
Interval vs. Point Temporal Logic Model
Checking: an Expressiveness Comparison
Laura Bozzelli1, Alberto Molinari2, Angelo Montanari3,
Adriano Peron4, and Pietro Sala5

1 Technical University of Madrid (UPM), Madrid, Spain
2 University of Udine, Udine, Italy
3 University of Udine, Udine, Italy
4 University of Napoli “Federico II”, Napoli, Italy
5 University of Verona, Verona, Italy

Abstract
Model checking is a powerful method widely explored in formal verification to check the (state-
transition) model of a system against desired properties of its behaviour. Classically, properties
are expressed by formulas of a temporal logic, such as LTL, CTL, and CTL*. These logics are
“point-wise” interpreted, as they describe how the system evolves state-by-state. On the contrary,
Halpern and Shoham’s interval temporal logic (HS) is “interval-wise” interpreted, thus allowing
one to naturally express properties of computation stretches, spanning a sequence of states, or
properties involving temporal aggregations, which are inherently “interval-based”.

In this paper, we study the expressiveness of HS in model checking, in comparison with
that of the standard logics LTL, CTL, and CTL*. To this end, we consider HS endowed with
three semantic variants: the state-based semantics, introduced by Montanari et al., which allows
branching in the past and in the future, the linear-past semantics, allowing branching only in
the future, and the linear semantics, disallowing branching. These variants are compared, as
for their expressiveness, among themselves and to standard temporal logics, getting a complete
picture. In particular, HS with linear (resp., linear-past) semantics is proved to be equivalent to
LTL (resp., finitary CTL*).

1998 ACM Subject Classification F.4.1 Mathematical Logic, D.2.4 Software/Program Verifica-
tion

Keywords and phrases Interval Temporal Logics, Expressiveness, Model Checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.26

1 Introduction

Point-based temporal logics (PTLs) provide a fundamental framework for the specification of
the behavior of reactive systems, that makes it possible to describe how the system evolves
state-by-state (“point-wise” view). PTLs have been successfully employed in model checking
(MC), which enables one to automatically verify complex finite-state systems usually modelled
as finite propositional Kripke structures. The MC methodology considers two types of PTLs
– linear and branching – which differ in the underlying model of time. In linear temporal
logics, such as LTL [23], each moment in time has a unique possible future: formulas are
interpreted over paths of a Kripke structure, and thus they refer to a single computation of
the system. In branching temporal logics, such as CTL and CTL∗ [8], each moment in time
may evolve into several possible futures: formulas are interpreted over states of the Kripke
structure, hence referring to all the possible computations of a system.

© Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and Pietro Sala;
licensed under Creative Commons License CC-BY

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Interval temporal logics (ITLs) have been proposed as an alternative setting for reasoning
about time [10, 22]. Unlike standard PTLs, they take intervals, rather than points, as their
primitive entities. ITLs allow one to specify relevant temporal properties that involve, for
instance, actions with duration, accomplishments, and temporal aggregations, which are
inherently “interval-based”, and thus cannot be naturally expressed by PTLs. They have been
applied in various areas of computer science, including formal verification, computational
linguistics, planning, and multi-agent systems [14, 22, 24]. Halpern and Shoham’s modal logic
of time intervals HS [10] is the most popular among ITLs. It features one modality for each of
the 13 possible ordering relations between pairs of intervals (the so-called Allen’s relations [1]),
apart from equality. Its satisfiability problem turns out to be undecidable for all interesting
(classes of) linear orders [10]; the same happens with most of its fragments [7, 13, 17].

In this paper, we focus on the model checking problem for HS. In order to check interval
properties of computations, one needs to collect information about states into computation
stretches (i.e., finite paths of the Kripke structure, tracks for short): each track is interpreted
as an interval, whose labelling is defined on the basis of the labelling of the component states.
This approach to MC has independently and simultaneously been proposed by Molinari et al.
in [18] and by Lomuscio and Michaliszyn in [14, 15, 16].

The semantics proposed in [18] is state-based, featuring intervals/tracks which are forgetful
of the history leading to the starting state of the interval itself. Since the starting state
(resp., ending state) of an interval may feature several predecessors (resp., successors), this
interpretation induces a branching reference in both future and past. The other relevant
choice in this approach concerns the labeling of intervals: a natural principle, known as the
homogeneity assumption, is adopted, according to which a proposition holds over an interval if
and only if it holds over each component state. Under this semantics, the MC problem for full
HS turns out to be decidable – it is EXPSPACE-hard, while the only known upper bound
is non-elementary. The exact complexity of almost all the meaningful syntactic fragments of
HS has been recently determined in a series of papers (e.g., [4, 6, 18, 19, 20, 21]).

The approach followed in [14, 15] is more expressive than the one in [18] since it relies on
the extension of HS with knowledge modalities typical of the epistemic logics, which allow
one to relate distinct paths of a Kripke structure. Additionally, the semantic assumptions
differ from those of [18]: the logic is interpreted over the unwinding of the Kripke structure
(computation-tree-based approach), and the interval labeling takes into account only the
endpoints of the interval itself. A more expressive definition of interval labeling, obtained by
associating each proposition with a regular expression over the set of states of the Kripke
structure, was recently proposed in [16]. The decidability status of MC for full epistemic HS
is currently unknown [14, 15].

In this paper, we study the expressiveness of HS, in the context of MC, in comparison with
that of the standard PTLs LTL, CTL, and CTL∗. The investigation is carried on enforcing
the homogeneity assumption. We prove that HS endowed with the state-based semantics
proposed in [18] (hereafter denoted as HSst) is not comparable with LTL, CTL, and CTL∗.
On the one hand, the result supports the intuition that HSst gains some expressiveness by
the ability to branch in the past. On the other hand, HSst does not feature the possibility to
force the verification of a property over an infinite path, thus implying that the formalisms
are not comparable. With the aim of having a more “effective” comparison base, we
consider two semantic variants of HS, besides the state-based semantics HSst, namely, the
computation-tree-based semantics (denoted as HSlp) and the trace-based semantics (HSlin).

