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Abstract: In recent years, several extensions of the Hadoop system have been proposed for dealing
with spatial data. SpatialHadoop belongs to this group of projects and includes some MapReduce
implementations of spatial operators, like range queries and spatial join. the MapReduce paradigm
is based on the fundamental principle that a task can be parallelized by partitioning data into chunks
and performing the same operation on them, (map phase), eventually combining the partial results at
the end (reduce phase). Thus, the applied partitioning technique can tremendously affect the performance
of a parallel execution, since it is the key point for obtaining balanced map tasks and exploiting
the parallelism as much as possible. When uniformly distributed datasets are considered, this goal
can be easily obtained by using a regular grid covering the whole reference space for partitioning
the geometries of the input dataset; conversely, with skewed distributed datasets, this might not
be the right choice and other techniques have to be applied. for instance, SpatialHadoop can produce
a global index also by means of a Quadtree-based grid or an Rtree-based grid, which in turn are more
expensive index structures to build. This paper proposes a technique based on both a box counting
function and a heuristic, rooted on theoretical properties and experimental observations, for detecting
the degree of skewness of an input spatial dataset and then deciding which partitioning technique to apply
in order to improve as much as possible the performance of subsequent operations. Experiments on both
synthetic and real datasets are presented to confirm the effectiveness of the proposed approach.

Keywords: SpatialHadoop; skewed data; partitioning; MapReduce; BigData

1. Introduction

In recent years several application contexts require the analysis of huge amount of data and very
frequently the dimensions of interest include spatial properties. Therefore, many efforts have been devoted
by researchers to the implementation of solutions for efficiently performing such kind of computations.
The MapReduce paradigm has also been successfully applied to implement parallel solution for those spatial
operations that are typically required for performing spatial data analysis. In particular, the well-known
range query, spatial join and k-nearest neighbor operations are currently available in many MapReduce
frameworks. For instance, SpatialHadoop [1], a spatial extension of Apache Hadoop [2], provides all these
operations, in some cases also in different variants, which can be combined with different partitioning
techniques, usually called global indexing strategies.

The fundamental principle of the MapReduce paradigm is the subdivision of the input into
independent chunks (dataset partitioning) on which the same operation can be performed in parallel
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(map phase), possibly combining the partial results at the end in a successive task (reduce phase).
Therefore, one of the main aspects that can have a great impact on the effectiveness of the parallel
execution is the partitioning of the input dataset. A good partitioning strategy has to produce uniform
chunks in order to ensure balanced map tasks, that is, tasks whose execution should require more or less
the same amount of resources to be processed.

Many MapReduce frameworks, including Hadoop, natively supports a default partitioning method
based on data size, namely in this case the goal is to produce chunks, called splits, having almost the same
size in bytes. This aseptic technique can be effective for traditional (textual) data processing, but may not
be the best choice for partitioning spatial data. Indeed, it could produce poor performances in those cases
in which the input data have to be pruned or filtered considering its spatial location. Conversely, more
appropriate partitioning techniques could separate spatially nearby records in different partitions [3],
favouring the subsequent data analysis.

For this reason, several spatial partitioning methods have been implemented in specific extensions
of MapReduce frameworks in order to subdivide the geometries into splits according to their spatial
properties. For instance, indexes based on a regular grid, Quad-trees and R-trees are available
in SpatialHadoop [4] and can be applied to partition a dataset before executing a given operation.
However, in this paper we show that not all spatial partitioning techniques behave in the same way and in
different cases the best technique to use can change according to the spatial characteristics of the datasets at hand
and eventually the operation that has to be performed on the partitioned datasets.

As a first example of the kind of issue we want to consider in this paper, we shown in Table 1
the results of the execution in SpatialHadoop of the Distributed Join (DJ) [5], the Range Query (RQ)
and of the k-Nearest Neighbor operation (k-NN) when applied to different situations. We consider
the following cases:

1. the DJ operation applied to two datasets which are both uniformly distributed. In particular, the first
one (denoted as D1yp) is partitioned using a regular grid (GR), while the second one (denoted as
D2;p) has been partitioned using different techniques, namely regular grid (GR), Quadtree (QT)

and R-tree (RT).
2. the DJ operation applied to a uniformly distributed dataset (denoted as D1;;y) and a skewed one

(denoted D2gkw). In particular, D1j;x has been partitioned using a regular grid, while D2y has
been partitioned with several possible partitioning techniques.

3. the RQ operation applied to a skewed dataset (Dlgkw) partitioned with several possible
partitioning techniques.

4. the k-NN operation applied to a skewed dataset (D1gky) partitioned with several possible
partitioning techniques.

In Table 1, the second column reports the applied partitioning technique, the third column contains
the total time in milliseconds for performing the operation, while the last column reports some statistics
about the map tasks. In particular, we indicate the number of instantiated map tasks, the average time
taken by them and the relative standard deviation (RSD) between their execution times. A greater value of
RSD means that there is a great difference between the execution time of different map tasks, while a lower
value means that they essentially take the same time to complete.

As expected, when both datasets are uniformly distributed, the response time of the DJ is similar
regardless of the used index, while, when a skewed distributed dataset is considered, then the differences
are significant and in this particular case are in favor of the R-tree. This is mainly due to the fact that
when the distribution is skewed, the partitioning of the geometries based on a regular grid does not
produce balanced splits (i.e., RSD is about 90%), while the Quadtree and the R-tree indexes perform
better and produce more balanced splits (i.e., RSD is about 28% for the R-tree). A similar behaviour
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can be observed for the other two operations, RQ and KNN, where again the Quadtree and R-tree
partitioning techniques perform better. In particular, also in this case the best technique is the one
with the lowest deviation between the execution time of the map tasks. Therefore, we can observe that
balancing the cost of the map tasks is crucial for effectively exploiting the parallel potentiality provided
by a MapReduce framework.

