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Abstract—IoT platforms enable users to connect various smart
devices and online services via reactive apps running on the
cloud. These apps, often developed by third-parties, perform
simple computations on data triggered by external information
sources and actuate the results of computation on external
information sinks. Recent research shows that unintended or
malicious interactions between the different (even benign) apps
of a user can cause severe security and safety risks. These works
leverage program analysis techniques to build tools for unveiling
unexpected interference across apps for specific use cases. Despite
these initial efforts, we are still lacking a semantic framework
for understanding interactions between IoT apps. The question
of what security policy cross-app interference embodies remains
largely unexplored.

This paper proposes a semantic framework capturing the
essence of cross-app interactions in IoT platforms. The frame-
work generalizes and connects syntactic enforcement mechanisms
to bisimulation-based notions of security, thus providing a
baseline for formulating soundness criteria of these enforcement
mechanisms. Specifically, we present a calculus that models the
behavioral semantics of a system of apps executing concurrently,
and use it to define desirable semantic policies in the security
and safety context of IoT apps. To demonstrate the usefulness of
our framework, we define static mechanisms for enforcing cross-
app security and safety, and prove them sound with respect to
our semantic conditions. Finally, we leverage real-world apps to
validate the practical benefits of our policy framework.

Index Terms—Cloud-based IoT platform, IoT app security,
cross-app noninterference

I. INTRODUCTION

IoT platforms provide robust application support for au-

tomating the interaction and communication between Internet-

connected services and smart physical devices. This interaction

is enabled by simple reactive programs known as IoT apps

(or applets) running on a cloud-based IoT platform, and

sensing and actuating data from services and devices on

behalf of a user. These apps, often developed by third-parties,

are triggered by external information sources, as in “if the
room temperature exceeds a threshold”, to perform actions

on external information sinks, as in “open the windows”. By

exposing devices such as a thermostat and a smart window to

the IoT platform via, e.g., REST APIs, IoT apps can be used to

implement desirable automations like “if the room temperature
exceeds a threshold then open the windows”.

Driven by the appeal of end-user programming, IoT plat-

forms such as IFTTT [24] (If This Then That), Stringify [34],

and Microsoft Flow [29] support thousands of smart de-

vices and services with millions of users running millions

of IoT apps. These platforms help users to build powerful

automations by connecting IoT devices (e.g., smart homes,

security cameras, and voice assistants) to online services (e.g.,
Google and Dropbox) and social networks (e.g., Instagram

and Twitter). For instance, the IFTTT platform allows to

execute IoT applets that include triggers, actions, and filter

code. For the platform to run an applet, users need to provide

their credentials to the services associated with its triggers

and actions. In the previous applet that opens the window

when the temperature exceeds a threshold, the user gives

the applet access to the APIs for the temperature device

(e.g., a Nest Thermostat [32]) and the smart window (e.g.,
SmartThings [35]). Additionally, applets may contain filter

code for personalization, e.g., for setting the temperature

threshold. If present, the filter code is invoked after a trigger

has been fired and before an action is dispatched.

Recently, researchers have shown that popular IoT platforms

are susceptible to attacks that may cause severe security and

safety issues for the end users and the physical devices [5].

Examples of attacks include design flaws due to over privi-

leged permission tokens [18], unexpected information leaks by

seemingly harmless apps [36], and sensitive information dis-

closure by malicious apps [6], [11]. To protect the users against

these attacks, defensive mechanism rely on fine-grained access

control and capabilities, decentralization [19] or static [7], [11]

and dynamic [6] information-flow analysis.

A more subtle vulnerability concerns the unintended or

malicious interaction between different apps running on behalf

on the same user [13]–[15], [17], [36]. The distinctive feature

of IoT apps to affect a shared physical environment such

as the room temperature, may enable unintended cross-app
interactions between IoT apps that are installed by the same

user. For instance, in addition to the above-mentioned IoT app

“if the room temperature exceeds a threshold then open the
windows”, a user may also install the app “if I leave my work
location then turn on the thermostat at home”. While the user’s

intention is to use these two apps for separate purposes, the

interaction between the latter and the former may open the

window while the user is not at home, thus clearing a way for

burglary.

Recent research identifies numerous use cases of cross-

app interactions that violate specific policies, and suggests

tracking dependencies across IoT apps to identify policy vio-

lations [13]–[15], [17], [36]. These mechanisms perform inter-

application program analysis to track dependencies, and (man-
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ual or automatic) language processing to identify semantically-

related language constructs, e.g., the fact that temperature
and thermostat refer to related semantic constructs, despite

their syntax being different. While these approaches motivate

the need for analyzing security and safety risks in cross-app

interactions, foundational questions related to the interaction

semantics of apps, security policies, and soundness of enforce-

ment mechanisms remain largely unexplored.

This leads us to the following research questions: (i) What is

an appropriate formal model for cross-app interaction vulner-

abilities? (ii) Is there a generic policy framework for security

and safety that captures the essence of cross-app interactions?

(iii) How do we model implicit interactions stemming from

IoT-specific features like the physical environment? (iv) Can

we harden enforcement mechanisms to prove soundness guar-

antees in our policy framework?

Contributions: To help answering these questions, we

develop a process calculus for specifying and reasoning about

cross-app interactions, capturing the core features of apps in

IoT platforms like IFTTT and Stringify. We then propose

extensional conditions to capture the essence of security and

safety requirements in a system of IoT apps executing concur-

rently. We demonstrate the usefulness of these conditions by

considering policies from real-world apps, and discuss how

they can be relaxed in order to accommodate more flexible

user policies. Further, we show how standard enforcement

mechanisms can be adapted to check security and safety of a

system of IoT apps, thus providing strong guarantees against

vulnerable cross-app interactions. We think that these condi-

tions will provide a semantic baseline for proving soundness

of current and future enforcement mechanisms in the domain

of IoT apps.

Our key observation is that for a system of apps to reach an

unsafe configuration, a cross-app interaction should either lead

to an inconsistent state that violates the intended specification

for some apps, or engage in an interaction where the action

of one app triggers the execution of another app. This is

supported by the intuition, as well as existing real-world

vulnerabilities [13]–[15], [17], [36], that an end user may

consider a system of IoT apps as safe if the runtime behavior

of an app in isolation is bisimilar to running that app in

parallel with other apps in the system. Drawing on Focardi

and Martinelli’s Generalized Non Deducibility on Composi-
tion [21], we formalize this intuition to provide a bisimulation-

based characterization of safe cross-app interaction. Further,

we provide a simple syntactic condition and prove it sound

for our notion of safe cross-app interaction. We also tackle

the challenge of implicit cross-app interactions and propose

an extension of our semantic condition. Finally, we envision

scenarios where some form of interaction across apps can be

considered as safe, and show how it can be modeled in our

framework via priorities.

Further, we focus on confidentiality and integrity poli-

cies of a system of IoT apps and propose a termination-
insensitive bisimulation-based security condition that accom-

modates these policies. As standard in information-flow con-

trol [33], the condition assumes a security classification of

global services and devices, and it ensures that any interference

between apps respects the security classification. We propose

an extension of the flow-sensitive type system by Hunt and

Sands [23] for our concurrent IoT setting, and prove it sound

for our security condition.

In summary, the paper provides the following contributions:

• We present a calculus for IoT apps to study security

and safety in cross-app interactions. The calculus models

closely the behavioral semantics of apps in IoT platforms

(Section II).

• Inspired by policy requirements in real apps, we propose

an extensional condition for safe cross-app interactions,

as well as a syntactic condition to enforce safe interac-

tions (Section III).

• We extend our framework to accommodate implicit app

interactions and service priorities in order to tackle the

challenge of false negatives and false positives, respec-

tively (Section IV).

• We propose a flow-sensitive security types system, en-

forcing information-flow policies in a system of IoT apps

running concurrently (Section V).

Full proofs of our results and a number of examples of IoT

apps modeled in our calculus can be found in the Appendix.

II. A CALCULUS OF IOT APPS

In this section, we define our Calculus of IoT Apps, called

CaITApp, to formally specify and reason about systems of
apps, i.e., sets of concurrent IoT apps running on an IoT

platform, and accessing the Internet-connected services and

devices of a given user. The interface between the IoT apps

and the external services and physical devices, e.g., Dropbox

or home security camera, is defined by APIs that enable

communication between the platform and the user services and

devices. As common in IoT platforms like IFTTT, the platform

itself maintains a global store with data from a user’s services

and devices, which gets updated whenever there is a change

in the corresponding services and devices. Each IoT app of a

given user has its own local store, i.e., local view, which may

get updated whenever the execution of that app is triggered

by a change in the global store.

We start the description of our calculus with some prelim-

inary notations. We use letters x, y, z ∈ Service to denote the

IoT platform’s (global) view of a user’s services and devices.

Abusing notation, we call them just services in the following.

Values, ranged over by v, w ∈ Value are basic values, such

as booleans, integers, real numbers, strings, etc. We assume

two special values: ⊥ and ∗. The first represents an undefined

value, while the second is a placeholder that can be replaced

with “any value”.

The syntax of our systems is given by the grammar:

Sys � S ::= S ‖ S � parallel composition

| id[D��P ] � app
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Here, id[D �� P ] denotes an app with a unique identifier
id ∈ I, using only the global services declared in D, with

the associated permissions (read and/or write), and running

the process (code) P.

The syntax for service declarations is the following:

Decl � D ::= D;D � declaration list

| xR � service to be used in read

| xW � service to be used in write

In the following, we will write xRW, as an shorthand for xR; xW.