The state-based and computation-tree-based approaches rely on a branching-time setting
and differ in the nature of past. In the latter approach, the past is linear: each interval

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 26:3

HSlp

HSlin

HSst

finitary CTL∗

LTL

CTL

CTL∗
≡

≡

<

6=

<

6=

6=
6=

6=

Figure 1 Overview of the expressiveness results.

may have several possible futures, but it has a unique past. Moreover, the past is assumed
to be finite and cumulative (i.e., the history of the current situation increases with time,
and is never forgotten). The trace-based approach relies on a linear-time setting, where the
infinite paths (computations) of the given Kripke structure are the main semantic entities.
Branching is neither allowed in the past nor in the future.

The variant HSlp is a natural candidate for an expressiveness comparison with the
branching time logics CTL and CTL∗. The more interesting and technically involved result is
the characterization of HSlp, which turns out to be expressively equivalent to finitary CTL∗,
i.e., the variant of CTL∗ with quantification over finite paths. As for CTL, a non comparability
result can be stated. Conversely, HSlin is a natural candidate for an expressiveness comparison
with LTL. As a matter of fact, we prove that HSlin and LTL are equivalent (even for a small
fragment of HSlin). We complete the picture with a comparison of the three semantic variants
HSst, HSlp, and HSlin. We prove that, as expected, HSlin is not comparable with either
the branching versions, HSlp and HSst. The interesting result is that, on the other hand,
HSlp is strictly included in HSst: this supports HSst, adopted in [18, 19, 20, 21, 4, 6], as a
reasonable and adequate semantic choice. The complete picture of the expressiveness results
is reported in Figure 1 (the symbols 6=, ≡ and < denote incomparability, equivalence, and
strict expressiveness inclusion, respectively).

The paper is structured as follows. In Section 2, we introduce some preliminary notions.
In Section 3 we prove the expressiveness results. In particular, in Section 3.1 we prove the
equivalence between LTL and HSlin; in Section 3.2 we prove the equivalence between HSlp
and finitary CTL∗; finally, in Section 3.3 we compare the logics HSst, HSlp, and HSlin.

2 Preliminaries

Let (N, <) be the set of natural numbers equipped with the standard linear ordering. For all
i, j ∈ N, with i ≤ j, [i, j] denotes the set of natural numbers h such that i ≤ h ≤ j.

Let Σ be an alphabet and w be a non-empty finite or infinite word over Σ. We denote
by |w| the length of w (we set |w| = ∞ if w is infinite). For all i, j ∈ N, with i ≤ j,
w(i) denotes the i-th letter of w, while w[i, j] denotes the finite subword of w given by
w(i) · · ·w(j). If w is finite and |w| = n + 1, we define fst(w) = w(0) and lst(w) = w(n).
Pref(w) = {w[0, i] | 0 ≤ i ≤ n − 1} and Suff(w) = {w[i, n] | 1 ≤ i ≤ n} are the sets of all
proper prefixes and suffixes of w, respectively.

FSTTCS 2016

26:4 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

s0
p

s1
q

Figure 2 The Kripke structure K .

2.1 Kripke structures and interval structures
I Definition 1 (Kripke structure). A Kripke structure over a finite set AP of proposition
letters is a tuple K = (AP , S, δ, µ, s0), where S is a set of states, δ ⊆ S × S is a left-total
transition relation, µ : S 7→ 2AP is a total labelling function assigning to each state s the set
of propositions that hold over it, and s0 ∈ S is the initial state. For (s, s′) ∈ δ, we say that s′
is a successor of s, and s is a predecessor of s′. Finally, we say that K is finite if S is finite.

Figure 2 depicts the finite Kripke structure K = ({p, q}, {s0, s1}, δ, µ, s0), where δ =
{(si, sj) | i, j = 0, 1}, µ(s0) = {p}, and µ(s1) = {q}. The initial state s0 is marked by a
double circle.

Let K = (AP , S, δ, µ, s0) be a Kripke structure. An infinite path π of K is an infinite
word over S such that (π(i), π(i + 1)) ∈ δ for all i ≥ 0. A track (or finite path) of K is a
non-empty prefix of some infinite path of K . A finite or infinite path is initial if it starts
from the initial state of K . Let TrkK be the (infinite) set of all tracks of K and Trk0

K be the
set of initial tracks of K . For a track ρ, states(ρ) denotes the set of states occurring in ρ, i.e.,
states(ρ) = {ρ(0), · · · , ρ(n)}, where |ρ| = n+ 1.

I Definition 2 (D-tree structure). For a given set D of directions, a D-tree structure (over
AP) is a Kripke structure K = (AP , S, δ, µ, s0) such that s0 ∈ D, S is a prefix closed subset of
D+, and δ is the set of pairs (s, s′) ∈ S × S such that there exists d ∈ D for which s′ = s · d
(note that δ is completely specified by S). The states of a D-tree structure are called nodes.

A Kripke structure K = (AP , S, δ, µ, s0) induces an S-tree structure, called the computation
tree of K , denoted by C(K), which is obtained by unwinding K from the initial state. Formally,
C(K) = (AP ,Trk0

K , δ
′, µ′, s0), where the set of nodes is the set of initial tracks of K and for

all ρ, ρ′ ∈ Trk0
K , µ′(ρ) = µ(lst(ρ)) and (ρ, ρ′) ∈ δ′ iff ρ′ = ρ · s for some s ∈ S.

Given a strict partial ordering S = (X,<), an interval in S is an ordered pair [x, y] such
that x, y ∈ X and x ≤ y. The interval [x, y] denotes the subset of X given by the set of
points z ∈ X such that x ≤ z ≤ y. We denote by I(S) the set of intervals in S.

I Definition 3 (Interval structure). An interval structure IS over AP is a pair IS = (S, σ)
such that S = (X,<) is a strict partial ordering and σ : I(S) 7→ 2AP is a labeling function
assigning a set of proposition letters to each interval over S.

2.2 Standard temporal logics
In this subsection we recall the standard propositional temporal logics CTL∗, CTL, and
LTL [8, 23]. For a set of proposition letters AP , the formulas ϕ of CTL∗ are defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ∃ϕ,

where p ∈ AP , X and U are the “next” and “until” temporal modalities, and ∃ is the
existential path quantifier. We also use standard shorthands: ∀ϕ := ¬∃¬ϕ (“universal path
quantifier”), Fϕ := >Uϕ (“eventually”) and its dual Gϕ := ¬F¬ϕ (“always”). The logic CTL
is the fragment of CTL∗ where each temporal modality is immediately preceded by a path
quantifier, while LTL corresponds to the fragment of the formulas devoid of path quantifiers.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 26:5

Table 1 Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

Given a Kripke structure K = (AP , S, δ, µ, s0), an infinite path π of K , and a position
i ≥ 0 along π, the satisfaction relation K , π, i |= ϕ for CTL∗, written simply π, i |= ϕ when
K is clear from the context, is defined as follows (Boolean connectives are treated as usual):

π, i |= p ⇔ p ∈ µ(π(i)),
π, i |= Xϕ ⇔ π, i+ 1 |= ϕ,

π, i |= ϕ1Uϕ2 ⇔ for some j ≥ i : π, j |= ϕ2 and π, k |= ϕ1 for all i ≤ k < j,

π, i |= ∃ϕ ⇔ for some infinite path π′ starting from π(i), π′, 0 |= ϕ.