Table 1. Execution of the DJ, RQ and KNN operations in SpatialHadoop with datasets having different kind
of partitioning (i.e., partitioning based on: GR = regular grid, QT = Quadtree or RT = R-tree) and having
different distributions (i.e., UN = uniform distribution, SKW = skewed distribution). RSD is the standard
deviation of running times between map tasks.

Dataset Partitioning  Tot. Time #Tasks Map Tasks AVG ~ %RSD
and Operation Technique (Millis) Time (Millis) Time
- Diyn » D2y GR/GR 145,307 37 15,833 4%
gl Dilyn »x D2yn GR/QT 150,458 51 18,902 9%
2 s Dl1yn % D2yn GR/RT 147,646 54 16,231 7%
D1yn X D2gsxw GR/GR 125,327 33 22,710 90%
X Dlyn ® D2gxw GR/QT 96,001 52 11,209 50%
D1yn X D2ggw GR/RT 40,205 21 18,087 28%
T Range(D1skw) GR 37,798 3 14,647 29%
7 Runge ( DlSKW) QT 37,390 6 7353 67%

‘ Range(D1gsgw) RT 32,793 3 13,096 9%
Knn(D1sgw) GR 47,861 3 14523 21%
& Knn(D1ggw) QT 37,639 2 12,324 57%

‘ Knn(Dlggw) RT 27,786 2 4632 13%

The aim of this paper is to provide a way to easily detect some hints about the dataset distribution
and based on them chose the more effective partitioning technique to apply. In this manner the partitioning
will be mainly based on the spatial properties of the geometries contained in the dataset and not only on
its size in bytes.

In literature, many statistical techniques have been proposed to provide a summarized description of
a dataset. These descriptors, often called sketches, are used to speed up the query processing by providing
approximate answers based on them [6]. One of their main uses in spatial big data analysis can
be the estimation of selectivity for a join operation. we can classify relevant sketching techniques
into two main categories—sampling-based methods [1,4,7,8] and histogram-based methods [9,10]. In general,
histogram-based methods are shown to be superior for accurate spatial selectivity estimation [11,12].

This paper proposes a new technique which internally constructs multiple uniform histograms.
However, it does not require to store and maintain all of them, since, rather, it aggregates them into
a regression model. The regression model produces only two numbers that are used as indicators of
the dataset distribution in the reference space. More specifically, the proposed technique is based on
the concept of box-counting that was first proposed in Reference [13] for computing the fractal dimension
of a dataset of points. The behavior of the box-counting function measured in a restricted range of values
(representing the cell side of the grid) can be described by a power law and it was used in Reference [14]
for estimating the selectivity of self-join and range query, then extended in Reference [15] to the spatial join
on distinct datasets. We propose its application in the context of big spatial data for the following reasons:
(i) it is an efficient technique for detecting information about the dataset distribution; (ii) it produces
just one number characterizing the data distribution and does not require to store auxiliary structures,
like histograms; (iii) the box-counting function can be computed in parallel, since it calculates a uniform
histogram storing the counts and this can be easily implemented in MapReduce.
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The main contributions of the paper are: (i) the extension of the box-counting function to all types
of geometries; previously, it could be applied only to a set of points; (ii) the definition of a MapReduce
algorithm for its efficient computation, possibly on a sample of the considered dataset; (iii) the definition of
heuristics for the choice of the best partitioning technique for a given datasets whose distribution has been
described by means of the box-counting function. A subset of these results have already been presented in
Reference [16]. In particular, this paper considerably extends the work done in Reference [16] by providing:

(@) an analytical presentation of the box-counting function together with some examples that justify
the proposed approach (Section 3),

(b) adetailed description of a MapReduce implementation of the algorithm for computing the exponents
of the power law that characterizes the box-counting function (Section 4),

(c) an extended presentation of the proposed heuristic for choosing the right partitioning techniques
together with the proofs of the defined properties (Section 5),

(d) acomprehensive set of experiments performed both on real and synthetic datasets (Section 6) which
includes three types of operation: the spatial join, the range query and the k-nearest neighbor.

2. Background

In this section we summarize the main characteristic of the MapReduce implementation of spatial
operations like spatial join, range query and K-nearest neighbor, together with the main partitioning
technique usually available in cluster systems dedicated to spatial data, such as SpatialHadoop.

2.1. Partitioning Techniques in SpatialHadoop

This section briefly describes the partitioning techniques available in SpatialHadoop and shows their
effect on skewed distributed datasets.

At the basis of the MapReduce paradigm is the idea to divide the input dataset into fixed-size
blocks, called splits, on which the same operation (map task) can be instantiated and executed in parallel.
If all map tasks can be executed in parallel, then the total execution time depends on the map task that
takes longer. Therefore, the fastest parallel executions can be obtained when the map tasks are well
balanced. It follows that the partitioning of data into splits is a crucial operation for obtaining well
balanced map tasks and ensure faster executions. Hadoop traditionally applies a random division of
the input data, during split generation the only prescribed constraint regards the size in bytes of such
splits on the HDFS (Hadoop Distributed File System). However, this naive partitioning cannot be the right
choice during spatial analysis for which some filtering or pruning is always performed for evaluating
spatial predicates.

