JT, which is then used as input
for both approaches in order to guarantee a fair comparison.
Table I details some features of our JTs, i.e., the number of
junction tree nodes resulting from their compilation and the
minimum, maximum and average size of the potential and
separator tables. Following Zheng and Mengshoel [18], the
compilation of these networks into the corresponding junction
trees has been done offline, before the execution of the belief
propagation algorithm. For this reason, it has been excluded
from the runtime measurements.

Table II reports the runtime in milliseconds corresponding
to the following phases of the BP on JTs algorithm: i) The total
time required to complete all the reduce and scatter phases in
the sequential version; ii) The total time required to preprocess
all potential tables using our technique; iii) the total time
required to complete the data transfers between the host and
the device; iv) the total time required to complete all the reduce
and scatter phases in our GPU approach; v) our GPU speedup;

14Available at https://github.com/filippobistaffa/CUBE.
15Available at http://bndg.cs.aau.dk/html/bayesian networks.html.

vi) the total time required to complete all the reduce and scatter
phases in the GPU approach by Zheng and Mengshoel based
on the SVR regression model; vii) Zheng and Mengshoel’s
speedup. Since the preprocessing phase must be done only
once and can be avoided when any new evidence is received
and propagated, it has not been considered in the calculation
of the speedup. Moreover, we do not consider the runtimes
relative to data transfers in such calculation, as such time is
amortised thanks to our pipelining technique (Figure 10). For
a fair comparison, transfers are also excluded when calculating
the speedup for Zheng and Mengshoel’s approach.

In our tests, our algorithm outperforms the counterpart
in the majority the instances, i.e., all except in the Water
network, where runtimes are comparable. In more detail, our
approach achieves speedups at least 56% higher than the
counterpart in the Barley dataset (i.e., 33.03× vs 21.14×).
Our best improvement w.r.t. the counterpart happens on the
Mildew network, where our approach runs 39× faster than the
CPU version, and it produces a GPU speedup that is the 466%
higher than the counterpart. In general, our approach produces
speedups that increase when the average potential table size
increases (see Table I). In fact, we achieve speedups less than
10× only with small instances (i.e., Munin2 and Munin3).

B. WCSPs

WCSPs involve incomplete tables, as they contain some
unfeasible variable assignments. Thus, we apply the approach
in Section IV. We consider the SPOT5 dataset [14], a standard
dataset that models the problem of managing an Earth observ-
ing satellite as a WCSP, to maximise the importance of the
captured images, while satisfying some feasibility constraints.

The main objective of these experiments is to evaluate the
speedup that can be achieved adopting our parallel approach,
which is compared to a sequential BE version that uses a
simple implementation for the join sum and the maximisation
operations. Our speedup is compared with the one achieved
by the approach by Fioretto, Le, Pontelli, et al. [24] (i.e.,
the most recent GPU implementation of the BE algorithm)
considering the same sequential BE implementation. The
counterpart approach is implemented using the source code
provided by the authors.

Table III shows the runtime in seconds (including prepro-
cessing and data transfers) needed to solve the instances of
our reference domain by our parallel approach, i.e., CUDA-
BE, compared to its sequential version, i.e., BE. Such table
also reports the number of variables and the induced width of
these instances. The results show that CUDA-BE provides a
speedup of at least 2 orders of magnitude w.r.t. the sequential
algorithm, by reaching a maximum of 696.02×. Such speedup
increases consistently with the size of the instances (i.e., the



REFERENCES 12

TABLE I: Bayesian Networks.

Mildew Diabetes Barley Munin1 Munin2 Munin3 Munin4 Water
Number of JT nodes 29 337 36 162 854 904 877 21
Max Potential size 1249280 84480 7257600 38400000 151200 156800 448000 589824
Avg Potential size 117257 29157 476133 516887 2400 3404 10102 144205
Min Potential size 336 495 216 4 4 4 4 9
Max Separator size 62464 5280 907200 2400000 6048 22400 56000 147456
Avg Separator size 3950 1698 38237 58691 204 528 1376 28527
Min Separator size 72 16 7 2 2 2 2 3

TABLE II: BP on JTs Results (time values are in milliseconds).

