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Abstract

Cyber-Physical Systems (CPSs) are integrations of networking and distributed computing systems with physical
processes, where feedback loops allow physical processes to affect computations and vice versa. Although CPSs
can be found in several real-world domains (automotive, avionics, energy supply, etc), their verification often relies
on simulation test systems rather then formal methodologies. This is because there is still a lack of research on the
modelling and the definition of formal semantics to compare non-trivial CPSs in terms of their runtime behaviours up
to an acceptable tolerance.

We propose a hybrid probabilistic process calculus for modelling and reasoning on CPSs. The dynamics of the
calculus is expressed in terms of a probabilistic labelled transition system in the SOS style of Plotkin. This is used
to define a bisimulation-based probabilistic behavioural semantics which supports compositional reasonings. For a
more careful comparison between CPSs, we provide two compositional probabilistic metrics to formalise the notion of
behavioural distance between systems, also in the case of bounded computations. Finally, we provide a non-trivial case
study, taken from an engineering application, and use it to illustrate our definitions and our compositional behavioural
theory for CPSs.

Keywords: Cyber-physical system, Hybrid probabilistic process calculus, Probabilistic metric semantics

1. Introduction

Cyber-Physical Systems (CPSs) are integrations of networking and distributed computing systems with physical
processes, where feedback loops allow physical processes to affect computations and vice versa. CPSs can be considered
as an evolution of embedded systems, where components are immersed in and interact with the physical world, via
physical devices (such as sensors and actuators). They can also be seen as an evolution of networked control systems,
where physical processes and controllers interact via a communication system.

The physical plant of a CPS is often represented by means of a discrete-time state-space model1 consisting of two
equations of the form

xk+1 = Axk + Buk + wk

yk = Cxk + ek

where xk ∈ Rn is the current (physical) state, uk ∈ Rm is the input (i.e., the control actions implemented through
actuators) and yk ∈ Rp is the output (i.e., the measurements obtained from the sensors). The uncertainty wk ∈ Rn and
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1We refer to [2] for a taxonomy of time-scale models used to represent CPSs.
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Figure 1: Structure of a CPS

the measurement error ek ∈ Rp represent perturbation and sensor noise, respectively. The parameters A, B, and C are
matrices modelling the dynamics of the physical system. The next state xk+1 depends on the current state xk and the
corresponding control actions uk, at the sampling instant k ∈ N. Note that, the state xk cannot be directly observed:
only its measurement yk can be observed.

The physical plant is supported by a communication network through which the sensor measurements and actuator
data are exchanged with the controller(s), i.e., the cyber component, also called logics, of a CPS (see Figure 1).

In general terms, CPSs can be considered as both nondeterministic and probabilistic systems. Nondeterminism
arises as they consist of distributed networks in which the activities of specific components occur nondeterministically,
whereas the probabilistic behaviour is due to the presence of the uncertainty in the model and the measurement error,
which are usually represented as probability distributions.

The range of CPSs applications is rapidly increasing and already covers several domains [3]: advanced automotive
systems, energy conservation, environmental monitoring, avionics, critical infrastructure control (for instance, electric
power, water resources, and communications systems), etc.

However, there is still a lack of research on the modelling and validation of CPSs through formal methodologies that
allow us to model the interactions among the system components, and to verify the correctness of a CPS, as a whole,
before its practical implementation. A straightforward utilisation of these methodologies is for model-checking [4],
or even better, for probabilistic model-checking [5], to statically assess whether the current system deployment can
guarantee the expected behaviour. However, they can also be an important aid for system planning, for instance to
decide whether different deployments for a given application are behaviourally equivalent.

Process calculi have been successfully used to model and analyse concurrent, distributed and mobile systems (see,
e.g., the π-calculus [6], Ambients [7] and the Distributed π-calculus [8]). However, to better describe systems based on
a particular paradigm, dedicated calculi are needed. Hybrid process algebras [9, 10, 11, 12, 13] have been proposed for
reasoning about physical systems and provide techniques for analysing and verifying protocols for hybrid automata. In
order to enrich hybrid models with probabilistic or stochastic behaviour, a number of different approaches have been
proposed in the last years [14, 15, 16, 17, 18, 19, 20]. However, to our knowledge, none of these formalisms provide
bisimulation metrics semantics to estimate the deviation in terms of behaviour of different CPSs in a process-algebra
setting. The definition of these instruments represents the main goal of the current paper.

Contributions. In this paper, we propose a hybrid probabilistic process calculus, called pCCPS (Probabilistic Calculus
of Cyber-Physical Systems), with a clearly-defined probabilistic behavioural semantics for specifying and reasoning on
CPSs. In pCCPS, cyber-physical systems are represented by making a neat distinction between the physical component
describing the physical process (consisting in state variables, sensors, actuators, evolution law, measurement law, etc.)
and the cyber component, i.e., the logics (i.e., controllers, IDS, supervisors, etc.) that governs sensor reading and
actuator writing, as well as channel-based communication with other cyber components. Thus, channels are used for
logical interactions between cyber components, whereas sensors and actuators make possible the interaction between
cyber and physical components. Despite this conceptual similarity, messages transmitted via channels are “consumed”
upon reception, whereas actuators’ states (think of a valve) remains unchanged until the corresponding controller
modifies them.

The calculus pCCPS adopts a discrete notion of time [21] and it is equipped with a probabilistic labelled transition
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semantics (pLTS) in the style of [22]. We prove that our probabilistic labelled transition semantics satisfies some
standard time properties such as: time determinism, patience, maximal progress, and well-timedness. Based on
our pLTS, we define a natural notion of weak probabilistic bisimilarity, written ≈. As a main result, we prove that
bisimilarity in pCCPS is preserved by appropriate system contexts and it is hence suitable for compositional reasoning.

Then, we provide a non-trivial case study, taken from an engineering application, and use it to illustrate our
definitions and our compositional behavioural theory for CPSs. We also use our case study to show that the probabilistic
bisimilarity is only partially satisfactory to reason on CPSs as it can only establish whether two CPSs behave exactly in
the same way or not. Any tiny variation of the probabilistic behaviour of one of the two systems under consideration will
break the equality without any further information on the “distance” of their behaviours. To this end, bisimulation metric
semantics have been successfully employed to formalise the behavioural distance between two systems [23, 24, 25, 26].

We generalise our probabilistic bisimilarity by providing a notion of weak bisimulation metric for pCCPS along the
lines of [23]. We will write M ≈p N, if the weak bisimilarity between CPSs M and N holds with a distance p, with
p ∈ [0, 1]. Intuitively, ≈0 will coincide with the weak probabilistic bisimilarity ≈, whereas

⋃
p∈[0,1] ≈p will correspond

to the cartesian product pCCPS × pCCPS.
We also provide a notion of n-bisimilarity metric which takes into account bounded computations of systems [24].

This kind of metric, denoted with ≈n
p, for n ∈ N+, says that the distance p of the systems under considerations is

ensured only for the first n computation steps. Said in other words, if M ≈n
p N then for the first n computation steps the

runtime behaviour of systems M and N may differ with probability at most p. Both metrics ≈p and ≈n
p are proved to be

preserved by the same contexts considered for ≈, and hence they reveal to be suitable for compositional reasonings. In
particular, they satisfy a well-known compositional property called non-expansiveness [24, 27, 28, 29], the analogue of
the congruence property of weak bisimulation. Finally, with the help of our case study, we will show how n-bisimilarity
metric can be very helpful in situations where it is not necessary to observe a system “ad infinitum” as it makes much
more sense to observe its behaviour for bounded computations.

Outline. In Section 2, we give syntax and operational semantics of pCCPS. In Section 3, we provide a bisimulation-
based probabilistic behavioural semantics for pCCPS and prove its compositionality. In Section 4, we model our case
study in pCCPS, and prove for it run-time properties as well as system equalities. In Section 5, we define bisimulation
metrics for pCCPS. In Section 6, we revise our case study by providing a more accurate analysis based on the proposed
bisimulation metrics. In Section 7, we draw conclusions and discuss related and future work.

2. The calculus

In this section, we introduce our Probabilistic Calculus of Cyber-Physical Systems, pCCPS.
Let us start with some preliminary notations. We use x, xk ∈ X for state variables (associated to physical states of

systems), c, d ∈ C for communication channels, a, ak ∈ A for actuator devices, s, sk ∈ S for sensors devices. Actuator
names are metavariables for actuator devices like valve, light, etc. Similarly, sensor names are metavariables for sensor
devices, e.g., a sensor thermometer that measures a state variable called temperature, with a given precision. Values,
ranged over by v, v′ ∈ V, are built from basic values, such as Booleans, integers and real numbers; they also include
names. Given a generic set of names N, we write RN to denote the set of functions assigning a real value to each name
in N. For ξ ∈ RN, n ∈ N and v ∈ R, we write ξ[n 7→ v] to denote the function ψ ∈ RN such that ψ(m) = ξ(m), for any
m , n, and ψ(n) = v. Given ξ1 ∈ RN1 and ξ2 ∈ RN2 such that N1 ∩ N2 = ∅, we denote with ξ1 ] ξ2 the function in
RN1∪N2 such that (ξ1 ] ξ2)(n) = ξ1(n), if n ∈ N1, and (ξ1 ] ξ2)(n) = ξ2(n), if n ∈ N2.

As pCCPS is a probabilistic calculus, we report the necessary mathematical machinery for its formal definition.

Definition 2.1 (Probability distribution). A (discrete) probability sub-distribution over a set of generic objects O is
a function δ : O → [0, 1] with

∑
o∈O δ(o) ∈ (0, 1]. We write |δ| as an abbreviation for

∑
o∈O δ(o). The support of a

probability sub-distribution δ is given by supp(δ) = {o ∈ O : δ(o) > 0}. We writeDsub(O), ranged over γ, δ and ε, for
the set of all finite-support probability sub-distributions over the set O. A probability sub-distribution δ ∈ Dsub(O)
is said to be a probability distribution if

∑
o∈O δ(o) = 1. WithD(O) we denote the set of all finite-support probability

distributions over O. For any o ∈ O, the point (Dirac) distribution at o, denoted o, assigns probability 1 to o and 0 to
all other elements of O, so that supp(o) = {o}.
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Let I be a finite indexing set such that: (i) δi is a sub-distribution in Dsub(O) for each i ∈ I, and (ii) pi ≥ 0 are
probabilities such that

∑
i∈I pi ∈ (0, 1]. The probability sub-distribution (or convex combination)

∑
i∈I pi · δi is the

sub-distribution defined by (
∑

i∈I pi ·δi)(o) =
∑

i∈I piδi(o) for all o ∈ O. We write a sub-distribution as p1 ·δ1 + . . .+ pk ·δk

when the indexing set I is {1, . . . , k}.
In pCCPS, a cyber-physical system consists of:

• a physical component (defining physical variables, physical devices, physical evolution, etc.) and

• a cyber (or logical) component that interacts with the physical devices (sensors and actuators) and communicates
via channels with other cyber components.

Physical components in pCCPS are given by two sub-components: (i) the physical state, which is supposed to
change at runtime, and (ii) the physical environment, which contains static information2.

Definition 2.2 (Physical state). Let X be a set of state variables, S be a set of sensors, and A be a set of actuators. A
physical state S is a triple 〈ξx, ξs, ξa〉, where:

• ξx ∈ RX is the state function,

• ξs ∈ RS is the sensor function,

• ξa ∈ RA is the actuator function.

All functions defining a physical state are total.

The state function ξx returns the current value associated to each variable in X. The sensor function ξs returns the
current value associated to each sensor in S; similarly, the actuator function ξa returns the current value associated to
each actuator in A.

Definition 2.3 (Physical environment). Let X be a set of state variables, S be a set of sensors, and A be a set of
actuators. A physical environment E is a triple 〈evol,meas, inv〉, where:

• evol : RX × RA → D(RX) is the evolution map,

• meas : RX → D(RS) is the measurement map,

• inv ∈ 2R
X

is the invariant set.

All the functions defining a physical environment are total functions.

Given a state function and an actuator function, the evolution map evol returns a probability distribution over state
functions. This function models the evolution law of the physical system, where changes made on actuators may reflect
on state variables. Since we assume the presence of a known (maximal) uncertainty for our models, the evolution map
does not return a specific state function but a probability distribution over state functions.

Given a state function, the measurement map meas returns a probability distribution over sensor functions. Also in
this case, since we assume the presence of a known (maximal) measurement error for each sensor, the measurement
map returns a probability distribution over sensor functions, rather than a specific sensor function.

The invariant set inv returns the set of state functions that satisfy the invariant of the system. A CPS that gets into a
physical state with a state function that does not satisfy the invariant is in deadlock.

Let us now formalise the cyber components of CPSs in our calculus pCCPS. Our (logical) processes build on
Hennessy and Regan’s Timed Process Language TPL [21] (basically CCS enriched with a discrete notion of time). We
extend TPL with three constructs: one to read values detected at sensors, one to write values on actuators, and one to
express (guarded) probabilistic choice. The remaining processes of the calculus are the same as those of TPL.

2Actually, this information is periodically updated (say, every six months) to take into account possible drifts of the system.
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Definition 2.4 (Processes). Processes are defined by the grammar:

P,Q ::= nil
∣∣∣ tick.C

∣∣∣ P ‖ Q
∣∣∣ bchn.CcD

∣∣∣ phy.C
∣∣∣ [b]{P}, {Q}

∣∣∣ P\c
∣∣∣ X

∣∣∣ rec X.P
C,D ::=

⊕
i∈I pi:Pi

chn ::= snd c〈v〉
∣∣∣ rcv c(x)

phy ::= read s(x)
∣∣∣ write a〈v〉 .

We write nil for the terminated process. The process tick.C models sleeping for one time unit. We write P ‖ Q to
denote the parallel composition of concurrent processes P and Q. The process bchn.CcD, with chn ∈ {snd c〈v〉, rcv c(x)},
denotes channel transmission with timeout. Thus, bsnd c〈v〉.CcD sends the value v on channel c and, after that, it
continues as C; otherwise, if no communication partner is available within one time unit, it evolves into D. The process
brcv c(x).CcD is the obvious counterpart for channel reception.

Processes of the form phy.C denote activities on physical devices (sensors or actuators). Thus, the construct
read s(x).C reads the value v detected by the sensor s and, after that, it continues as C, where x is replaced by v. The
process write a〈v〉.C writes the value v on the actuator a and then it continues as C.

The process P\c is the channel restriction operator of CCS. It is quantified over the set of communication channels,
although we often use the shorthand P\{c1, · · · , cn} to mean P\c1\c2 · · · \cn. The process [b]{P}, {Q} is the standard
conditional, where b is a decidable guard. For simplicity, as in CCS, we identify process [b]{P}, {Q} with P, if b
evaluates to true, and [b]{P}, {Q} with Q, if b evaluates to false. In processes of the form tick.D and bchn.CcD, the
occurrence of D is said to be time-guarded. The process rec X.P denotes time-guarded recursion as all occurrences of
the process variable X may only occur time-guarded in P.

The construct
⊕

i∈I pi:Pi denotes probabilistic choice, where I is a finite, non-empty set of indexes, and pi ∈ (0, 1],
for i ∈ I, denotes the probability to execute the process Pi, with

∑
i∈I pi = 1. As in [30], in order to simplify the

operational semantics, probabilistic choices occur always underneath prefixing.
In the two constructs brcv c(x).CcD and read s(x).C, the variable x is said to be bound. Similarly, the process

variable X is bound in rec X.P. This gives rise to the standard notions of free/bound (process) variables and α-conversion.
We identify processes up to α-conversion (similarly, we identify CPSs up to renaming of state variables, sensor names,
and actuator names). A term is closed if it does not contain free (process) variables, and we assume to always work
with closed processes: the absence of free variables is preserved at run-time. As further notation, we write T {v/x} for the
substitution of the variable x with the value v in any expression T of our language. Similarly, T {P/X} is the substitution
of the process variable X with the process P in T .

Everything is in place to provide the definition of cyber-physical systems expressed in pCCPS.

Definition 2.5 (Cyber-physical system). Fixed a set of state variables X, a set of sensors S, and a set of actuators A, a
cyber-physical system in pCCPS is given by two components:

• a physical component consisting of

– a physical environment E defined on X, S, and A, and
– a physical state S recording the current values associated to the state variables in X, the sensors in S, and

the actuators in A;

• a cyber component P that interacts with the sensors in S and the actuators A, and can communicate, via channels,
with other cyber components of the same or of other CPSs.

We write E; S on P to denote the resulting CPS, and use M and N to range over CPSs. Sometimes, when the physical
environment E is clearly identified, we write S on P instead of E; S on P. CPSs of the form S on P are called environment-
free CPSs.

The reader should notice that the syntax of our CPSs is slightly too permissive as a process might use sensors
and/or actuators which are not defined in the physical state.

