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Distributing Tourists Among POIs
with an Adaptive Trip Recommendation System

Sara Migliorini, Damiano Carra, and Alberto Belussi

Abstract—Traveling is part of many people leisure activities and an increasing fraction of the economy comes from the tourism. Given
a destination, the information about the different attractions, or points of interest (POIs), can be found on many sources. Among these
attractions, finding the ones that could be of interest for a specific user, who may have different constraints – such as the available time
or budget – represents a challenging task. Travel recommendation systems deal with this type of problems. Despite the vast literature
on this topic, most of the solution does not take into account the impact of the suggestions on the level of crowding of POIs.
This paper considers the trip planning problem focusing on user balancing among the different POIs. To this aim, we consider the
effects of the previous recommendations, as well as estimates based on historical data, while devising a new recommendation. The
problem is formulated as a multi-objective optimization problem, and a recommendation engine has been designed and implemented
for exploring the solution space in near real-time, through a distributed version of the Simulated Annealing approach. We test our
solution using a real dataset of users visiting the POIs of a touristic city, and we show that we are able to provide high quality
recommendations, yet maintaining the attractions not overcrowded.

Index Terms—Trip recommendation, tourist balancing, simulated annealing, MapReduce, SpatialHadoop
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1 INTRODUCTION

C ITY sightseeing is one of the most popular activity for
tourists, especially for short-term trips. Not only well-

know destinations, such as New York or Paris, but many
small cities are selected as popular destinations, for instance,
during the weekend, or as a part of a more complex travel.
Within a city, it is possible to identify a set of attractions, or
Points of Interests (POIs): they are usually collected in differ-
ent sources, such as travel guides and websites. The former
provide general suggestions about which POIs should be
visited based on the available time. The latter, such as
Location Based Social Networks (LBSNs) [1], offer tailored
suggestions based on other travellers’ experiences. In addi-
tion, many cities have tourist offices, which provide general
information about the city and its POIs. In order to promote
the different POIs in a city, and consequently improve the
visibility of some minor POIs, sometimes the tourist offices
offer a “city pass” that bundles together different attractions.
Despite the different sources of infomations, the tourists
need to answer to a fundamental question: given the set
of available POIs, how can we make the most of them given
our current constraints?

The systems that recommend wich POIs should be vis-
ited given a set of constraints – e.g., user personal inter-
ests, available time, or budget [2] – deal with this type of
problem. In practice, they need to solve an optimization
problem [3], such as the Traveling Salesman Problem, which
is NP-hard. Sometimes, due to the multiple constrains,
rather than a single objective function, the recommendation
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systems have to take into account a multi-objective opti-
mization problem, whose complexity is further increased.
Thanks to the efficient heuristics that are able to provide
close-to-optimal solutions to such optimization problems, it
is possible to formulate very complex queries, where the
number of constraints may be very high: for instance, the
user previous experiences may influence the POI choice, or
the POI opening hours may determine its position in the
sequence of POIs to be visited [4]. Despite such complexity,
the aim of the trip recommendation system is to tailor the
suggestions to the specific user.

Limitation of the prior works. There is a vast literature
on trip recommendation systems (see Sect. 2 for a review),
but the proposed solutions have one aspect in common:
they focus their attention on the user needs and viewpoints.
The information about the POIs, such as the the opening
hours, or an estimate of the busy periods, are “static”, i.e.,
they do not change as the time goes by. The fact that the
suggestions have an impact on the status of the POIs is not
considered in the recommendation engine. For instance, if
the recommendation systems take into account, for a given
POI, the average busy hour of the last week, it may try to
divert the user to that POI at different hours. Nevertheless,
this approach may generate over time different busy hours.
This oscillatory dynamics have been observed in routing
algorithms that take into accounts the current state of the
routes [5]. To avoid such dynamics, the system should
estimate the effect of the trip recommendation on the POIs. Such
a system would dynamically balance the users considering
the level of crowding in the POIs.

Proposed approach. In this paper we consider the trip
planning problem that takes into account, besides the user
preferences and the system constraints, the balancing of
users among the different POIs. The recommendation en-
gine needs to consider the prediction of the user presence
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at the POIs. The quality of the prediction determines the
quality of the recommendation: the prediction should in-
clude historical data, as well as the recommendations made
so far by the system itself. There are a number of challenges
that need to be faced to design such a system. First, the
user requests are usually issued by a mobile application,
where the user expects a near real-time response: the solu-
tion space, therefore, should be explored in a limited time-
frame. Another issue regards the necessity to understand
the impact of the estimation error – due to some unpre-
dictable user behavior – on the effectiveness of the balancing
process. Finally, in order to increase the effectiveness of
the recommendations, the constraints used by the system
for comparing possible solution instances should include
spatial properties, like for example the total trip distance
computed on a network with different traveling modes.