Mildew Diabetes Barley Munin1 Munin2 Munin3 Munin4 Water
CPU R/S 117 219 1057 6584 54 109 315 123

Preprocessing 28 71 294 2395 24 37 106 46
Transfers 12 57 110 1464 16 39 45 15

CUDA-BP R/S 3 14 35 193 14 19 31 12
CUDA-BP Speedup 39× 15.64× 33.03× 34.11× 3.85× 5.73× 10.16× 10.25×

SVR R/S 17 34 50 648 48 38 71 14
SVR Speedup 6.88× 6.44× 21.14× 10.16× 1.12× 2.86× 4.43× 8.78×

TABLE III: WCSPs Results (time values are in seconds).

54 29 404 503 42b 505b 408b
Variables 67 82 100 143 190 240 200

Induced Width 11 14 19 9 18 16 24
BE Runtime 965.66 2656.72 7584.12 6347.98 31637.91 53710.41 76456.15

CUDA-BE Runtime 3.01 5.36 12.40 17.46 58.42 77.17 120.79
CUDA-BE Speedup 321.03× 495.38× 611.67× 363.63× 541.55× 696.02× 632.97×

Fioretto et al. Runtime 10.32 20.75 41.12 38.96 – – –
Fioretto et al. Speedup 93.57× 128.03× 184.43× 162.93× – – –

induced width and the number of variables), showing that the
proposed approach correctly exploits the increased amount of
parallelism in bigger tables. In fact, the speedup provided by
CUDA-BE monotonically increases in the first three WCSP
instances (i.e., 54, 29 and 404), in which both the number
of variables and the induced width increase. On the other
hand, such speedup decreases in instance 503, which, despite
having a larger number of variables, is characterised by a lower
induced width. Notice that the induced width has a stronger
influence on the complexity of the problem [2]. The ability of
our method of handling large tables is crucial in this scenario.
In fact, 5 out of 7 instances (i.e., 404, 503, 42b, 505b and
408b) cannot be solved without this feature, as their tables
exceed the amount of GPU memory. Finally, notice that our
approach outperforms the approach by Fioretto, Le, Pontelli, et
al. both in terms of runtime and scalability. On the one hand,
our approach is, on average, 3.21× faster than the counterpart
in the solution of the first 4 instances. On the other hand, the
counterpart approach cannot handle the 3 biggest instances of
the SPOT5 dataset, probably due to the different representation
of the tables in memory.

VII. CONCLUSION

In this article we considered the BE framework and we
proposed an efficient and scalable highly-parallel approach that
is able to harness the computational power of modern GPUs by
means of an appropriate data organisation in memory. The pro-
posed approach applies also to problems involving incomplete
tables, i.e., tables that do not contain all variable assignments,
as well as problems that do not fit into the global memory
of the GPU. Furthermore, it enables pipelined data transfers
between host and device, thus further improving performance.
Our experimental results show that our approach outperforms
the state-of-the-art approach for BP on JTs proposed by Zheng

and Mengshoel [18], by obtaining speedups ranging from
+56% to +466%. The tests on WCSPs confirmed the ability
of our technique to achieve a high computational throughput
(reaching a speedup of 696.02× w.r.t. the CPU version), and
proving the importance of its ability to process large tables, a
necessary feature to solve these instances.

Future work will look at integrating the proposed GPU
techniques in other algorithmic frameworks, such as AND/OR
search-based approaches [21], in which Mini-Bucket Elimina-
tion heuristics [2] are used to guide the search.

REFERENCES

[1] S. Dasgupta, C. Papadimitriou, and U. Vazirani, Algo-
rithms. McGraw-Hill, Inc., 2006.

[2] R. Dechter, Constraint processing. Morgan Kaufmann,
2003.

[3] V. Chandru, “Variable elimination in linear constraints,”
Comput. J., vol. 36, no. 5, pp. 463–472, 1993.

[4] R. Dechter and J. Pearl, “Network-based heuristics for
constraint-satisfaction problems,” AIJ, vol. 34, no. 1,
pp. 1–38, 1987.

[5] M. Davis and H. Putnam, “A computing procedure for
quantification theory,” J. ACM, vol. 7, no. 3, pp. 201–
215, 1960.

[6] S. L. Lauritzen and D. J. Spiegelhalter, “Local com-
putations with probabilities on graphical structures and
their application to expert systems,” J. R. Stat. Soc., vol.
50, no. 2, pp. 157–224, 1988.

[7] U. Bertele and F. Brioschi, Nonserial dynamic program-
ming. Academic Press, Inc., 1972.

[8] A. Petcu, “A class of algorithms for distributed con-
straint optimization,” PhD thesis, EPFL, 2007.