We say that K is a model of ϕ, written K |= ϕ, if for all initial infinite paths π of K , it
holds that K , π, 0 |= ϕ. We also consider a variant of CTL∗, called finitary CTL∗, where the
path quantifier ∃ of CTL∗ is replaced with the finitary path quantifier ∃f . In this setting,
path quantification ranges over the tracks (finite paths) starting from the current state. The
satisfaction relation ρ, i |= ϕ, where ρ is a track and i is a position along ρ, is similar to that
given for CTL∗ with the only difference of finiteness of paths, and the fact that for a formula
Xϕ, ρ, i |= Xϕ iff i+ 1 < |ρ| and ρ, i+ 1 |= ϕ. A Kripke structure K is a model of a finitary
CTL∗ formula if for each initial track ρ of K , it holds that K , ρ, 0 |= ϕ.

2.3 The interval temporal logic HS
An interval algebra was proposed by Allen in [1] to reason about intervals and their relative
order, while a systematic logical study of interval representation and reasoning was done
a few years later by Halpern and Shoham, who introduced the interval temporal logic HS
featuring one modality for each Allen relation, but equality [10]. Table 1 depicts 6 of the 13
Allen’s relations, together with the corresponding HS (existential) modalities. The other 7
relations are the 6 inverse relations (given a binary relation R , the inverse relation R is such
that bR a if and only if aR b) and equality.

For a set of proposition letters AP , the formulas ψ of HS are defined as follows:

ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ,

where p ∈ AP and X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}. For any modality 〈X〉, the
dual universal modality [X]ψ is defined as ¬〈X〉¬ψ. For any subset of Allen’s relations
{X1, . . . , Xn}, let X1 · · ·Xn be the HS fragment featuring modalities for X1, . . . , Xn only.

We assume the non-strict semantics of HS, which admits intervals consisting of a single
point.1 Under such an assumption, all HS modalities can be expressed in terms of modalities

1 All the results we prove in the paper hold for the strict semantics as well.

FSTTCS 2016

26:6 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

〈B〉, 〈E〉, 〈B〉, and 〈E〉 [27], e.g., modality 〈A〉 can be expressed in terms of 〈E〉 and 〈B〉 as
〈A〉ϕ := ([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)) ∨ 〈E〉([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)). We also use the derived operator
〈G〉 of HS (and its dual [G]), which allows one to select arbitrary subintervals of the given
interval and is defined as: 〈G〉ψ := ψ ∨ 〈B〉ψ ∨ 〈E〉ψ ∨ 〈B〉 〈E〉ψ.

HS can be viewed as a multi-modal logic with 〈B〉, 〈E〉, 〈B〉, and 〈E〉 as primitive modalities
and its semantics can be defined over a multi-modal Kripke structure, called abstract interval
model, where intervals are treated as atomic objects and Allen’s relations as binary relations
over intervals.

I Definition 4 (Abstract interval model [18]). An abstract interval model over AP is a tuple
A = (AP , I, BI, EI, σ), where I is a set of worlds, BI and EI are two binary relations over I,
and σ : I 7→ 2AP is a labeling function assigning a set of proposition letters to each world.

Let A = (AP , I, BI, EI, σ) be an abstract interval model. In the interval setting, I is
interpreted as a set of intervals, and BI and EI as the Allen’s relations B (started-by) and E
(finished-by), respectively; σ assigns to each interval in I the set of proposition letters that
hold over it. Given an interval I ∈ I, the truth of an HS formula over I is inductively defined
as follows (Boolean connectives are treated as usual):

A, I |= p iff p ∈ σ(I), for any p ∈ AP ;
A, I |= 〈X〉ψ, for X ∈ {B,E}, iff there exists J ∈ I such that I XI J and A, J |= ψ;
A, I |= 〈X〉ψ, for X ∈ {B,E}, iff there exists J ∈ I such that J XI I and A, J |= ψ.

I Definition 5 (Abstract interval model induced by an interval structure). An interval structure
IS = (S, σ), with S = (X,<), induces the abstract interval model AIS = (AP , I(S), BI(S), EI(S),

σ), where [x, y]BI(S) [v, z] iff x = v and z < y, and [x, y]EI(S) [v, z] iff y = z and x < v.
For an interval I and an HS formula ψ, we write IS , I |= ψ to mean that AIS , I |= ψ.

2.4 Three variants of HS semantics for model checking
In this section, we define the three variants of HS semantics HSst (state-based semantics), HSlp
(computation-tree-based semantics), and HSlin (trace-based semantics) for model checking
HS against Kripke structures. For each such variant S , the related (finite) model checking
problem is deciding whether a finite Kripke structure is a model of an HS formula under S .

Let us start with the state-based semantics [18], where an abstract interval model is
naturally associated with a given Kripke structure K by considering the set of intervals as
the set TrkK of tracks of K .

I Definition 6 (Abstract interval model induced by a Kripke structure). The abstract interval
model induced by a Kripke structure K = (AP , S, δ, µ, s0) is AK = (AP , I, BI, EI, σ), where
I = TrkK , BI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Pref(ρ)}, EI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Suff(ρ)}, and
σ : I 7→ 2AP is such that σ(ρ) =

⋂
s∈states(ρ) µ(s), for all ρ ∈ I.

According to the definition of σ, p ∈ AP holds over ρ = v1 · · · vn if and only if it holds over
all the states v1, . . . , vn of ρ. This conforms to the homogeneity principle, according to which
a proposition letter holds over an interval if and only if it holds over all its subintervals [25].