Definition 2.6 (Well-formedness). Let S = 〈ξx, ξs, ξa〉 be a physical state, E = 〈evol,meas, inv〉 a physical environment,
and P a process. The CPS E; S on P is said to be well-formed if: (i) any sensor mentioned in P is in the domain of the
function ξs; (ii) any actuator mentioned in P is in the domain of the function ξa. A sub-distribution γ ∈ Dsub(pCCPS) is
said to be well-formed if its support contains only well-formed CPSs.
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(Outp)
−

bsnd c〈v〉.CcD
cv
−−−→ JCK

(Inpp)
−

brcv c(x).CcD
cv
−−−→ JC{v/x}K

(Write)
−

write a〈v〉.C
a!v
−−−−→ JCK

(Read)
−

read s(x).C
s?(x)
−−−−−−→ JCK

(Com)
P1

cv
−−−→ π1 P2

cv
−−−→ π2

P1 ‖ P2
τ
−−−→ π1 ‖ π2

(Par)
P

λ
−−−→ π λ , tick

P ‖ Q
λ
−−−→ π ‖ Q

(ChnRes)
P

λ
−−−→ π λ < {cv, cv}

P\c
λ
−−−→ π\c

(Rec)
P{rec X.P/X}

λ
−−−→ π

rec X.P
λ
−−−→ π

(TimeNil)
−

nil
tick
−−−−→ nil

(Delay)
−

tick.C
tick
−−−−→ JCK

(Timeout)
−

bchn.CcD
tick
−−−−→ JDK

(TimePar)
P1

tick
−−−−→ π1 P2

tick
−−−−→ π2 P1 ‖ P2

τ
−−−→6

P1 ‖ P2
tick
−−−−→ π1 ‖ π2

Table 1: Probabilistic LTS for processes

Hereafter, we will always work with well-formed CPSs.
As usual in process calculi, we use the symbol ≡ to denote standard structural congruence for timed processes [6,

31]; its generalisation to CPSs is immediate: E; S on P ≡ E; S on Q if P ≡ Q. Also the generalisation to sub-
distributions in Dsub(pCCPS) is straightforward: given two sub-distributions γ and γ′ over CPSs, we write γ ≡ γ′ if
γ([M]≡) = γ′([M]≡) for all equivalence classes [M]≡ ⊆ pCCPS.

Finally, we assume a number of notational conventions. We write Dead to denote a deadlocked CPS which
cannot perform any action. This fictitious CPS will be useful when defining behavioural distances between CPSs (see
Definition 5.3). We write chn.P instead of rec X.bchn.PcX, when X does not occur in P. We write snd c (resp. rcv c)
when channel c is used for pure synchronisation. For k ≥ 0, we write tickk.P as a shorthand for tick.tick. . . . tick.P,
where the prefix tick appears k consecutive times. Given a CPS M = E; S on P, a process Q and a channel c, we write
M ‖ Q for E; S on (P ‖ Q), and M\c for E; S on (P\c).

In the rest of the paper, symbol σ ranges over distributions over physical states, π ranges over distributions over
processes, and γ ranges over distributions over CPSs.

2.1. Probabilistic labelled transition semantics

In this section, we provide the dynamics of pCCPS in terms of a probabilistic labelled transition system (pLTS) [22].
First, we give a pretty standard probabilistic LTS for processes, then we lift transition rules from processes to CPSs to
deal with the probability distributions occurring in physical environments.

In Table 1, we provide transition rules for processes. Here, the meta-variable λ ranges over labels in the set
{tick, τ, cv, cv, a!v, s?(x)}. These labels denote the passage of time, internal activities, channel transmission, channel
reception, actuator writing, and sensor reading, respectively. As in [30], the definition of the labelled transition relation
for processes relies on a semantic interpretation of probabilistic processes in terms of (discrete) probability distributions
over processes.

Definition 2.7. For any probabilistic choice
⊕

i∈I pi:Pi over a finite index set I, we write J
⊕

i∈I pi:PiK to denote the
probability distribution

∑
i∈I pi · Pi.

The transition rules in Table 1 use some obvious notation for distributing both parallel composition and channel
restriction over a sub-distribution. Given two sub-distributions π1 and π2 we define the sub-distribution π1 ‖ π2 as
follows: (π1 ‖ π2)(P) = π1(P1) · π2(P2), if P = P1 ‖ P2; (π1 ‖ π2)(P) = 0, otherwise. Given an arbitrary distribution

6



(Out)
P

cv
−−−→ π S ∈ inv

S on P
cv
−−−→ S on π

(Inp)
P

cv
−−−→ π S ∈ inv

S on P
cv
−−−→ S on π

(Tau)
P

τ
−−−→ π S ∈ inv

S on P
τ
−−−→ S on π

(SensRead)
P

s?(z)
−−−−−→ π ξs(s) =

∑
i∈I pi · vi ξx ∈ inv

〈ξx, ξs, ξa〉on P
τ
−−−→ 〈ξx, ξs, ξa〉on

∑
i∈I pi · π{

vi/z}

(ActWrite)
P

a!v
−−−−→ π ξx ∈ inv

〈ξx, ξs, ξa〉on P
τ
−−−→ 〈ξx, ξs, ξa[a 7→ v]〉on π

(Time)
P

tick
−−−−→ π S on P

τ
−−−→6 S ∈ inv

S on P
tick
−−−−→ nextE(S )on π

(Deadlock)
S < inv

S on P
τ
−−−→ Dead

Table 2: Probabilistic LTS for a CPS S on P parametric on an environment E = 〈evol,meas, inv〉

over processes π =
∑

i∈I pi · Pi, an arbitrary channel c, and a value v, we define π\c as the distribution
∑

i∈I pi · Pi\c,
and π{v/x} as the distribution

∑
i∈I pi · Pi{

v/x}.
Let us comment on the transition rules of Table 1. Rules (Outp), (Inpp) and (Com) serve to model channel

communication, on some channel c. Rule (Write) denotes the writing of some data v on an actuator a. Rule (Read)
denotes the reading of some value detected at sensor s. Rule (Par) propagates untimed actions over parallel components.
Rules (ChnRes) and (Rec) are the standard rules for channel restriction and recursion, respectively. The following four
rules are standard, and model the passage of one time unit. The symmetric counterparts of rules (Com) and (Par) are
obvious and thus omitted from the table.

In Table 2, we lift the transition rules from processes to systems, actually to probability distributions over systems.
We adopt the following notation for probability distributions: given a distribution σ over physical states and a
distribution π over processes, we write σon π to denote the distribution over (environment-free) CPSs defined as
(σon π)(S on P) = σ(S ) · π(P). Moreover, given a physical environment E, we write E;σon π to extend the distribution
σon π to full CPSs as follows: (E;σon π)(E; S on P) = σ(S ) · π(P). Actions, ranged over by α, are in the set
Act = {τ, cv, cv, tick}. These actions denote: non-observable activities (τ); channel transmission (cv); channel reception
(cv); the passage of time (tick).

As physical environments contain static information, for simplicity the resulting transition rules are parameterised
on a physical environment of the form E = 〈evol,meas, inv〉. Thus, instead of providing the transitions rules for a CPS
of the form E; S on P we give the LTS semantics parametric on E for the environment-free CPS S on P.

All rules, except (Deadlock), have a common premise requiring that the current state function of the system must
satisfy the invariant. With an abuse of notation, we sometimes write S ∈ inv instead of ξx ∈ inv when S = 〈ξx, ξs, ξa〉.
Rules (Out) and (Inp) model transmission and reception, with an external system, on a channel c. Rule (Tau) lifts non-
observable actions from processes to systems. Rule (SensRead) models the reading of the current data detected at sensor
s. Rule (ActWrite) models the writing of a value v on an actuator a. A similar lifting occurs in rule (Time) for timed
actions, where nextE(S ) returns a probability distribution over possible physical states for the next time slot, according
to the current physical state S and physical environment E. Formally, for S = 〈ξx, ξs, ξa〉 and E = 〈evol,meas, inv〉, we
define:

nextE(S ) =
∑

ξ′x∈supp(evol(ξx,ξa))
ξ′s∈supp(meas(ξ′x))

(
evol(ξx, ξa)(ξ′x) · meas(ξ′x)(ξ′s)

)
· 〈ξ′x, ξ

′
s, ξa〉 .

Intuitively, the operator nextE serves to compute the possible state functions and sensor functions of the next time
slot (actuator changes are governed by the cyber-component). More precisely, the (probability distribution over the)
next state function is determined by applying evol to the current state function ξx and the current actuator function ξa.
The probability weight of any possible state function ξ′x is given by evol(ξx, ξa)(ξ′x). Then, for a state function ξ′x, the
(probability distribution over the) next sensor function is given by applying meas to ξ′x. Finally, the probability weight
of any possible sensor function ξ′s is given by meas(ξ′x)(ξ′s).
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Recapitulating, by an application of rule (Time) a CPS moves to the next physical state, in the next time slot. Rule
(Deadlock) is straightforward: if the invariant is not satisfied then the CPS deadlocks.

Finally, notice that in our LTS we defined transitions rules of the form S on P
α
−−−→ σon π, parametric on some

physical environment E. As physical environments do not change at runtime, S on P
α
−−−→ σon π entails E; S on P

α
−−−→

E;σon π, thus providing the probabilistic LTS for (full) CPSs.

Remark 2.8. Note that the rules in Table 2 define an image-finite pLTS. This means that for any CPS M and label
α there are finitely many distributions reachable from M in one α-labelled transition step. Moreover, all transitions
M

α
−→ γ are such that γ has a finite support.

Now, having defined the labelled transitions that can be performed by a CPS of the form E; S on P, we can easily
concatenate these transitions to define the possible computation traces of a system. A computation trace [32] for
a CPS E; S 1 on P1 is a sequence of steps of the form E; S 1 on P1

α1
−−→ . . .

αn−1
−−−→ E; S n on Pn where for any i, with

1 ≤ i ≤ n − 1, we have E; S i on Pi
αi
−−→ E;σi+1 on πi+1 for distributions σi+1 and πi+1 such that S i+1 ∈ supp(σi+1) and

Pi+1 ∈ supp(πi+1).
Below, we report a few desirable time properties [21] which hold in our calculus: (a) time determinism, (b) maximal

progress, (c) patience, and (d) well-timedness. In its standard formulation, time determinism says that a system
reaches at most one new state by executing a timed action tick; however, in our setting, this holds only for the logical
components (up to structural congruence) whereas the evolution of the physical component is intrinsically probabilistic,
due to the presence of uncertainty and measurement errors. The maximal progress property usually says that processes
communicate as soon as a possibility of communication arises. In our calculus, we generalise this property saying that
instantaneous (silent) actions cannot be delayed. On the other hand, patience says that if no instantaneous actions are
possible then time is free to pass. Finally, well-timedness [31, 33] ensures the absence of infinite instantaneous traces
which would prevent the passage of time, and hence the physical evolution of a CPS.

Theorem 2.9 (Time properties). Let M = E; S on P.

(a) If M
tick
−−−−→ γ and M

tick
−−−−→ γ′ then γ ≡ γ′.

(b) If M
τ
−−−→ γ then there is no γ′ such that M

tick
−−−−→ γ′.

(c) If M
tick
−−−−→ γ for no γ then either S does not satisfy the invariant of E or there is γ′ such that M

τ
−−−→ γ′.

(d) There is a k ∈ N such that if M
α1
−−→ . . .

αn
−−→ N, with αi , tick, then n ≤ k.

The proof of Theorem 2.9 can be found in the Appendix, in Section Appendix A.1.

3. Probabilistic bisimulation

In this section, we are ready to define a bisimulation-based behavioural equality for CPSs, relying on our labelled
transition semantics. We recall that the only observable activities in pCCPS are: the passage of time and channel
communication. As a consequence, the capability to observe physical events (different from deadlocks) depends on the
capability of the cyber components to recognise those events by acting on sensors and actuators, and then signalling
them using (unrestricted) channels.

In a probabilistic setting, the definition of weak transition
α̂

=⇒, which abstract away non-observable actions, is
complicated by the fact that (strong) transitions take CPSs to distributions over CPSs. Following [30, 34, 35], we need
to generalise transitions, so that they take sub-distributions to sub-distributions.

With an abuse of notation, we use γ and γ′ to range over sub-distributions over CPSs, under the assumption that∑
M∈pCCPS γ(M) ≤ 1.

Let us start by defining the weak transition M
α̂
−→ γ for any CPS M and distribution γ. If α = τ then we write

M
α̂
−→ γ whenever either M

α
−→ γ or γ = M. Otherwise, if α , τ then we write M

α̂
−→ γ whenever M

α
−→ γ. The relation

α̂
−→ is extended to model transitions from sub-distributions to sub-distributions. For a sub-distribution γ =

∑
i∈I pi · Mi,

we write γ
α̂
−→ γ′ if there is a non-empty set J ⊆ I such that M j

α̂
−→ γ j for all j ∈ J, Mi

α̂
−→6 , for all i ∈ I \ J, and
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γ′ =
∑

j∈J p j · γ j. Note that if α , τ then this definition entails that only some CPSs in the support of γ have an
α̂
−→

transition. Then, we define the weak transition relation
τ̂

=⇒ as the transitive and reflexive closure of
τ̂
−→, i.e.

τ̂
=⇒= (

τ̂
−→)∗,

while for α , τ we let
α̂

=⇒ denote
τ̂

=⇒
α̂
−→

τ̂
=⇒.

In order to define a probabilistic bisimulation, following [36] we rely on the notion of matching [37] (also known
as coupling) for a pair of distributions. Intuitively, the matching for a pair (γ, γ′) may be understood as a transportation
schedule for the shipment of probability mass from γ to γ′.

Definition 3.1 (Matching). A matching for a pair of distributions (γ, γ′), with γ, γ′ ∈ D(pCCPS), is a distribution ω in
the product spaceD(pCCPS × pCCPS) such that:

•
∑

M′∈pCCPS ω(M,M′) = γ(M), for all M ∈ pCCPS, and

•
∑

M∈pCCPS ω(M,M′) = γ′(M′), for all M′ ∈ pCCPS.

We write Ω(γ, γ′) to denote the set of all matchings for (γ, γ′).

Everything is in place to define weak probabilistic bisimulation for pCCPS, along the lines of [38].

Definition 3.2 (Weak probabilistic bisimulation). A binary symmetric relation R over CPSs is a weak probabilistic
bisimulation if M R N and M

α
−−−→ γ implies that there exist a distribution γ′ and a matching ω ∈ Ω(γ, γ′) such that

N α̂
===⇒ γ′, and M′ R N′ whenever ω(M′,N′) > 0. We say that M and N are bisimilar, written M ≈ N, if M R N for

some weak probabilistic bisimulation R.

A main result of the paper is that bisimilarity can be used to reason on CPSs in a compositional manner. In
particular, bisimilarity is preserved by parallel composition of physically-disjoint CPSs, by parallel composition of
pure-logical processes, and by channel restriction; basically, all those contexts that cannot interfere on physical devices
(sensors and actuators), whereas interferences on logical components (via channel communication) is allowed.

Intuitively, two CPSs are physically-disjoint if they have different plants but they may share logical channels for
communication purposes. More precisely, physically-disjoint CPSs have disjoint state variables and disjoint physical
devices (sensors and actuators). As we consider only well-formed CPSs (Definition 2.6), this ensures us that a CPS
cannot physically interfere with a parallel CPS by acting on its physical devices. Although, logical interferences on
communication channels are allowed.

Formally, let S i = 〈ξi
x, ξ

i
s, ξ

i
a〉 and Ei = 〈evoli,measi, invi〉 be physical states and physical environments, respectively,

associated to state variables in the set Xi, sensors in the set Si, and actuators in the set Ai, for i ∈ {1, 2}. For X1 ∩ X2 = ∅,
S1 ∩ S2 = ∅ and A1 ∩ A2 = ∅, we define:

• the disjoint union of the physical states S 1 and S 2, written S 1 ] S 2, to be the physical state 〈ξx, ξs, ξa〉 such that:
ξx = ξ1

x ] ξ
2
x , ξs = ξ1

s ] ξ
2
s , and ξa = ξ1

a ] ξ
2
a ;

• the disjoint union of the physical environments E1 and E2, written E1 ] E2, to be the physical environment
〈evol,meas, inv〉 such that:

(evol(ξ1
x ] ξ

2
x , ξ

1
a ] ξ

2
a ))(ξ1

x
′ ] ξ2

x
′) = evol1(ξ1

x , ξ
1
a )(ξ1

x
′) · evol2(ξ2

x , ξ
2
a )(ξ2

x
′)

(meas(ξ1
x ] ξ

2
x))(ξ1

s
′ ] ξ2

s
′) = meas1(ξ1

x)(ξ1
s
′) · meas2(ξ2

x)(ξ2
s
′)

ξ1
x ] ξ

2
x ∈ inv iff ξ1

x ∈ inv1 and ξ2
x ∈ inv2 .

Definition 3.3 (Physically-disjoint CPSs). Let Mi = Ei; S i on Pi, for i ∈ {1, 2}. We say that M1 and M2 are physically-
disjoint if S 1 and S 2 have disjoint sets of state variables, sensors and actuators. In this case, we write M1 ] M2
to denote the CPS defined as (E1 ] E2); (S 1 ] S 2)on (P1 ‖ P2). For any M ∈ pCCPS, the special system Dead is
physically-disjoint with M, and M ] Dead = Dead ] M = Dead.

A pure-logical process is a process which may interfere on communication channels but it never interferes
on physical devices as it never accesses sensors and/or actuators. Basically, a pure-logical process is a (possibly
probabilistic) TPL process [21]. Thus, in a system M ‖ Q, where M is an arbitrary CPS, a pure-logical process Q
cannot interfere with the physical evolution of M. Although, process Q can definitely interact with M via communication
channels, and hence affect its observable behaviour.
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Definition 3.4 (Pure-logical processes). A process P is called pure-logical if it never acts on sensors and/or actuators.

Now, we can finally prove the compositionality of probabilistic bisimilarity ≈.

Theorem 3.5 (Congruence results). Let M and N be two arbitrary CPSs in pCCPS.