Motivating example. Fig. 1 shows an example taken
from a real-world case regarding the city of Verona in
northern Italy. The map reports a set of POIs covered by
a “city pass”, called VeronaCard. Each POI is represented by
a circle of variable size which indicates an estimation of the
current number of visiting tourists. The figure displays also
a trip performed by a tourist (the green one), who travels
from p1 = “Arena” to p2 = “Casa di Giulietta”, without
immediately visiting it; in fact, she goes over to reach p3
= “Chiesa di San Fermo Maggiore” and comes back to p2 at
the end. The POI p2 is visited after p3 due to the number
of tourists currently on p2, producing a trip which is not
optimal w.r.t. to the travelled distance. Namely, if the tourist
is able to know in advance the level of crowding in each
POI, she can plan a better trip (e.g., the blue one).

Fig. 1. Example of trip performed by using the “city pass” VeronaCard
and influenced by the number of tourists visiting the POIs. The level of
crowding is represented by the circle size. The green line is the real trip,
and the blue line is a recommended trip that avoids the crowded POI.

Key contributions. The contributions of our work are
the following: (1) we formulate the online optimization
problem, where we consider the current estimation of the
user visiting the different POIs as part of the input of the
recommendation system. (2) We design and implement an
efficient recommendation engine that works in near real-
time. The solution is based on a parallel version of the Sim-
ulated Annealing approach, using the MapReduce program-
ming framework. (3) We evaluate the trip recommendation
system with a dataset collected from the tourist information
office of the city of Verona.

This article extends the previous conference version [6]
in several respects: (i) we introduce additional optimization
criteria that take care also of spatial aspects of the problem,

(ii) we provide a detailed description of the implemented
framework (algorithms used in the offline analysis, the
exploration of the solution space, and the profile updates),
and (iii) we enriched the experimental section considering
the impact on the POIs of the user variable behavior (i.e.,
how closely the users follow the recommendations).

The remainder of this paper is organized as follows. In
Sect. 2 we discuss the related works. Sect. 3 is devoted to
the problem formulation. In Sect. 4 we present the system,
the algorithms for trip recommendation, and their imple-
mentation in MapReduce. Finally, in Sect. 5 we discuss the
experimental results and we conclude the paper in Sect. 6.

2 RELATED WORK

This section reviews the related works focusing on two main
topics: (i) trip or itinerary recommendation, and (ii) compu-
tational aspects of the solution of optimization problems.

Recommendation systems. This topic has received a lot
of attention in recent years, therefore the related literature
is vast. Here, due to space constraints, we highlight some
representative works based on the taxonomy provided in
two recent surveys [1] [7]. The interested reader can find
more details in such surveys and the references therein.

The main problem to consider is the identification of
the POIs and their relevance. The data used to find POIs
can be gathered from different sources, such as user check-
in behaviours [8], [9], crowdsourced digital footprints [10],
[11], GPS data [12], [13], or it can be inferred by using
geographical or social correlations of visited POIs [14], [15],
[16]. Once the system has the list of POIs, it needs to
select the subset of POIs that are relevant to the user. The
recommendation may take into account multiple constraints
[3], [17] or constraints related to time [4], [18]. The POIs
can be used to build semantically enriched trajectories – for
a survey on the topic, please refer to [19]. All the above
systems are focused on the user viewpoint to provide a tai-
lored recommendation. Only some of them include spatial
consideration in building the itinerary, and none of them
adapts the solution considering the number of users that
can be present in the POIs.

The only work that considers how much a POI may be
crowded is [2]. Nevertheless, the proposed system bases its
recommendations on instantaneous information, thus it may
generate new peak hours at the different POIs. Moreover,
the authors do not consider the geographical aspects in
building itineraries. To the best of our knowledge, our work
(along with the conference version [6]) is the first that takes
into consideration the impact of the recommendations on
the current and future level of crowding, so that to balance
the users among the POIs.