The syntax of our processes for describing the code running

in our IoT apps is the following:

Proc � P ::= listen(L) � listener

| x← e � set local store

| update(x) � set global store

| if b then {P} else {P} � conditional

| skip � termination

| X � process variable

| fixX •P � recursion

| P;P � seq. composition

Let us comment on the most peculiar constructs. With listen(L)
an app listens on a set of services L whose changes may trigger

the app to execute. This is a blocking construct as it progresses

only when at least one of the services listed in L changes. L
is formally defined as follows:

VarList � L ::= L; L � services list

| x � service

The construct x← e sets the local variable x (the local view of

the global service x) with the value obtained by the evaluation

of an expression e. Note that, in the expression e we may

have both readings on local variables y, simply denoted with

y, and readings of global variables y, denoted with read(y).
Thus, in the assignment x ← read(x) + y the local copy of

the service variable x is updated with the summation between

the up-to-date value of the global service x (taken from the

cloud) and the value read from the local copy of the service y.

The construct update(x) updates the value of the service x in

the global store with its current value in the local store. The

process fixX •P is the standard construct to denote recursion.

An app is a process silently running in background until

a trigger occurs. This latter fires the app payload, consist-

ing of a sequence of actions (potentially dispatched after

the execution of some code). Technically speaking, the pro-

cess running in an app is a recursive process of the form:

fixX • listen(L); payload. Intuitively, our apps keep listening

on a number of cloud services: when at least one these services

changes, the app executes its payload. The payload consists in

performing a number of activities, such as checking the state of

some cloud service x via the read(x) expression, and updating

one or more cloud services via the update(x) construct.

Actually, the syntax proposed for the code of our apps is

a bit too permissive with respect to our intentions. We could

rule out ill-formed apps with a simple type systems. However,

for the sake of simplicity, we prefer to provide the following

definition.

Definition 1 (Well-Formedness). An app id[D��P ] is well-
formed if the following conditions are satisfied:

• P is of the form fixX • listen(L);Q;

• x appears in listen(L) only if xR occurs in D;

• the payload Q does not contain listeners;

• read(x) appears in Q only if xR occurs in D;

• update(x) appears in Q only if xW occurs in D.

A system is well-formed only if its apps are well-formed.

Hereafter, we will always work with well-formed systems.
Let us provide two simple examples to describe how we

can model IoT apps in CaITApp.

Example 1. Consider the following two apps. Tw2Fb reposts

on Facebook messages received on Twitter. Similarly, when

there is a new post on Facebook, the app Fb2Ld publishes the

post on LinkedIn. In this case, we have three logical services:

tw, for Twitter, fb, for Facebook and ld, for LinkedIn. The

apps are formalized in our language as follows:

Tw2Fb[ twR; fbW
��fixX • listen(tw); pld1 ]

where pld1
def
= tw← read(tw); fb← tw; update(fb);X, and

Fb2Ld[ fbR; ldW
��fixX • listen(fb); pld2 ]

where pld2
def
= ld← read(fb); ld← fb; update(ld);X.

Example 2. Consider the following two apps. When smoke

is detected, the app SmokeAlarm should fire the smoke alarm

and turn on the lights. If a given heat threshold is reached,

then the app Sprinks will open the water valve to activate

fire sprinkles. For that we assume five logical services: smoke,

reporting the presence of smoke, heat, reporting the heat level,

waterV, controlling the water valve, alarm, controlling the

smoke alarm, and lights, managing the lights. The apps are

formalized in our language as

SmokeAlarm[ smokeR;alarmW;lightsW
��fixX • listen(smoke);P3 ]

where:

P3
def
= smoke← read(smoke);

if (smoke = yes) then {
alarm← On;

lights← On;

update(alarm, lights)

};X
and Sprinks[ heatR; waterVW

��fixX • listen(heat);P4 ], where:

P4
def
= heat← read(heat);

if (heat ≥ 45) then {
waterV← Open; update(waterValve)

};X
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(StopListening)
L = x1; . . . ; xn ∃i ∈ [1, n] .G(xi) �= φ(xi)

〈G, φ〉 � listen(L)
τ−→ 〈G, φ〉 � skip

(SetLocal)
�e�(G, φ) = v

〈G, φ〉 � x← e
τ−→ 〈G, φ[x←� v]〉 � skip

(SkipUpdate)
G(x) = φ(x)

〈G, φ〉 � update(x)
τ−→ 〈G, φ〉 � skip

(Update)
G(x) �= φ(x) φ(x) = v

〈G, φ〉 � update(x)
x!v−−→ 〈G[x←� v], φ〉 � skip

(IfTrue)
�b�(G, φ) = tt

〈G, φ〉 � if b then {P1} else {P2} τ−→ 〈G, φ〉 � P1

(IfFalse)
�b�(G, φ) = ff

〈G, φ〉 � if b then {P1} else {P2} τ−→ 〈G, φ〉 � P2

(Fix)
−

〈G, φ〉 � fixX •P
τ−→ 〈G, φ〉 � P

{
fixX • P/X

}

(SeqSkip)
−

〈G, φ〉 � skip;P
τ−→ 〈G, φ〉 � P

(Seq)
〈G, φ〉 � P1

λ−→ 〈G′, φ′〉 � P′
1

〈G, φ〉 � P1;P2
λ−→ 〈G′, φ′〉 � P′

1;P2

TABLE I
LABELED TRANSITION SEMANTICS FOR PROCESSES

We end this section with a couple of notations and
abbreviations that will be used in the rest of the paper.

We will write update(x1, x2, . . . , xn) as an abbreviation for

the sequential update of the global variables x1, x2, . . . , xn,

namely: update(x1); update(x2); . . . ; update(xn). We write

if b then {P} as an abbreviation for if b then {P} else {skip}.

A. Labeled Transition Semantics

IoT Apps are simple applications interacting with physical

and logical services that can be accessed only via a cloud
platform, that we call global store, denoted with G ∈ S, where

S
def
= Service ⇀ Value is the set of all partial functions from

services to values. Every app id[D��P ] retains a local view
of the cloud platform that must be consistent with the app’s

declaration D, meaning that the domain of the local store of id

consists of all and only those services declared in D. Changes

in the global store are shared with all parallel apps of the

system associated to the same user/account; however, these

modifications do not directly affect the apps’ local view of

the store. Indeed, a local store can be modified only explicitly

by its related app payload.

Since our syntax distinguishes between processes and sys-

tems of apps, in our labeled transition semantics we have two

different kinds of transitions: one for processes and a second

one for systems.

(App)
L(id) = φ 〈G, φ〉 � P

τ−→ 〈G, φ′〉 � P′

〈G,L〉 � id[D��P ]
τ−� 〈G,L[id←� φ′]〉 � id[D��P′ ]

(AppUpdate)
L(id) = φ 〈G, φ〉 � P

x!v−−→ 〈G′, φ〉 � P′

〈G,L〉 � id[D��P ]
id:x!v−−−−� 〈G′,L〉 � id[D��P′ ]

(EnvChange)
−

〈G,L〉 � S
x?v−−� 〈G[x←� v],L〉 � S

(ParLeft)
〈G,L〉 � S1

α−� 〈G′,L′〉 � S′1 α ∈ {τ, id:x!v}
〈G,L〉 � S1 ‖ S2 α−� 〈G′,L′〉 � S′1 ‖ S2

(ParRight)
〈G,L〉 � S2

α−� 〈G′,L′〉 � S′2 α ∈ {τ, id:x!v}
〈G,L〉 � S1 ‖ S2 α−� 〈G′,L′〉 � S1 ‖ S′2

TABLE II
LABELED TRANSITION SEMANTICS FOR SYSTEMS

In Table I we provide the transition rules for process
configurations of the form

〈G, φ〉 � P λ−→ 〈G′, φ′〉 � P′ ,

where G ∈ S denotes the global store while φ ∈ S is the

local store in which the process P is running. The labels

λ ∈ {τ, x!v} denote: nonobservable actions and observable
modifications (writings) of a global service x, respectively.

We assume a standard evaluation semantics for expressions

�e� ∈ S× S −→ Value, inductively defined on the structure of

the expression e. We omit the details of its definition. Here,

it is only important to notice that we have one expression for

looking-up variables in the local store, �x�(G, φ)
def
= φ(x), and

a different expression for looking-up variables in the global

store: �read(x)�(G, φ)
def
= G(x).

Now, let us comment on the most interesting rules of

Table I. The construct listen(L) is a blocking operator waiting

for changes in the cloud on (at least on of) those services

contained in L. The semantics of the listen(L) operator is for-

malized by means of the rule (StopListening). The transition rule

(SetLocal) serves to update the local store via an assignment to

(the local copy of the) service x; this assignment will affect

the global service x only if followed by an update(x). By

an application of the rule (Update) the construct update(x)
modifies the value associated to the service x in the global

store with the value recorded in the local store. The remaining

rules are standard.

In Table II we provide the transition rules for system
configurations of the form

〈G,L〉 � S α−→ 〈G′,L′〉 � S′ ,
where G ∈ S denotes the global store, whereas L ∈ I −→ S

is a map associating to any app identifier its local store. The

labels α ∈ {τ, id:x!v, x?v} denote: nonobservable actions,

observable modifications (writings) made by the applet id

on a global service x, and observable changes on a global
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service x made by the external environment, respectively. In

the following, we will write C
α−→ C′ to denote a transition

between system configurations belonging to the set Sconf of

all possible system configurations.

Now, let us comment on the transition rules of Table II. Both

rules (App) and (AppUpdate) serve to lift actions from processes

to apps (and hence systems of apps). Observe that in case of

updates on the cloud services, we are interested in annotating

the label of the action with the name of the app performing the

write operation; this will be useful when defining safe cross-
app interactions (Definition 3). The rule (EnvChange) models

changes in the cloud made by the external environment and

affecting all apps. Thus, this action is not triggered by some

app of the system and it can be fired nondeterministically at

any moment. Rules (ParLeft) and (ParRight) are standard. Note

that, for convenience, action x?v is allowed only to complete

systems as it does not propagate through parallel composition

(it is not admitted in rules (ParLeft) and (ParRight)).