1. M ≈ N implies M ] O ≈ N ] O, for any physically-disjoint CPS O;

2. M ≈ N implies M ‖ P ≈ N ‖ P, for any pure-logical process P;

3. M ≈ N implies M\c ≈ N\c, for any channel c.

The proof can be found in the Appendix, at the end of Section Appendix A.3.
The reader may wonder whether the bisimilarity ≈ is preserved by more permissive contexts. The answer is no.

Suppose to allow in the second item of Theorem 3.5 a process P that can also read on sensors. In this case, even if M and
N are bisimilar, the parallel process P might read a different value in the two systems at the very same sensor s (due to
the sensor error) and transmit these different values on a free channel, breaking the congruence. Activities on actuators
may also lead to different behaviours of the compound systems: bisimilar CPSs may have physical components that are
not exactly aligned. A similar reasoning applies when composing CPSs with non physically-disjoint ones: interference
on physical devices may break the congruence.

However, in the next section we will see that the congruence results of Theorem 3.5 will be very useful when
reasoning on complex systems.

4. Case study

In this section, we provide a case study to illustrate how pCCPS can be used to specify and reason on CPSs in a
compositional manner. In particular, we model an engine whose temperature is maintained within a specific range by
means of a cooling system.

As regards the physical environment we adopt discrete uniform distributions over suitable intervals to model both
the evolution map and the measurement map3. In our model, we assume a granularity g ∈ N+ representing the precision
10−g of the model in estimating physical values. Thus, for an arbitrary real interval [v,w] we write [v,w]g to denote the
finite set of reals {k ∈ [v,w] : k = v + h · 10−g, with h ∈ N}.

Given a granularity g ∈ N+, the physical state Sg of the engine is characterised by: (i) a state variable temp
containing the current temperature of the engine; (ii) a sensor st (such as a thermometer or a thermocouple) measuring
the temperature of the engine, (iii) an actuator cool to turn on/off the cooling system. The physical environment of the
engine, Envg, is constituted by: (i) a simple evolution law evol that increases (resp. decreases) the value of temp, when
the cooling system is inactive (resp. active), by a value determined according to a discrete distribution of probability,
taking into account an uncertainty in the model that may reach the threshold δ = 0.4, and granularity g over reals; (ii) a
measurement map meas returning the value detected by the sensor st determined by a discrete probability distribution
based on a measurement error that may reach the threshold err = 0.1, and granularity g; (iii) an invariant set saying that
the system gets faulty when the temperature of the engine gets out of the range [0, 30].

Formally, Sg = 〈ξx, ξs, ξa〉 and Envg = 〈evol,meas, inv〉 with:

(i) ξx ∈ R{temp} and ξx(temp) = 0;

(ii) ξs ∈ R{st} and ξs(temp) = 0;

(iii) ξa ∈ R{cool} and ξa(cool) = off; for the sake of simplicity, we can assume ξa to be a mapping {cool} → {on, off}
such that ξa(cool) = off if ξa(cool) ≥ 0, and ξa(cool) = on if ξa(cool) < 0.

Furthermore,

3Other forms of finite-support discrete probability distributions could be treated as well.
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Figure 2: Simulations in MATLAB of the engine Eng

(i) evol(ξ′x, ξ
′
a) =

∑
v∈[v1,v2]g

1
|[v1,v2]g |

· [temp 7→ ξ′x(temp) + v], for any ξ′x ∈ R{temp} and ξ′a ∈ R{cool}, where [v1, v2] =

[1−δ , 1+δ], if ξ′a(cool) = off (inactive cooling), and [v1, v2] = [−1−δ , −1+δ], if ξ′a(cool) = on (active cooling);

(ii) meas(ξ′x) =
∑

v∈[−err,+err]g
1

|[−err,+err]g |
· [st 7→ ξ′x(temp) + v], for any ξ′x ∈ R{temp};

(iii) inv = {[temp 7→ x] : x ∈ R and 0 ≤ x ≤ 30}.

The cyber component of the engine consists of a process Ctrl which models the controller activity. Intuitively,
process Ctrl senses the temperature of the engine at each time interval. When the sensed temperature is above 10,
the controller activates the coolant. The cooling activity is maintained for 5 consecutive time units. After that time,
if the temperature does not drop below 10 then the controller transmits its ID on a specific channel for signalling a
warning, it keeps cooling for another 5 time units, and then checks again the sensed temperature; otherwise, if the
sensed temperature is not above the threshold 10, the controller turns off the cooling and moves to the next time interval.
Formally,

Ctrl = rec X.read st(x).[x > 10]{Cooling}, {tick.X}
Cooling = write cool〈on〉.rec Y.tick5.read st(x).[x > 10]{snd warning〈ID〉.Y}, {write cool〈off〉.tick.X} .

The whole engine is defined as: Engg = Envg; Sg onCtrl , where Envg and Sg are the physical environment and the
physical state defined before.

Our operational semantics allows us to formally prove a number of run-time properties of our engine. For instance,
the following proposition says that our engine never reaches a warning state and never deadlocks.

Proposition 4.1. Let Engg be the CPS defined before. Given any computation Engg
α1
−−→ . . .

αn
−−→ M, then αi ∈ {τ, tick},

for 1 ≤ i ≤ n, and there is a distribution γ such that M
α
−−−→ γ, for some α ∈ {τ, tick}.

Actually, knowing that in each of the 5 time slots of cooling, the temperature will drop of a value laying in the
interval [1−δ, 1+δ]g, we can be quite precise on the temperature reached by the engine before and after the cooling
activity. Formally:

Proposition 4.2. Let Engg
α1
−−−−→ . . .

αn
−−−−→ M be an arbitrary computation of the engine, for some CPS M:

• if M turns the cooling on then the value of the state variable temp in M ranges over (9.9, 11.5];
• if M turns the cooling off then the value of the variable temp in M ranges over (2.9, 8.5].

The proofs of both propositions can be found in the Appendix, in Section Appendix A.2.
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The result formally proved in Proposition 4.2 finds a correspondence in the left graphic of Figure 2. In that graphic,
we collect a campaign of 100 simulations of our engine in MATLAB4, lasting 250 time units each, showing that
the value of the state variable temp when the cooling system is turned on (resp., off) lays in the interval (9.9, 11.5]
(resp., (2.9, 8.5]); these bounds are represented by the dashed horizontal lines. Obviously, when dealing with complex
systems even several thousands of simulations do not ensure the absence of incorrect states, as formally proved in
Proposition 4.1 and Proposition 4.2.

The right graphic of the same figure shows three possible evolutions in time of the state variable temp: (i) the first
one (in red), in which the temperature of the engine always grows of 1 − δ = 0.6 degrees per time step, when the
cooling is off, and always decrease of 1 + δ = 1.4 degrees per time unit, when the cooling is on; (ii) the second one
(in blue), in which the temperature always grows of 1 + δ = 1.4 degrees per time unit, when the cooling is off, and
always decrease of 1 − δ = 0.6 degrees per time unit, when the cooling is on; (iii) and a third one (in yellow), in which,
depending whether the cooling is off or on, at each time step the temperature grows or decreases of an arbitrary offset
laying in the interval [1 − δ, 1 + δ].

Now, the reader may wonder whether it is possible to design a variant of our engine which meets the same
specification with better performances. For instance, an engine consuming less coolant. Let us consider a variant of the
engine described before:

Ẽngg = Ẽnvg; Sg onCtrl .

Here, Ẽnvg is the same as Envg except for the evolution map, as we set [v1, v2] = [−0.8−δ , −0.8+δ] if ξ′a(cool) = on
(active cooling). This means that in Ẽngg we reduce the power of the cooling system by 20%. In Figure 3, we report
the results of our simulations in MATLAB over 10000 runs lasting 10000 time units each. From this graph, Ẽngg saves
in average more than 10% of coolant with respect to Engg. So, the new question is: are these two engines behavioural
equivalent? Do they meet the same specification?

Our bisimilarity provides us with a precise answer to these questions: the two variants of the engine are bisimilar.

Proposition 4.3. Engg ≈ Ẽngg , for any g ∈ N+.

The proof can be found in the Appendix, in Section Appendix A.4.
At this point, one may wonder whether it is possible to improve the performances of our engine even more. For

instance, by reducing the power of the cooling system by a further 10%, by setting [v1, v2] = [−0.7−δ , −0.7+δ] if
ξ′a(cool) = on (active cooling). We can formally prove that this is not possible.

Proposition 4.4. Let Êngg be the same as Engg, except for the evolution map, in which the real interval [v1, v2] is

given by [−0.7−δ , −0.7+δ] if ξ′a(cool) = on. Then, Engg 0 Êngg , for any g ∈ N+.

The proof can be found in the Appendix, in Section Appendix A.2.
Finally, we show how we can use the compositionality of our behavioural semantics (Theorem 3.5) to deal with

bigger CPSs. Suppose that Engg denotes the model in our calculus of an airplane engine. In this case, we could model
a very simple airplane control system that checks whether the left engine (EngL

g ) and the right engine (EngR
g ) are

signalling warnings. The whole CPS is defined as follows:

Airplaneg =
(
(EngL

g ] EngR
g ) ‖ Check

)
\{warning}

where EngL
g = Engg{

L/ID}{
temp l/temp}{

cool l/cool}{
st l/st }, and EngR

g = Engg{
R/ID}{

temp r/temp}{
cool r/cool}{

st r/st }, and process Check is
defined as follows:

Check = rec X.brcv warning(x).[x = L]{CheckL
1 }, {CheckR

1 }cX

Checkid
i = brcv warning(y).[y , id]{snd alarm.tick.X}, {tick.Checkid

i+1}cCheckid
i+1

Checkid
5 = brcv warning(z).[z , id]{snd alarm.tick.X}, {snd failure〈id〉.tick.X}c

snd failure〈id〉.X

4MATLAB chooses a value in a real interval by means of a discrete uniform distribution depending on the granularity imposed by the finite
number of bits used for the representation of floats.
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Figure 3: Simulations in MATLAB of coolant consumption

for 1 ≤ i ≤ 5. Intuitively, if one of the two engines is in a warning state then the process Checkid
i , for id ∈ {L,R}, checks

whether also the second engine moves into a warning state, in the following 5 time intervals (i.e. during the cooling
cycle). If both engines get in a warning state then an alarm is sent, otherwise, if only one engine is facing a warning
then the airplane control system yields a failure signalling which engine is not working properly.

So, since we know that Engg ≈ Ẽngg , for any g ∈ N+, the final question becomes the following: can we safely equip

our airplane with the more performant engines, ẼngL
g and ẼngR

g , in which [v1, v2] = [−0.8−δ , −0.8+δ], if ξ′a(cool) = on,
without affecting the whole observable behaviour of the airplane? The answer is “yes”, and this result can be formally
proved by relying on Proposition 4.3 and Theorem 3.5.

Proposition 4.5. Let ˜Airplaneg =
(
(ẼngL

g ] ẼngR
g ) ‖ Check

)
\{warning}. Then, Airplaneg ≈

˜Airplaneg .

We end this section with an observation. Although, the engine Êngg is not behavioural equivalent to the original
engine Engg, an airplane maker might be interested in knowing an estimation of the deviation of its behaviour with
respect to the behaviour of the original engine. If this deviation would be very small then aeronautical engineers might
consider to adopt in their airplanes the engine Êngg instead Ẽngg to save even more coolant. So, the new question is:
how big is the deviation, in terms of behaviour, of the engine Êngg with respect to the original engine Engg?

The rest of the paper is devoted to develop general quantitative techniques to estimate the deviation of the
probabilistic behaviour of a CPS with respect to another.

5. Bisimulation metrics

In this section, we provide a weak behavioural distance to compare the probabilistic behaviour of CPSs up to
a given approximation. To this end, we adapt the notion of weak bisimilarity metric [23] to pCCPS. Intuitively, we
will write M ≈p N if the weak bisimilarity between M and N holds with a distance p, with p ∈ [0, 1]. Thus, ≈0 will
coincide with the weak probabilistic bisimilarity of Definition 3.2, whereas

⋃
p∈[0,1] ≈p will correspond to the cartesian

product pCCPS × pCCPS.
Weak bisimilarity metric is defined as a pseudometric measuring the tolerance of the probabilistic weak bisimilarity.

Definition 5.1 (Pseudometric). A function d : pCCPS × pCCPS→ [0, 1] is said to be a 1-bounded pseudometric if

• d(M,M) = 0, for all M ∈ pCCPS,

• d(M,M′) = d(M′,M), for all M,M′ ∈ pCCPS,

• d(M,M′) ≤ d(M,M′′) + d(M′′,M′), for all M,M′,M′′ ∈ pCCPS.

Weak bisimilarity metric provides the quantitative analogous of the weak bisimulation game: two CPSs M and N at
distance p can mimic each other’s transitions and evolve to distributions γ and γ′, respectively, placed at some distance
q, with q ≤ p. This requires to lift pseudometrics from CPSs to distributions over CPSs. To this end, as in [34, 35], we
rely on the notions of matching [37] and Kantorovich lifting [39]5.

5The original formulation of weak bisimulation metric [23] is technically different but equivalent to our definition [40].
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In Definition 3.1, we already provided the definition of matching. Let us define the Kantorovich lifting.

Definition 5.2 (Kantorovich lifting). Let d : pCCPS × pCCPS→ [0, 1] be a pseudometric. The Kantorovich lifting of d
is the function K(d) : D(pCCPS) ×D(pCCPS)→ [0, 1] defined as:

K(d)(γ, γ′) = min
ω∈Ω(γ,γ′)

∑
M,M′∈pCCPS

ω(M,M′) · d(M,M′)

for all γ, γ′ ∈ D(pCCPS).

Note that since we are considering only distributions with finite support, the minimum over the set of matchings
Ω(γ, γ′) is well defined.

Definition 5.3 (Weak bisimulation metric). We say that a pseudometric d : pCCPS × pCCPS → [0, 1] is a weak
bisimulation metric if for all M,N ∈ pCCPS, with d(M,N) < 1, whenever M

α
−→ γ there is a sub-distribution γ′ such

that N
α̂

=⇒ γ′ and K(d)(γ , γ′ + (1− |γ′|)Dead) ≤ d(M,N).

Note that in the previous definition, if |γ′|< 1 then, with probability 1− |γ′|, there is no way to simulate the behaviour
of any CPS with a valid invariant in the support of γ (the special CPS Dead does not perform any action).

A crucial result is the existence of the minimal weak bisimulation metric [23], called weak bisimilarity metric,
and denoted with d. We remark that in [23] it is shown that the kernel of d coincides with the definition of weak
probabilistic bisimilarity.

Proposition 5.4. For all M,N ∈ pCCPS we have d(M,N) = 0 if and only if M ≈ N.

Now, we have all ingredients to define our notion of behavioural distance between CPSs.

Definition 5.5 (Distance between CPSs). Let M,N ∈ pCCPS and p ∈ [0, 1]. We say that M and N have distance p,
written M ≈p N, if and only if d(M,N) = p.

In the next section, we will use a more refined notion of distance that considers only the first n ∈ N computation
steps, when comparing two CPSs.

Such definition requires the introduction of a complete lattice ([0, 1]pCCPS×pCCPS,v) of functions of type pCCPS ×
pCCPS → [0, 1] ordered by d1 v d2 iff d1(M,N) ≤ d2(M,N) for all M,N ∈ pCCPS, where for each set D ⊆
[0, 1]pCCPS×pCCPS the supremum and infimum are defined as sup(D)(M,N) = supd∈D d(M,N) and inf(D)(M,N) =

infd∈D d(M,N), for all M,N ∈ pCCPS. Notice that the infimum of the lattice is the constant function zero, which we
denote by 0.

We also need a functional B defined over the lattice mentioned above such that B(d)(M,N) returns the minimum
possible value for d(M,N) in order to ensure that d is a weak bisimulation metric.

Definition 5.6 (Bisimulation metric functional). Let B : [0, 1]pCCPS×pCCPS → [0, 1]pCCPS×pCCPS be the functional such that
for any d ∈ [0, 1]pCCPS×pCCPS and M,N ∈ pCCPS, B(d)(M,N) is given by:

sup
{α : M

α
−→ ∨ N

α
−→}

max

 max
M

α
−→γ1

min
N

α̂
=⇒γ2

K(d)(γ1, γ2 + (1− |γ2|)Dead), max
N

α
−→γ2

min
M

α̂
=⇒γ1

K(d)(γ1 + (1− |γ1|)Dead, γ2)


where max ∅ = 0 and min ∅ = 1.

Notice that Definition 5.6 and Definition 5.3 are strictly related as weak bisimulation metrics are pseudometrics
that are prefixed points of B. Notice also that all max and min in Definition 5.6 are well defined since our pLTS is
image-finite and CPSs enjoy the well timedness property.

Since K is monotone [41] it follows that B is a monotone function on ([0, 1]pCCPS×pCCPS,v). Furthermore, since this
structure is a lattice, by Knaster-Tarski theorem it follows that B has a least prefixed point (which is also the least fixed
point). Later we will show that this least prefixed point coincides with d.

Now, we exploit the functional B to introduce a notion of n-weak bisimilarity metric, denoted dn, which intuitively
quantifies the tolerance of the weak bisimulation in n steps. The idea is that d0 coincides with the constant function 0
assigning distance 0 to all pairs of CPSs, whereas dn(M,N), for n > 0, is defined as dn(M,N) = B(dn−1)(M,N). Thus,
the n-weak bisimilarity metric between M and N is defined in terms of the (n−1)-weak bisimilarity metric between the
distributions reached (in one step) by M and N, respectively.
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Definition 5.7 (n-weak bisimilarity metric). Let n ∈ N. The function Bn(0), abbreviated as dn, is called n-weak
bisimilarity metric.