Some partitioning techniques that take into account the spatial correlation (locality property) of
the input data is necessary, that is, geometries that are closed in space will be placed in the same split.
Table 2 compares different partitioning techniques when applied to different datasets. For each dataset
and applied technique, we report the number of produced splits and the relative standard deviation (RSD)
between their cardinalities (i.e., degree of balancing in terms of number of geometries). The simplest one
relies on the use of a uniform grid (first row). However, such technique might produce balanced tasks only
for uniformly distributed datasets, but not in general. Indeed, as we have shown in Table 1, when skewed
distributed datasets are considered the cost of the map tasks is often unbalanced, causing a performance
degradation (% RSD is 1% for the uniform distribution, while it is more than 100% for the other datasets).
Therefore, in order to guarantee the generation of balanced splits, different types of grids should be used
for data partitioning. In SpatialHadoop three main types of grid exists for global data partitioning, the first
two are space-based while the last one is a data-based partitioning:
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e  Regular grid: it identifies the cells by dividing the 2D space in both axes by a constraint measure;
it is suitable only for uniformly distributed datasets;

o Quadtree-based grid: it identifies the cells by recursively subdividing a cell (starting from the whole
space) in 4 equal cells until the number of geometries per cell reaches a threshold;

e  Rtree-based grid: it identifies the cells by recursively aggregating the geometries of the dataset until
the number of geometries per cell reaches a threshold.

Table 2. Global index grids for synthetic and real datasets.

Uniform Distr. Diagonal Line Double Cluster Primary Roads USA
(UD) DLg DCg PRysa

Partitioning technique base on a regular grid (RG)

[

e ]
9 splits, % RSD =1% 7 splits, % RSD =119% 6 splits, % RDS = 141% 3 splits, % RSD = 104%

Partitioning technique base on a Quadtree based grid (QT)

16 splits, % RSD =1% 46 splits, % RSD =98% 24 splits, % RDS = 141% 18 splits, % RSD = 56%

Partitioning technique base on a R-tree based grid (RT)

12 splits, % RSD = 0% 12 splits, % RSD = 1% 12 splits, % RDS = 0% 12 splits, % RDS = 33%

We partition synthetic and real datasets using the above listed techniques and we obtain the grids
shown in Table 2. As you can notice, the R-tree is the one that ensures the best balancing in terms of
number of geometries per cell (i.e., % RSD), but is some cases (e.g., the DCp or the PRyjs4) it can produce
very unbalanced cells in terms of covered space.
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2.2. Spatial Operations in SpatialHadoop

In order to evaluate the effectiveness of the proposed method in choosing the right partitioning
techniques for spatial datasets of any distribution, we consider three operations: spatial join, range query
and k-nearest neighbor. Hereby we briefly describe their implementation in MapReduce.

o  Distributed Spatial join (D])—The distributed spatial join operator (DJ) works on two input datasets D;
and D,. Both datasets can be partitioned according to one of the index techniques mentioned in
the previous section. Therefore, each dataset D; is represented as a collection of partitions, D; =
{8i1, - 8ix;}. Each partition s;; is characterized by a key, representing the index cell, and a list
of geometries belonging to that cell. Given two datasets D; and D;, the input of each map task
is prepared by a binary reader which is able to generate a compound split ¢; = (s1x, 52,) starting
from a pair of splits belonging to the two datasets (i.e., s1» € D1 and sy, € D»). In particular, a filter
is used for preparing the compound splits, so that only the pairs of splits regarding intersecting cells
are generated. Therefore, the number of generated compound splits, and consequently the number
of map tasks, is equal to the number of pairs of intersecting cells. Given a compound split, each
map tasks loads its content into two lists and then it applies a Plane-sweep algorithm for checking
the intersection between their geometries. D] is a map-only job, no reduce phase is necessary,
and clearly it can be classified as a map-side join.

o  Range query (RQ)—the range query (RQ) works on one file only, which can be partitioned in splits
using one of the available techniques, D = {s, ..., s¢ }. Since also in this case, the reader works on
indexed data, given a query rectangle R, a filter is applied in order to select the splits (cells) that
intersects R. A map task is instantiated for each split (cell) having a non-empty intersection with R.
Inside each map tasks, a test is performed in order to precisely determine which split geometries
intersect R. RQ is also a map-only job, namely it has no reducers.

e  k-Nearest Neighbor (k-NN)—As the range query also k-NN reads only one dataset D = {sq, ..., 5y }.
This operation is divided in more than one MapReduce job. In particular, given a dataset D and a query
point Q, the first job tries to find the k nearest neighbor geometries in the split s; which correspond
to the cell ¢; containing the query point Q. This job is composed of a map and a reduce phase.
During the map phase, the distance between each geometry g € s; and the point Q is computed. Then,
a single reduce task receives the list of such geometries with their distance from Q and extracts the first
k points according to that distance. After this job, a circle with center in Q and having as radius
the distance of the k-th geometry (or the last retrieved one) is computed. If the circle is contained in
the cell of s; the execution terminates; otherwise, the circle is used as filter for the splits to be processed
by the second job. More iterations can be done only if the first job does not retrieve k geometries. of
course, if k is small very often the first job is sufficient.

3. Evaluation of Dataset Skewness

Considering the case study shown in Table 1, it is clear that an easy and efficient way for evaluating
the skewness of a spatial dataset can be crucial for choosing the right partitioning technique. This section
presents the definition of the box-counting function BC}, (r) for a given dataset D containing 2D geometries
of type point, line or polygon embedded in the Euclidean plane. This is the first contribution of the paper,
since it is an extension of the box-counting function proposed in Reference [14] which originally applies
only to finite set of points. The implications of such extension on the estimation correctness are discussed
and the possible alternatives are evaluated. We will see later how the analysis of this function can provide
some hints about the skewness of the dataset.
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Definition 1 (Box-counting function). Given a dataset D, containing 2D geometries (i.e, points, lines or polygons),
and a scale r, representing the cell size of a grid covering the reference space of D (i.e., the MBR of the whole dataset
D), the function Box-counting BC},(r) is defined as follows:

BCh(r) = L pi(D)! with g #1, M

where p;(D) = count(geometries of D intersecting the cell i). The case q = 1 is excluded, since it always returns
the total number of geometries in the input.