III. DEFINING SAFE CROSS-APP INTERACTIONS

In order to capture harmful interactions in systems of apps,

we formalize a notion of safe cross-app interaction based on

a bisimulation-based behavioral semantics for our systems.

Intuitively, two apps may interact with each other by acting

on some common services in such a way that the state

reached by those services is somehow inconsistent (think of

a thermostat or a valve when activated by different apps

designed with different specifications in mind). However, this

is not the only way to yield unsafe interactions between two

apps: an app A might interact with a second app B if the

execution of some actions of A may affect services in the

cloud whose changes may subsequently trigger activities of B.

Those activities of B would not have been fired if A would

not have modified the state of its services on the cloud.

A. Semantic characterization of safe cross-app interactions

In this section, we provide a semantic characterization of

safe cross-app interaction based on some appropriate notion

of bisimulation.

Intuitively, we would like to say that a system of apps S does

not interact with a system R if the runtime behavior of R when

running in parallel with S does not differ from its behavior

when running in isolation. A bit more formally, along the lines

of Focardi and Martinelli’s Generalized Non Deducibility on
Composition (GNDC) [21], we would like to say that a system

S does not interact with a system R if

S ‖ R �S R

for some appropriate bisimilarity �S that hides those (ob-

servable) actions of S that modify the services in the cloud

(the global store). Notice that the bisimilarity �S should only

suppress the capability of the observer to detect writing actions

on the cloud services executed by S; however, these writings

must be executed, so that indirect interactions via the cloud

between the two systems can be observed if they trigger a

nongenuine behavior in R.

Basically, in the scenario above, if bisimilarity breaks then

the system S does interact with the correct execution of R in

at least one of the following ways:

• The compound system S ‖ R might have nongenuine

traces containing observables (originating from the R
component) that cannot be reproduced by R in isolation;

here the interaction affects the integrity of the behavior

of R.

• The system R might have execution traces containing

observables that cannot be reproduced by the compound

system S ‖ R because they are prevented S; this is a

violation of the availability of the system R.

In order to formalize the concepts described above, we

define a slight generalization of the weak asynchronous bisim-
ulation [3] introduced for the asynchronous fragment of the

π-calculus [22], [28]. In that bisimulation, input actions are

made not observable because in an asynchronous setting the

observer cannot directly observe them. Here, we intend to hide

modifications on cloud enabled by the interacting system.

Consider a set H of hidden actions, H ⊂ A\{τ}, Then, the

following bisimulation compares two system configurations by

observing all possible actions except those occurring in H .

Definition 2 (Hiding Bisimulation). Given a set of actions

H ⊆ A\{τ}, the symmetric relation R ⊆ Sconf×Sconf is a

hiding bisimulation parametric on H if and only if, whenever

C1 R C2 and C1
α−� C′

1 we have the following:

• if α /∈ H then C2
α̂
=⇒ C′

2, for some C′
2 such that C′

1 R C′
2;

• if α ∈ H then

– either C2
α̂
=⇒ C′

2, for some C′
2 such that C′

1 R C′
2

– or C2
τ−�∗ C′

2, for some C′
2 such that C′

1 R C′
2.

We say that two system configurations C1 and C2 are hiding
bisimilar w.r.t. the set of actions H , written C1 ≈H C2, if

C1 R C2 for some hiding bisimulation R parametric on H .

Obviously, for H = ∅ we get the standard bisimulation.

In the following, for the sake of simplicity, given two system

configurations 〈G,L〉 � S and 〈G,L〉 � R, we will write

〈G,L〉 � S ≈H R

as an abbreviation for 〈G,L〉 � S ≈H 〈G,L〉 � R.

Now, we can use our hiding bisimilarity to formalize a

semantic-based notion of safe cross-app interaction. As said

before, out intention is to hide only those actions that may

cause an update on the cloud. Thus, given an arbitrary system

S
def
=

∏n
i=1 idi[Di��Pi ], we define the set of possible actions

of S that may modify the state of the cloud services:

upd(S)
def
=

⋃

1≤i≤n

{idi:x!v | xW ∈ Di} .

In the following, we let L⊥ be the function λid . λx .⊥ used

to define an initial local environments for all apps in which

all services are not initialized.
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Definition 3 (Safe cross-app interaction). Let S and R be two

systems of apps in CaITApp. We say that S is noninteracting
with R when

∀G ∈ S . 〈G,L⊥〉 � S ‖ R ≈HS
R ,

for HS
def
= upd(S). We say that the two systems S and R do

not interact with each other if in addition to the previous

requirement it holds that

∀G ∈ S . 〈G,L⊥〉 � S ‖ R ≈HR
S ,

for HR
def
= upd(R).

Example 3. Consider the two apps Tw2Fb and Fb2Ld intro-

duced in Example 1. Here, we have a potentially unwanted

interaction between the two apps as Tw2Fb may trigger Fb2Ld:

a message of Twitter will be posted on Facebook by Tw2Fb,

then the app Fb2Ld will post that message on LinkedIn. In

fact, according to Definition 3, the app Tw2Fb may interact

with the app Fb2Ld as:

∃G ∈ S . 〈G,L⊥〉 � Tw2Fb ‖ Fb2Ld �≈H Fb2Ld

for H = {Tw2Fb:tw!v | v ∈ Value}. It is easy to see that on

the left-hand-side compound system the app Fb2Ld might do

a writing on the cloud service LinkedIn that would not occur

if the app was running in isolation.

Example 4. Consider the two apps SmokeAlarm and Sprinks

introduced in Example 2. According to Definition 3, the two

apps do not interact with each other, as for any G ∈ S we

have the following:

• 〈G,L⊥〉 � SmokeAlarm ‖ Sprinks ≈H1
SmokeAlarm,

with H1
def
= {Sprink:waterValve!v | v ∈ Value};

• 〈G,L⊥〉 � SmokeAlarm ‖ Sprinks ≈H2
Sprinks, with

H2
def
= {SmokeAlarm:alarm!v, SmokeAlarm:lights!v},

for any v ∈ Value.

In the example above the two apps do not interact with

each other simply because they work on different services.

However, according to Definition 3, two apps may be non-

interacting even if they write on the same services, provided

that no causalities exist among the two writings.

Example 5. Suppose to have an app SimPres that simulates

the presence of the user when it is not at home during the

night, turning on lights for 10 minutes every half an hour.

Then, consider a second app eSaver turning off lights during

the day to save energy whenever there is no motion for at least

5 minutes. The two apps are defined as follows:

SimPres[ userR; timeR; lightsW
��fixX • listen(user; time);P5 ],

where:

P5
def
= user← read(user);

if (0 < read(time.H) < 7 ∧ user = away) then {
if read(time.M) = 30 then {

lights← On10minsOff; update(lights)
}

};X

eSaver[ noneR;timeR;lightsRW
��fixX • listen(none;lights);P6 ],

where:

P6
def
= none← read(none);

if (8 < read(time.H) < 18) then {
if (none ≥ 5mins ∧ lights = On) then {

lights← Off; update(lights)
}

};X
Notice that that there is no interaction between these two

apps, even if they write on the same global service lights.

Actually, those writings occur in different periods of the day

and can never interact. Thus, according to Definition 3, for

any G ∈ S we have the following:

• 〈G,L⊥〉 � SimPres ‖ eSaver ≈H1
eSaver, with H1

def
=

{SimPres:lights!v | v ∈ Value};
• 〈G,L⊥〉 � SimPres ‖ eSaver ≈H2

SimPres, with H2
def
=

{eSaver:lights!v | v ∈ Value}.
B. A proof technique for safe cross-app interaction

Although the notion of safe cross-app interaction in Defini-

tion 3 is very intuitive, it is actually quite hard to verify due

to the universal quantification over all possible global stores.

In this section, we provide syntactic conditions, easy to

verify, that allow us to enforce the semantic condition of safe

cross-app interaction. In order to do that, we have to formally

specify: (i) what are the potential actions that an app may

perform, (ii) what are the services whose changes may trigger

an app.

In our calculus CaITApp, the actions potentially performed

by an app id[D �� P ] are given by the services declared in

write modality.

Definition 4 (Actions). Given an app id[D��P ], we define

act(id)
def
= {x ∈ Service | xW ∈ D}. More generally, in a

system of apps S
def
=

∏n
i=1 idi[Di �� Pi ] we define act(S)

def
=⋃

1≤i≤n act(idi).

Similarly, the triggers of an app id[D �� P ] are given by

the services on which the app currently listen or make a read

from the global store, namely the services declared in read

modality.

Definition 5 (Triggers). Given an app id[D��P ], we define

trg(id)
def
= {x ∈ Service | xR ∈ D}. More generally, in a

system of apps S
def
=

∏n
i=1 idi[Di �� Pi ] we define trg(S)

def
=⋃

1≤i≤n trg(idi).

Now, everything is in place to provide a syntactic condition

for safe cross-app interaction, where a system S is said not to

interact with a system R when:

• the two systems do not write on common cloud services;

• the execution of S may not trigger any app of R.

Formally,

Definition 6 (Syntax-based safe cross-app interaction). The

system S is said to be syntactically noninteracting with the
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system R, written S � R, when both the following conditions

hold:

1) act(S) ∩ act(R) = ∅;

2) act(S) ∩ trg(R) = ∅.

More generally, we say that the two systems S and R are

syntactically noninterfering w.r.t. each other, written S � R,

when besides the two conditions above it also holds:

3) trg(S) ∩ act(R) = ∅.