Proposition 5.8. For all n ≥ 0, dn is a 1-bounded pseudometric.

The proof of this proposition can be found in Appendix, in Section Appendix A.3.
Finally, we are ready to define our notion of n-distance between two CPSs.

Definition 5.9 (n-distance between CPSs). Let M,N ∈ pCCPS and p ∈ [0, 1]. We say that M and N have n-distance p,
written M ≈n

p N, if and only if dn(M,N) = p.

Since our pLTS is image-finite, and all transitions lead to distributions with finite support, it is possible to prove
that B is continuous [42]. Since B is also monotone, we can deduce that the closure ordinal of B is ω (see Section 3
of [42]). As a consequence, the n-weak bisimilarity metrics converge to the weak bisimilarity metric when n grows
indefinitely. Formally,

Proposition 5.10. d = limn→∞ dn.

Last but but not least, the distances introduced in Definition 5.5 and Definition 5.9 allow us to compare CPSs in a
compositional manner. In particular, these distances are preserved by parallel composition of physical-disjoint CPSs,
by parallel composition of pure-logical processes, and by channel restriction.

Theorem 5.11 (Compositionality of distances). Let M and N be two arbitrary CPSs in pCCPS.

1. M ≈p N implies M ] O ≈q N ] O, with q ≤ p, for any physically-disjoint CPS O;

2. M ≈p N implies M ‖ P ≈q N ‖ P, with q ≤ p, for any pure-logical process P;

3. M ≈p N implies M\c ≈q M\c, with q ≤ p, for any channel c;

4. M ≈n
p N implies M ] O ≈n

q N ] O, with q ≤ p, for any physically-disjoint CPS O and any n ≥ 0;

5. M ≈n
p N implies M ‖ P ≈n

q N ‖ P, with q ≤ p, for any pure-logical process P and any n ≥ 0;

6. M ≈n
p N implies M\c ≈n

q M\c, with q ≤ p, for any channel c and n ≥ 0.

The proof of Theorem 5.11 can be found in the Appendix, in Section Appendix A.3.
Now, suppose that M ≈p N, M′ ≈p′ N′, with M (resp. N) and M′ (resp. N′) physically-disjoint. By Theorem 5.11.1,

we can infer both M ] M′ ≈q N ] M′ and N ] M′ ≈q′ N ] N′, with q ≤ p and q′ ≤ p′. Then, by triangular property of
the pseudometric d we get M ] M′ ≈q′′ N ] N′, for some q′′ ≤ q + q′ ≤ p + p′. Similarly, by applying Theorem 5.11.4
we can infer that M ≈n

p N and M′ ≈n
p′ N′ entail M ] M′ ≈n

q N ] N′, for some q ≤ p + p′. This says that our metrics
enjoy a well-known compositional property called non-expansiveness [24, 43, 44].

In the next section, the compositional properties of Theorem 5.11 will be very useful when reasoning on our case
study.

6. Case study, reloaded

In Section 4, we proved that the original version of the proposed engine, Engg, and its variant Ẽngg (saving up to
10% of coolant) are behavioural equivalent (i.e., bisimilar). Then, by relying on the compositionality of our probabilistic
bisimilarity (Theorem 3.5), we proved that the two compound systems, Airplaneg and ˜Airplaneg, mounting engines
Engg and Ẽngg, respectively, are bisimilar as well.

Actually, both results can be proved in terms of weak probabilistic metric with distance 0, as this specific metric
coincides with the probabilistic bisimilarity (Proposition 5.4).

Proposition 6.1. Let g ∈ N+. Then,

• Engg ≈0 Ẽngg
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• Airplaneg ≈0 ˜Airplaneg .

Then, in Section 4 we moved our attention to a more performant engine, Êngg, saving almost 20% of coolant with
respect to the original engine Engg. In our behavioural analysis we rejected this new variant as it may exhibit a different
probabilistic behaviour when compared to Engg. More precisely, the two systems Engg and Êngg are not bisimilar
(Proposition 4.4).

However, in many complex probabilistic systems, such as CPSs, probabilistic bisimilarity might reveal to be
too strong as the natural behavioural equivalence to take systems apart. Thus, in Section 4 we advocated for some
appropriate notion of behavioural distance to estimate the effective difference, in terms of behaviour, of these two
versions of the engine.

In the current section, we apply the bisimulation metrics defined in Section 5 to estimate the distance between Engg

and Êngg, by varying the granularity g ∈ N+. In particular, we apply the notion of n-weak bisimilarity metric.

Proposition 6.2. Let g ∈ N+ and n ∈ N. Then, for pg =
|[0.3,0.4)g |

|[0.3,1.1]g |
and qg =

|(1.3,1.4]g |

|[0.6,1.4]g |
, we have:

dn(Engg, Êngg) ≤ 1 −
(
1 − qg(pg)5

)n
.

Note that if the cooling system of Êngg is off and it is not going to be activated in the current time slot, then the
sensed temperature is below than or equal to 10, and the real temperature is below than or equal to 10.1 degrees (we
recall that err = 0.1). Assume that the temperature is exactly 10.1. If in the current time slot the temperature increases
of a value v ∈ (1.3, 1.4] then it will reach a value in the interval (11.4, 11.5] (we recall that δ = 0.4). This happens with
a probability bounded by qg. In this case, the cooling system will be turned on, and the temperature will drop, in each
of the following 5 time slots, of some value laying in the interval [0.7−δ , 0.7+δ] = [0.3, 1.1]. However, if in each of
those 5 slots of cooling the temperature is decreased of a value laying in [0.3, 0, 4), then the cooling activity might not
be enough to avoid (observable) warnings, and the two engines Engg and Êngg will be distinguished. Thus, pg is given
by the number of possible “bad decreases”, | [0.3, 0.4)g |, divided by the number of all possible decreases, | [0.3, 1.1]g |;
whereas qg is given by the number of possible “bad increases”, | (1.3, 1.4]g |, divided by the number of all possible
increases | [0.6, 1.4]g |.

Notice that pg and qg refer to real intervals which are basically shifted. Thus, we have that | [0.3, 0.4)g |= |

(1.3, 1.4]g |= 10g−1 and | [0.3, 1.1]g |= | [0.6, 1.4]g |= 8 · 10g−1 + 1. As a consequence, pg = qg = 10g−1

8·10g−1+1 = 1
8+10−g+1 .

Obviously, the finer is the granularity g the closer is the value of pg and qg to 1
8 . Formally,

lim
g→∞

dn(Engg, Êngg) ≤ 1 −
(
1 −

1
86

)n
. (1)

Thus, for instance, assuming a granularity g = 6, after n = 3000 computation steps the distance between the two
systems is less than 0.012. Intuitively, this means that if we limit our analysis to 3000 computation steps the behaviours
of two engines may differ with probability at most 0.012. By an easy inspection in the (common) logics of the two
engines, it is easy to see that any two subsequent tick-actions are separated by at most 2 untimed actions. Thus, 3000
computation steps means around 1000 time slots. Considering time slots lasting 20 seconds each, this means more than
five hours. Thus, an utilisation of Êngg might be feasible in airplanes used for short-range flights, where the engine is
actually used for a limited amount of time. Actually, aeronautical engineers might consider perfectly acceptable the risk
of mounting the engine Êngg instead of Engg, when compared to the reliability of the other components of the airplane.

However, since an airplane mounts two engines, engineers need to estimate the difference in terms of behaviour on
the whole airplane resulting by the adoption of different versions of the engine. This is exactly the point where we can
rely on Theorem 5.11 to support compositional reasoning.

The following result follows from Equation 1, Proposition 6.2 and Theorem 5.11.

Proposition 6.3. Let g ∈ N+ and n ∈ N. Let ̂Airplaneg =
(
(ÊngL

g ] (ÊngR
g ) ‖ Check

)
\{warning} . Then,

1. dn(Airplaneg , ̂Airplaneg) ≤ 2p, where p = 1 −
(
1 − qg(pg)5)n
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2. limg→∞ dn(Airplaneg , ̂Airplaneg) ≤ 2
(
1 −

(
1 − 1

86

)n
)
.

Thus, for g = 6, the probability that the two airplanes mounting different engines exhibit a different behaviour
within n = 3000 computation steps is at most 0.024; a distance which may be considered still acceptable in specific
contexts. Notice that in the (common) logics of the two airplanes, it is easy to see that two tick-actions are separated by
at most 5 untimed actions (two for each engine plus one to signal a possible alarm). Thus, 3000 computation steps
means around 600 time slots, i.e., more than three hours for time slots lasting 20 second each.

Finally, the reader should notice that the bound of the distance between the two airplanes is given by the summation
of the bounds of the distances between the two corresponding engines. This is perfectly in line with the fact that our
bisimulation metrics enjoy the non-expansiveness property.

The proofs of the previous propositions can be found in the Appendix, in Section Appendix A.4.

7. Conclusions, related and future work

We have proposed a hybrid probabilistic process calculus, called pCCPS, for specifying and reasoning on cyber-
physical systems. Our calculus allows us to model a CPS by specifying its physical plant, containing information on
state variables, sensors, actuators, evolution law, etc., and its logics, i.e., controllers, IDSs, supervisors, etc. Physical
and logical components interact through sensors and actuators, whereas interactions within the logics or between logics
of different CPSs rely on channel-based communication. In pCCPS, the representation of the evolution map takes
into account the uncertainty of the physical model, whereas the representation of the measurement map considers
measurement errors in sensor reading. As a consequence, the two maps returns discrete probability distributions over
state functions and sensor functions, respectively.

pCCPS is equipped with a probabilistic labelled transition semantics which satisfies classical time properties: time
determinism, patience, maximal progress, and well-timedness. As behavioural semantics we adopt a natural notion
of weak probabilistic bisimilarity which is proved to be preserved by appropriate system contexts that are suitable
for compositional reasoning. Then, we argue that probabilistic bisimilarity is only partially satisfactory to reason
on CPSs as it can only establish whether two CPSs behave exactly in the same way. To this end, we generalise our
probabilistic bisimilarity to provide a notion of weak bisimulation metric along the lines of [23]. We also define a
notion of weak bisimulation metric in n steps, which reveals to be very effective whenever it is not necessary to observe
the system “ad infinitum” but it is enough to observe its behaviour restricted to bounded computations. Again, both
bisimulation metrics are proved to be suitable for compositional reasonings. The paper provides a case study, taken
from an engineering application, and uses it to illustrate our definitions and our compositional probabilistic behavioural
theory for pCCPS.

Related work. A number of hybrid process algebras [9, 10, 11, 12, 13] have been proposed for reasoning about
physical systems and provide techniques for analysing and verifying protocols for hybrid automata. Among these
approaches, pCCPS shares some similarities with the φ-calculus [12], a hybrid extension of the π-calculus [6] equipped
with a weak bisimilarity that is not compositional. Galpin et al. [13] proposed a process algebra, called HYPE, in
which the continuous part of the system is represented by appropriate variables whose changes are determined by active
influences (i.e., commands on actuators). The authors define a strong bisimulation that extends the ic-bisimulation
of [10]. Unlike ic-bisimulation, the bisimulation in HYPE is preserved by a notion of parallel composition that is
slightly more permissive than ours. However, bisimilar systems in HYPE must always have the same influence. Thus,
in HYPE we cannot compare CPSs sending different commands on actuators at the same time, as we do (for instance)
in Proposition 4.3.

Several approaches have been proposed in the last years [14, 15, 16, 17, 18, 19, 20] to enrich hybrid models with
probabilistic or stochastic behaviour. Most of them consist in introducing either probabilities in the transition relation,
or probabilistic choice, or stochastic differential equations. For instance, in Stochastic Hybrid CSP (SHCSP) [20]
probabilistic choice replaces non-deterministic choice, stochastic differential equations replace differential equations,
and communication interrupts are generalised by communication interrupts with weights.

The formal analysis of probabilistic and stochastic systems follows the two classic mainstreams: (i) model checking
(e.g., [17]) and reachability (e.g., [14, 17]), when the focus is on a single system; (ii) behavioural equivalences (e.g.,
[45, 22, 38, 46, 47, 48]) when the goal is to compare the behaviour of two systems (very often, specification and
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implementation of the same system). As already said in the Introduction, probabilistic behavioural equivalences may
be too strong in certain probabilistic and stochastic models in which many interesting systems are only approximately
behavioural equivalent. This led to several notions of behavioural distance that can be grouped in two main families:
quantitative counterparts of trace equivalence [49, 50, 51, 52], and quantitative counterparts of bisimulation equivalence
[23, 24, 25, 26]. We refer to [53, 54] for a comparison between these two approaches. In the present paper, we have
adopted a bisimulation-based definition because, unlike trace semantics, bisimulation is sensitive to system deadlock, a
phenomenon that has a great impact in CPSs.

More generally, we are aware of a number of works using formal methods for studying CPSs or IoT systems,
although they apply methods, and most of the time have goals, that are quite different from ours.

Vigo et al. [55] proposed a calculus for wireless-based cyber-physical systems endowed with a theory to study
cryptographic primitives, together with explicit notions of communication failure and unwanted communication. The
calculus does not provide any notion of behavioural equivalence. It also lacks a clear distinction between physical
and logical components. Lanese et al. [56] proposed an untimed calculus of mobile IoT devices interacting with
the physical environment by means of sensors and actuators. The calculus does not allow any representation of the
physical environment, and it is equipped with an end-user bisimilarity in which end-users may: (i) provide values to
sensors, (ii) check actuators, and (iii) observe the mobility of smart devices. End-user bisimilarity is not preserved by
parallel composition. Compositionality is recovered by strengthening its discriminating power. Lanotte and Merro [57]
extended and generalised the work of [56] in a timed setting by providing a bisimulation-based semantic theory that
is suitable for compositional reasoning. As in [56], the physical environment is not represented. Bodei et al. [58]
proposed a new untimed process calculus, IoT-LYSA, supporting a control flow analysis that safely approximates the
abstract behaviour of IoT systems. Essentially, they track how data spread from sensors to the logics of the network,
and how physical data are manipulated. The calculus adopts asynchronous multi-party communication among nodes
taking care of node proximity (the topology is static). The dynamics of the calculus is given in terms of a reduction
relation. No behavioural equivalences are defined.

Finally, the paper at hand extends the conference paper [1] in the following aspects: (i) the calculus has become a
probabilistic calculus, both in its logical and its physical components; the logics has been enriched with probabilistic
choice, whereas discrete (finite-support) probability distributions have replaced continuous non-deterministic uncer-
tainties in the evolution and continuous non-deterministic error-prone measurements; (ii) standard bisimulation has
been replaced with probabilistic bisimulation and then with bisimulation metrics; (iii) as a consequence, the case study
has been revisited using our bisimulation metrics to estimate the deviation in terms of behaviour of the systems under
investigation.

Current and future work. We believe that our paper can lay and streamline theoretical foundations for the development
of formal and automated tools to verify CPSs before their practical implementation. To that end, we will consider
applying, possibly after proper enhancements, existing tools and frameworks for automated verification, such as
Maude [59], PRISM [5], SMC UPPAAL [60] and Ariadne [61], resorting to the development of a dedicated tool if
existing ones prove not up to the task. We are currently working [62] on a non-probabilistic version of pCCPS extended
with security features to provide a formal study of a variety of cyber-physical attacks targeting physical devices of
CPSs. In a second paper [63], we have recently extended and generalised our notion of n-weak bisimulation metric to
focus on timed actions only. This allowed us to provide a compositional metric to estimate the impact of cyber-physical
attacks on sensor devices with a special care on the time aspects of attacks.

As possible future work, a non-trivial challenge would be to extend the present work in order to deal with continuous
probability distributions. In our setting, this would mean, for instance, that the evolution map evol should return a
continuous distribution over state functions, and that the function nextE(S ) should return a continuous distributions over
physical states. However, this would immediately give rise to a serious technical problem: the definition of probabilistic
weak labelled transitions, and hence the definition of weak behavioural equivalences and distances. To better illustrate
the problem, suppose to adopt continuous probability distributions in our calculus, and suppose a cyber-physical system

M such that M
tick
−−−−→ γ, for some continuous probability distribution γ over CPSs. Suppose γ is a uniform distribution

such that supp(γ) = {Mr : r ∈ [0, 1]}, with Mr , Mr′ , for any r , r′. Independently on the specific definition of the
CPSs Mr, as the logics of any CPS is intrinsically discrete, the cyber-component of any Mr will drive the whole system
to a discrete distribution. As an example, assume a cyber-physical system N such that for all reals r ∈ [0, 0.5] there

18



is a τ-transition Mr
τ
−−−→ N; whereas for all reals r ∈ (0.5, 1] there is a τ-transition Mr

τ
−−−→ Mr. In such a situation,

it is far from obvious to determine what should be the distribution γm reached by the original CPS M after a weak
tick-transition, M tick

====⇒ γm. In fact, γm can be neither a discrete nor a continuous distribution. This because γm should
map N to a probability weight 0.5 (as in a discrete distribution), and then it should distribute the remaining mass
probability as a uniform (sub-)distribution to all Mr with r ∈ (0.5, 1], such that

∫ 1
0.5 γm(Mt)dt = 0.5 (as in a continuous

distribution). Some preliminary work in this direction has been recently proposed in [64].
A possible solution to capture weak transitions when working with continuous probability distributions is to

approximate them via discrete ones by adopting the approach proposed for labelled Markov processes in [65, 24]. In
these papers, Desharnais et al. propose approximation techniques for continuous-state labelled Markov processes S in
terms of finite-state Markov chains S(n, ε), parametric in a natural number n and a rational number ε > 0. Here, n is
the maximal number of possible consecutive transitions from the start state of S(n, ε) (the idea being that this Markov
chain is the n-steps unfolding of the original Markov process S), whereas the rational number ε > 0 measures the
accuracy of probabilities in S(n, ε) when approximating the transitions of the original process S. In their Theorem 4.4
[65] the authors prove that if a state s of S satisfies a formula in the logic characterising probabilistic bisimulation then
there is some approximation S(n, ε) satisfying exactly the same formula. Furthermore, the same authors show that one
can always reconstruct the original process from the approximations. More precisely, a Markov process bisimilar to the
original one can always be derived from the countable approximates S(n, 2−n), for some n ∈ N (in the current paper we
adopted a granularity ε = 10−n). Actually, they do not reconstruct the original state space, but they reconstruct all the
transition probability information, i.e., the dynamical aspects of the process (see Theorem 4.5 of [65]).