In Reference [14] the author shows that the box-counting function is useful for computing
the generalized fractal dimension of a finite set of points, where g represents the exponent in Equation 1
and r is the considered scale (i.e., the cell side of the grid). Intuitively, given a grid with cells of
side r, the box-counting function with g = 0 proposed in Reference [14] counts the number of cells
that are intersected by at least one point of D, similarly here the function BCY (r) counts the number of
cells that are intersected by at least one geometry of D. In this way, when exponents g is greater than 1,
the box-counting is the sum of the number of geometries intersecting a cell raised to 4. As we will show,
this function can be used to detect the skewness of a dataset by computing it for 4 = 0 and g = 2 while
varying the value of r. More specifically, the level of skewness of a dataset depends on how this value
changes while increasing r.

Notice that with respect to the definition given in Reference [14], which applies only to set of points
and counts the number of points contained in a cell, in Definition 1 we propose to count the number of
geometries that intersect a cell. This extension of the box-counting function from set of points to generic
geometries could be obtained in three ways, as discussed below.

(i) a first option could be to choose a representative point for each geometry of the dataset
(e.g., its centroid) and then apply the classical box-counting function. This can be the simplest
solution, but it does not ensure to always detect the real behavior of the dataset. This is for instance
the case of a datasets containing a set of big polygons covering the whole reference space, if they
are approximated by their centroids, the resulting points are all clustered in a small region of the same

space, thus producing a point set that does not describe at all the original dataset layout.
(ii) Another solution could be to substitute the geometries with their vertices; again, there could

be regions covered by geometries that are not covered by their vertices, with the same effect described

in the previous case.
(iii) the last solution is the one adopted by this paper, namely to count the number of geometries

intersecting a cell, which is equivalent to suppose that each geometry g is converted in a set of points
P(g) covering the same space with a granularity that satisfies the following hypothesis: if g intersects
a cell i, then there exists at least one point p € P(g) such that p intersects the cell i. With this hypothesis,
we can extend the box-counting function from point sets to sets of geometries and apply to our
case the results of Reference [14]. Notice that even if this solution can produce an over-estimation
for the selectivity, it does not have negative effects for the problem considered in this paper, namely
the estimation of the dataset distribution, conversely it leads to a more precise result.

Definition 2. Given a dataset D, containing 2D geometries (i.e, points, lines or polygons), the Box-counting
plot is the plot of BCqD (r) versus r in logarithmic scale. Now, we can consider such plot and exploit the following
observation of Reference [14]—for real datasets the box-counting plot reveals a trend of the box-counting function
that, in a large interval of scale values r, behaves as a power law:

BCL(r) = a-rFs, 2)
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where a is a constant of proportionality and E, is a fixed exponent that characterizes the power law.

As we will see in Example 1, the Box-counting plot is vital for the computation of the exponent E;
for a given dataset D, since this exponent becomes the slope of the straight line that approximates BC}, ()
in a range of scales (r1,72), thus it can be computed by a linear regression procedure. The exponent E,
characterizes the dataset distribution as explained by the following set of properties.

o forg =0, Ej is negative and the power law, given the length of the cell side r, computes the number
of cells that are intersected by the dataset D. Notice that, if D is uniformly distributed in the reference
space (the Euclidean plane in our case), then the number of cells intersecting D coincides with the total
number of cells of the grid, thus the more 7 increases the more this number decreases according
to the area of the cells. As a consequence in case of an uniform distribution, Ey is equal to minus
the dimension of the embedding space, in our case Eg = —2.

e for datasets that represent fractals (like the Sierpinski’s triangle), it is known from the theory that E,
coincides with the fractal dimensions of the fractal for any g (it is a consequence of the self similarity
property), thus for the Sierpinski’s triangle Eg = —1.585.

e  Finally, we can observe that Ey and E; could be chosen as reference descriptors for a dataset D with
the aim to have some hints about the distribution of the geometries in the reference space of D.
Indeed, E¢ can be an indicator of the cases where the dataset leaves empty some areas of the reference
space, while E; can also be affected by the concentration of the datasets in some areas with respect
to other ones, that is, the situations where there are no empty areas, but different concentrations in
different areas.

Example 1. Two examples of Box-counting plot with q = 0 and q = 2 are reported in Figure 1, where the considered
dataset is shown on the left and the corresponding plots on the right. In particular, the first dataset Dy;,, (Figure 1a)
is synthetically produced by a generator of points belonging to the Sierpinski’s triangle [17], which is a well known
fractal, and by substituting the points with small polygons. The Box-counting plot of BCY,, (r) and BCZ,,.(r)
are represented by diamonds in Figure 1b,c, respectively. The second dataset Dpprg,s (Figure 1c) is a real dataset
containing a set of lines representing the main roads of Australia; again the Box-counting plot of BCoy. (1)
and BCy, . (r) are represented by diamonds in Figure Te f, respectively. The Box-counting plots reports also, inside
blue and red rectangles, the exponent Eq (Figure 1b,e) and E, (Figure 1c,f), computed by applying the MapReduce
algorithm illustrated in the next section.

For the dataset Dyg,,, two intervals of r values with constant slope are detected in the plot BCSZ. o (7). In the
first one with very small values of log(r), from —8.3 to —5.5, Ey is about —0.361; this behavior is due to the fact
that, having very small cells and being the dataset finite, the number of cells intersected by the geometries tends
to be rather constant (one polygon for each cell), but having polygons instead of points, it slightly decreases. (ii) In
the second interval, from —4.1 to —0.7, the behavior of the fractal emerges and Ey is about —1.578, namely very close
to the expected theoretical value. For the plot BC%, (r) similar considerations can be done, since, as theoretically
proved, fractals have equal exponents for every parameter q considered in the power law.