I Definition 7 (State-based semantics). Let K be a Kripke structure and ψ be an HS formula.
A track ρ ∈ TrkK satisfies ψ under the state-based semantics, denoted as K , ρ |=st ψ, if it
holds that AK , ρ |= ψ. Moreover, K is a model of ψ under the state-based semantics, denoted
as K |=st ψ, if for all initial tracks ρ ∈ Trk0

K , it holds that K , ρ |=st ψ.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 26:7

We now introduce the computation-tree-based semantics, where we simply consider the
abstract interval model induced by the computation tree of the Kripke structure. Notice that
since each state in a computation tree has a unique predecessor (with the exception of the
initial state), this HS semantic variant induces a linear reference in the past.

I Definition 8 (Computation-tree-based semantics). A Kripke structure K is a model of an
HS formula ψ under the computation-tree-based semantics, written K |=lp ψ, if C(K) |=st ψ.

Finally, we propose the trace-based semantics, which exploits the interval structures
induced by the infinite paths of the Kripke structure.

I Definition 9 (Interval structure induced by an infinite path). For a Kripke structure K =
(AP , S, δ, µ, s0) and an infinite path π = π(0)π(1) · · · of K , the interval structure induced by
π is IS K ,π = ((N, <), σ), where for each interval [i, j], σ([i, j]) =

⋂j
h=i µ(π(h)).

I Definition 10 (Trace-based semantics). A Kripke structure K is a model of an HS formula
ψ under the trace-based semantics, denoted as K |=lin ψ, iff for each initial infinite path π
and for each initial interval [0, i], it holds that IS K ,π, [0, i] |= ψ.

3 Expressiveness

In this section, we compare the expressive power of the logics HSst, HSlp, HSlin, LTL, CTL,
and CTL∗ when interpreted over finite Kripke structures. Given two logics L1 and L2, and
two formulas ϕ1 ∈ L1 and ϕ2 ∈ L2, we say that ϕ1 in L1 is equivalent to ϕ2 in L2 if, for
every finite Kripke structure K , K is a model of ϕ1 in L1 if and only if K is a model of ϕ2
in L2. When comparing the expressive power of two logics L1 and L2, we say that L2 is
subsumed by L1, denoted as L1 ≥ L2, if for each formula ϕ2 ∈ L2, there exists a formula
ϕ1 ∈ L1 such that ϕ1 in L1 is equivalent to ϕ2 in L2. Moreover, L1 is as expressive as L2 (or,
L1 and L2 have the same expressiveness), written L1 ≡ L2, if both L1 ≥ L2 and L2 ≥ L1.
We say that L1 is more expressive than L2 if L1 ≥ L2 and L2 6≥ L1. Finally, L1 and L2 are
expressively incomparable if both L1 6≥ L2 and L2 6≥ L1.

3.1 Equivalence between LTL and HSlin

In this section we show that HSlin is as expressive as LTL even for small syntactical fragments
of HSlin. For this purpose, we exploit the well-known equivalence between LTL and First Order
Logic (FO) over infinite words. Recall that given a countable set {x, y, z, . . .} of (position)
variables, FO formulas ϕ over a set of proposition symbols AP = {p, . . .} are defined as:

ϕ := > | p ∈ x | x ≤ y | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ .

We interpret FO formulas ϕ over infinite paths π of Kripke structures K = (AP , S, δ, µ, s0).
Given a variable valuation g, assigning to each variable a position i ≥ 0, the satisfaction
relation (π, g) |= ϕ corresponds to the standard satisfaction relation (µ(π), g) |= ϕ, where
µ(π) is the infinite word over 2AP given by µ(π(0))µ(π(1)) · · · (for the details, see [5]). We
write π |= ϕ to mean that (π, g0) |= ϕ, where g0(x) = 0 for each variable x. An FO sentence
is a formula with no free variables. The following is a well-known result [11].

I Proposition 11. Given a FO sentence ϕ over AP , one can construct an LTL formula ψ
such that for all Kripke structures K over AP and infinite paths π, it holds that π |= ϕ iff
π, 0 |= ψ.

FSTTCS 2016

26:8 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Given a HSlin formula ψ, we construct a FO sentence ψFO such that, for all Kripke
structures K , K |=lin ψ iff for each initial infinite path π of K , π |= ψFO. The formula ψFO is
given by ∃x((∀z.z ≥ x) ∧ ∀y.h(ψ, x, y)), where h(ψ, x, y) is a FO formula having x and y as
free variables (intuitively, representing the endpoints of the current interval) and ensuring
that for each infinite path π and interval [i, j], IS K ,π, [i, j] |= ψ iff (π, g) |= h(ψ, x, y) for any
valuation g such that g(x) = i and g(y) = j. The construction of h(ψ, x, y) is straightforward
(for the details, see the report [5]). Thus, by Proposition 11, we obtain the following result.

I Theorem 12. LTL ≥ HSlin.

Conversely, we show that LTL can be translated in linear-time into HSlin (actually, the
fragment AB, featuring only modalities for A and B, is expressive enough for the purpose).
In the following we will make use of the B formula lengthn, with n ≥ 1, characterizing the
intervals of length n, which is defined as follows: lengthn := (〈B〉 . . . 〈B〉︸ ︷︷ ︸

n−1

>) ∧ ([B] . . . [B]︸ ︷︷ ︸
n

⊥).

I Theorem 13. Given an LTL formula ϕ, one can construct in linear-time an AB formula
ψ such that ϕ in LTL is equivalent to ψ in ABlin.

Proof. Let f : LTL 7→ AB be the mapping homomorphic w. r. to the Boolean connectives,
defined as follows for each proposition p and for the temporal modalities X and U:

f(p) = p, f(Xψ) = 〈A〉(length2 ∧ 〈A〉(length1 ∧ f(ψ))),

f(ψ1Uψ2) = 〈A〉
(
〈A〉(length1 ∧ f(ψ2)) ∧ [B](〈A〉(length1 ∧ f(ψ1))

)
.

Given a Kripke structure K , an infinite path π, a position i ≥ 0, and an LTL formula
ψ, by a straightforward induction on the structure of ψ we can show that π, i |= ψ iff
IS K ,π, [i, i] |= f(ψ). Hence K |= ψ iff K |=lin length1 → f(ψ). J

I Corollary 14. HSlin and LTL have the same expressiveness.

3.2 A characterization of HSlp

In this section we show that HSlp is as expressive as finitary CTL∗. Actually, the result can be
proved to hold already for the syntactical fragment ABE (which does not feature transposed
modalities). In addition, we show that HSlp is subsumed by CTL∗.