Acknowledgements. We thank the anonymous reviewers for their insightful and careful reviews.

Appendix A. Proofs

Appendix A.1. Proofs of Section 2
Theorem 2.9 states that CPSs enjoy time determinism, maximal progress, patience and well-timedness. We start by

showing that processes enjoy the same properties.

Lemma Appendix A.1 (Processes time properties). Let P be a process of pCCPS.

(a) If P
tick
−−−−→ π and P

tick
−−−−→ π′, then π ≡ π′.

(b) If P
τ
−−−→ π then there is no π′ such that P

tick
−−−−→ π′.

(c) If P
tick
−−−−→ π′ for no π′ then there is π such that P

λ
−−−→ π for some λ ∈ {τ, a!v, s?(x)}.

(d) There is a k ∈ N such that if P
λ1
−−−→ · · ·

λn
−−−→ P′, with λi , tick, then n ≤ k.

Proof. We show the four properties separately.

(a) The proof is by induction on the depth d of the derivation tree allowing us to derive P
tick
−−−−→ π.

Base case d = 1. The transition P
tick
−−−−→ π is derived by applying one of the rules (TimeNil), (Delay) and (Timeout),

and the thesis is immediate.

Inductive case d > 1. The transition P
tick
−−−−→ π is derived by applying one of the rules (TimePar), (ChnRes) and

(Rec). We consider the case (TimePar), the others are similar. Since P
tick
−−−−→ π is derived by rule (TimePar), process

P must be of the form P ≡ P1 ‖ P2 for suitable processes P1 and P2. Therefore also the rule P
tick
−−−−→ π′ is derived

through rule (TimePar). We have

P1
tick
−−−−→ π1 P2

tick
−−−−→ π2 P1 ‖ P2

τ
−−−→6

P1 ‖ P2
tick
−−−−→ π1 ‖ π2

P1
tick
−−−−→ π′1 P2

tick
−−−−→ π′2 P1 ‖ P2

τ
−−−→6

P1 ‖ P2
tick
−−−−→ π′1 ‖ π

′
2
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with π = π1 ‖ π2 and π′ = π′1 ‖ π
′
2.

By the inductive hypothesis we have that π1 ≡ π
′
1 and π2 ≡ π

′
2, which gives π1 ‖ π2 ≡ π

′
1 ‖ π

′
2 and concludes the

proof.

(b) The proof is by induction on the depth d of the derivation tree allowing us to derive P
τ
−−−→ π.

Base case d = 1. There is no rule in Table 1 allowing us to derive transition P
τ
−−−→ π with depth 1, hence the

thesis follows trivially.

Inductive case d > 1. The transition P
τ
−−−→ π is derived by applying one of the rules (Com), (Par), (ChnRes) and

(Rec). We consider the case (Com). Since P
τ
−−−→ π is derived by rule (Com), process P must be of the form

P ≡ P1 ‖ P2 for suitable processes P1 and P2. To show the thesis that no transition from P1 ‖ P2 labelled tick
can be derived, it is enough to note that the only rule in Table 1 which may be applied to infer any tick-labelled
transition from P1 ‖ P2 is rule (TimePar), which cannot be applied since it has P1 ‖ P2

τ
−−−→6 among its premises.

The other cases follow directly by induction.

(c) First of all we notice that, if P = rec X.Q, then, since P is bounded and has time-guarded recursion, by applying
repetitively the structural congruence rec X.Q ≡ Q{rec X.Q/X}, we find a process P′ ≡ P such that P′ , rec Y.R, for

any Y and R. Since P′ ≡ P implies P′
λ
−−−→ iff P

λ
−−−→, for any λ, we can prove the thesis by structural induction

on P where P is not of the form P = rec X.Q.

The base cases P = nil, P = tick.C and P = bchn.CcD are immediate since in all these cases a transition labelled
tick from P can be derived. The base case P = phy.C holds since we can apply either rule (Write) to derive a
transition from P labelled a!v, or rule (Read) to derive a transition labelled s?(x).

The inductive steps are P = P1 ‖ P2, P = [b]{P1}, {P2} and P = Q\c. Consider the case P = P1 ‖ P2. If
no transition from P1 ‖ P2 labelled tick can be derived, then rule (TimePar) cannot be applied. Then, at least

one of the premises P1
tick
−−−−→ π1, P2

tick
−−−−→ π2 and P1 ‖ P2

τ
−−−→6 does not hold. If P1

tick
−−−−→ π1 does not hold,

then by the inductive hypothesis we have P1
λ
−−−→ π1 for some λ ∈ {τ, a!v, s?(x)}, and by rule (Par) we infer

P1 ‖ P2
λ
−−−→ π1 ‖ P2, which gives the thesis. If P2

tick
−−−−→ π2 does not hold, then by the inductive hypothesis we

have P2
λ
−−−→ π2 for some λ ∈ {τ, a!v, s?(x)}, and by the rule symmetric to (Par) we infer P1 ‖ P2

λ
−−−→ P1 ‖ π2,

which gives the thesis. If P1 ‖ P2
τ
−−−→6 does not hold then there is some transition P1 ‖ P2

τ
−−−→ π, which gives the

thesis. The cases P = [b]{P1}, {P2} and P = Q\c are similar.

(d) The well-timedness property is straightforward from time–guardedness recursion.

The challenge in the proof of Theorem 2.9 is to lift the results of Lemma Appendix A.1 to CPSs.

Proof of Theorem 2.9

(a) We note that transitions labelled tick can be derived only by rule (Time). Therefore, from the hypothesis

M
tick
−−−−→ γ and M

tick
−−−−→ γ′ with M = E; S on P, we infer that there are process distributions π and π′ such that

P
tick
−−−−→ π S on P

τ
−−−→6 S ∈ inv

S on P
tick
−−−−→ nextE(S )on π

and
P

tick
−−−−→ π′ S on P

τ
−−−→6 S ∈ inv

S on P
tick
−−−−→ nextE(S )on π′

where γ = E; nextE(S )on π and γ′ = E; nextE(S )on π′. By the property of time determinism for processes in

Lemma Appendix A.1 we infer that P
tick
−−−−→ π and P

tick
−−−−→ π′ imply π ≡ π′, hence γ ≡ γ′, which completes the

proof.
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(b) From the hypothesis M
τ
−−−→ γ with M = E; S on P, we infer that γ = E;σon π for distributions σ and π such that

S on P
τ
−−−→ σon π is derived from the rules in Table 2. To show the thesis that no transition from M labelled tick

can be derived, it is enough to show that no transition from S on P labelled tick can be derived from the rules in
Table 2. This follows by the fact that the only rule which may be applied to infer any tick-labelled transition from
S on P is rule (Time), which cannot be applied since it has S on P

τ
−−−→6 among its premises.

(c) From the hypothesis that M
tick
−−−−→ γ with M = E; S on P cannot be inferred for any distribution γ, we infer that

S on P
tick
−−−−→ σon π cannot be derived for any σ and π from the rules in Table 2. Therefore, at least one of the

premises P
tick
−−−−→ π, S on P

τ
−−−→6 and S ∈ inv of rule (Time) does not hold. If premise P

tick
−−−→ π does not hold for

any π, then by the property of patience for processes in Lemma Appendix A.1 we have P
λ
−−−→ π′ for some π′

and λ ∈ {τ, a!v, s?(x)}. Let us consider the case λ = τ. From P
τ
−−−→ π′, either S ∈ inv is not valid, or we can

apply rule (Tau) to infer the transition S on P
τ
−→ S on π′, which gives M

τ
−→ E; S on π′. In both cases the thesis

holds. The cases λ ∈ {a!v, s?(x)} can be proved similarly by using rules (ActWrite) and (SensRead), respectively.

If premise P
tick
−−−→ π holds for some π then either premises S ∈ inv or premise S on P

τ
−−−→6 does not hold. In the

former case the thesis follows. In the latter case we have a τ-labelled transition from M and the thesis holds as
well.

(d) The proof is by contradiction. Suppose there is no k satisfying the statement of the thesis. Hence there exists an
unbounded derivation

E; S on P = E; S 1 on P1
α1
−−−−→ · · ·

αn
−−−−→ E; S n on Pn

αn+1
−−−−−→ . . .

with αi , tick for i ≥ 1, namely there exist distributions σi on πi for i ≥ 1 with σi on Pi
αi
−−→ σi+1 on πi+1,

S i+1 ∈ supp(σi+1) and Pi+1 ∈ supp(πi+1). This contradicts the property of well-timedness for processes in
Lemma Appendix A.1.

Appendix A.2. Proofs of Section 4
In order to prove Proposition 4.1 and Proposition 4.2 we use the following lemma that formalises the invariant

properties binding the state variable temp with the activity of the cooling system. Intuitively, when the cooling
system is inactive then the value of the state variable temp lays in the interval [0, 11 + err + δ]. Furthermore, if
the coolant is not active and the variable temp lays in the interval (10 + err, 11 + err + δ] then the cooling will be
turned on in the next time slot. Finally, if the cooling system is active then there is some k = 1 . . . 5 such that the
system was activated k time units ago, it was kept active so far and the state variable temp lays in the real interval
(10 − err − k∗(1+δ), 11 + err + δ − k∗(1−δ)].

Lemma Appendix A.2. Let Engg be the system defined in Section 4. Let us consider an arbitrace execution trace of
Engg of the form

Engg = M1
t1
−−−→

tick
−−−−→ M2

t2
−−−→

tick
−−−−→ · · ·

tn−1
−−−−−→

tick
−−−−→ Mn

where the sub-traces t j contain no tick-actions, for any j ∈ 1 . . . n−1, and for any i ∈ 1 . . . n we have Mi = Envg; S i on Pi

with Si = 〈ξi
x, ξ

i
s, ξ

i
a〉 and Envg = 〈evol,meas, inv〉. Then, for any i ∈ 1 . . . n−1 we have the following:

1. if ξi
a(cool) = off then ξi

x(temp) ∈ [0, 11 + err + δ];

2. if ξi
a(cool) = off and ξi

x(temp) ∈ (10 + err, 11 + err + δ] then, in the next time slot, ξi+1
a (cool) = on;

3. if ξi
a(cool) = on then ξi

x(temp) ∈ (10 − err − k∗(1+δ), 11 + err + δ − k∗(1−δ)], for some k ∈ 1 . . . 5 such that
ξi−k

a (cool) = off and ξi− j
a (cool) = on, for all j ∈ 0 . . . k−1.

Proof. Let us denote with vi the values of the state variable temp in the systems Mi, i.e., ξi
x(temp) = vi. Moreover we

will say that the coolant is active (resp., is not active) in Mi if ξi
a(cool) = on (resp., ξi

a(cool) = off).
The proof is by mathematical induction on n, i.e., the number of tick-actions of our traces.
The case base n = 1 follows directly from the definition of Engg. Let prove the inductive case. We assume that the

three statements holds for n − 1 and we prove that they also hold for n.
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1. Let us assume that the cooling is not active in Mn, then we prove that vn ∈ [0, 11 + err + δ]. We consider
separately the cases in which the coolant is active or not in Mn−1.

• Suppose the coolant is not active in Mn−1 (and inactive in Mn).
By the inductive hypothesis we have vn−1 ∈ [0, 11 + err + δ]. Since we know that in Mn the cooling is not
active, it follows that vn−1 ∈ [0, 10 + err], the reason being that vn−1 ∈ (10 + err, 11 + ε +δ] and the inductive
hypothesis would imply that the coolant is active in Mn. Furthermore, in Mn the temperature will increase of
a value laying in the interval [1−δ, 1+δ]g = [0.6, 1.4]g. Thus vn will be in [0.6, 11+err+δ] ⊆ [0, 11+err+δ].

• Suppose the coolant is active in Mn−1 (and inactive in Mn).
By the inductive hypothesis we have vn−1 ∈ (10 − err − k ∗ (1 + δ), 11 + err + δ − k ∗ (1 − δ)] for some
k ∈ 1 . . . 5 such that the coolant is not active in Mn−1−k and is active in all Mn−k, . . . ,Mn−1.
The case k ∈ {1, . . . , 4} is not admissible, the reason being that k ∈ {1, . . . , 4} together with the fact that the
coolant is inactive in Mn would imply that the coolant bas been kept active for less than 5 steps, which
cannot happen.
Hence it must be k = 5. Since δ = 0.4, err = 0.1 and k = 5, it holds that vn−1 ∈ (10 − 0.1 − 5 ∗ 1.4, 11 +

0.1 + 0.4 − 5 ∗ 0.6] = (2.8, 8.6]. Moreover, since the coolant is active for 5 tick actions, the controller of
Mn−1 checks the temperature. However, since vn−1 ∈ (2.8, 8.6] then the coolant is turned off. Thus, in the
next time slot, the temperature will increase of a value in [1 − δ, 1 + δ]g = [0.6, 1.4]g. As a consequence in
Mn we will have vn ∈ [2.8 + 0, 6, 8.6 + 1.4] = [3.4, 10] ⊆ [0, 11 + err + δ].

2. Let us assume that the coolant is not active in Mn and vn ∈ (10 + err, 11 + err + δ], then we prove that the coolant
is active in Mn+1. Since the coolant is not active in Mn then it will check the temperature before the next time
slot. Since vn ∈ (10 + err, 11 + err + δ] and err = 0.1, then the process Ctrl will sense a temperature greater than
10 and the coolant will be turned on. Thus the coolant will be active in Mn+1.

3. Let us assume that the coolant is active in Mn, then we prove that vn ∈ (10−err−k∗(1+δ), 11+err+δ−k∗(1−δ)]
for some k ∈ 1 . . . 5 and the coolant is not active in Mn−k and active in all Mn−k+1, . . . ,Mn.
We separate the case in which the coolant is active in Mn−1 from that in which is not active.

• Suppose the coolant is not active in Mn−1 (and active in Mn).
In this case k = 1 as the coolant is not active in Mn−1 and it is active in Mn. Since k = 1, we have to prove
vn ∈ (10 − err − (1 + δ), 11 + err + δ − (1 − δ)].
However, since the coolant is not active in Mn−1 and is active in Mn it means that the coolant has been
switched on in Mn−1 because the sensed temperature was above 10 (this may happen only if vn−1 > 10−err).
By inductive hypothesis, since the coolant is not active in Mn−1, we have that vn−1 ∈ [0, 11 + err + δ].
Therefore, from vn−1 > 10 − err and vn−1 ∈ [0, 11 + err + δ] it follows that vn−1 ∈ (10 − err, 11 + err + δ].
Furthermore, since the coolant is active in Mn, the temperature will decrease of a value in [1 − δ, 1 + δ]g

and therefore vn ∈ (10 − err − (1 + δ), 11 + err + δ − (1 − δ)] which concludes this case of the proof.
• Suppose the coolant is active in Mn−1 (and active in Mn as well).

By inductive hypothesis there is h ∈ 1 . . . 5 such that vn−1 ∈ (10− err − h ∗ (1 + δ), 11 + err + δ− h ∗ (1− δ)]
and the coolant is not active in Mn−1−h and is active in Mn−h, . . . ,Mn−1.
The case h = 5 is not admissible. In fact, since δ = 0.4 and err = 0.1, if h = 5 then vn−1 ∈ (10 − 0.1 − 5 ∗
1.4, 11 + 0.1 + δ − 5 ∗ 0.6] = (2.8, 8.6]. Furthermore, since the coolant is already active since 5 tick actions,
the controller of Mn−1 is supposed to check the temperature. As vn−1 ∈ (2.8, 8.6] the coolant should be
turned off. In contradiction with the the fact that the coolant is active in Mn.
Hence it must be h ∈ 1 . . . 4. Let us prove that for k = h + 1 we obtain our result. Namely we have to prove
that, for k = h + 1, (i) vn ∈ (10 − err − k ∗ (1 + δ), 11 + err + δ − k ∗ (1 − δ)], and (ii) the coolant is not
active in Mn−k and active in all Mn−k+1, . . . ,Mn.
Let us prove the statement (i). By inductive hypotheses, it holds that vn−1 ∈ (10 − err − h ∗ (1 + δ), 11 +

err + δ − h ∗ (1 − δ)]. Since the coolant is active in Mn then the temperature will decrease. Hence,
vn ∈ (10 − err − (h + 1) ∗ (1 + δ), 11 + err + δ − (h + 1) ∗ (1 − δ)]. Therefore, since k = h + 1, we have that
vn ∈ (10 − err − k ∗ (1 + δ), 11 + err + δ − k ∗ (1 − δ)].
Let us prove the statement (ii). By inductive hypothesis the coolant is inactive in Mn−1−h and it is active in
all Mn−h, . . . ,Mn−1. Now, since the coolant is active in Mn, for k = h + 1, we have that the coolant is not
active in Mn−k and is active in all Mn−k+1, . . . ,Mn which concludes this case of the proof.
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Proof of Proposition 4.1 By the first two items of Lemma Appendix A.2 and since δ = 0.4 and err = 0.1, we infer
that the value of the state variable temp is always in the real interval [0, 11.5]. As a consequence, the invariant of
the system is never violated and the system never deadlocks. Then, the last item of Lemma Appendix A.2 ensures
that after 5 tick-actions happening when the coolant is active, the state variable temp is always in the real interval
(10 − 0.1 − 5 ∗ 1.4, 11 + 0.1 + 0.4 − 5 ∗ 0.6] = (2.9, 8.5]. Hence the process Ctrl will never transmit on the channel
warning.