For the dataset Dpggys, again two intervals are detected, in the first one Ey is around —1.2. This means that
the dataset has a skewed distribution (indeed, Ey > —2), and the more we reduce the size of v, the more emerges
the local behavior of the dataset as a line: indeed, it is composed of linestrings. In the second interval E is around
—1.554, which means that for greater values of r the dataset is present in almost all cells, so the diffusion is close
to the uniform one and thus E is close to —2.0. In such cases Ey has to be considered, since it is able to capture
the real distribution of the dataset, which is actually different from its diffusion. In particular, for Dpggys we can

observe that most of the roads are concentrated in the south east and south west of Australia.
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Figure 1. Example of Box-counting plot for: (a—c) a synthetic dataset with the distribution of a Sierpinski’s
triangle, and (d—f) a real-world dataset representing the primary roads of Australia.

In order to practically use Eg and E; as indicators of distribution for real datasets, it is necessary to find
an easy and efficient way for computing them given a dataset D. The next section presents a MapReduce
implementation in SpatialHadoop of an algorithm for efficiently computing Ey and E,.

4. A MapReduce Algorithm for Ey and E;

This section presents the second contribution of the paper, namely a MapReduce algorithm
for the computation of the exponents Ey and E, of the power laws introduced in Equation (2). It was
implemented w.r.t. SpatialHadoop, thus some basic spatial functions are assumed to be available in
the target system.

Given a dataset D containing geometries of different types, the required exponents can be obtained
by first computing the box-counting function BC},(r) for different values of r, and then by using linear
regression to determine the slope of the line representing the plot of BC%(;’), as shown in Figure 1.
Such slope is equal to the parameter E; which we need to estimate. It follows that the main goal
is the computation of the Box-counting plot of D for BCY(r) and BC?(r); the successive linear regression
can be applied in constant time, since the computed plots will always have the same number of pairs
(log(r), log (BCY,(r)) (or (log(r), log(BCA(1))).

In order to compute the required Box-counting plots, we need to know the reference space of D,
which is represented by its MBR. The user can already know this MBR, thus passing it as a parameter,
or it can be unknown. In the latter case, a preliminary MapReduce job can be performed to compute
it, for instance by invoking the method FILEMBR() of SpatialHadoop. Given the MBR of D, it is now
necessary to choose a list of grids (G, .. ., G,) with increasing cell size r1, . . ., 7, to be used for computing
the series (r1, BC(r1),...) and (r1, BC%(r1),...). The most convenient choice for the grids is the one that
can guarantee to produce Box-counting plots with homogeneous distributed values in a logarithmic scale.
Thus, starting from a value r, at each step i we derive the r; values by multiplying r;_; by 2. The initial rq
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is chosen so that r;, is less than the side of the MBR (to simplify the presentation we suppose here that
the MBR is a square) and that a minimum number of grids could be generated.

In the MapReduce procedure, each map task will process one split of D, and for each geometry g of
the split it identifies the cells of the finer grid gridy that it intersects. it counts the the number of geometries
intersected by each cell of gridy and at the end, it writes as result a set of pairs (i, p;(D)), where i identifies
the cell of gridy, while p;(D) is the count of geometries in D intersecting the cell i. Notice that we do not
raise such count to the power ¢ at this point because the value p;(D) is not final as it needs to be merged
with the result of other map tasks during a subsequent reduce phase.

The map task is presented in Algorithm 1. The finer grid gridy is generated in the SETUP()
method (line 4). Additionally, a hash map bcounty is created (line 5) that will store the counts of
(only) the not empty cells of gridy. In this way we avoid to store all the cells of gridy. In the MAP()
method (lines 6-9), for each input geometry geom, the function gridy.intersects(geom) is executed (line 7).
This function returns a list of identifiers representing the cells of grid intersected by geom. Finally, for each
one of such cells ¢;, the hash map bcounty is updated (line 9). In the CLEANUP() method
(lines 10-12), the content of bcounty is written to disk producing the input of the successive reduce task.

Algorithm 1: Map Task

1 class MAPPER

2 gridp, beount

3 method SETUP(ry, MBR)

4 gridy <— Grid(ro, MBR)
5 becounty «— HashMap()

6 method MAP(id, geom)

7 intCells <— gridy.intersects(geom)

8 foreach ¢; € intCells do

9 L beounty.put(cj, beounty.get(c;) + 1)

10 method CLEANUP()
1 foreach (c;, pi) € bcountg do
12 | WRITE(c), py)

The complexity of each map task is O(Nspm), where Ngy;; is the average number of geometries of D
per split.
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The pseudo-code of the reduce task is presented in Algorithm 2. Notice that its SETUP() method
generates a list of grids grids and the corresponding list of hash tables bcounts. The grids are generated
starting from an initial cell side rp, while successive r; values are obtained by multiplying r;_; by 2.

Algorithm 2: Reduce Task

1 class REDUCER

2 grids, bcounts

3 method SETUP(ry, MBR)
1 grids, bcounts <— @
5 r<— 1o
6
7
8
9

while r < MBR.width do
grids.add(Grid(r, MBR))
beounts.add(HashMap())
ré—rx*2

10 method REDUCE(c;, counts)

11 total <— 0

12 foreach v € counts do

13 L total «— total + v

14 foreach i € [0.. | grids |] do

15 if i = 0 then

16 t beo.put(cj, total)

17 else

18 Qr; <— grids.get(i)

19 cj «— gri.getCell(c;)

20 bej.put(cj, bej.get(c;) + total)

21 method CLEANUP()

22 Ey,E1 +— O

23 foreach g; € grids do

2 be; «— beounts.get(g;)

25 BCY «+— bc;.size()

26 BC?+—0

27 foreach (c;, pi) € bc; do

28 | BC?+— BC?+p}

29 Eo.put(log(g;.cellSize()),log(BC?))
30 Ep.put(log(g;.cellSize()),1og(BC?))
31 WRITE(O, regressionSlope(Ey))

32 WRITE(2, regressionSlope(E;))

The REDUCE() method receives as input the partial results produced by the map tasks. In particular,
for each cell ¢; of gridy it receives a list of partial counts for ¢; computed by the various map tasks.
Therefore, it initially sums such counts producing its total count (line 13). These total values are stored
into the hash map bcy (lines 16). The same total values are used for updating the cells of the other grids
that contain ¢; (lines 20), so that every hash map bc; can be filled during the same iteration.
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In the CLEANUP() method the series (r;, BCY(r1),...) and (r1, BC%(r1),...) are computed starting
from the hash maps bc; (lines 23-30). Finally, the slopes representing Eg and E; are computed applying
the procedure regressionSlope (lines 31-32). In this phase the range of scales can be split in some intervals
when necessary in order to obtain a constant slope.