Recommendations systems have been proposed also for
guiding tourists within a museum [20], [21]. In [20] the
authors study the user behavior, but they do not propose
a recommendation system that suggests the sequence of
rooms to visit, i.e., they do not build a whole path tailored
to the visitor needs and the level of crowding as we do.
Lykourentzou et al. [21] is tailored to the user experience,
but it does not consider the impact of the recommendation
on the crowding level of each room. For instance, given the
crowd tolerance of a user, the system may divert her/his
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path to avoid a room. But this may increase the crowd in
another room, i.e., there could be oscillatory dynamics. In
our system, instead, we consider the estimation of the level
of crowding, and the system will constantly try to balance
the users in order to control the crowding.

Optimization problem. Approximate solutions of opti-
mization problems have been extensively treated in the liter-
ature. Hoos et al. [22] provide a broad view of the techniques
and the solutions adopted so far. Since we are interested in
a near real-time system, we focus on some works that deal
with the parallel implementation of a specific technique, i.e.,
the Simulated Annealing (SA).

A common idea is to adopt an Asynchronous Approach
[23], [24], where different workers execute independent SA
using different starting solutions, and the best solution
among them is reported. Inspired by such results, the au-
thors in [25], [26] propose different MapReduce implemen-
tations, where the computations is divided among MAP
and REDUCE tasks in different ways. The solution of multi-
objective optimization problems using SA have been consid-
ered in [27], [28], and its parallel implementation in [29]. To
the best of our knowledge, these parallel implementations
have never been adapted to the MapReduce framework. In
our work, we take inspirations from the above mentioned
works to design a MapReduce implementation of the solu-
tion of a multi-objective optimization problem.

3 PROBLEM FORMULATION

In this section we provide the necessary definitions and
formalize the trip planning problem we want to consider.
The notation we used is similar to the one adopted by [13].

Definition 1 (Point of interest). A point of interest (POI) p
represents an attraction reachable by users. It is characterized by
several attributes, such as the admission fee, or the opening hours.
Among these, we consider in particular the spatial coordinates
defining its position on the Earth surface, which we denote with
pc. We also consider the duration of a visit, denoted by pv(t),
which depends on the instant t when the visit starts.

The dependency on t is necessary since pv(t) is influ-
enced by many factors, such as the day of the week, and the
number of people currently visiting the POI p. We will show
in Sect. 4 how we compute (and update) the value of pv(t).
For the purposes of this paper, the set of POIs that can be
considered for building a trip is assumed to be known and
fixed, and is denoted by P .

Definition 2 (Trip). A trip τ is an ordered collection of POIs,
i.e., τ = 〈p1, p2, . . . , pn〉, where n indicates the number of POIs
contained in τ , |τ | = n.

Given the set of POIs, P , the set of all possible trips, de-
noted by T , contains all the possible ordered combinations
of POIs, for any cardinality of τ .

Definition 3 (Path). Given any two spatial coordinates ci and
cj , and a travel mode m (e.g, walking, public transportation), a
path π(ci, cj ,m) is a continuous portion of a transport network
that connects the points whose location is defined by ci and cj .
The path is characterized by the travel distance, πtd(ci, cj ,m),
and by the travel time, πtt(ci, cj ,m).

In order to maintain the notation simple, we may not
indicate the dependency of πtd (πtt) on the travel mode,
which is specified by the user when she/he submits the
query to the system. In general, the travel time and the
travel distance are not necessarily correlated, since the same
path can be done with different travel modes that result in
different travel time.

Notice that, several alternative paths may be defined
between two POIs using the same transportation network
and travel mode m. In particular, a path can include a
kind of streets, called scenic routes, that are attractive for the
tourist even if they are not included in the shortest path
between POIs. As suggested in [30], in fact, a person is
willing to trade shortest paths with pleasant ones, especially
if the difference in terms of distance is limited.

Definition 4 (Scenic route). Given a transport network, a scenic
route is a linear portion of it that represents a tourist attraction.
Given a path π(ci, cj) we denote as πσ(ci, cj) the set of scenic
routes that are spatially contained in the path.

The number of scenic routes contained in a trip τ is
dented as σ(τ). The set of possible scenic routes considered
by the recommendation system is denoted as R.

Definition 5 (Smoothness). Given a trip τ its smoothness is
the directional consistency over the sequence of paths π(ci, ci+1)
between its POIs. The smoothness of a trip τ is given by the mean
(smµ(τ)) and the standard deviation (smsd(τ)) of the angular
attributes of τ . Given a set of paths Π = {π(ci, ci+1)}|τ |−1i=1

for a trip τ , the vector Θ = (θi) of angular attributes contains
the smallest angle between each pair of paths π(ci, ci+1) and
π(ci+1, ci+2):

θi = min(∠(π(ci, ci+1), π(ci+1, ci+2)), (1)
360◦ − ∠(π(ci, ci+1), π(ci+1, ci+2)))

Notice that, given with si and sj collinear, ∠(si, sj) is equal to
180◦.