Proof of Proposition 4.2 Let us prove the two statements separately.

• If process Ctrl senses a temperature above 10 (and hence Eng turns on the cooling) then the value of the state
variable temp is greater than 10 − err. By Lemma Appendix A.2 the value of the state variable temp is always
less or equal than 11 + err + δ. Therefore, if Ctrl senses a temperature above 10, then the value of the state
variable temp is in (10 − err, 11 + err + δ] = (9.9, 11.5].

• By Lemma Appendix A.2 (third item) the coolant can be active for no more than 5 time slots. Hence, by
Lemma Appendix A.2, when Eng turns off the cooling system the state variable temp ranges over (10 − err − 5 ∗
(1 + δ), 11 + err + δ − 5 ∗ (1 − δ)] = (2.9, 8.5].

Proof of Proposition 4.4 It is is enough to prove that there exists an execution trace of the engine Êngg containing
an output along channel warning. Then the result follows by an application of Proposition 4.1.

We prove the thesis for g = 1. Indeed a trace of Êngg with g = 1 is a trace of Êngg′ with g′ ≥ g.
We can easily build up a trace for Êngg with g = 1 in which, after 10 tick-actions, in the 11-th time slot, the value

of the state variable temp is 10.1. In fact, it is enough to increase the temperature of 1 degree for the first 9 rounds and
an increase of 1.1 degrees in the 10-th time slot. Notice that these are admissible values, since both 1 and 1.1 are in
[1 − δ, 1 + δ]g = [0.6, 1.4]g with g = 1. Being 10.1 the value of the state variable temp, there is an execution trace in
which the sensed temperature is 10 (recall that err = 0.1 and −0.1 ∈ [−0.1, 0.1]g with g = 1) and hence the cooling
system is not activated. However, in the following time slot, i.e. the 12-th time slot, the temperature may reach the
value 10.1 + 1 + δ = 11.5, imposing the activation of the cooling system. After 5 time units of cooling, in the 17-th
time slot, the variable temp could be 11.5 − 5 ∗ (0.7 − δ) = 11.5 − 1.5 = 10. The sensed temperature would be in the
real interval [9.9, 10.1]g with g = 1. Thus, there is an execution trace in which the sensed temperature is 10.1. As a
consequence, the warning will be emitted, in the 17-th time slot.

Appendix A.3. Proofs of Section 5

To prove that all dn are 1-bounded pseudometrics (Proposition 5.8), we need some preliminary results. First we
show that the Kantorovich functional K maps pseudometrics to pseudometrics.

Proposition Appendix A.3. If d : pCCPS×pCCPS→ [0, 1] is a 1-bounded pseudometric, then also K(d) : D(pCCPS)×
D(pCCPS) is a 1-bounded pseudometric.

Proof. To show K(d)(γ, γ) = 0 for all γ ∈ D(pCCPS) it is enough to take the matching ω ∈ Ω(γ, γ) defined by
ω(M,M) = γ(M), for all M ∈ pCCPS, and ω(M,N) = 0, for all M,N ∈ pCCPS with M , N. In fact, we have
K(d)(γ, γ) ≤

∑
M,N∈pCCPS ω(M,N) · d(M,N) =

∑
M∈pCCPS γ(M) · d(M,M) = 0.

The symmetry K(d)(γ, γ′) = K(d)(γ′, γ) for all γ, γ′ ∈ D(pCCPS) follows directly by the fact that if we take two
functions ω,ω′ : pCCPS × pCCPS → [0, 1] such that ω(M,N) = ω′(N,M) for all M,N ∈ pCCPS, then ω ∈ Ω(γ, γ′) if
and only if ω′ ∈ Ω(γ′, γ).

It remains to prove the triangle inequality K(d)(γ1, γ2) ≤ K(d)(γ1, γ3) + K(d)(γ3, γ2) for all γ1, γ2, γ3 ∈ D(pCCPS).
First we consider the function ω : pCCPS × pCCPS → [0, 1] defined for all M1,M2 ∈ pCCPS as ω(M1,M2) =∑

M3∈pCCPS|γ3(M3),0
ω1(M1,M3)·ω2(M3,M2)

γ3(M3) , where the function ω1 ∈ Ω(γ1, γ3) is one of the optimal matchings realising
K(d)(γ1, γ3) and ω2 ∈ Ω(γ3, γ2) one of the optimal matchings realising K(d)(γ3, γ2). Then, we prove that (i) ω is a
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matching in Ω(γ1, γ2), and (ii)
∑

M1,M2∈pCCPS ω(M1,M2) · d(M1,M2) ≤ K(d)(γ1, γ3) + K(d)(γ3, γ2), which immediately
implies K(d)(γ1, γ2) ≤ K(d)(γ1, γ3) + K(d)(γ3, γ2). To show (i) we prove that the left marginal of ω is γ1 by∑

M2∈pCCPS ω(M1,M2)

=
∑

M2∈pCCPS

∑
M3∈pCCPS|γ3(M3),0

ω1(M1,M3)·ω2(M3,M2)
γ3(M3)

=
∑

M3∈pCCPS|γ3(M3),0
ω1(M1,M3)·γ3(M3)

γ3(M3) (by ω2 ∈ Ω(γ3, γ2))

=
∑

M3∈pCCPS|γ3(M3),0 ω1(M1,M3)

= γ1(M1) (by ω1 ∈ Ω(γ1, γ3))

and we observe that the proof that the right marginal of ω is γ2 is analogous. Then, we show (ii) by∑
M1,M2∈pCCPS ω(M1,M2) · d(M1,M2)

=
∑

M1,M2∈pCCPS

∑
M3∈pCCPS|γ3(M3),0

ω1(M1,M3)·ω2(M3,M2)
γ3(M3) · d(M1,M2)

≤
∑

M1,M2∈pCCPS,M3∈pCCPS|γ3(M3),0
ω1(M1,M3)·ω2(M3,M2)

γ3(M3) · d(M1,M3) +∑
M1,M2∈pCCPS,M3∈pCCPS|γ3(M3),0

ω1(M1,M3)·ω2(M3,M2)
γ3(M3) · d(M3,M2)

=
∑

M1,M3∈pCCPS
ω1(M1,M3)·γ3(M3)

γ3(M3) · d(M1,M3) +
∑

M2,M3∈pCCPS
γ3(M3)·ω2(M3,M2)

γ3(M3) · d(M3,M2)

=
∑

M1,M3∈pCCPS ω1(M1,M3) · d(M1,M3) +
∑

M2,M3∈pCCPS ω2(M3,M2) · d(M3,M2)

= K(d)(γ1, γ3) + K(d)(γ3, γ2)

where the inequality follows from the triangular property of d and the third last equality follows by ω2 ∈ Ω(γ3, γ2) and
ω1 ∈ Ω(γ1, γ2).

Now we show that, given any weak bisimulation metric d with d(M,N) < 1, then N can mimic weak transitions

M
α̂

=⇒ besides those of the form M
α
−→.

Lemma Appendix A.4. Assume a weak bisimulation metric d and M,N ∈ pCCPS with d(M,N) < 1. If M
α̂

=⇒ γM ,

then there is a transition N
α̂

=⇒ γN such that K(d)(γM + (1− |γM|)Dead, γN + (1− |γN|)Dead) ≤ d(M,N).

Proof. We proceed by induction on the length n of the weak transition M
α̂

=⇒ γM .
Base case n = 1. We have two sub-cases: The first is α = τ and γM = M, the second is M

α
−→ γM . In the

first case, by the definition of
τ̂

=⇒ we have that N
τ̂

=⇒ N and, then, the thesis holds for γN = N by observing that
K(d)(M + (1− |M|)Dead),N + (1− |N|)Dead) = K(d)(M,N) = d(M,N). In the second case, the thesis follows directly
by the definition of weak simulation metric.

Inductive case n > 1. The derivation M
α̂

=⇒ γM is obtained by M
β̂1

==⇒ ρM and ρM
β̂2
−−→ γM , for some distribution

ρM ∈ D(pCCPS). The length of the derivation M
β̂1

==⇒ ρM is n − 1 and hence, by the inductive hypothesis, there is a

transition N
β̂1

==⇒ ρN such that K(d)(ρM + (1− |ρM|)Dead, ρN + (1− |ρN |)Dead) ≤ d(M,N). The sub-distributions ρM

and ρN are of the form ρM =
∑

i∈I pi · Mi and ρN =
∑

j∈J q j · N j. We have two sub-cases: The first is β1 = τ and β2 = α,
the other β1 = α and β2 = τ.

We consider the case β1 = τ and β2 = α, the other is analogous. In this case we have | ρM |=| ρN |= 1 and

K(d)(ρM , ρN) ≤ d(M,N). The transition ρM
β̂2
−−→ γM is derived from a β2-transition by some of the CPSs Mi, namely I is

partitioned into sets I1 ∪ I2 such that for all i ∈ I1 we have Mi
β2
−−→ γi for suitable distributions γi, for each i ∈ I2 we have

Mi
β2
−−→6 , and ρM =

∑
i∈I1

pi · γi. Analogously, J is partitioned into sets J1 ∪ J2 such that for all j ∈ J1 we have N j
β̂2

==⇒ γ j

for suitable distributions γ j and for each j ∈ J2 we have N j
β̂2

==⇒6 . This gives ρN
β̂2

==⇒ γN with γN =
∑

j∈J1
q j · γ j. Since
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we had N
β̂1

==⇒ ρN , we can conclude N
α̂

=⇒ γN . In the following we prove that the transitions N j
β̂2

==⇒ γ j can be chosen so
that K(d)(γM + (1− |γM|)Dead, γN + (1− |γN|)Dead) ≤ d(M,N), which concludes the proof.

Let ω be one of the optimal matchings realising K(d)(ρM , ρN). We can rewrite the distributions ρM and ρN as
ρM =

∑
i∈I, j∈J ω(Mi,N j) · Mi and ρN =

∑
i∈I, j∈J ω(Mi,N j) · N j. For all i ∈ I1 and j ∈ J, define γi, j = γi. We can rewrite

γM as γM =
∑

i∈I1, j∈J ω(Mi,N j) ·γi, j. Analogously, for each j ∈ J1 and i ∈ I we note that the transition q j ·N j
β̂2

==⇒ γ j can

always be split into
∑

i∈I ω(Mi,N j) · N j
β̂2

==⇒
∑

i∈I ω(Mi,N j) · γ′i, j so that we can rewrite γ j as γ j =
∑

i∈I ω(Mi,N j) · γ′i, j
and γN as γN =

∑
i∈I, j∈J1

ω(Mi,N j) · γ′i, j. Then we note that for all i ∈ I1 and j ∈ J1 with d(Mi,N j) < 1, the transition

N j
β̂2

==⇒ γ′i, j can be chosen so that K(d)(γi, j, γ
′
i, j + (1− |γ′i, j|)Dead) ≤ d(Mi,N j).

For all i ∈ I1 and j ∈ J1 with d(Mi,N j) < 1, let us assume that ωi, j is one of the optimal matchings realising
K(d)(γi, j, γ j + (1− |γ j|)Dead). Define ω′ : pCCPS × pCCPS→ [0, 1] as the function such that

ω′(M′,N′) =



∑
i∈I1, j∈J1

ω(Mi,N j) · ωi, j(M′,N′) if M′ , Dead , N′∑
i∈I1, j∈J1

ω(Mi,N j) · ωi, j(M′,N′) +
∑

i∈I1, j∈J2
ω(Mi,N j) · γi, j(M′) if M′ , Dead = N′∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(M′,N′) +

∑
i∈I2, j∈J1

ω(Mi,N j) · γ′i, j(N
′) if M′ = Dead , N′∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(M′,N′) +

∑
i∈I1, j∈J2

ω(Mi,N j) · γi, j(M′)

+
∑

i∈I2, j∈J1
ω(Mi,N j) · γ′i, j(N

′) +
∑

i∈I2, j∈J2
ω(Mi,N j) if M′ = Dead = N′.

To infer the proof obligation K(d)(γM + (1− |γM|)Dead, γN + (1− |γN|)Dead) ≤ d(M,N) we show that (i) ω′ is a
matching in Ω(γM + (1− |γM|)Dead, γN + (1− |γN|)Dead), and (ii)

∑
M′,N′∈pCCPS ω

′(M′,N′) · d(M′,N′) ≤ d(M,N).
To show (i) we prove that the left marginal of ω′ is γM + (1− |γM |)Dead. The proof that the right marginal is

γN + (1− |γN|)Dead) is analogous. For any CPS M′ , Dead, we have∑
N′∈pCCPS ω

′(M′,N′)

=
∑

N′,Dead
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(M′,N′) +

∑
i∈I1, j∈J1

ω(Mi,N j) · ωi, j(M′,Dead) +
∑

i∈I1, j∈J2
ω(Mi,N j) · γi, j(M′)

=
∑

i∈I1, j∈J1
ω(Mi,N j)

∑
N′∈pCCPS ωi, j(M′,N′) +

∑
i∈I1, j∈J2

ω(Mi,N j) · γi, j(M′)

=
∑

i∈I1, j∈J1
ω(Mi,N j) · γi, j(M′) +

∑
i∈I1, j∈J2

ω(Mi,N j) · γi, j(M′)

=
∑

i∈I1, j∈J ω(Mi,N j) · γi, j(M′)

= (γM + (1− |γM|)Dead)(M′)

with the third equality by the fact that ωi, j is a matching in Ω(γi, j, γ
′
i, j).

Consider now the CPS Dead. In this case we have that∑
N′∈pCCPS ω

′(Dead,N′)

=
∑

N′,Dead
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(Dead,N′) +

∑
N′,Dead

∑
i∈I2, j∈J1

ω(Mi,N j) · γ′i, j(N
′)

+
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(Dead,Dead) +

∑
i∈I1, j∈J2

ω(Mi,N j) · γi, j(Dead)

+
∑

i∈I2, j∈J1
ω(Mi,N j) · γ′i, j(Dead) +

∑
i∈I2, j∈J2

ω(Mi,N j)

=
∑

N′∈pCCPS
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(Dead,N′) +

∑
N′∈pCCPS

∑
i∈I2, j∈J1

ω(Mi,N j) · γ′i, j(N
′)

+
∑

i∈I1, j∈J2
ω(Mi,N j) · γi, j(Dead) +

∑
i∈I2, j∈J2

ω(Mi,N j)

=
∑

i∈I1, j∈J1
ω(Mi,N j) · γi, j(Dead) +

∑
i∈I2, j∈J1

ω(Mi,N j)

+
∑

i∈I1, j∈J2
ω(Mi,N j) · γi, j(Dead) +

∑
i∈I2, j∈J2

ω(Mi,N j)

=
∑

i∈I1, j∈J ω(Mi,N j) · γi, j(Dead) +
∑

i∈I2, j∈J ω(Mi,N j)

= (γM + (1− |γM|)Dead)(Dead)
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where the third equality follows by observing that, being the functionωi, j a matching in Ω(γi, j, γ
′
i, j), then we have

that
∑

N′∈pCCPS
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(Dead,N′) =

∑
i∈I1, j∈J1

ω(Mi,N j) · γi, j(Dead), and being γ′i, j a distribution, then∑
N′∈pCCPS

∑
i∈I2, j∈J1

ω(Mi,N j) · γ′i, j(N
′) =

∑
i∈I2, j∈J1

ω(Mi,N j), and the last equality follows by
∑

i∈I1, j∈J ω(Mi,N j) =∑
i∈I1

pi =|γM|.
To prove (ii), by looking at the definition of ω′ above we get that

∑
M′,N′∈pCCPS ω

′(M′,N′) · d(M′,N′) is the
summation of the following values:

•
∑

M′,Dead,N′
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(M′,N′) · d(M′,N′)

•
∑

M′,Dead
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(M′,Dead) · d(M′,Dead) +

∑
i∈I1, j∈J2

ω(Mi,N j) · γi, j(M′) · d(M′,Dead)

•
∑

N′,Dead
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(Dead,N′) · d(Dead,N′) +

∑
i∈I2, j∈J1

ω(Mi,N j) · γ′i, j(N
′) · d(Dead,N′)

•
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(Dead,Dead) · d(Dead,Dead) +

∑
i∈I1, j∈J2

ω(Mi,N j) · γi, j(Dead) · d(Dead,Dead)
+

∑
i∈I2, j∈J1

ω(Mi,N j) · γ′i, j(Dead) · d(Dead,Dead) +
∑

i∈I2, j∈J2
ω(Mi,N j) · d(Dead,Dead) .