The complexity of each reduce task is O(n,; + 1 grid)r where 1., represents the total number of cells
of gridy intersected by the dataset D, while g4 =| grids |.

Table 3 illustrates the results of the application of the proposed MapReduce job to both synthetic
and real datasets. The first column describes the dataset in terms of its distribution and number of
geometries (i.e., cardinality), while the second column reports the taken time in milliseconds and the last
column contains the obtained values.

Table 3. Algorithm application for the computation of Ey and Ej;.

Dataset (Cardinality) Total Time (ms) Eo/E>
Sierpinski’s triangle (5,000) 1115 —1.578/1.522
Sierpinski’s triangle (500,000) 3187 —1.584/1.520
Uniform distribution (4,500,000) 27,721 —2.000/1.992
Diagonal (4,500,000) 17,244 —1.131/1.068
Double cluster (4,500,000) 28,311 0.000/0.178
Primary Roads USA (12,400) 2982 —1.273/1.230

5. Heuristics for Choosing the Best Partitioning Technique

Given the MapReduce procedure illustrated in the previous section, it is now time to introduce some
criteria for choosing the right partitioning technique based on the computed values. In particular, we need
to introduce some criteria assessing the quality of the partitioning techniques with respect to the operations
that we want to perform onto the indexed datasets. Considering the spatial join, range query and k-nn,
we define two quality descriptors that have to be minimized in order to improve the effectiveness of an
index on a dataset D.

e di(D): the %RDS (relative standard deviation with respect to the mean) of the split cardinality
(i.e., the number of geometries);

e dy(D): the percentage of the reference space covered by the grid that represents dead space, that is,
space containing no data.

Notice that, d; affects the cost of a single map task, while d, has an impact on the total number of
map tasks to be instantiated by the desired operation.

Let us consider again the partitions produces by applying the techniques illustrated in Section 2
on synthetic and real datasets, and in particular the grids obtained in Table 2. For each of them
Table 3 reports the computed values of Ey and E;. Such obtained results confirm the ability of Ey
and E; in distinguishing cases that need different partitioning techniques. Indeed, for the uniform
distribution (Eg ~—2.0 and E;~2.0) the obtained partitions are very similar for all techniques; in this
case the regular grid can be the best choice, since its creation cost is less. For the diagonal with
buffer (Ey~—1.0 and E;~1.0) the Quadtree-based and the Rtree-based grids adapt best to the dataset
distribution. However, the partitioning produced by the Rtree-based grid has more balanced cells w.r.t.
the Quadtree-based partition, in terms of number of geometries per cells. Finally, when a clustered dataset
is considered (Eg~0.0 and E;~0.0), we obtain the best partitioning with the Quadtree-based grid, while
the Rtree-based grid produces a partition with lots of dead space.
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At this point the idea is to exploit Ey and E; in order to choose the right grid for data partitioning,
without building all kinds of indexes. This goal can be obtained thanks to the following properties of E
and E,.

Property 1 (Dataset diffusion). Given a dataset D, when its exponent E is close to —2.0, then the descriptor dy
for any index is close to zero, that is, no dead space exists.

Proof. If E is equal to —2.0, then the dataset is distributed in the reference space in such a way that,
for each scale  of the grid G that is considered during the box-counting computations (see Definition 1),
all the cells of G are intersected by the geometries of D. Considering a reference space 1 x 1:

Eo = —2 = BCY(r) = r2, thus

Y pi(D)? = rlz = count (all cells of the grid)
i

Therefore, the geometries of D are spread throughout the reference space and no dead space exists. [

Property 2 (Dataset distribution). Given a dataset D, when its exponent E is close to 2.0, then the descriptor dy
of a reqular grid is close to zero, that is, every cell of the grid contains the same number of geometries belonging to D.

Proof. If E; is equal to 2.0 then the dataset is distributed in the reference space so that the box-counting
computations (see Definition 1) produce the following result:

Ey =2 = BC3(r) = 1?, thus
Y pi(D)? = ar
i

Since the term Y_; p;(D)? is minimized when the p;(D) are all equal, then we obtain the uniform distribution
of the dataset, which is our thesis. [

Now we add to the above presented formal properties some experimental observations. Given a
dataset D:

1. When the computed E is around 1.0, then the dataset is skewed, has some dead space and is located
around a curve, thus it is usually connected. In this case, the regular grid will have high values
for the descriptors d; and dj, since the dataset cannot be uniformly partitioned into cells with equal
area, while the Rtree-based grid will have the lowest value for dy, because it is the technique that starts
from geometries and not from the space for clustering data, but also a good value for dj, since data
cover a connected region. Finally, the Quadtree-based grid will have a good value for dy, but a higher
value for d, w.r.t. Rtree-based grid.

2. When the computed Ej is around 0.0, then the dataset is skewed, has lots of dead space and is
located around two or more points, thus it is usually not connected. In this case, the regular grid
will have high values of d; and d,, as before; the Rtree-based grid will have the lowest value for d,
but a higher value for d; due to the fact that the connectivity is lost, while the Quadtree-based
grid will have a better values for both d; and d, than the Rtree-based one, since it adapts better
to the clustered datasets.