13

[9] S. Aji and R. McEliece, “The generalized distributive
law,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 325–
343, 2000.

[10] R. Farber, CUDA Application Design and Development.
Elsevier, 2011.

[11] S. Balla-Arabe, X. Gao, D. Ginhac, V. Brost, and
F. Yang, “Architecture-driven level set optimization:
from clustering to subpixel image segmentation,” IEEE
Trans. Cybern., vol. PP, no. 99, pp. 1–14, 2015.

[12] D. Berjon, G. Gallego, C. Cuevas, F. Moran, and N.
Garcia, “Optimal piecewise linear function approxima-
tion for gpu-based applications,” IEEE Trans. Cybern.,
vol. PP, no. 99, pp. 1–12, 2015.

[13] Y. Tan and K. Ding, “A survey on gpu-based implemen-
tation of swarm intelligence algorithms,” IEEE Trans.
Cybern., vol. PP, no. 99, pp. 1–14, 2015.

[14] E. Bensana, M. Lemaitre, and G. Verfaillie, “Earth
observation satellite management,” Constraints, vol. 4,
no. 3, pp. 293–299, 1999.

[15] N. Satish, M. Harris, and M. Garland, “Designing
efficient sorting algorithms for manycore GPUs,” in
Proc. IEEE IPDPS, 2009, pp. 1–10.

[16] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens,
“Scan primitives for GPU computing,” in Proc. ACM
GH, 2007, pp. 97–106.

[17] L. Zheng, O. J. Mengshoel, and J. Chong, “Belief prop-
agation by message passing in junction trees: computing
each message faster using GPU parallelization,” in Proc.
UAI, 2011, pp. 822–830.

[18] L. Zheng and O. Mengshoel, “Optimizing parallel belief
propagation in junction trees using regression,” in Proc.
SIGKDD, 2013, pp. 757–765.

[19] F. Bistaffa, A. Farinelli, and S. D. Ramchurn, “Sharing
rides with friends: a coalition formation algorithm for
ridesharing,” in Proc. AAAI, 2015, pp. 608–614.

[20] K. Kask, R. Dechter, J. Larrosa, and A. Dechter, “Uni-
fying tree decompositions for reasoning in graphical
models,” AIJ, vol. 166, no. 1, pp. 165–193, 2005.

[21] N. Flerova, R. Marinescu, and R. Dechter, “Weighted
heuristic anytime search: new schemes for optimization
over graphical models,” Ann. Math. Artif. Intell., pp. 1–
52, 2016.

[22] J. H. Reif, “Depth-first search is inherently sequential,”
Inform. Process. Lett., vol. 20, no. 5, pp. 229–234, 1985.

[23] Y. Xia and V. K. Prasanna, “Distributed evidence prop-
agation in junction trees on clusters,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 7, pp. 1169–1177,
2012.

[24] F. Fioretto, T. Le, E. Pontelli, W. Yeoh, and T. Son,
“Exploiting gpus in solving (distributed) constraint op-
timization problems with dynamic programming,” in
Principles and Practice of Constraint Programming,
2015, pp. 121–139.

[25] D. A. F. Alcantara, Efficient hash tables on the GPU.
University of California at Davis, 2011.

[26] F. Bistaffa, A. Farinelli, and N. Bombieri, “Optimising
memory management for belief propagation in junction

trees using GPGPUs,” in Proc. IEEE ICPADS, 2014,
pp. 526–533.

[27] P. M. Kogge and H. S. Stone, “A parallel algorithm for
the efficient solution of a general class of recurrence
equations,” in IEEE Trans. Comput., 1973, pp. 786–793.

Filippo Bistaffa received the PhD in Computer
Science from the University of Verona in 2016. He
is Research Associate at the Dept. of Computer
Science of the University of Verona. His research
interests comprise combinatorial optimisation prob-
lems for realistic applications and GPU computing.

Nicola Bombieri received the PhD in Computer
Science from the University of Verona in 2008.
Since 2008, he is researcher and Professor Assistant
at the Dept. of Computer Science of the University
of Verona. His research activity focuses on parallel
computing, design and verification of embedded
systems, and automatic generation and optimization
of embedded SW. He has been involved in several
research projects and has published more than 70
papers on conference proceedings and journals.

Alessandro Farinelli is Associate Professor at the
Dept. of Computer Science of the University of
Verona. His research interests comprise theoretical
and practical issues related to the development of
Artificial Intelligent Systems applied to robotics.