By moving the first summand of the second, third and fourth items to the first item, we rewrite this summation as the
summation of the following values:

•
∑

M′,N′∈pCCPS
∑

i∈I1, j∈J1
ω(Mi,N j) · ωi, j(M′,N′) · d(M′,N′)

•
∑

i∈I1, j∈J2
ω(Mi,N j) · γi, j(M′) · d(M′,Dead)

•
∑

i∈I2, j∈J1
ω(Mi,N j) · γ′i, j(N

′) · d(Dead,N′)

•
∑

i∈I1, j∈J2
ω(Mi,N j)·γi, j(Dead)·d(Dead,Dead)+

∑
i∈I2, j∈J1

ω(Mi,N j)·γ′i, j(N
′)·d(Dead,Dead)+

∑
i∈I2, j∈J2

ω(Mi,N j)·
d(Dead,Dead) .

By the definition of ωi, j the first item is
∑

i∈I1, j∈J1
ω(Mi,N j) ·K(d)(γi, j, γ

′
i, j). If d(Mi,N j) < 1, we chosen γ′i, j such that

K(d)(γi, j, γ
′
i, j) ≤ d(Mi,N j). If d(Mi,N j) = 1, then K(d)(γi, j, γ

′
i, j) ≤ d(Mi,N j) is immediate. Henceforth we are sure

that in all cases the first item is less or equal
∑

i∈I1, j∈J1
ω(Mi,N j) · d(Mi,N j). The second item is clearly less or equal

than
∑

i∈I1, j∈J2
ω(Mi,N j). The third item is clearly less or equal than

∑
i∈I2, j∈J1

ω(Mi,N j). Finally, the last item is 0 since
d(Dead,Dead) = 0. Summarising, we have

∑
M′,N′∈pCCPS ω

′(M′,N′) · d(M′,N′) ≤
∑

i∈I1, j∈J1
ω(Mi,N j) · d(Mi,N j) +∑

i∈I1, j∈J2
ω(Mi,N j) +

∑
i∈I2, j∈J1

ω(Mi,N j). Since K(d)(ρM , ρN) is the summation of the following values:

•
∑

i∈I1, j∈J1
ω(Mi,N j) · d(Mi,N j)

•
∑

i∈I1, j∈J2
ω(Mi,N j) · d(Mi,N j) =

∑
i∈I1, j∈J2

ω(Mi,N j) (Mi
β2
−−−→ and N j 6

β̂2
==⇒ give d(Mi,N j) = 1)

•
∑

i∈I2, j∈J1
ω(Mi,N j) · d(Mi,N j) =

∑
i∈I2, j∈J1

ω(Mi,N j) (N j
β2
−−−→ and Mi 6

β̂2
==⇒ give d(Mi,N j) = 1)

•
∑

i∈I2, j∈J2
ω(Mi,N j) · d(Mi,N j).

it follows
∑

i∈I1, j∈J1
ω(Mi,N j) · d(Mi,N j) +

∑
i∈I1, j∈J2

ω(Mi,N j) +
∑

i∈I2, j∈J1
ω(Mi,N j) ≤ K(d)(ρM , ρN). Since we had

K(d)(ρM , ρN) ≤ d(M,N) we can conclude
∑

M′,N′∈pCCPS ω
′(M′,N′) · d(M′,N′) ≤ d(M,N), as required.

We are now ready to prove that all dn are pseudometrics.

Proof of Proposition 5.8 We have to prove that dn(M,M) = 0, dn(M,N) = dn(N,M) and dn(M,N) ≤ dn(M,O) +

dn(O,N) for all M,N,O ∈ pCCPS. We reason by induction over n. The base case n = 0 is immediate since d0(M,N) = 0
for all M,N ∈ pCCPS. We consider the inductive step n + 1.

Let us start by proving dn+1(M,M) = 0. We have to show that for each transition M
α
−→ γ there is a transition M

α̂
=⇒ ρ

with K(dn)(γ, ρ+ (1− |ρ|)Dead) = 0. We choose ρ = γ and the transition M
α
−→ γ. We obtain K(dn)(γ, ρ+ (1− |ρ|)Dead)

= K(dn)(γ, γ) = 0, with the last equality by the inductive hypothesis and Lemma Appendix A.3.
The symmetry dn+1(M,N) = dn+1(N,M) follows by dn+1(M,N) = B(dn)(M,N) = B(dn)(N,M) = dn+1(N,M),

where the second equality follows immediately by the definition of B.
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Finally we prove the triangular property dn+1(M,N) ≤ dn+1(M,O) + dn+1(O,N). This result is immediate if
dn+1(M,O) = 1 or dn+1(O,N) = 1. Otherwise, it is enough to prove that any M

α
−→ γM is mimicked by some transition

N
α̂

=⇒ γN with K(dn)(γM , γN + (1− |γN |)Dead) ≤ dn+1(M,O) + dn+1(O,N). From M
α
−→ γM and dn+1(M,O) < 1

we immediately infer that there is a transition O
α̂

=⇒ γO with K(dn)(γM , γO + (1− |γO |)Dead) ≤ dn+1(M,O). By

Lemma Appendix A.4, from O
α̂

=⇒ γO and dn+1(O,N) < 1 there is a transition N
α̂

=⇒ γN such that K(dn)(γO + (1− |
γO |)Dead, γN + (1− | γN |)Dead) ≤ dn+1(O,N). By the inductive hypothesis and Lemma Appendix A.3 we get
that K(dn) is a pseudometric, hence it satisfies the triangle inequality, namely K(dn)(γM , γN + (1− |γN |)Dead) ≤
K(dn)(γM , γO + (1− |γO|)Dead) + K(dn)(γO + (1− |γO|)Dead, γN + (1− |γN |)Dead). Therefore we can conclude the
proof by K(dn)(γM , γN + (1− |γN|)Dead) ≤ K(dn)(γM , γO + (1− |γO|)Dead) + K(dn)(γO + (1− |γO|)Dead, γN + (1− |γN|

)Dead) ≤ dn+1(M,O) + dn+1(O,N).

In order to prove the compositionality or our weak bisimilarity metrics, i.e. Theorem 5.11, we divide its statement
in six different propositions. To prove that ≈p preserves the compositionality we need a number of technical lemmas.

Given a distribution γ over CPSs and a CPS O, we denote with γ ]O the distribution defined by (γ ]O)(M ]O) =

γ(M) for all CPSs M.
Lemma Appendix A.5 serves to propagate untimed actions on parallel CPSs.

Lemma Appendix A.5. Assume two physically disjoint CPSs M1 and M2 such that M2 = E2; S2 on P2 and E2 =

〈evol2,meas2, inv2〉. If M1
α
−−−→ γ, with α , tick, and S2 ∈ inv2 then M1 ] M2

α
−−−→ γ ] M2.

Proof. If M1 is the CPS Dead then also M1 ] M2 is Dead and the thesis is immediate. Consider the case M1 , Dead.
Let us assume that M1 = E1; S1 on P1 with E1 = 〈evol1,meas1, inv1〉 and S1 = 〈ξ1

x , ξ
1
s , ξ

1
a 〉. Moreover, assume that

S2 = 〈ξ2
x , ξ

2
s , ξ

2
a 〉. We consider the case in which M1

α
−−−→ γ is derived by rule (SensRead). The other cases where the

transition is derived by the other rules in Table 2 can be proved in a similar manner. In this case, we have α = τ and
there are a sensor s, probability values pi and real values vi with i ∈ I and a distribution π such that the rule (SensRead)
instances as

P1
s?(z)
−−−−−→ π ξ1

s (s) =
∑

i∈I pi · vi ξ1
x ∈ inv1

〈ξ1
x , ξ

1
s , ξ

1
a 〉on P1

τ
−−−→ 〈ξ1

x , ξ
1
s , ξ

1
a 〉on

∑
i∈I pi · π{

vi/z}

and γ = E1; 〈ξ1
x , ξ

1
s , ξ

1
a 〉on

∑
i∈I pi · π{

vi/z}.
Now we argue that we can apply rule (SensRead) to infer a transition by M1 ] M2. Recall that M1 ] M2 is the CPS

(E1 ] E2); 〈ξ1
x ] ξ

2
x , ξ

1
s ] ξ

2
s , ξ

1
a ] ξ

2
a 〉on P1 ‖ P2. Let E1 ] E2 = 〈evol,meas, inv〉. From P1

s?(z)
−−−−−→ π, by rule (Par) in

Table 1 we can derive the transition P1 ‖ P2
s?(z)
−−−−−→ π ‖ P2, which is one of the premises of rule (SensRead) necessary

to infer a transition by 〈ξ1
x ] ξ

2
x , ξ

1
s ] ξ

2
s , ξ

1
a ] ξ

2
a 〉on P1 ‖ P2. Then, the premise ξ1

x ] ξ
2
x ∈ inv of (SensRead) follows by

ξ1
x ∈ inv1, the hypothesis ξ2

x ∈ inv2 and the property ξ1
x ] ξ

2
x ∈ inv iff ξ1

x ∈ inv1 and ξ2
x ∈ inv2. Finally, the premise

(ξ1
s ] ξ

2
s )(s) =

∑
i∈I pi · vi follows by (ξ1

s ] ξ
2
s )(s) = ξ1

s (s) and ξ1
s (s) =

∑
i∈I pi · vi. Therefore we have

P1 ‖ P2
s?(z)
−−−−−→ π ‖ P2 (ξ1

s ] ξ
2
s )(s) =

∑
i∈I pi · vi ξ1

x ] ξ
2
x ∈ inv

〈ξ1
x ] ξ

2
x , ξ

1
s ] ξ

2
s , ξ

1
a ] ξ

2
a 〉on P1 ‖ P2

τ
−−−→ 〈ξ1

x ] ξ
2
x , ξ

1
s ] ξ

2
s , ξ

1
a ] ξ

2
a 〉on

∑
i∈I pi · (π ‖ P2){vi/z}

with (E1 ] E2); 〈ξ1
x ] ξ

2
x , ξ

1
s ] ξ

2
s , ξ

1
a ] ξ

2
a 〉on

∑
i∈I pi · (π ‖ P2){vi/z} = γ ] M2.

Lemma Appendix A.5 can be generalised to weak transitions.

Lemma Appendix A.6. Assume two physically disjoint CPSs M1 and M2 such that M2 = E2; S2 on P2 and E2 =

〈evol2,meas2, inv2〉. If M1
α̂

===⇒ γ, with α , tick, and S2 ∈ inv2 then M1 ] M2
α̂

===⇒ γ ] M2.

Proof. By induction over the length n of
α̂

=⇒. The base case n = 1 is given by Lemma Appendix A.5. Consider the

inductive step n + 1. We have M1
α̂1

==⇒ γ′
α̂2
−−→ γ with either α1 = α and α2 = τ, or α1 = τ and α2 = α. Since the
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length of
α̂1

==⇒ is n, we can apply the inductive hypothesis and infer M1 ] M2
α̂1

==⇒ γ′ ] M2. Assume γ′ =
∑

i∈I pi · Mi,

for suitable probability values pi and CPS Mi. By definition, γ′
α̂2
−−→ γ implies that there exists a subset J ⊆ I with

M j
α̂2
−−→ γ j for all j ∈ J, Mi

α2
−−→6 for i ∈ I \ J and γ =

∑
j∈J p j · M j. We can prove now that for any j ∈ J we have

M j ] M2
α̂2
−−→ γ j ] M2. We distinguish two cases. The first case is M j

α2
−−→ γ j. By Lemmma Appendix A.5 we

get M j ] M2
α2
−−→ γ j ] M2, and, therefore, M j ] M2

α̂2
−−→ γ j ] M2. The second case is α2 = τ and γ j = M j. We

immediately have M j ] M2
τ̂
−→ γ j ] M2. Hence

∑
j∈J M j ] M2

α̂2
−−→

∑
j∈J γ j ] M2, namely γ′ ] M2

α̂2
−−→ γ ] M2. Then,

from M ] M2
α̂1

==⇒ γ′ ] M2 and γ′ ] M2
α̂2
−−→ γ ] M2 we get M ] M2

α̂
=⇒ γ ] M2, which completes the proof.

Next lemma says that the invariants of CPSs in distance < 1 must agree.

Lemma Appendix A.7. Assume two CPSs M1 and M2 such that Mi = Ei; Si on Pi and Ei = 〈evoli,measi, invi〉, for
i = 1, 2. If d(M1,M2) < 1 then S 1 ∈ inv1 iff S 2 ∈ inv2.

Proof. The proof is by contradiction. Assume that d(M1,M2) < 1, S 1 ∈ inv1 and S 2 < inv2. We show that M1
t̂ick

===⇒ and

M2
t̂ick

===⇒6 , which contradicts d(M1,M2) < 1. By the well timedness property for CPSs (Theorem 2.9, last item), there
exists a natural n such that all derivations M1

τ
−−−→ N1

τ
−−−→ · · ·

τ
−−−→ Nk are such that k ≤ n, then we have Nk

τ
−−−→6 . Since

Nk
τ
−−−→6 , by the maximal progress property for CPSs (Theorem 2.9, second item) it follows that Nk

tick
−−−−→ γ, for some

γ. We conclude M1
t̂ick

===⇒. Since S 2 < inv2, the CPS M2 can perform only the step M2
τ
−−−→ Dead and Dead can not

perform any action, and hence, M2
t̂ick

===⇒6 .

Here comes one of the main technical result: the bisimilarity metric is preserved by the parallel composition of
physically disjoint CPSs.

Proposition Appendix A.8. d(M ] O,N ] O) ≤ d(M,N), for any physically disjoint CPS O.

Proof. The case d(M,N) = 1 is immediate, therefore we assume d(M,N) < 1. Let us define the function d : pCCPS ×
pCCPS→ [0, 1] by d(M ] O,N ] O) = d(M,N) for all M,N,O ∈ pCCPS. To prove the thesis it is enough to show that
d is a weak bisimulation metric. In fact, since d is the minimal weak bisimulation metric, we infer d v d, thus giving
d(M ] O,N ] O) ≤ d(M ] O,N ] O) = d(M,N). To prove that d is a weak bisimulation metric, we show that any

transition M]O
α
−−−→ γ is simulated by some transition N]O

α̂
=⇒ γ′ with K(d)(γ, γ′+(1− |γ′|)Dead) ≤ d(M]O,N]O).

The cases where one of the CPSs M, N and O are Dead is immediate. Hence, assume that M, N and O are not Dead.
Let us assume that M1 = E1; S1 on P1 with E1 = 〈evol1,meas1, inv1〉 and S1 = 〈ξ1

x , ξ
1
s , ξ

1
a 〉. Moreover, assume that

O = E2; S2 on P2 with E2 = 〈evol2,meas2, inv2〉 and S2 = 〈ξ2
x , ξ

2
s , ξ

2
a 〉. Finally E1 ] E2 = 〈evol,meas, inv〉.

We proceed by case analysis on how M ] O
α
−−−→ γ is derived. The cases are the following:

• The transition M ] O
τ
−−−→ γ is derived by rule (SensRead) in Table 2, instantiated as

P1 ‖ P2
s?(z)
−−−−−→ π (ξ1

s ] ξ
2
s )(s) =

∑
i∈I pi · vi ξ1

x ] ξ
2
x ∈ inv

S 1 ] S 2 on P1 ‖ P2
τ
−−−→ S 1 ] S 2 on

∑
i∈I pi · π{

vi/z}

with γ = (E1 ] E2); S 1 ] S 2 on
∑

i∈I pi · π{
vi/z}.

• The transition M ] O
τ
−−−→ γ is derived by rule (ActWrite) in Table 2 instantiated as

P1 ‖ P2
a!v
−−−−→ π ξ1

x ] ξ
2
x ∈ inv

〈ξ1
x ] ξ

2
x , ξ

1
s ] ξ

2
s , ξ

1
a ] ξ

2
a 〉on P1 ‖ P2

τ
−−−→ 〈ξ1

x ] ξ
1
x , ξ

1
s ] ξ

2
s , ξ

1
a ] ξ

1
a [a 7→ v]〉on π
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• The transition M ] O
τ
−−−→ γ is derived by rule (Tau) in Table 2, instantiated as

P1 ‖ P2
τ
−−−→ π (S 1 ] S 2) ∈ inv

S 1 ] S 2 on P1 ‖ P2
τ
−−−→ S 1 ] S 2 on π

with γ = (E1 ] E2); S 1 ] S 2 on π.

• The transition M ] O
tick
−−−−→ γ is derived by rule (Time) in Table 2, instantiated as

P1 ‖ P2
tick
−−−−→ π S 1 ] S 2 on P1 ‖ P2

τ
−−−→6 (S 1 ] S 2) ∈ inv

S 1 ] S 2 on P1 ‖ P2
tick
−−−−→ next(E1]E2)(S 1 ] S 2)on π

with γ = (E1 ] E2) : next(E1]E2)(S 1 ] S 2)on π.

• The transition M ] O
cv
−−−→ γ is derived by rule (Inp) in Table 2, instantiated as

P1 ‖ P2
cv
−−−→ π (S 1 ] S 2) ∈ inv

S 1 ] S 2 on P1 ‖ P2
cv
−−−→ S 1 ] S 2 on π

with γ = (E1 ] E2); S 1 ] S 2 on π.

• The transition M ] O
cv
−−−→ γ is derived by rule (Out) in Table 2 instantiated as

P1 ‖ P2
cv
−−−→ π S 1 ] S 2 ∈ inv

S 1 ] S 2 on P1 ‖ P2
cv
−−−→ S 1 ] S 2 on π

.