We first show that finitary CTL∗ is subsumed by HSlp. The result is proved by exploiting
a preliminary property stating that, when interpreted over finite words, the BE fragment
of HS and LTL define the same class of finitary languages. For an LTL formula ϕ with
proposition symbols over an alphabet Σ (in our case Σ is 2AP), Lact(ϕ) denotes the set of
non-empty finite words over Σ satisfying ϕ under the standard action-based semantics of
LTL, interpreted over finite words (see [26]). A similar notion can be given for BE formulas
ϕ with propositional symbols in Σ (considered under the homogeneity principle). Then ϕ
denotes a language, written Lact(ϕ), of non-empty finite words over Σ, inductively defined as:

Lact(a) = a+ for each a ∈ Σ;
Lact(¬ϕ) = Σ+ \ Lact(ϕ);
Lact(ϕ1 ∧ ϕ2) = Lact(ϕ1) ∩ Lact(ϕ2);
Lact(〈B〉ϕ) = {w ∈ Σ+ | Pref(w) ∩ Lact(ϕ) 6= ∅};
Lact(〈E〉ϕ) = {w ∈ Σ+ | Suff(w) ∩ Lact(ϕ) 6= ∅}.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 26:9

We prove that under the action-based semantics, BE formulas and LTL formulas define
the same class of finitary languages. By proceeding as in Section 3.1, one can easily show
that, over finite words, the class of languages defined by the fragment BE is subsumed by that
defined by LTL. To prove the converse direction we exploit an algebraic condition introduced
in [28], here called LTL-closure, which gives, for a class of finitary languages, a sufficient
condition to guarantee the inclusion of the class of LTL-definable languages.

I Definition 15 (LTL-closure). A class C of languages of finite words over finite alphabets
is LTL-closed iff the following conditions are satisfied, where Σ and ∆ are finite alphabets,
b ∈ Σ and Γ = Σ \ {b}:
1. C is closed under language complementation and language intersection.
2. If L ∈ C with L ⊆ Γ+, then Σ∗bL, Σ∗b(L + ε), LbΣ∗, (L + ε)bΣ∗ are in C.
3. Let U0 = Γ∗b, h0 : U0 → ∆ and h : U+

0 → ∆+ be defined by h(u0u1 . . . un) =
h0(u0) . . . h0(un). Assume that for each d ∈ ∆, the language Ld = {u ∈ Γ+ | h0(ub) = d}
is in C. Then for each language L ∈ C s.t. L ⊆ ∆+, the language Γ∗bh−1(L)Γ∗ is in C.

I Theorem 16 ([28]). Any LTL-closed class C of finitary languages includes the class of
LTL-definable finitary languages.

I Theorem 17. Let ϕ be an LTL formula over a finite alphabet Σ. Then there exists a BE
formula ϕHS over Σ such that Lact(ϕHS) = Lact(ϕ).

Proof. It suffices to prove that the class of finitary languages definable by BE formulas is
LTL-closed, and to apply Theorem 16 (the proof of LTL-closure is reported in [5]). J

By exploiting Theorem 17, we establish the following result.

I Theorem 18. Let ϕ be a finitary CTL∗ formula over AP . Then there is an ABE formula ϕHS
over AP s.t. for all Kripke structures K over AP and tracks ρ, K , ρ, 0 |= ϕ iff K , ρ |=st ϕHS.

Proof. The proof is by induction on the nesting depth of modality ∃f in ϕ. The base case
(ϕ is a finitary LTL formula over AP) is similar to the inductive step, thus we can focus
our attention on the latter. Let H be the non-empty set of subformulas of ϕ of the form
∃fψ which do not occur in the scope of the path quantifier ∃f . Then ϕ can be seen as an
LTL formula over the set of atomic propositions AP = AP ∪H. Let Σ = 2AP and ϕ be the
LTL formula over Σ obtained from ϕ by replacing each occurrence of p ∈ AP in ϕ with the
formula

∨
P∈Σ : p∈P P , according to the LTL action-based semantics.

Given a Kripke structure K over AP with labeling µ and a track ρ of K , we denote by ρH
the finite word over 2AP of length |ρ| defined as ρH(i) = µ(ρ(i))∪ {∃fψ ∈ H | K , ρ, i |= ∃fψ},
for all i ∈ [0, |ρ| − 1]. One can easily show by structural induction on ϕ that:
Claim 1: K , ρ, 0 |= ϕ iff ρH ∈ Lact(ϕ).

By Theorem 17, there exists a BE formula ϕHS over Σ such that Lact(ϕ) = Lact(ϕHS).
Moreover, by the induction hypothesis, for each formula ∃fψ ∈ H, there exists an ABE formula
ψHS such that for all Kripke structures K and tracks ρ of K , K , ρ, 0 |= ψ iff K , ρ |=st ψHS.
Since ρ is arbitrary, K , ρ, i |= ∃fψ iff K , ρ[i, i], 0 |= ∃fψ iff K , ρ[i, i] |=st 〈A〉ψHS, for each
i ≥ 0. Let ϕHS be the ABE formula over AP obtained from the BE formula ϕHS by replacing
each occurrence of P ∈ Σ in ϕHS with the formula

[G]
(
length1 →

∧
∃fψ∈H∩P

〈A〉ψHS ∧
∧

∃fψ∈H\P

¬ 〈A〉ψHS ∧
∧

p∈AP∩P
p ∧

∧
p∈AP\P

¬p
)
.

Since for all i ≥ 0 and ∃fψ ∈ H, K , ρ, i |= ∃fψ iff K , ρ[i, i] |=st 〈A〉ψHS, by a straightforward
induction on the structure of ϕHS, for all Kripke structures K and tracks ρ of K we have

FSTTCS 2016

26:10 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

K , ρ |=st ϕHS iff ρH ∈ Lact(ϕHS). Therefore, since Lact(ϕ) = Lact(ϕHS), by Claim 1 K , ρ, 0 |= ϕ

iff K , ρ |=st ϕHS, for arbitrary Kripke structures K and tracks ρ of K . J

Since for the fragment ABE of HS the computation-tree-based semantics coincides with
the state-based semantics, by Theorem 18 we obtain the following corollary.

I Corollary 19. Finitary CTL∗ is subsumed by both HSst and HSlp.