Now, if we consider the apps in Examples 1, 2 and 5, it is

easy to verify that:

• Fb2Ld � Tw2Fb holds;

• Tw2Fb � Fb2Ld does not hold because act(Tw2Fb) ∩
trg(Fb2Ld) �= ∅;

• SmokeAlarm � Sprinks holds;

• SimPres � eSaver does not hold because they can

both modify the service lights, that is act(SimPres)∩
act(eSaver) = {lights} �= ∅.

Thus, Definition 6 provides an easy-to-verify syntactic suf-

ficient condition for semantic-based condition.

Theorem 1 (Soundness). Let S and R be two systems of apps
in CaITApp. Let HS

def
= upd(S) and HR

def
= upd(R). Then:

• S � R implies ∀G ∈ S . 〈G,L⊥〉 � S ‖ R ≈HS
R;

• S � R implies
– ∀G ∈ S . 〈G,L⊥〉 � S ‖ R ≈HS

R
– ∀G ∈ S . 〈G,L⊥〉 � S ‖ R ≈HR

S.

The details of the proof can be found in the Appendix.

Obviously, Definition 6 provides us with a sufficient but

not necessary condition to derive soundness for cross-app

interactions, as shown, for instance, by the two apps SimPres

and eSaver in Example 5.

IV. IMPLICIT INTERACTIONS AND PRIORITIES

In this section, we study: (i) the challenge posed by im-
plicit cross-app interactions, and (ii) the possibility of having

priorities between different services.

The former arises whenever two services, e.g., temperature

and thermostat, are semantically related, though they differ

syntactically. This may lead to both the semantic condition

and the enforcement mechanism deeming an interaction as

safe, while this is not the case in practice. We propose an

extension of our language semantics, as well as a semantic

condition and a syntactic one to reason about such cases.

The latter may be useful when our semantic condition in

Definition 3 becomes too restrictive for use cases where the

end user is willing to accept some interactions on specific

services, e.g., social networks like Facebook, while avoiding

interactions on other services, e.g, the temperature. By lever-

aging a lattice order of priorities between services, we discuss

how our condition can be extended to enable such flexibility.

A. Countering implicit interactions

The semantic-based condition given in Definition 3 works

quite well when dealing with logical services like Facebook or

Twitter as in Example 1. However, when stepping to physical

services, i.e., services affecting the physical environment, such

as the temperature of a room, we may end up accepting as

safe a system of apps in the presence of some kind implicit
interactions. Consider the example below.

Example 6. Let Win be an app managing the window of

a room, depending on the temperature detected: when the

temperature is above 22 degrees then the window must be

opened. Formally,

Win[ tempR; winW
��fixX • listen(temp); pld7 ]

with

pld7
def
= temp← read(temp);

if (temp > 22) then {win← Open; update(win)};
X

Now, suppose to have a second app Therm, managing the

thermostat of the room, such that when the temperature is

below 17 degrees the thermostat is set to rise the temperature

by 3 degrees. Formally,

Therm[ tempR; thermW
��fixX • listen(temp); pld8 ]

with

pld8
def
= temp← read(temp);

if (temp < 17) then {therm← +3; update(therm)};
X

When running these two apps in parallel, we may have an

implicit interaction, as the app Therm may indirectly trigger

the app Win. This is because, we know, out of band, that the

temperature of the room should somehow change according

to the changes made on the thermostat of the room.

However, since this out-of-band information is not con-

sidered by our formalization, according to Definition 3 we

would have a kind of false negative as the app Therm is

not directly interacting with the app Wind. Formally, for

H
def
= upd(Therm) = {Therm:therm!v | v ∈ Value}, we have:

〈G,L⊥〉 � Win ‖ Therm ≈H Win,

for any G ∈ S.

Note that causality dependencies between services, such

as those asserting that thermostat changes may affect the

temperature, are not part of the specification of an app (or of

a system of apps). This information comes from the physics

of the real system managed via apps. Thus, by no means we

can capture this kind of implicit interactions unless we have

information about causality dependencies.

However, we can assume that, when designing our system

of apps we actually get, out of band, a set of causality depen-

dencies to improve the precision of our analysis ruling out a

number of false negatives. For the sake of simplicity, we define

a dependency policy as a binary relation Δ ⊆ Service×Service
such that (x, y) ∈ Δ when the service y may be affected

by changes occurring at the service x. Clearly, dependencies

can be composed, hence we will consider the reflexive and
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transitive closure of Δ in order to capture all possible depen-

dencies associated to a service. We write clo(Δ, x) to denote

the reflexive and transitive closure of the dependency policy

Δ w.r.t. the service x. More generally, given a set of services

X ⊆ Service we define clo(Δ, X)
def
=

⋃
x∈X clo(Δ, x).

Here, it is important to notice that when we act on the

thermostat of the room we actually do not know exactly

how the temperature will change (again, this depends on the

physics, e.g., on the wall isolation of the heated room). Thus,

the dependency policy Δ records only abstract information

relating pairs of services. More precisely, if (x, y) ∈ Δ we

may assume that each time the service x changes on the cloud

then the service y can be somehow affected. We represent this

abstract information by means of nondeterministic updates
assigning to y the special value ∗, meaning “any value”.

Ideally, the special value ∗ satisfies any boolean expression

containing it. For instance, ∗ ≤ n is true for any n.

Now, using this extra out-of-band information Δ on the

causality dependency between services, we can easily define

a labeled transitions semantics
α−→Δ, parametric on the set Δ:

• C1
α−→Δ C1 if C1

α−� C1 is derived by an application of

any rule of Table I different from Update;

• rule Update is replaced by the following transition rule:

G(x) �= φ(x) φ(x) = v clo(Δ, x) = {y1, . . . , yn}
〈G, φ〉 � update(x)

x!v−−→Δ 〈G[x←� v, y1 ←� ∗, . . . , yn ←� ∗], φ〉 � skip

Now, we can refine Definition 3 making it parametric on a

dependency policy Δ. Basically, we use our hiding bisimilarity

defined on top of the parametric LTS
α−→Δ, denoted with

Δ≈H .

In this manner, we can rely on the dependency policy Δ
to capture false negatives due to implicit interactions: any

change on a service x affects any service in the set clo(Δ, x)
via nondeterministic assignments that will always trigger apps

listening at these services.

Definition 7 (Safe cross-app interaction under dependencies).
Let Δ be a dependency policy. Let S and R be two systems

of apps in CaITApp. We say that S is noninteracting with R
under Δ when

∀G ∈ S . 〈G,L⊥〉 � S ‖ R Δ≈HS
R

where HS
def
= upd(S). We say that the two systems S and R

do not interact with each other under Δ if in addition to the

requirement above we have

∀G ∈ S . 〈G,L⊥〉 � S ‖ R Δ≈HR
S

where HR
def
= upd(R).

Now, in order to provide a consistent reformulation of The-

orem 1 to capture semantics-based noninteraction parametric

on a dependency policy Δ, we have to reformulate Definition 6

to take into account the presence of the dependency policy.

Definition 8 (Syntax-based safe cross-app interaction under

dependencies). Let Δ be a dependency policy. The system S
is said to be syntactically noninteracting under Δ with the

system R, written S
Δ
� R, when both the following conditions

hold:

1) act(S) ∩ act(R) = ∅;

2) clo(Δ, act(S)) ∩ trg(R) = ∅.

More generally, we say that the two systems S and R are

syntactically noninteracting w.r.t. each other under Δ, written

S
Δ
� R, when besides the two conditions above we also have:

3) trg(S) ∩ clo(Δ, act(R)) = ∅.

Now, if we consider the apps in Example 6 with Δ =
{(therm, temp)} we have:

• Win
Δ
� Therm holds;

• Therm
Δ
� Win does not hold because trg(Win) =

{temp}, clo(Δ, act(Therm)) = {therm, temp} and hence

clo(Δ, act(Therm)) ∩ trg(Win) �= ∅.
Finally, we can reformulate Theorem 1 to prove that Defini-

tion 8 provides a sufficient condition to capture semantic-based

noninteraction under a given dependency policy Δ.

Theorem 2 (Soundness under dependencies). Let Δ be a
dependency policy. Let S and R be two systems of apps in
CaITApp. Let HS

def
= upd(S) and HR

def
= upd(R). Then:

• S
Δ
� R implies ∀G ∈ S . 〈G,L⊥〉 � S ‖ R Δ≈HS

R;
• S

Δ
� R implies

– ∀G ∈ S . 〈G,L⊥〉 � S ‖ R Δ≈HS
R

– ∀G ∈ S . 〈G,L⊥〉 � S ‖ R Δ≈HR
S.

The details of the proof can be found in the Appendix.
Thanks to Theorem 2, for Δ = {(therm, temp)}, we can

now correctly capture the semantic-based interaction between

the apps of Example 6 as there is G ∈ S such that

〈G,L⊥〉 � Win ‖ Therm �≈H Win

for H
def
= upd(Therm) = {Therm:therm!v | v ∈ Value}.

B. Increasing flexibility via priorities
We envision use cases where users are aware of potential

interactions on some services, while disallowing interactions

on other services. For instance, an app managing the fire alarm

may have higher priority than an app posting messages to

Facebook. This relative importance of services can be specified

with a lattice of service priorities. Suppose to have a priority
policy Π, which associates a priority level p, taken from some

complete lattice 〈PL,�〉, with each service used by our system

of apps.
Now, we can extend our condition of hiding bisimilarity to

define safety of cross-app interference up to a given priority

level. In fact, given a priority level p, we can formally ensure

that two systems have the same behaviour only when looking

at observables on services at priority level greater than, or

equal to p.