A large mean and a small standard deviation of the
angular attributes of τ , denote a smooth trip, conversely
a small mean and a large standard deviation denotes a very
jagged trip [31]. The smoothness can be considered as an
indication of how pleasant is a path: rather than going back
and forth using the same portion of a path, it is interesting
to explore alternative paths that touch different roads.

Definition 6 (Recommendation query). Users looking for a
recommendation submit a query Q to the system by specifying
the following constraints:

• the initial coordinates c0 where the trip begins (user
position);

• the time at which the trip will start t0;
• the desired trip duration as an interval (dmin, dmax);
• the mandatory maximum trip duration TDmax;
• the travel mode m.

In order to reply to such a query, the system needs to
compute a set of values that drives the trip selection. We
start considering the main constraint, i.e., the total time of
the duration of the trip should be less than TDmax. To this
aim, we introduce a fictional POI p0, which corresponds to
the user initial position, and we set pc0 = c0 and pv0(t0) = 0.
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We denote with ti the time of arrival at pi, the i-th POI of the
trip, which can be computed considering the time ti−1, the
visit time of the previous POI and the travel time between
the two POIs, i.e.,

ti = ti−1 + pvi−1(ti−1) + πtt(p
c
i−1, p

c
i ), i ≥ 1. (2)

Note that t1 = t0 + pv0(t0) + πtt(p
c
0, p

c
1) = t0 + πtt(c0, p

c
1),

which represents the starting time of the trip plus the travel
time between the user position and the first POI. We can
now define the total trip time λτ for a trip τ as:

λτ (c0, t0) =
n∑
i=1

(
πtt(p

c
i−1, p

c
i ) + pvi (ti)

)
, (3)

where n = |τ |. When exploring the solution space, the
system will consider the trips for which λτ (c0, t0) < TDmax.
The exploration is guided by the values of the objective
function that can be defined starting from a set of possi-
ble optimization criteria. We focus mainly on six objective
functions that have to be minimized (adding more objective
functions is cumbersome). Note that we do not consider
here additional information, such as specific topics of in-
terests a user expresses, or previously visited POI to be
excluded. These information, in fact, has an impact solely
on the set of POIs P to be considered in our optimization,
i.e., some POIs will not be included; the overall process
described in this paper remains unchanged.

Definition 7 (Objective functions). Given a trip τ , the objective
functions fn, fd, ftt, ftd, fsr and fsm denote the number of
locations not visited during the trip, the estimated trip duration,
the estimated trip travel time, the total distance travelled during
the trip, the number of scenic routes in the trip and the smoothness
of the trip, respectively. They are computed as:

fn = |P| − |τ |

fd =


wa · (dmin − λτ ) if λτ < dmin
wb · (λτ − dmax) if λτ > dmax
dmax − λτ otherwise

ftt =

|τ |∑
i=1

πtt(p
c
i−1, p

c
i )

ftd =

|τ |∑
i=1

πtd(p
c
i−1, p

c
i )

fsr = (|τ | − 1)− σ(τ)

fsm = 1− smsd(τ)/smµ(τ)

(4)

When defining fn, we use the number of locations not
visited (instead of the ones visited), so that all objective
functions need to be minimized. The definition of fd uses
the weights wa and wb to discourage trips that have an
estimated duration not included in the desired interval.
Such weights can be chosen in order to consider more or less
bad a trip with a duration less than the minimum desired
one, or a trip with a duration greater than the maximum
desired one, respectively. Functions ftt and ftd represent
the sum of the travel time and travel distance of the paths
that compose the trip. As stated when we have presented
Definition 3, the travel time and distance depends on the
travel mode (walking, public transportation, etc.). Function
fsr counts the number of paths that do not contain a scenic

routes (notice that the number of paths in a trip τ is equal
to |τ | − 1).