Conversely, we show now that HSlp is subsumed by both CTL∗ and the finitary variant of
CTL∗. For this purpose, we first introduce a hybrid and linear-past extension of CTL∗, called
hybrid CTL∗lp, and its finitary variant, called finitary hybrid CTL∗lp. Hybrid logics (see [3]),
besides standard modalities, make use of explicit variables and quantifiers that bind them.
Variables and binders allow us to easily mark points in a path, which will be considered as
starting and ending points of intervals, thus permitting a natural encoding of HSlp. Actually,
we will show that the restricted form of use of variables and binders exploited in our encoding
does not increase the expressive power of (finitary) CTL∗ (as it happens for an unrestricted
use), thus proving the desired result. We start by defining hybrid CTL∗lp.

For a countable set {x, y, z, . . .} of (position) variables, the set of formulas ϕ of hybrid
CTL∗lp over AP is defined as follows:

ϕ ::= > | p | x | ¬ϕ | ϕ ∨ ϕ | ↓x.ϕ | Xϕ | ϕUϕ | X−ϕ | ϕU−ϕ | ∃ϕ,

where X− (“previous”) and U− (“since”) are the past counterparts of the “next” and “until”
modalities X and U, and ↓x is the downarrow binder operator [3], which binds x to the
current position along the given initial infinite path. We also use the standard shorthands
F−ϕ := >U−ϕ (“eventually in the past”) and its dual G−ϕ := ¬F−¬ϕ (“always in the past”).
As usual, a sentence is a formula with no free variables.

Let K be a Kripke structure and ϕ be a hybrid CTL∗lp formula. For an initial infinite
path π of K , a variable valuation g assigning to each variable x a position along π, and i ≥ 0,
the satisfaction relation π, g, i |= ϕ is defined as follows (we omit the clauses for the Boolean
connectives and for U and X):

π, g, i |= X−ϕ ⇔ i > 0 and π, g, i− 1 |= ϕ,

π, g, i |= ϕ1U−ϕ2 ⇔ for some j ≤ i : π, g, j |= ϕ2 and π, g, k |= ϕ1 for all j < k ≤ i,
π, g, i |= ∃ϕ ⇔ for some initial infinite path π′ s.t. π′[0, i] = π[0, i], π′, g, i |= ϕ,

π, g, i |= x ⇔ g(x) = i,

π, g, i |= ↓x.ϕ ⇔ π, g[x← i], i |= ϕ,

where g[x← i](x) = i and g[x← i](y) = g(y) for y 6= x. A Kripke structure K is a model of
a formula ϕ if for each initial infinite path π, π, g0, 0 |= ϕ, where g0 assigns 0 to each variable.
Note that path quantification is “memoryful”, i.e., it ranges over infinite paths that start
at the root and visit the current node of the computation tree. Clearly, the semantics for
the syntactical fragment CTL∗ coincides with the standard one. If we disallow the use of
variables and binder modalities, we obtain the logic CTL∗lp, a well-known linear-past and
equally expressive extension of CTL∗ [12]. We also consider the finitary variant of hybrid
CTL∗lp, where the path quantifier ∃ is replaced with the finitary path quantifier ∃f . This logic
corresponds to an extension of finitary CTL∗ and its semantics is similar to that of hybrid
CTL∗lp with the exception that path quantification ranges over the finite paths (tracks) that
start at the root and visit the current node of the computation tree.

In the following we will use the fragment of hybrid CTL∗lp consisting of well-formed
formulas, namely, formulas ϕ where: (1) each subformula ∃ψ of ϕ has at most one free

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 26:11

variable; (2) each subformula ∃ψ(x) of ϕ having x as free variable occurs in ϕ in the context
(F−x) ∧ ∃ψ(x). Intuitively, for each state subformula ∃ψ, the unique free variable (if any)
refers to ancestors of the current node in the computation tree. The notion of well-formed
formula of finitary hybrid CTL∗lp is similar: the path quantifier ∃ is replaced by its finitary
version ∃f . The well-formedness constraint ensures that a formula captures only branching
regular requirements. As an example, the formula ∃F↓x.G−(¬X−> → ∀F(x ∧ p)) is not
well-formed and requires that there is a level of the computation tree such that each node
in the level satisfies p. This represents a well-known non-regular context-free branching
requirement (see, e.g., [2]).

We first show that HSlp can be translated into the well-formed fragment of hybrid CTL∗lp
(resp., well-formed fragment of finitary hybrid CTL∗lp). Then we show that this fragment is
subsumed by CTL∗ (resp., finitary CTL∗).

I Proposition 20. Given a HSlp formula ϕ, one can construct in linear-time an equivalent
well-formed sentence of hybrid CTL∗lp (resp., finitary hybrid CTL∗lp).

Proof. We focus on the translation from HSlp into the well-formed fragment of hybrid CTL∗lp.
The translation from HSlp into the well-formed fragment of finitary hybrid CTL∗lp is similar.
Let ϕ be a HSlp formula. The desired hybrid CTL∗lp sentence is given by ↓x.G f(ϕ, x), where
the mapping f(ϕ, x) is homomorphic with respect to the Boolean connectives, and is defined
for the atomic propositions and the other modalities as follows (y is a fresh variable):

f(p, x) = G−((F−x)→ p),
f(〈B〉ψ, x) = X−F−(f(ψ, x) ∧ F−x),
f(〈B〉ψ, x) = (F−x) ∧ ∃(XFf(ψ, x)),
f(〈E〉ψ, x) = ↓y.F−

(
x ∧ XF↓x.F(y ∧ f(ψ, x))

)
,

f(〈E〉ψ, x) = ↓y.F−
(
(XFx) ∧ ↓x.F(y ∧ f(ψ, x))

)
.

Clearly ↓x.G f(ϕ, x) is well-formed. Moreover, let K be a Kripke structure, [h, i] be an
interval of positions, g be a valuation assigning to the variable x the position h, and π be an
initial infinite path. By a straightforward induction on the structure of ϕ, one can show that
K , π, g, i |= f(ϕ, x) if and only if C(K), C(π, h, i) |=st ϕ, where C(π, h, i) denotes the track of
the computation tree C(K) starting from π[0, h] and leading to π[0, i]. Hence K is a model
of ↓x.G f(ϕ, x) if for each initial track ρ of C(K) we have C(K), ρ |=st ϕ. J

Let LTLp be the past extension of LTL, obtained by adding the past modalities X− and
U−. By exploiting the well-formedness requirement and the well-known separation theorem
for LTLp over finite and infinite words [9] (i.e., any LTLp formula can be effectively converted
into an equivalent Boolean combination of LTL formulas and pure past LTLp formulas), and
proceeding by induction on the nesting depth of path quantifiers, we establish the following
result (the proof can be found in [5]).