3.  Similar considerations are valid for the values of E,, where instead of dead space it detects regions of
lower /higher concentration, thus affecting more deeply the descriptor d5.
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Using Properties 1 and 2 and the above listed observations, we propose the following heuristic
for choosing the best partitioning technique customized to a dataset D. It is based on the decision tree
shown in Figure 2.

tru
R-tree

false

Quadtree

Figure 2. Decision tree for the choice of the more appropriate partitioning technique for a dataset D.

The first test t; on Ep determines if the dataset spread throughout the reference space or
it is concentrated in some way. If f; is true, we need to verify the kind of distribution it has using E,.
In particular, if  is true, then the dataset has a uniform distribution and the best index is the regular grid.
Conversely, if t, is false, we need an additional test t4 on E; to check if the occupied space is connected
or not. If t is true, then the dataset can be considered connected and the Rtree-based grid is chosen;
otherwise, the Quadtree-based grid will be the best choice.

On the contrary, if t; is false, then the dataset has a skewed distribution in the reference space. In this
case the test t3 on Ep is applied to determine if the dataset is clusterized in some way. In particular, if ¢3
is true, then the Quadtree-based grid will be chosen; conversely, the final test t5 on E; is used to determine
some degree of connectivity and to choose between a Quadtree or an Rtree index.

Notice that in the tree we use threshold values equal to —1.5, —0.5 for the choices regarding Eg, while
we use threshold values equal to 1.0, 1.5 for E,, since we consider E; only when the dataset is spread
throughout the reference space or when Ey is around 1.0, thus in this case the values near to 0.0 cannot
be reached by E,. The effectiveness of the proposed heuristic has been tested by meas of some experiments
illustrated in the next section.

6. Experiments

This section presents some experiments performed on a Hadoop cluster composed of 10 slave nodes
and 1 master node, on which Hadoop 2.8 and SpatialHadoop 2.4 extension have been installed. Each node
is characterized by 4 cores, 8GB of RAM memory and 1TB of SSD, all nodes are connected through an
infinity band network. The experiments consider a collection of datasets containing both synthetic and real
spatial data. Table 4 illustrates their characteristics.
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Table 4. g used in the experiments: UD = uniform distribution, DL = diagonal line, DLp = diagonal line with
buffer, DCg = double cluster with buffer, PRyga = USA primary roads, PRays = Australian primary roads,
WAysa = USA water areas and ST pys = Australian states. In the 6th column: RT = Rtree, QT = Quadtree,
and RG = regular grid.

Dataset Size Ey E, Index
o UD 127GB  —2.000 1997 RG
3 DL 1.07GB  —1.131 1.067 RT
£ DLg 1.07GB  —1762 1177 RT
& DCg 1.07GB  —1615 0042 QT
PRysa 1.00GB —1273 1.032 RT
= WAysa 217GB  —1.837 1602 RG
&  PRaus 118GB —1554 0660 QT
STaus 032GB  —1.731 1692 RG

For each dataset, we computed Eg and E;, (columns 4 and 5 of the table) by applying the algorithm
presented in Section 4 and we determined the best index (column 6) according to the decision tree
presented in the previous section. we considered three kinds of operations on such datasets: range query,
spatial joinan k-nn, using all the three analyzed indexes, that is, we applied three partitioning techniques:
regular grid (RG), Quadtree-based grid (QT) and Rtree-based grid (RT). As regards to the range query
operation, we performed 200 range queries for all datasets and for all kind of indexes by varying the side
length of the query region (from 0.001 to 0.05 with respect to a reference space normalized to 1 x 1).
The obtained results are shown in Table 5 where the reported times are an average value over about
200 queries for each case. Notice that, the best performances are always obtained when the used index
is the one suggested by the proposed heuristic. In particular, when the dataset is uniformly distributed
(UD) all techniques have similar performances, indeed the difference between the best and the worst
solution is at most 5%. For the other synthetic datasets, we obtained as expected that for both datasets
having a distribution around a line, the best is the Rtree-based grid, with a higher gain in the case of the DL
dataset. Instead, when we observed a higher similarity with a clustered distribution, like for the DCp
dataset, the best solution becomes the Quadtree-based grid. Real datasets shown the same behavior of
the synthetic datasets confirming the quality of the proposed heuristic. In particular, when the dataset
is nearly uniformly distributed, as for WAysa or STysa the differences induced by the various partitioning
techniques are very low.

For the spatial join operations, we performed some experiments on synthetic datasets by joining
a uniform distributed dataset, called UN, with another dataset D having one of the other kind of considered
distributions. In particular, for each kind of distribution in Table 4, 10 synthetic datasets are randomly
generated and joined with UN. The obtained results are reported in Table 6. As for the previous tests,
except for the uniformly distributed case where all indexes have the same performances, the best results
are obtained when D is partitioned using the suggested kind of index, achieving also a considerable
reduction on the execution times.

For real datasets we performed a first join between datasets PRysa and WAyga and a second join
between PRays and STays. Both joins were performed in 9 different conditions, that are obtained
by considering all the possible combinations of index type on the first and second dataset. The results
are reported in Tables 7 and 8. The best execution times is obtained when both datasets are partitioned
with the suggested kind of index. Notice that, the worst performances are obtained when a regular grid
is built for both datasets, confirming that it is not a good index in case of skewed data.
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Table 5. Result of experiments with range queries. we performed experiments on each listed dataset,

considering queries of size 0.001, 0.005, 0.01 and 0.05 w.r.t. a normalized reference space of 1 x 1.

The reported time is in milliseconds and is an average value over about 200 queries for each case.