Definition 9 (Safe cross-app interaction up to priorities). Let

S and R be two systems of apps in CaITApp. We say that S
is noninteracting with R up to the priority level p when:

∀G ∈ S . 〈G,L⊥〉 � S ‖ R ≈Hp
R
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where Hp
def
= upd(S) ∪ {id:x!v ∈ upd(R) | p �� Π(x)}.

Note that when Π maps each service to the same priority

level, the definition above coincides with Definition 3. To

enforce the condition above, we can easily define a syntax-

based condition similar to the one given in Definition 6.

V. SECURING CROSS-APP INTERACTIONS

It is not hard to imagine that services accessed via an IoT

platform may have different security clearance. For instance,

a service to access a smart security camera should definitely

not leak any kind of information to a second service that is

used to share nice pictures among friends.

In this section, we assume a security policy Σ, which

associates a security level σ, taken from some complete lattice

〈SL,�〉, with each service used by our system of apps. For

the sake of simplicity, in the examples, the security levels

will simply be high (H), or secret, and low (L), or public,

although the theory is developed for a generic complete

lattice 〈SL,�〉, of security levels. The goal is to achieve

classical noninterference results stating that a system of apps

is interference-free if its low-level services are not affected by

changes occurring at its high-level services. Thus, information

can safely flow from a service x to a service y whenever

Σ(x) � Σ(y). In the following, we use ≺ to denote the

nonreflexive restriction of � (i.e., δ ≺ σ iff δ � σ and δ �= σ).

As usual, a security policy induces an equivalence relation

between stores. Given two (global) stores G,G′ ∈ S, we say

that they are σ-equivalent, written G ≡σ G′, if they agree on

the values associated to all services with security level lower

than, or equal to, σ.

Definition 10 (σ-equivalent stores). Let G,G′ ∈ S be two

stores and σ ∈ SL be a security level. We say that G and G′

are σ-equivalent, written G ≡σ G′, whenever:

∀x ∈ Service .Σ(x) � σ ⇒ G(x) = G′(x) .

Now, we can formalize a bisimulation-based notion of

noninterference parametric on some security level σ ∈ SL.

Intuitively, the runtime behavior at security level σ (or lower)

of an interference-free system does not change when executed

in two different σ-equivalent stores G and G′, though it may

differ on services with security clearance higher than σ. Actu-

ally, in our notion of noninterference we consider σ-equivalent

stores in S⊥
def
= {G ∈ S | ∀x ∈ dom(G) .G(x) �= ⊥}, as

the mere initialization of an high-level service might activate

a listener in an applet, thus leaking information about the

occurrence/presence of a high event. We ignore presence

leaks in order to increase premissivenes of our enforcement

mechanism.

Our general notion of hiding bisimilarity can be used to

hide (but not to suppress) actions involving changes affecting

high-level services. In the following, with an abuse of notation,

we extend Σ to assign security levels to system actions α,

according to the cloud services affected by α. Thus, we define

Σ(id:x!v) = Σ(x) and Σ(α) = ⊥ for α ∈ {τ, x?v}.1
However, in order to capture a semantic notion of non-

interference that is not sensitive to information leaks due

to program termination2 we propose a modification of our

hiding bisimilarity inspired by the termination-insensitive i-
bisimulation proposed by Demange and Sands [16]. For this

purpose, given a set of hidden actions H , we will write C1 ⇑H
if and only if C1 ∈ D

def
= {C : (∃α ∈ A.C α−� C′) ∧ (C

α−�
C′ ⇒ α ∈ H ∪ {τ} ∧ C′ ∈ D)}, that is C1 belongs to the

set of high-level divergent configurations that can always and

only perform either τ -actions or high-level actions.

Definition 11 (Termination-Insensitive Hiding Bisimulation).
Given a set of actions H ⊆ A \ {τ}, the symmetric relation

R ⊆ Sconf × Sconf is a termination-insensitive hiding bisim-
ulation parametric on H if and only if, whenever C1 R C2

and C1
α−� C′

1 we have the following:

• if α /∈ H then

– either C2
α̂
=⇒ C′

2, for some C′
2 such that C′

1 R C′
2

– or C2 ⇑H
• if α ∈ H then

– either C2
α̂
=⇒ C′

2, for some C′
2 such that C′

1 R C′
2

– or C2
τ−�∗ C′

2, for some C′
2 such that C′

1 R C′
2.

We say that two system configurations C1 and C2 are

termination-insensitive hiding bisimilar w.r.t. the set of actions

H , written C1 ≈ti
H C2, if C1 R C2 for some termination-

insensitive hiding bisimulation R parametric on H .

Definition 12 (σ-level noninterference). Let S be a system of

apps and Hσ
def
= {α ∈ A | Σ(α) �� σ} the set of actions with

clearance greater than σ. We say that S is σ-level interference-
free whenever:

∀G,G′ ∈ S⊥ .G ≡σ G′ ⇒ 〈G,L⊥〉 � S ≈ti

Hσ
〈G′,L⊥〉 � S .

Example 7. Consider the classic two-points lattice {L,H},
used for the system of apps S

def
= Tw2Fb ‖ Fb2Ld of Example 1

such that: Σ(tw) = Σ(fb) = H and Σ(ld) = L. Obviously,

the compound system is exposed to a security interference, as

confidential information posted on tw will flow into the public

service ld. In fact, it is not hard to find two L-equivalent global

stores G and G′ such that 〈G,L⊥〉 � S �≈ti
HL
〈G′,L⊥〉 � S. This

would not be the case if it was Σ(ld) = H. In that case, the

bisimilarity would hold for any pair of L-equivalent stores.

Again, Definition 12 has a universal quantification on two

global environments and then it requires the verification of a

nontrivial bisimilarity. So, its verification is hard to achieve.

In order to provide a syntactic sufficient condition for

security noninterference we resort to a type system, parametric
in the security policy Σ, and inspired by the flow-sensitive

1We recall that the action x?v is not “originating” from our system but it
denotes a modification of the service x made by the external environment.

2Termination leaks have well-known information-theoretic bounds [4], and
they are usually ignored in order to increase permissiveness for static analysis
that do not consider for program termination.
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Typing rules for expressions

(Var)
Γ(x) = σ

Γ � x : σ
(Read)

Σ(x) = σ

Γ � read(x) : σ
(Expr)

Γ � e1 : σ1 Γ � e2 : σ2

Γ � e1 op e2 : σ1 � σ2

Typing rules for processes

(Skip)
−

pc � Γ{skip}Γ
(Assign)

Γ � e : σ

pc � Γ{x← e
}
Γ[x → σ � pc]

(Fix)
pc � Γ{P}Γ′

pc � Γ{fixX •P
}
Γ′

(Update)
Γ(x) � Σ(x)

pc � Γ{update(x)}Γ
(Pvar)

−
pc � Γ{X}Γ

(Listen)
−

pc � Γ{listen(L)}Γ

(IfElse)
Γ � b : σ pc � σ � Γ1

{
P1

}
Γ2 pc � σ � Γ1

{
P2

}
Γ2

pc � Γ{if b then {P1} else {P2}
}
Γ2

(Seq)
pc � Γ1

{
P1

}
Γ2 pc � Γ2

{
P2

}
Γ3

pc � Γ1

{
P1;P2

}
Γ3

Typing rules for systems and subtyping

(App)
pc � Γ1

{
P
}
Γ2

pc � id[D��P ]
(Par)

pc � S1 pc � S2

pc � S1 ‖ S2
(Sub.Proc)

pc � Γ1

{
P
}
Γ2 pc′ � pc Γ′

1 � Γ1 Γ2 � Γ′
2

pc′ � Γ′
1

{
P
}
Γ′
2

TABLE III
SECURITY TYPE SYSTEM

security type system of Hunt and Sands [23], adapted to our

setting. In Table III we provide the typing rules.

Intuitively, a judgment of the form pc � S says that the

system S does not contain information flows from services at

security level higher than pc to services at security level lower

than or equal to pc. Here, pc denotes the usual “program

counter” level and serves to eliminate indirect information

flows. We write � S to denote pc � S when pc is the least

security level, i.e., the bottom element of the lattice SL.

Since the syntax of our calculus is in two levels we also

have a different kind of judgments for processes running inside

an app: pc � Γ
{
P
}
Γ′. Here, as in Hunt and Sands [23], Γ

describes the security levels of services which hold before

execution of P while Γ′ describe the security level of those

services after execution of P. Again, pc denotes the “program

counter” level and the derivation rules ensure that only services

which end up (in Γ′) with types greater than or equal to pc
may be changed by P.

Here, we wish to remark that, unlike batch-job noninterfer-

ence models [37], a security information flow occurs in our

setting only if a low-level service x is subject to an information

flow and then x is “published” within the same app on the

cloud via an update construct. In fact, the update operator is the

only “exit gate” for potential (direct or indirect) information

flows created within an app. This requires some care in the

definition of the typing rule (Update). Basically, we impose

that the update of a global service x is possible only if x is

associated to an “original” security level (given by Σ) higher

than or equal to the security level derived by its use (given

by Γ) in the previous instructions within the app. On the

other hand, we consider harmless those information flows that

remain confined within an app because no update publishes

their effects; this situations will not be ruled out by our type

system. Finally, notice the difference between the two typing

rules (Var) and (Read) as they serve for typing accesses to local

views of services and global services, respectively.

As expected, system (and process) well-typedness is pre-

served at runtime.

Proposition 1 (Subject reduction). Let Σ be a security policy,
S a system of apps, and σ ∈ SL a security level. If pc � S
and 〈G,L〉 � S α−� 〈G′,L′〉 � S′ then pc � S′.

Subject reduction is a crucial ingredient to prove that well-

typedness is a sufficient condition to ensure noninterference.