I Proposition 21. The set of well-formed sentences of hybrid CTL∗lp (resp., finitary hybrid
CTL∗lp) has the same expressiveness as CTL∗ (resp., finitary CTL∗).

By Corollary 19, and Propositions 20 and 21, we obtain the main result of Section 3.2.

I Theorem 22. CTL∗ ≥ HSlp. Moreover, HSlp is as expressive as finitary CTL∗.

3.3 Expressiveness comparison of HSlin, HSst and HSlp

We first show that HSst is not subsumed by HSlp. As a matter of fact we show that
HSst is sensitive to unwinding, allowing us to discriminate finite Kripke structures having

FSTTCS 2016

26:12 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

K1: p K2: p p

Figure 3 The Kripke structures K1 and K2.

Kn:
s0 s1 s2n t

........ p

Figure 4 The Kripke structure Kn with n ≥ 1.

the same computation tree (whereas they are indistinguishable by HSlp). In particular,
let us consider the two finite Kripke structures K1 and K2 of Figure 3. Since K1 and
K2 have the same computation tree, no HS formula ϕ under the computation-tree-based
semantics can distinguish K1 and K2, i.e., K1 |=lp ϕ iff K2 |=lp ϕ. On the other hand, the
requirement “each state reachable from the initial one where p holds has a predecessor where
p holds as well” can be expressed, under the state-based semantics, by the HS formula
ψ := 〈E〉(p ∧ length1) → 〈E〉(length1 ∧ 〈A〉(p ∧ ¬length1)). Clearly K1 |=st ψ but K2 6|=st ψ.
Hence we obtain the following result.

I Proposition 23. HSlp 6≥ HSst.

Since HSlp and finitary CTL∗ have the same expressiveness (Theorem 22) and finitary
CTL∗ is subsumed by HSst (Corollary 19), by Proposition 23 we obtain the following result.

I Corollary 24. HSst is more expressive than HSlp.

Let us now consider the CTL formula ∀G∃Fp asserting that from each state reachable from
the initial one, it is possible to reach a state where p holds. It is well-known that this formula
is not LTL-expressible. Thus, by Corollary 14, there is no equivalent HS formula under the
trace-based semantics. On the other hand, the requirement ∀G∃Fp can be expressed under
the state-based (resp., computation-tree-based) semantics by the HS formula 〈B〉〈E〉p.

I Proposition 25. HSlin 6≥ HSst and HSlin 6≥ HSlp.

Next we show that HSlin 6≤ HSst and HSlin 6≤ HSlp. To this end we establish the following.

I Proposition 26. The LTL formula F p (equivalent to the CTL formula ∀F p) cannot be
expressed in either HSlp or HSst.

We prove Proposition 26 for the state-based semantics (for the computation-tree-based
semantics the proof is similar). We exhibit two families of Kripke structures (Kn)n≥1 and
(Mn)n≥1 over {p} such that for all n ≥ 1 the LTL formula F p distinguishes Kn and Mn, and
for every HS formula ψ of size at most n, ψ does not distinguish Kn and Mn under the
state-based semantics. Hence the result follows. Fix n ≥ 1. The Kripke structure Kn is
given in Figure 4. The Kripke structure Mn is obtained from Kn by setting as its initial state
s1 instead of s0. Formally, Kn = ({p}, Sn, δn, µn, s0) and Mn = ({p}, Sn, δn, µn, s1), where
Sn = {s0, s1, . . . , s2n, t}, δn = {(s0, s0), (s0, s1), . . . , (s2n−1, s2n), (s2n, t), (t, t)}, µ(si) = ∅ for
all 0 ≤ i ≤ 2n, and µ(t) = {p}. Clearly Kn 6|= Fp and Mn |= Fp.

We say that a HS formula ψ is balanced if, for each subformula 〈B〉 θ (resp., 〈B〉 θ), θ is of
the form θ1 ∧ θ2 with |θ1| = |θ2|. By using conjunctions of >, one can trivially convert a HS
formula ψ into a balanced HS formula which is equivalent to ψ under any of the considered
HS semantic variants. Lemma 27 is proved in [5]: by such a lemma and the fact that, for
each n ≥ 1, Kn 6|= Fp and Mn |= Fp, we get a proof of Proposition 26.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 26:13

I Lemma 27. For all n ≥ 1 and balanced HS formulas ψ s.t. |ψ| ≤ n, Kn |=st ψ iff Mn |=st ψ.

By Propositions 25–26, we obtain the following result.

I Corollary 28. HSlin and HSst (resp., HSlp) are expressively incomparable.

The proved results also allow us to establish the expressiveness relations between HSst,
HSlp and the standard branching temporal logics CTL and CTL∗.

I Corollary 29.
1. HSst and CTL∗ (resp., CTL) are expressively incomparable;
2. HSlp and finitary CTL∗ are less expressive than CTL∗;
3. HSlp and CTL are expressively incomparable.

Proof. (Point 1) By Proposition 26 and the fact that CTL∗ is not sensitive to unwinding.
(Point 2) By Theorem 22, HSlp is subsumed by CTL∗, and HSlp and finitary CTL∗ have the
same expressiveness. Hence, by Proposition 26, the result follows.
(Point 3) By Proposition 26, it suffices to show that there exists a HSlp formula which cannot
be expressed in CTL. Let us consider the CTL∗ formula ϕ := ∃

(
((p1Up2)∨ (q1Uq2))U r

)
over

the set of propositions {p1, p2, q1, q2, r}. It is shown in [8] that ϕ cannot be expressed in
CTL. Clearly if we replace the path quantifier ∃ in ϕ with the finitary path quantifier ∃f , we
obtain an equivalent formula of finitary CTL∗. Thus, since HSlp and finitary CTL∗ have the
same expressiveness (Theorem 22), the result follows. J

4 Conclusions and future work

In this paper, we have studied three semantic variants, namely, HSst, HSlp, and HSlin, of the
interval temporal logic HS, comparing their expressiveness to that of the standard temporal
logics LTL, CTL, finitary CTL∗, and CTL∗. The reported results imply the decidability of
the model checking problem for HSlp and HSlin; the related complexity issues will be studied
in the future work. Moreover, we shall investigate how the expressiveness changes when the
homogeneity assumption is relaxed.