Data QA  Range Query with Index % Improv.
RG QT RT bst vs wst
UD 0.001 16,730 16,341 16,567 1%
0.005 16,986 16,368 16,823 4%
0.010 16,915 16,362 16,194 4%
0.050 21,913 20,872 21,266 5%
DL 0.001 14,689 11,818 11,773 20%
0.005 14,317 11,561 11,497 20%
0.010 12,581 9597 9530 22%
0.050 14,650 11,483 11,204 22%
DLg 0.001 15,187 12,890 12,803 16%
0.005 14,052 11,230 10,471 25%
0.010 13,139 11,570 11,022 16%
0.050 13,358 11,467 11,288 16%
DCg 0.001 12,798 10,886 13,253 18%
0.005 13,754 12,501 15454 19%
0.010 13,729 12,319 15,431 20%
0.050 13,129 12,296 15,854 22%
PRysa - 13,532 13,756 12,102 12%
WAysa - 11,593 11,711 11,854 2%
PRaus - 21,343 18,398 19,396 14%
STaus - 19,274 19,929 19,396 3%

Table 6. Result of experiments with joins on synthetic datasets. The UN has been indexed with a regular

grid, while D is partitioned with various kind of index. The reported time is in milliseconds and is

the average of the times of about 10 queries for each kind of dataset distribution for D.

UN x D Index on D

RG QT RT
D #Maps Time #Maps Time #Maps Time
UuD 37 145,307 51 150,458 54 147,646
DL 35 125,327 60 96,001 22 40,205
DLg 35 123,920 67 123,920 27 50,412
DCg 19 103,410 27 48,083 27 61,776

Table 7. Result of experiments with joins on real datasets regarding the primary roads and the water areas

of the USA.

Index PRUS A

Index RG QT RT
WAysa #Maps Time #Maps Time #Maps Time
RG 124 547,848 89 333,084 74 316,355
QT 228 438277 96 342,126 87 332,858

RT 126 443,466 79 352,038 65 345,754
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Table 8. Result of experiments with joins on real datasets regarding the primary roads and the states of Australia.

Index PR AUS

Index on RG QT RT
STaus #Maps Time #Maps Time #Maps Time
RG 25 253,957 34 126,168 24 180,687
QT 34 166,135 27 161,827 31 177,809
RT 24 171,213 31 172511 25 167,005

Finally, for the k-nn operation, we perform some experiments on both synthetic and real data.
As regards to the synthetic ones, we produce for each kind of considered distributions 10 different
datasets and for each of them we perform 40 experiments by randomly choosing the query point,
the first half of experiments considers a value of k equal to 100, while the second one a value of k
equal to 10,000. Similar experiments have also been performed for real datasets, by varying both the value
of k and the reference point. The results are reported in Table 9. As for the previous operations, in case of
uniform distributed datasets, the difference between the best and the worst indexing technique is very low.
Conversely, in the other cases the choice of the right partitioning technique has a significant impact on
the overall performances.

Table 9. Result of experiments with k-nn queries. we performed experiments on each listed dataset,
considering k equal to 100 and 10,000. The reported time is in milliseconds and is an average value over
about 20 queries for each case.

Data k k-nn Query with Index % Improv.
RG QT RT bst vs wst
UD 100 30405 31,536 31461 4%
10,000 33,692 33,705 34471 2%
DL 100 61,228 57,080 52,916 14%
10,000 61,280 58,522 52,322 15%
DLg 100 75238 55,053 54,602 27%
10,00 68,917 65563 56,980 17%
DCg 100 66,725 62,138 71,743 13%
10,000 71,240 65,818 66,019 8%
PRysa 100 51,647 74473 50,223 33%
10,000 79,608 69,239 54,735 31%
WAysa 100 36,039 41,989 51471 30%
10,000 39,052 52,158 73,942 47%
PRAus 100 45354 36,086 82,493 56%
10,000 63,900 49,212 113,476 57%

7. Conclusions

This paper considers the impact of a skewed distribution on the performances of three spatial
operations, that is, range query, spatial join and k-nn, with particular attention on its effect on the balancing
of the work performed by the map tasks during their parallel execution. we considered as reference
framework SpatialHadoop and its partitioning techniques: regular grid, Quadtree-based grid and R-tree
based grid. Such partitioning techniques can produce different results on the basis of the distribution
exposed by each dataset, and these results can lead to potentially great differences in the performances of
spatial operations. Therefore, the choice of the right partitioning technique for each kind of dataset becomes
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an important activity in order to completely exploit the benefit of a MapReduce execution. For this reason,
we proposed a new technique based on the Box-counting function [14] for efficiently estimating a dataset
distribution and accordingly choose the more suitable partitioning technique. Some experiments on
synthetic and real datasets have been performed to show the effectiveness of the proposed heuristic. Such
experiments reveal that in all cases the suggested partitioning technique is able to improve the execution
time of the following spatial operations. In particular, while in presence of uniform distribution, all
partitioning techniques have essentially the same effect on the following operations, when skewed datasets
are considered, the choice of the wrong partitioning technique can double the time required for a given
analysis. Moreover, when the distribution resemble a linear concentration, data-based paritioning
techniques (like the R-tree) are more suitable, since they are able to produce more balanced splits, while
they are less suitable for clustered datasets because they could produce partitions with lots of dead spaces.
In such case, space-based partitioning (like the Quadtree) are the right choice.

Future work regards the application of the knowledge about dataset distribution to reduce-side joins,
the extension of the proposed approach to selectivity estimation, the application of the box-counting
function for estimating the skewness of multidimensional datasets, also outside the spatial context.
Another important extension could be application of the proposed method in order to define new mixed
partitioning techniques. More specifically, the technique could be applied to break a given datasets
into homogeneous subsets on which different partitioning technique could be applied. It will also
be worthwhile in future work to explore the direction that decides the partitioning without heuristics,
based purely on the identified distribution and by means of machine learning models.
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