Theorem 3 (Soundness of security types). Let Σ be a security
policy, S a system of apps and Hσ

def
= {α ∈ A | Σ(α) �� σ}

the set of all possible high-level actions. If � S then

∀G,G′ ∈ S⊥ .G ≡σ G′ ⇒ 〈G,L⊥〉 � S ≈ti

Hσ
〈G′,L⊥〉 � S .

Proof. (Sketch) The proof proceeds by contradiction. Consider

two configurations C
def
= 〈G,L⊥〉 � S and C′ def

= 〈G′,L⊥〉 � S
for some well-typed system S, and differing for two σ-

equivalent global stores G and G′, respectively. If C and

C′ are not bisimilar then whenever we try to build up a

termination-insensitive hiding bisimulation R containing the

pair (C,C′), the bisimulation game will stop in a pair of

configurations (Ci,C
′
i), with Ci (resp., C′

i) derivative of C
(resp., C′), such that Ci can perform some action α that cannot

be (weakly) mimicked by C′
i (or vice versa). Since both Ci

and C′
i are derivatives of well-typed configurations (actually

well-typed systems), by subject reduction (Proposition 1) the

corresponding systems are both well-typed.

Now, since our termination-insensitive hiding bisimilarity

neglects high-level actions, by a case analysis on the dis-

tinguishing action α, the only possibility is that α denotes

the update of a low-level service derived by the evaluation of

some high-level service, the only ones on which the two global

stores may differ. But this would lead to a security information
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flow that is prevented by the type systems as both Ci and C′
i

are well-typed. Thus, this action is not admissible.

As a consequence, since there are no distinguishing system

actions α, the two original configurations C and C′ must be

bisimilar.

Full details of the proof can be found in the Appendix.

Example 8. Let us show that system S of Example 7 is

cannot be typed in our type system. The process P run-

ning inside the applet Tw2Fb is typable: L � Γ
{
P
}
Γ, for

Γ = [tw �→ H , fb �→ H , ld �→ L]. As a consequence,

the app is typable as well: � Tw2Fb[ twR; fbW
�� P ]. On the

other hand, the process Q running within the applet Fb2Ld

is not typable. In fact, when building the derivation tree for

the typing, we have to type the assignment ld ← fb as

L � Γ1

{
ld← fb

}
Γ2, for Γ1 = [tw �→ H , fb �→ H , ld �→ L]

and Γ2 = [tw �→ H , fb �→ H , ld �→ H]. But then, the

subsequent update update(ld) cannot be typed, since the

current typing of ld is H while the initial typing of ld is

Σ(id) = L. Thus, the app Fb2Ld[ fbR; ldW
��Q ] is not typable

and, in turn, the parallel composition S is not typable.

We remark that our security type system did not face

any permissiveness issues (i.e., false positives) for the apps

considered in the paper. We expect our analysis to scale well

and produce a minimal false-positive rate for user-automation

IoT platforms like IFTTT and Stringify. In these platforms,

the code consist of simple snippets matching the syntax of

CaITApp closely [6]. For other IoT platforms like Smart-

Things, the code can be more complex (in fact, SmartThings

apps are implemented in Groovy), hence our analysis would

face classical challenges for type-based approaches due to

complex language features, e.g., aliasing.

VI. RELATED WORK

Security and safety risks in the IoT domain have been

the subject of a large array of research studies. We refer

to recent surveys for an overview of the area [2], [5], [12].

Here, we compare our contributions with closely related works

on security and safety analysis of IoT apps, information-flow

control, and formal models for IoT.

Securing IoT apps: Recent research points out the se-

curity and safety risks arising in the context of IoT apps.

Surbatovich et al. [36] study a dataset of 20K IFTTT ap-

plets and provide an empirical evaluation of potential secrecy

and integrity violations, including violations due to cross-

app interactions. Celik et al. [13], [14] propose static and

dynamic enforcement mechanisms for unveiling cross-app in-

terference vulnerabilities. Ding et al. [17] propose a framework

that combines device physical channel analysis and static

analysis to generate all potential interaction chains among

applications in an IoT environment. They leverage natural

language processing to identify services that have similar

semantics, and propose a risk-based approach to classify the

actual risks of the discovered interaction chains. Chi et al. [15]

propose a systematic categorization of threats arising from

unintentional or malicious interaction of apps in IoT platforms.

To detect cross-app interference, they use symbolic execution

techniques to analyze the apps’s implementation. Nguyen et

al. [31] design IoTSan, a system that uses model checking

to reveal cross-app interaction flows. All the above-mentioned

works provide an excellent motivation for our foundational

contributions. Our policy framework can be used to validate

soundness and permissiveness of these verification techniques.

Another line of work focuses on enforcement mechanisms

for checking security and safety of single IoT apps. Fernandes

et al. [18] present FlowFence, an approach building secure

IoT apps via information-flow tracking and controlled declas-

sification. Celik et al. [11] leverage static taint tracking to

identify sensitive data leaks in IoT apps. Bastys et al. [6],

[7] identify new attack vectors in IFTTT applets and show

that 30% of applets from their dataset can be subject to

such attacks. As a countermeasure, they investigate static and

dynamic information-flow tracking via security types. Fernan-

des et al. [19] propose the use of decentralization and fine-

grained authentication tokens to limit privileges and prevent

unauthorized actions. In contrast, our work targets security and

safety issues in cross-app interactions, and it focuses on the

formal underpinnings of these approaches.

Information-flow control: Several works propose

information-flow control for enforcing confidentiality and

integrity policies in emerging domains like IoT. We refer to

a survey by Focardi and Gorrieri [20] for an overview on

information-flow properties in process algebra. Our semantic

condition of safe cross-app interaction draws inspiration

from Focardi and Martinelli’s notion of Generalized Non

Deducibility on Composition (GNDC) [21], applied along the

lines of [27]. Volpano and Smith [37] study a flow-insensitive
type system for imperative languages. Because in our

language the communication betweeen services is handled

via explicit update statements, a flow-insensitive type system

would be too restrictive and reject more secure programs.

Hunt and Sands [23] propose a flow-sensitive type system for

an imperative language. Our work extends their type system

to ensure security for a system of apps running concurrently.

Similarly to our definition of termination-insensitive hiding

bisimulation, Demange and Sands [16] propose a weakening

of low bisimulation conditions to ignore leaks arising from

program termination. In contrast, the execution of our app’s

payload affects the global store via a well-defined interface,

i.e., listeners and update statements, which makes our systems

of apps more amenable for enforcing security and safety

properties.

There are a few approaches that carry out information-

flow analysis on discrete/continuous models for cyber-physical

systems. Akella et al. [1] proposed an approach to perform

information flow analysis, including both trace-based analysis

and automated analysis through process algebra specifica-

tions. This approach has been used to verify process algebra

models of a gas pipeline system and a smart electric power

grid system. Wang [38] propose Petri-net models to verify

nondeducibility security properties of a natural gas pipeline

system. More recently, Bohrer and Platzer [10] introduce dHL,
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a hybrid logic for verifying cyber-physical hybrid-dynamic

information flows, communicating information through both

discrete computation and physical dynamics, ensuring security

in presence of attackers that observe continuously-changing
values in continuous time.

Formalizing IoT semantics: IoT semantics has been sub-

ject to several works aiming at capturing subtle IoT-specific

notions like time and device state. Newcomb et al. [30]

propose IOTA, a calculus for the domain of home automation.

Based on the core formalism of IOTA, the authors develop

an analysis for detecting whenever an event can trigger two

conflicting actions, and an analysis for determining the root

cause of (non)occurrence of an event. Lanese et al. [25]

propose a calculus of mobile IoT devices interacting with the

physical environment by means of sensors and actuators. The

calculus does not allow any representation of the physical

environment, while it is equipped with an end-user bisimi-

larity in which end-users may: (i) provide values to sensors,

(ii) check actuators, and (iii) observe the mobility of smart

devices. End-user bisimilarity is not preserved by parallel

composition. Compositionality is recovered by strengthening

its discriminating power. Lanotte and Merro [26] extend and

generalize the work of [25] in a timed setting by provid-

ing a bisimulation-based semantic theory that is suitable for

compositional reasoning. Bodei et al. [9] propose an untimed

process calculus, IoT-LYSA, supporting a control flow analysis

that safely approximates the abstract behavior of IoT systems.

Essentially, they track how data spread from sensors to the

logic of the network, and how physical data are manipulated.

The calculus adopts asynchronous multi-party communication

among nodes taking care of node proximity. The dynamics of

the calculus is given in terms of a reduction relation. In [8], the

same authors extend their work to infer quantitative measures
to establish the cost of possibly security countermeasures, in

terms of time and energy. In contrast, our calculus models

constructs that are relevant for our security and safety analysis

of cross-app interactions in IoT platforms, while ignoring

details of the physical environment.

VII. CONCLUSION

IoT platforms empower users by connecting a wide array

of otherwise unconnected services and devices. These plat-

forms routinely execute IoT apps that have access to sensitive

information of their users. Because different apps of a user

may affect a common physical or logical environment, their

interaction (even for benign apps) can cause severe security

and safety risks for that user.

Motivated by this setting, we proposed a generic foun-

dational framework for securing cross-app interactions. We

presented an extensional condition that captures the essence

of safe cross-app interactions, as well as implicit interactions

and priorities. Moreover, we studied an extensional condition

for confidentiality and integrity properties of a system of apps,

and proposed a flow-sensitive security type system to enforce

such condition.