References
1 J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983. doi:10.1145/182.358434.
2 R. Alur, P. Cerný, and S. Zdancewic. Preserving secrecy under refinement. In ICALP,

LNCS 4052, pages 107–118, 2006. doi:10.1007/11787006_10.
3 P. Blackburn and J. Seligman. What are hybrid languages? In AiML, pages 41–62, 1998.
4 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval Temporal Logic

Model Checking: the Border Between Good and Bad HS Fragments. In IJCAR, LNAI
9706, pages 389–405, 2016. doi:10.1007/978-3-319-40229-1_27.

5 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs. point temporal
logic model checking: an expressiveness comparison. Technical report, Univ. of Udine, Italy,
2016. URL: http://www.uniud.it/it/ateneo-uniud/ateneo-uniud-organizzazione/
dipartimenti/dima/ricerca/pubblicazioni/preprints/3.2016.

6 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking the Logic
of Allen’s Relations Meets and Started-by is PNP-Complete. In GandALF, pages 76–90,
2016. doi:10.4204/EPTCS.226.6.

FSTTCS 2016

http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1007/11787006_10
http://dx.doi.org/10.1007/978-3-319-40229-1_27
http://www.uniud.it/it/ateneo-uniud/ateneo-uniud-organizzazione/dipartimenti/dima/ricerca/pubblicazioni/preprints/3.2016
http://www.uniud.it/it/ateneo-uniud/ateneo-uniud-organizzazione/dipartimenti/dima/ricerca/pubblicazioni/preprints/3.2016
http://dx.doi.org/10.4204/EPTCS.226.6

26:14 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

7 D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. The dark side
of interval temporal logic: marking the undecidability border. Annals of Mathematics and
Artificial Intelligence, 71(1-3):41–83, 2014. doi:10.1007/s10472-013-9376-4.

8 E.A. Emerson and J.Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986. doi:10.1145/
4904.4999.

9 D.M. Gabbay. The declarative past and imperative future: Executable temporal logic for
interactive systems. In Temporal Logic in Specification, LNCS 398, pages 409–448, 1987.
doi:10.1007/3-540-51803-7_36.

10 J.Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of
the ACM, 38(4):935–962, 1991. doi:10.1145/115234.115351.

11 H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Ucla, 1968.
12 O. Kupferman, A. Pnueli, and M.Y. Vardi. Once and for all. J. Comput. Syst. Sci.,

78(3):981–996, 2012. doi:10.1016/j.jcss.2011.08.006.
13 K. Lodaya. Sharpening the undecidability of interval temporal logic. In ASIAN, LNCS

1961, pages 290–298, 2000. doi:10.1007/3-540-44464-5_21.
14 A. Lomuscio and J. Michaliszyn. An epistemic Halpern-Shoham logic. In IJCAI, pages

1010–1016, 2013.
15 A. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent systems

against a class of EHS specifications. In ECAI, pages 543–548, 2014. doi:10.3233/
978-1-61499-419-0-543.

16 A. Lomuscio and J. Michaliszyn. Model checking multi-agent systems against epistemic HS
specifications with regular expressions. In KR, pages 298–308, 2016.

17 J. Marcinkowski and J. Michaliszyn. The undecidability of the logic of subintervals. Fun-
damenta Informaticae, 131(2):217–240, 2014. doi:10.3233/FI-2014-1011.

18 A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking inter-
val properties of computations. Acta Informatica, 53(6):587–619, 2016. doi:10.1007/
s00236-015-0250-1.

19 A. Molinari, A. Montanari, and A. Peron. Complexity of ITL model checking: some
well-behaved fragments of the interval logic HS. In TIME, pages 90–100, 2015. doi:
10.1109/TIME.2015.12.

20 A. Molinari, A. Montanari, and A. Peron. A model checking procedure for interval temporal
logics based on track representatives. In CSL, pages 193–210, 2015. doi:10.4230/LIPIcs.
CSL.2015.193.

21 A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking Well-Behaved Fragments
of HS: the (Almost) Final Picture. In KR, pages 473–483, 2016.

22 B. Moszkowski. Reasoning About Digital Circuits. PhD thesis, Stanford University, CA,
USA, 1983.

23 A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977. doi:10.1109/
SFCS.1977.32.

24 I. Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelligence, 166(1-
2):1–36, 2005. doi:10.1016/j.artint.2005.04.003.

25 P. Roeper. Intervals and tenses. Journal of Philosophical Logic, 9:451–469, 1980.
26 M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for

concurrency, pages 238–266. Springer, 1996. doi:10.1007/3-540-60915-6_6.
27 Y. Venema. Expressiveness and completeness of an interval tense logic. Notre Dame Journal

of Formal Logic, 31(4):529–547, 1990. doi:10.1305/ndjfl/1093635589.
28 T. Wilke. Classifying discrete temporal properties. In STACS, LNCS 1563, pages 32–46,

1999. doi:10.1007/3-540-49116-3_3.

http://dx.doi.org/10.1007/s10472-013-9376-4
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1007/3-540-51803-7_36
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1016/j.jcss.2011.08.006
http://dx.doi.org/10.1007/3-540-44464-5_21
http://dx.doi.org/10.3233/978-1-61499-419-0-543
http://dx.doi.org/10.3233/978-1-61499-419-0-543
http://dx.doi.org/10.3233/FI-2014-1011
http://dx.doi.org/10.1007/s00236-015-0250-1
http://dx.doi.org/10.1007/s00236-015-0250-1
http://dx.doi.org/10.1109/TIME.2015.12
http://dx.doi.org/10.1109/TIME.2015.12
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.193
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.193
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1016/j.artint.2005.04.003
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1305/ndjfl/1093635589
http://dx.doi.org/10.1007/3-540-49116-3_3

	Introduction
	Preliminaries
	Kripke structures and interval structures
	Standard temporal logics
	The interval temporal logic HS
	Three variants of HS semantics for model checking

	Expressiveness
	Equivalence between LTL and HS-lin
	A characterization of HS-lp
	Expressiveness comparison of HS-lin, HS-st and HS-lp

	Conclusions and future work