We show only the first case, the other are analogous. We recall that, by definition of operator ], the physical
environments E1 and E2 have different physical devices. Thus, there are two cases:

• s is a sensor of E1. In this case, the transition P1 ‖ P2
s?(z)
−−−−−→ π derives by rule (Par) in Table 1 from P1

s?(z)
−−−−−→ π′,

where π′ is a process distribution such that π = π′ ‖ P2.

First we argue that rule (SensRead) can be used to derive a transition by M. From (S 1 ] S 2) ∈ inv, by definition of
E1 ] E2, we get both S 1 ∈ inv1 and S 2 ∈ inv2. From (ξ1

s ] ξ
2
s )(s) =

∑
i∈I pi · vi, since s is a sensor of ξ1

s , we derive

ξ1
s (s) =

∑
i∈I pi·vi. Summarising, we have P1

s?(z)
−−−−−→ π′, S 1 ∈ inv1, and ξ1

s (s) =
∑

i∈I pi·vi, which allows us to apply
rule (SensRead) and derive S 1 on P1

τ
−−−→ S 1 on

∑
i∈I pi · (π′){vi/z}, namely M

τ
−−−→ γ′′ = E1; S 1 on

∑
i∈I pi · (π′){vi/z}.

Then, from transition M
τ
−−−→ γ′′ and d(M,N) < 1, there is a distribution γ′′′ such that N τ̂

===⇒ γ′′′ with
K(d)(γ′′, γ′′′ + (1− | γ′′′ |)Dead) ≤ d(M,N). Since S 2 ∈ inv2, by Lemma Appendix A.6 it follows that

N ]O
τ̂

=⇒ γ′′′ ]O. Finally, we conclude that γ′′′ ]O is the distribution γ′ we were looking for by K(d)(γ, γ′′′ ]
O + (1− |γ′′′ ] O|)Dead) = K(d)(γ′′ ] O, γ′′′ ] O + (1− |γ′′′ ] O|)Dead) = K(d)(γ′′, γ′′′(1− |γ′′′ |)Dead) ≤
d(M,N) = d(M ] O,N ] O).

• s is a sensor of E2. In this case, the transition P1 ‖ P2
s?(z)
−−−−−→ π derives by rule (Par) in Table 1 from P2

s?(z)
−−−−−→ π′,

where π′ is a process distribution such that π = P1 ‖ π
′.

Assume N = E3; S3 on P3 with E3 = 〈evol3,meas3, inv3〉 and S3 = 〈ξ3
x , ξ

3
s , ξ

3
a 〉. We show that rule (SensRead) allow

us to infer N ] O
τ
−−−→ N ] γ′′ for some γ′′.

By the rule (Par) we get P3 ‖ P2
s?(z)
−−−−−→ P3 ‖ π

′. From (S 1 ] S 2) ∈ inv, by definition of E1 ] E2. we get
both S 1 ∈ inv1 and S 2 ∈ inv2. Let E1 ] E3 = 〈evol′,meas′, inv′〉. From d(M,N) < 1 and S 1 ∈ inv1, by
Lemma Appendix A.7 it follows that S 3 ∈ inv3 and so (S 3 ] S 2) ∈ inv′. From (ξ1

s ] ξ
2
s )(s) =

∑
i∈I pi · vi, since
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s is a sensor of ξ2
s , we derive ξ2

s (s) =
∑

i∈I pi · vi. Hence we derive (ξ3
s ] ξ

2
s )(s) =

∑
i∈I pi · vi. Summarising we

have P3 ‖ P2
s?(z)
−−−−−→ P3 ‖ π

′, (S 3 ] S 2) ∈ inv′ and (ξ3
s ] ξ

2
s )(s) =

∑
i∈I pi · vi. Hence, we can apply rule (SensRead)

to infer N ] O
τ
−−−→ (E3 ] E2); S 3 ] S 2 on

∑
i∈I pi · (P3 ‖ π

′){vi/z} = N ] γ′′ with γ′′ = E2; S 2 on
∑

i∈I pi · (π′){vi/z}.
Finally, we can conclude that γ′ = N ] γ′′ is the distribution we were looking for by K(d)(M ] γ′′,N ] γ′′) =

K(d)(M,N) = d(M,N) = d(M ] O,N ] O).

Also the n-weak bisimilarity metric is preserved by the parallel composition of physically disjoint CPSs.

Proposition Appendix A.9. dn(M ] O,N ] O) ≤ dn(M,N), for any physically disjoint CPS O and n ≥ 0.

Proof. We proceed by induction over n. The base case n = 0 is immediate since dn(M,N) = 0(M,N) = 0 for all
M,N ∈ pCCPS. We consider the inductive step n + 1. The case dn+1(M,N) = 1 is immediate, therefore we assume

dn+1(M,N) < 1. We have to show that any transition M ] O
α
−−−→ γ is simulated by some transition N ] O

α̂
=⇒ γ′ with

K(dn)(γ, γ′+(1− |γ′|)Dead) ≤ dn+1(M]O,N]O). This can be shown precisely as in the proof of Proposition Appendix
A.8. Essentially, we have to replace all occurrences of d(M,N) by dn+1(M,N) and all occurrences of K(d)(γ, γ′) and
K(d)(γ, γ′) by K(dn)(γ, γ′).

Now we prove that our weak bisimilarity metrics are preserved by parallel composition of pure-logical processes.
These are special cases of Proposition Appendix A.8 and Proposition Appendix A.9.

Proposition Appendix A.10. d(M ‖ P,N ‖ P) ≤ d(M,N), for any pure-logical process P.

Proof. Let E∅ be the physical environment with an empty set of state variables, sensors and actuators. Let S ∅ be the
unique (empty) physical state of E∅. We have d(M ‖ P,N ‖ P) ≤ d(M ‖ P,M] (E∅; S ∅on P)) + d(M] (E∅; S ∅on P),N ‖
P) = d(M ] (E∅; S ∅on P),N ‖ P) ≤ d(M ] (E∅; S ∅on P),N ] (E∅; S ∅on P)) + d(N ] (E∅; S ∅on P),N ‖ P) = d(M ]
(E∅; S ∅on P),N ] (E∅; S ∅on P)) ≤ d(M,N) where the first two inequalities follow by the triangular properties of d, the
last inequality follows by Proposition Appendix A.8 and the two equalities are immediate.

Proposition Appendix A.11. dn(M ‖ P,N ‖ P) ≤ dn(M,N), for any pure-logical process P and n ≥ 0.

Proof. The same arguments used in the proof of Proposition Appendix A.10 apply. Essentially, we simply exploits
Proposition Appendix A.9 instead of Proposition Appendix A.8.

Finally, we prove that weak bisimilarity metrics are preserved by channel restriction.

Proposition Appendix A.12. d(M\c,N\c) ≤ d(M,N), for any channel c.

Proof. We reason as in Proposition Appendix A.8. The case d(M,N) = 1 is immediate, therefore we assume
d(M,N) < 1. Let us define the function d : pCCPS×pCCPS→ [0, 1] by d(M\c,N\c) = d(M,N) for all M,N,O ∈ pCCPS.
To prove the thesis it is enough to show that d is a weak bisimulation metric. In fact, since d is the minimal weak
bisimulation metric, this implies d v d, thus giving d(M\c,N\c) ≤ d(M\c,N\c) = d(M,N). To prove that d is a

weak bisimulation metric, we show that any transition M\c
α
−−−→ γ is simulated by some transition N\c

α̂
=⇒ γ′ with

K(d)(γ, γ′ + (1− |γ′|)Dead) ≤ d(M \ c,N \ c). The proof proceeds by case analysis on why M \ c
α
−−−→ γ.

Proposition Appendix A.13. dn(M\c,N\c) ≤ dn(M,N), for any channel c and n ≥ 0.

Proof. We reason as in Proposition Appendix A.9. Hence, we proceed by induction over n, where the base case n = 0
is immediate and we consider the inductive step n + 1. The case dn+1(M,N) = 1 is immediate, therefore we assume

dn+1(M,N) < 1. We have to show that any transition M\c
α
−−−→ γ is simulated by some transition N\c

α̂
=⇒ γ′ with

K(dn)(γ, γ′ + (1− |γ′|)Dead) ≤ dn+1(M \ c,N \ c). The proof proceeds by case analysis on why M \ c
α
−−−→ γ.
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Proof of Theorem 5.11 By Proposition Appendix A.8–Proposition Appendix A.13.

Finally, as the bisimilarity ≈ coincides with the bisimulation metric ≈0 it follows that Theorem 3.5 is a special case
of Theorem 5.11.

Proof of Theorem 3.5 Consider the first result of Theorem 3.5. As M ≈ N, by an application of Proposition 5.4 it
follows that d(M,N) = 0. By Theorem 5.11.1 we derive d(M ] O,N ] O) = 0, for any physically-disjoint CPS O. By
Proposition 5.4, it follows that M ] O ≈ N ] O.

The proofs of the remaining two cases of Theorem 3.5 are analogous.

Appendix A.4. Proofs of 6

Proof of Proposition 6.1 The proof is analogous to that of Proposition 6.2 and Proposition 6.3.1.

As the bisimilarity ≈ coincides with the bisimulation metric ≈0 it follows that Proposition 4.3 is a special case of
Proposition 6.1.

Proof of Proposition 4.3 Directly by Proposition 6.1 (first item) and Proposition 5.4.

Proof of Proposition 6.2 Define the CPS NIL as NIL = E∅; S ∅on nil, where E∅ is the empty physical environment

and S ∅ the unique (empty) physical state of E∅. The only transition by NIL is NIL
tick
−−−−→ NIL. By Proposition 4.1 and

Theorem 2.9 (fourth item) we infer that dn(Engg,NIL) = 0. Therefore, by the triangular property of dn, to show the
thesis dn(Engg, Êngg) ≤ 1 −

(
1 − qg(pg)5

)n
we can show dn(NIL, Êngg) ≤ 1 −

(
1 − qg(pg)5

)n
.

The proof obligation dn(NIL, Êngg) ≤ 1 −
(
1 − (pg)5

)n
follows from the following nine properties, by observ-

ing that the system Êngg satisfies the first one. In the following we denote the process rec Y.tick5.read st(x).[x >
10]{snd warning〈ID〉.Y}, {write cool〈off〉.tick.Ctrl} with RecY .

1. dn(NIL,Envg; S on P) ≤ 1−
(
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = off and temp ∈ [0, 10.1],

and the process P is Ctrl, or tick.Ctrl.

2. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = off and temp ∈

(10.1, 11.4], and the process P is Ctrl, or Cooling.

3. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − (pg)5

) (
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = off and

temp ∈ (10.4, 11.5], and the process P is Ctrl, or Cooling.

4. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = on and temp ∈

(9.9, 11.4], and the process P is RecY .

5. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − (pg)5

) (
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = on and

temp ∈ (10.4, 11.5], and the process P is RecY .

6. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − (pg)5−k

) (
1 − qg(pg)5

)n
, for all n ∈ [1, 4], whenever the physical state S satisfies

cool = on and temp ∈ (11.4 − k(0.3), 11.5 − k(0.3)], and the process P is

P = tick5−k.read st(x)[x > 10]{snd warning〈ID〉.RecY}, {write cool〈off〉.tick.Ctrl}.

7. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = on and temp ≤

11.4 − k(0.3), and the process P is

P = tick5−k.read st(x)[x > 10]{snd warning〈ID〉.RecY}, {write cool〈off〉.tick.Ctrl}

for any k ∈ [1, 4].
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8. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = on and temp ≤ 9.9, and

the process P is

P = read st(x)[x > 10]{snd warning〈ID〉.RecY}, {write cool〈off〉.tick.Ctrl}.

9. dn(NIL,Envg; S on P) ≤ 1 −
(
1 − qg(pg)5

)n
whenever the physical state S satisfies cool = on and temp ≤ 9.9, and

the process P is P = write cool〈off〉.tick.Ctrl.

We prove these nine properties in parallel, by induction over n. The base case n = 0 is immediate since d0 is the
constant zero function 0. We consider the inductive step n > 0. First we observe that, given any distribution

∑
i∈I pi ·Mi

over CPS s, the only matching ω ∈ Ω(
∑

i∈I pi ·Mi,NIL) is ω(Mi,NIL) = pi. It follows that K(dn−1)(
∑

i∈I pi ·Mi,NIL) =∑
i∈I pidn−1(Mi,NIL). We show only the first property, the other are analogous.

We distinguish the cases P = Ctrl and P = tick.Ctrl.

• Case P = Ctrl.
The only transition by Envg; S on P is Envg; S on P

τ
−−−→

∑
i∈I pi · Mi, where Mi = Envg; S on Pi, with ei-

ther Pi = tick.Ctrl or Pi = Cooling. The only transition by NIL is NIL
τ
−−−→ NIL. Therefore we infer

dn(Envg; S on P,NIL) ≤ K(dn−1)(
∑

i∈I pi · Mi,NIL). By the inductive hypothesis on Proposition 1 we infer

dn−1(Mi,NIL) ≤ 1 −
(
1 − qg(pg)5

)n−1
in both cases, thus implying

K(dn−1)(
∑
i∈I

pi · Mi,NIL) =
∑
i∈I

pidn−1(Mi,NIL) ≤ 1 −
(
1 − qg(pg)5

)n−1
≤ 1 −

(
1 − qg(pg)5

)n
.

This concludes the case.

• Case P = tick.Ctrl.
The only transition by Envg; S on P is Envg; S on P

tick
−−−−→ nextEnvg;(S )onCtrl. Again, the only transition by

NIL is NIL
tick
−−−−→ NIL. Therefore dn(Envg; S on P,NIL) ≤ K(dn−1)(nextEnvg (S )onCtrl,NIL). By definition,

nextEnvg (S ) =
∑

v∈[0.3,1.1]g
1

|[0.3,1.1]g |
S [temp 7→ ξx(temp) − v]. Hence in all physical states S ′ in the support of

nextEnvg (S ) we have cool = off and the temperature temp lies in the interval [0 + 0.3, 10.1 + 1.4].

We have two cases: temp ∈ [0+0.3, 10.1], and temp ∈ (10.1, 10.5]. If temp ∈ [0+0.3, 10.1], then by the inductive
hypothesis, case 1, we infer dn−1(Envg; S ′onCtrl,NIL) ≤ 1 −

(
1 − qg(pg)5

)n−1
, for all S ′ ∈ supp(nextEnvg (S )),

thus implying

K(dn−1)(Envg; nextE(S )onCtrl,NIL) ≤ 1 −
(
1 − qg(pg)5

)n−1
≤ 1 −

(
1 − qg(pg)5

)n
.

If temp ∈ (10.1, 10.5], then temp ∈ (10.4, 10.5] with a probability bounded by qg, whereas temp ∈ (10.1, 10.4]
with a probability not less that 1 − qg. If temp ∈ (10.4, 10.5] we can apply the inductive hypothesis on

Proposition 3 to get dn−1(Envg; S ′onCtrl,NIL) ≤ 1 −
(
1 − (pg)5

) (
1 − qg(pg)5

)n−1
, for all S ′ ∈ supp(nextEnvg (S )).

If temp ∈ (10.4, 10.5] we can apply the inductive hypothesis on Proposition 2 to get dn−1(Envg; S ′onCtrl,NIL) ≤

1 −
(
1 − qg(pg)5

)n−1
, for all S ′ ∈ supp(nextEnvg (S )). Therefore for some q ≤ qg we have

K(dn−1)(Envg; nextE(S )onCtrl,NIL)

= (1 − q)
(
1 −

(
1 − qg(pg)5

)n−1
)

+ q
(
1 − (pg)5

) (
1 − qg(pg)5

)n−1

=

(
1 −

(
1 − qg(pg)5

)n−1
)
− q

(
1 −

(
1 − qg(pg)5

)n−1
)

+ q
(
1 − (pg)5

) (
1 − qg(pg)5

)n−1

= 1 −
(
1 − qg(pg)5

)n−1
− q + q

(
1 − qg(pg)5

)n−1
+ q −

(
q − q(pg)5

) (
1 − qg(pg)5

)n−1

= 1 − q + q −
(
1 − q + q − q(pg)5

) (
1 − qg(pg)5

)n−1

= 1 −
(
1 − q(pg)5

) (
1 − qg(pg)5

)n−1

≤ 1 −
(
1 − qg(pg)5

) (
1 − qg(pg)5

)n−1

= 1 −
(
1 − qg(pg)5

)n
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which completes the proof.

Proof of Proposition 6.3 By Proposition 6.2 we derive dn(Engg, Êngg) ≤ 1 −
(
1 − qg(pg)5

)n
= p. By simple

α-conversion it follows that dn(EngL
g , ÊngL

g ) = p and dn(EngR
g , ÊngR

g ) = p, respectively. By Theorem 5.11.4 (and the

triangular property of dn) it follows that dn(EngL
g ] EngR

g , ÊngL
g ] ÊngR

g ) ≤ 2p. By Theorem 5.11.5 it follows that

dn
((

EngL
g ] (EngR

g

)
‖ Check,

(
ÊngL

g ] (ÊngR
g

)
‖ Check

)
≤ 2p.

By Theorem 5.11.6 we obtain
dn

(
Airplaneg, ̂Airplaneg

)
≤ 2p (A.1)

thus confirming that Proposition 6.3.1 holds.
Finally, by Equation A.1 and Equation 1, we derive

lim
g→+∞

dn(Airplaneg, ̂Airplaneg) ≤ 2
(
1 −

(
1 −

1
86

)n)
.

This proves Proposition 6.3.2.
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