Because of the simplicity of the execution model and the

relatively-small code size, IoT apps offer a promising avenue

for integrating formal techniques studied by the community to

real-world products. In future work, we plan to implement our

techniques for IoT platforms like Android Things and Node-

RED, and investigate their impact on users’ security and safety.
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APPENDIX

A. Proofs

Proof of Theorem 1. It suffices to prove the first part of the

theorem (for the second part, just swap S with R). Assume

S � R, i.e., act(S) ∩ act(R) = ∅ = act(S) ∩ trg(R),
then we have to prove that for any global store G we have:

〈G,L⊥〉 � S ‖ R ≈HS
R, with HS = upd(S). The proof is by

contradiction.

Suppose S and R be two syntactically noninteracting sys-

tems such that 〈G,L⊥〉 � S ‖ R �≈HS
R. By definition of

bisimulation, this means that whenever we try to build up

a hiding bisimulation R containing the pair (C,C′), with

C
def
= 〈G,L⊥〉 � S ‖ R and C′ def

= 〈G,L⊥〉 � R, the bisimulation

game will stop with a pair of configurations (Ci,C
′
i), with Ci

(resp., C′
i) derivative of C (resp., C′), where Ci can perform

an action α that cannot be (weakly) mimicked by C′
i (or vice

versa).

Let proceed by case analysis on the action α that would

distinguish the two configurations.

– α = τ . We notice that τ -actions cannot distinguish the

two systems as we adopted a weak notion of bisimulation.

– α = x?v. This action can be only derived by an

application of rule (EnvChange) in Table II. However, as

already pointed out, this action denotes a modification of the

cloud made by the external observer. Thus, this action does

not depend on the actual configuration and can always be

performed by both configurations.

– α = id:x!v. We have two sub-cases.

• id is an applet of the system S. In this case, α ∈ HS,

and by definition of hiding bisimulation this action can

always be mimicked by an arbitrary number (possibly 0)

of τ -actions.

• id is an applet of the system R. In this case, α /∈ HS. As

α is the distinguishing action, it follows that the app id

reaches different states in the two configurations Ci and

C′
i leading to two possible situations: (i) the writing on

x is possible in Ci but not in C′
i; (ii) the writing on x is

possible in both configurations but with different values.

Since both S ‖ R and R start in the same global store (the

local store is not initialized in both cases), the system

R could exhibit different behaviors if and only if it is

affected by S. In particular, it means that S must modify

a service that R listens on, or a service that R reads from

the global store. Recall that there is no direct information

passing between applets, so the only way for applets to

interact is via the global store. However, we assumed

that act(S)∩ trg(R) is empty, hence this situation is not

possible.

As it does not exist a distinguishing action α, it follows that

the original configurations C and C′ must be hiding bisimilar,

with HS = upd(S).

Proof of Theorem 2. The proof goes along the same lines of

that of Theorem 1. Indeed, the setting of the bisimulation is

the same but the syntactic condition is stronger than the one of

Theorem 1: act(S) ⊆ clo(Δ, act(S)) and the relation
Δ
� (see

Definition 8) is more restrictive than � (see Definition 6).

Now, let us provide a technical lemma which is useful to

prove the subject reduction property of the type system defined

in Table III.

Lemma 1. Let Σ be a security policy, P a process, and σ ∈ SL

a security level. If σ � Γ1

{
P
}
Γ2 and 〈G, φ〉�P λ−→ 〈G′,L′〉�

P′ then there is Γ′
1 such that σ � Γ′

1

{
P′}Γ2.

Proof. The proof is by rule induction on the transitions rules

defining the semantics of processes (Table I). In that table, all

transition rules are axioms (base cases of the induction) except

for the rule (Seq) (the only inductive case). Let us proceed by

case analysis on

〈G, φ〉 � P λ−→ 〈G′, φ′〉 � P′.

We examine the most significant cases.

• Rule (SetLocal). In this case, we have P = x ← e, P′ =
skip, Γ1 � e : δ, for some δ, and Γ2 = Γ1[x �→ δ � σ].
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Then, setting Γ′
1 = Γ2, we have σ � Γ′

1

{
skip

}
Γ2 by an

application of the typing rule (Skip).
• Rule (Update). In this case, we have P = update(x),

P′ = skip, Σ(x) = δ, for some δ, Γ1 � x : δ′, for some

δ′ � δ and Γ1 = Γ2. Then, setting Γ′
1 = Γ1 = Γ2, we

have σ � Γ′
1

{
skip

}
Γ2 by an application of the typing

rule (Skip).
• Rule (IfTrue). In this case, P = if b then {P1} else {P2},

P′ = P1 and Γ1 � b : δ, for some δ. Then, by definition

of the the typing rule (IfElse) we have that σ � δ �
Γ′
1

{
P1

}
Γ2, for some Γ′

1. Finally, since σ � σ � δ, by

an application of sub-typing we derive σ � Γ′
1

{
P1

}
Γ2.

• Rule (Seq). In this case, P = P1;P2, σ � Γ1

{
P1

}
Γ3,

σ � Γ3

{
P2

}
Γ2, 〈G, φ〉 � P1

λ−→ 〈G′′, φ′′〉 � P′
1 and

P′ = P′
1;P2. Since the derivation tree for 〈G, φ〉 �P1

λ−→
〈G′′, φ′′〉 � P′

1 is smaller than the derivation tree for

〈G, φ〉 � P
λ−→ 〈G′, φ′〉 � P′, and σ � Γ1

{
P1

}
Γ3, by

inductive hypothesis, we have that σ � Γ′′
1

{
P′
1

}
Γ3, for

some Γ′′
1 . Thus, setting Γ′

1 = Γ′′
1 , since σ � Γ3

{
P2

}
Γ2,

by an application of the typing rule (Seq) it follows that

σ � Γ′′
1

{
P′
1;P2

}
Γ2.

Proof of Proposition 1. Given a security policy Σ, a system

of apps S and a security level σ ∈ SL, we have to prove that

if σ � S and 〈G,L〉 � S α−� 〈G′,L′〉 � S′ then σ � S′.
The proof is by rule induction on the transitions rules

defining the semantics of systems (Table II). We proceed by

case analysis on why

〈G,L〉 � S α−� 〈G′,L′〉 � S′.
• Rule (App). In this case, we have S = id[D��P ], σ �

Γ1

{
P
}
Γ2, 〈G,L(id)〉 � P α−→ 〈G′,L′(id)〉 � P′ and S′ =

id[D�� P′ ]. By an application of Lemma 1, we derive

that σ � Γ′
1

{
P′}λ2, for some Γ′

1. By an application of

the typing rule (App) we derive σ � S′.
• Rule (AppUpdate). Similar to the previous case.

• Rule (EnvChange). In this case, S = S′ and we trivially

have σ � S′.
• Rule (ParLeft). In this case, we have S = S1 ‖ S2, 〈G,L〉�

S1
α−� 〈G′′,L′′〉�S′1, σ � S1 and S′ = S′1 ‖ S2. Since the

derivation tree for 〈G,L〉�S1 α−� 〈G′′,L′′〉�S′1 is smaller

than the derivation tree for 〈G,L〉�S α−� 〈G′,L′〉�S′, and

σ � S1, by inductive hypothesis it follows that σ � S′1.

Thus, by an application of the typing rule (Par) it follows

that σ � S′1 ‖ S2.

• Rule (ParRight). Similar to the previous case.

Proof of Theorem 3. Assume that � S and G ≡σ G′, then

we have to prove that 〈G,L⊥〉 � S ≈ti
Hσ
〈G′,L⊥〉 � S, with

Hσ = {α ∈ A | Σ(α) �� σ}. The proof is by contradiction.

Suppose there exist two stores G,G′ ∈ S⊥ such that

G ≡σ G′ and 〈G,L⊥〉 �S �≈ti
Hσ
〈G′,L⊥〉 �S. This implies that

whenever we try to build up a termination-insensitive hiding

bisimulationR containing the pair (C,C′), with C
def
= 〈G,L⊥〉�

S and C′ def
= 〈G′,L⊥〉 � S, the bisimulation game will stop in

a pair of configurations (Ci,C
′
i), with Ci (resp., C′

i) derivative

of C (resp., C′), where Ci can perform an action α that cannot

be (weakly) mimicked by C′
i (or vice versa). Since both Ci

and C′
i are derivatives of well-typed configurations (actually

well-typed systems), by subject reduction (Proposition 1) the

corresponding systems are both well-typed.
Let proceed by case a analysis on the action α that would

distinguish the two configurations.
– α = τ . We notice that τ -actions cannot be a problem

as we adopted a weak notion of bisimulation which can also

mimic τ -actions.
– α = x?v. This action can be only derived by an

application of rule (EnvChange) in Table II. However, as

already pointed out, this action denotes a modification of the

cloud made by the external observer. Thus, this action does

not depend on the actual configuration and can always be

performed by both configurations.
– α = id:x!v. We have two sub-cases.

• Σ(x) �� σ. That is α is a high-level action. In this case,

α ∈ Hσ , and by definition of our bisimulation this action

can always be mimicked by an arbitrary number (possibly

0) of τ -actions.

• Σ(x) � σ. That is α is a low-level action, or more pre-

cisely an action with security level smaller than or equal

to σ. As α is the distinguish action, it follows that the

app id reaches different states in the two configurations

Ci and C′
i leading to two possible situations: (i) the low-

level writing on x is possible in Ci but not in C′
i; (ii) the

low-level writing on x is possible in both configurations

but with different values.

Let us consider the case (i) first. Since the initial global

stores are σ-equivalent, G ≡σ G′, and potential updates

of the global stores via the transition rule (EnvChange)
will update the two stores consistently, it follows that

Gi ≡σ G′
i, where Gi (resp., G′

i) is the global store of

Ci (resp., C′
i). Thus, one possibility for the app id to

reach two different states in the configurations Ci and

C′
i, such that Ci performs the update and C′

i does not

perform the update (or vice versa), is that it passed by a

conditional statement that was evaluated differently in the

two cases. Since Gi ≡σ G′
i, it follows that the guard of

the conditional involved some high-level services which

are the only ones that can differ in the two global stores.

However, this situation is prevented by our type system

as the typing rule (IfElse) ensures that we cannot have

low-level updates in the two branches of the conditional,

after the evaluation of a high-level guard (the high-level

type is pushed into the pc of the branches and, eventually,

to the low-level update). The other possibility is that there

was a conditional statement that was evaluated differently

in the two configurations: one branch diverges (without

performing any low update) while the other does not.

Then, after the conditional we have a low-level update.

But in this case the two configurations are bisimilar, by

definition of our termination-insensitive bisimulation.
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Let us consider now the case (ii), i.e. when the low-level

writing on x is possible in both configurations Ci and

C′
i but with different values v and v′, respectively. This

situation would be possible when the writing on x in the

app id is preceded by an assignment x ← e and the

evaluations of e in the two configurations leads to v and

v′, respectively, with v �= v′. Since Gi ≡σ G′
i it follows

that the expression e must have a high-level security type,

that is, Γ � e : δ, with σ ≺ δ.

A similar situation would be possible also if there was

a conditional whose guard is typed at high-level and the

service x is assigned in both branches of the conditional

(with different values v and v′). Here, x would take

different values even if the assignments involve only low-

level expressions, since the guard has type greater than

σ, similarly to what happens in case (i). However, our

type system would type x as δ  σ and, via the typing

rule (Update), it does not admit low-level writings on x

as Σ(x) � σ ≺ δ = Γ(x). Thus, also this case is not

admissible.

As it does not exist a distinguishing action α, it follows that

the original configurations C and C′ must be bisimilar, with

Hσ = {α ∈ A | Σ(α) �� σ}.
B. Further examples of IoT apps

In the following, we provide further examples of apps that

can be modeled in our calculus CaITApp. These examples

are inspired by existing real-world apps, also studied in the

literature.

Example 9. Consider an app with the following specification.

When the user enters a given geographical area the app sends

an e-mail saying “entering area”. Similarly, when the user exits

the given area, the app sends an e-mail saying “exiting area”.

Suppose a services gps reporting the current position of the

user in terms of gps coordinates: gps.Lat and gps.Long. Sup-

pose also a service emailA, sending e-mails to a given address.

The geographical area is given by a center, with coordinates

centerLat and centerLong, and a radius called side. The area

is the square with edges 〈centerLat±side, centerLong±side〉.
The app is:

Area[ gpsR; emailAW
��fixX • listen(gps); pld9 ]

where

pld9
def
= if (ExitArea) then {

emailA← goingOut; update(emailA)

} else {
if (EnterArea) then {
emailA← goingIn; update(emailA)

}
};
gps.Lat← read(gps.Lat);

gps.Long← read(gps.Long);

X

where ExitArea is a macro for the boolean test:

gps.Lat− centerLat ≤ side∧
gps.Long− centerLong ≤ side∧
read(gps.Lat)− centerLat > side∧
read(gps.Long)− centerLong > side

and EnterArea is a macro for the boolean test:

gps.Lat− centerLat > side∧
gps.Long− centerLong > side∧
read(gps.Lat)− centerLat ≤ side∧
read(gps.Long)− centerLong ≤ side

Example 10. Consider following app. When the lights are

turned on the app should brew coffee and set the heater to 22

degrees. Suppose to have three services: ligth, managing the

lights, coffeeM, managing the coffee machine, and heater,

managing the heater. The app is formalized as follows:

Welcome[ lightR; coffeeMW; heaterW
��fixX • listen(light);P10 ]

where

P10
def
= lights← read(lights);

if (lights = On) then {
coffeeM← doCoffee;

heater← 22;

update(coffeeM, heater)

};X

Example 11. Imagine to have the following app. If a water

leak is detected, then the app should shut off the main

water supply valve. We assume two services: leakDetect,

reporting whether there is a water leak or not, and mainValve,

managing the main water valve. The app is formalized as

follows:

Leak[leakDetectR; mainValveW
��fixX • listen(leakDetect);P11]

where

P11
def
= if (read(leakDetect) = yes) then {

mainValve← Off;

update(mainValve)

};X

Example 12. Imagine to have an Lamp1, such that if the floor

lamp is turned on and the home is in sleep mode, then the

app should turn off the lamp after 5 minutes. We assume

three services: flamp, managing the floor lamp, homeMode,

reporting the home mode, and alarm, controlling the burglar

alarm. The app is formalized as follows:

Lamp1[flampRW; homeModeR
��fixX • listen(flamp;homeMode);P12 ]
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where

P12
def
= flamp← read(flamp);

if (flamp.state = On ∧ homeMode = sleep) then {
flamp.ctrl← OffDelay5;

update(flamp)

};X
Example 13. Imagine to have a second app, Lamp2, such that

if the floor lamp is turned on, and some object is moving, and

it is midnight, and the lamp is tunred on for more than 10

minutes, then the burglar alarm should be fired. We assume

three services: flamp, managing the floor lamp, motion,

reporting whether something is moving or not, and time,

reporting the current time. The app is formalized as follows:

Lamp2[D2��fixX • listen(flamp; motion; time);P13 ]

where
D2

def
= flampRW; motionR; timeR; alarmW, and

P13
def
= flamp← read(flamp);

motion← read(motion);

time← read(time);

if (cond) then {
if (flamp.curStateTime ≥ 10) then {
alarm← On;

update(alarm)

}
};X

where cond is the following boolean test:

flamp.state = On ∧ motion = yes ∧ time.H = 0 = time.M.

Example 14. Imagine to have an app Forward, forwarding

messages from the e-mail address emailA to the e-mail

address emailB. The app is formalized as follows:

Forward[ emailAR; emailBW
��fixX • listen(emailA);P14 ]

where

P14
def
= emailA← read(emailA);

emailB← emailA;

update(emailB);X

Let us now comment on potential interactions and or

interferences between the apps defined above.
Semantic vs. syntax-based interactions: According to Def-

inition 3, the apps Welcome and Leak do not interact with

each other, since for every G ∈ S we have:

• 〈G,L⊥〉 � Welcome ‖ Leak ≈Hw
Leak

• 〈G,L⊥〉 � Welcome ‖ Leak ≈Hl
Welcome

where Hw = upd(Welcome) and Hl = upd(Leak).
However, if we add also the app SmokeAlarm, defined in

Example 2, then we do have an interaction. In fact, there exists
G ∈ S such that:

〈G,L⊥〉 � SmokeAlarm ‖ Welcome ‖ Leak �≈Hs Welcome ‖ Leak

where Hs = upd(SmokeAlarm). Here, the app SmokeAlarm

may interact with the compound system Welcome ‖ Leak.

Intuitively, when some smoke is detected the app SmokeAlarm

turns the lights on. As a consequence, the app Welcome is

triggered: the app brews a coffee and set the heater to 22

degrees.

According to Definition 6, this interaction can be captured

syntactically as: SmokeAlarm � Welcome ‖ Leak does

not hold because act(SmokeAlarm) = {alarm, lights},
trg(Welcome ‖ Leak) = {lights, leakDetect}, and hence

act(SmokeAlarm)) ∩ trg(Welcome ‖ Leak) �= ∅.

Interactions under dependencies: According to Defini-

tion 3, the app Lamp1 is noninteracting with the app Lamp2,

even if there is an obvious interplay between them. This

lack in Definition 3 is due to the fact we cannot express

that the action OffDelay5 turns flamp.state to Off after 5

minutes. This can be fixed by using a dependency policy

Δ
def
= {(flamp.ctrl, flamp.state)}. In fact, according to

Definition 7, there exists G ∈ S such that:

〈G,L⊥〉 � Lamp1 ‖ Lamp2 �Δ≈H1
Lamp2

with H1
def
= {Lamp1:flamp.ctrl!v ∈ A | v ∈ Value}. Intu-

itively, if the app Lamp1 turns off the lights then the app Lamp2

cannot be triggered. Again, this interaction can be captured

syntactically, via Definition 8, as Lamp1 stackrelΔ� Lamp2

does not hold because {flamp.ctrl, flamp.state} ⊆
clo(Δ, act(Lamp1)), {flamp.state} ⊆ trg(Lamp2), and

hence clo(Δ, act(Lamp1)) ∩ trg(Lamp2) �= ∅.

Interference and noninterference: Suppose that the email

account A, associated to the address emailA, is confidential,

i.e., Σ(emailA) = H, while the email account B, associated

to the address emailB, is public, i.e., Σ(emailB) = L. For

instance, emails associated to the account A can be red only

by one, privileged, administrator while emails associated to

the account B can be freely read by any user.

Clearly, the system S
def
= Area ‖ Forward is not secure as we

have a confidentiality leak from emailA to emailB. Indeed,

it is not hard to find two L-equivalent global stores G and G′

such that 〈G,L⊥〉�S �≈ti
HL
〈G′,L⊥〉�S. Again, we can capture

this interference by syntactic means: the system S cannot be

typed by our security type system because the process P14

running within the applet Forward is not typable. In fact, when

building the derivation tree for the typing, we have to type

the assignment emailB ← emailA as L � Γ1

{
emailB ←

emailA
}
Γ2, for Γ1 = [emailA �→ H , emailB �→ L , . . .]

and Γ2 = [emailA �→ H , emailB �→ H , . . .]. But then, the

subsequent command update(emailB) cannot be typed, since

the current typing of emailB is H while the initial typing of

emailB is Σ(emailB) = L. Thus, the app Forward is not

typable and, in turn, the parallel composition S is not typable.
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