We are now ready to define the trip planning problem,
which can be cast as an optimization problem:

Minimize
τ

〈fn, fd, ftt, ftd, fsr, fsm〉,

subject to λτ (c0, t0) < TDmax

(5)

Note that the global objective function we would like to
minimize is a composition of objective functions, and it can
be defined as f̄ : T → R6. We are therefore in the context
of multi-objective optimization, in which it is not possible
to define a total order. We need to introduce a dominance
relation to partially order the set of possible solutions. A
trip τi dominates a trip τj , denoted τi ≺ τj , if at least
one of the composing objective functions is smaller for τi
than for τj , while the other are equivalent. The results of
the optimization problem will be the set of mutually non-
dominating trips, i.e.,

res(Q) = {τ ∈ T |6 ∃τ0 ∈ T such that τ0 ≺ τ}
The equivalent, mutually non-dominating solutions will be
presented to the user, who will choose the one she prefers.

Considering the cardinality of the set containing all the
possible trips, T , the solution space to explore in order to
provide a recommendation is very large. In addition, note
that the total trip time depends on the POI visit duration,
which depends on the time when the visit starts, therefore
the solution space further increases. For this reason, our
search for the solution is based on well known heuristics
for solving the optimization problem.

4 PROPOSED SYSTEM

This section provides a detailed description of the proposed
system starting from an overview of its architecture, then
presenting the algorithms for trip recommendation, and
their implementation in MapReduce.

4.1 Overview
Our proposed recommendation system has two main com-
ponents: an offline analysis of the user presences at different
POIs, and a recommendation engine based on a parallel im-
plementation divided into two main stages. Fig. 2 shows the
overall architecture. User presence at the POIs is collected
in a database. Overnight, the new records are processed by
an offline procedure that extracts the main information and
updates the data structures that are used by the recommen-
dation engine. In particular, a set of common trips are stored
back in the database, while the POI profiles (see Sect. 4.2) are
stored in a distributed cache. The recommendation engine
itself is composed by two steps: given a query, it first extracts
a set of possible solutions from the set of common trips,
then it explores the solution space looking for improved
solutions by taking into account the optimization criteria,
which include the time spent in each POI.

Once the system has issued the recommendation, it
updates the POI profiles to reflect the impact of such rec-
ommendation on the POI crowding. Therefore, when the
next user will submit a query, the recommendation engine
will use the updated values of POI profiles while computing
the optimal solution. In the following sections, we describe
in detail the different system components.
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Fig. 2. System architecture. Tourist check-ins are registered in a
database that are analyzed offline to build the POI profiles, and online
to provide the starting point to the exploration of the solution space.

4.2 Offline analysis of the check-ins

The POIs record the entering and the exiting visitors: in fact,
for security reasons, it is necessary to know how many peo-
ple are inside a POI. Every time a new entrance is recorded,
the POI sends to the database a record r = 〈tci, p, uid, np〉,
where tci is the check-in (entrance) timestamp, p ∈ P is
the POI, uid is the user identifier (if it exists), and np is the
current number of visitors inside the POI p.

There are two types of users: anonymous and registered.
Registered users are people who use, for instance, a bundle
offer, where they receive an identifier and they can access
to a set of POIs with reduced prices (e.g., a city-pass, or an
app for their smartphones). All the other users that cannot
be identified, such as local users who visit a single POI, are
anonymous.

Having registered users is important, since it is possible
to reconstruct the set of POIs that they visited. The offline
analysis of the registered users allows to build a set of popu-
lar trips. We build this set using the algorithms developed for
the Frequent Itemset Mining problem [32], [33], [34]: given a
set of “baskets” (in our case, the trips of the registered users),
we mine the most common “items” (in our case, POIs), i.e.,
the set of n items that appear most frequently in the baskets,
with n = 1, 2, . . .. The analysis can be done easily in parallel
with a Mapreduce approach [33]. Such set of popular trips
are stored back in the main database: they are accessed by
the recommendation engine as a starting point in the search
of the optimal solution when replying to a query.

Another advantage derived from registered users is the
possibility to compute an important metric: the visiting
time. Given a registered user uid, for any two consecutive
visited POIs, pj and pk, the offline analysis can compute the
actual time spent at POI pj by subtracting from the interval
between the timestamps tcij and tcik the travel time from pj
to pk, assuming a given travel mode m (e.g., the most used
m). In such way, the record corresponding to the check in
of uid at pj , formally rj = 〈tcij , pj , uid, n

p
j 〉 can be enriched

by a new element, vtj = tcik − tcij − πtt(pcj , pck,m), where tcik
is taken from the record rk = 〈tcik , pk, uid, n

p
k〉. The enriched

records now contain a direct relation between the number
of people inside a POI and the visiting time for that POI.

In summary, given a POI pi, it is possible to build a set
of characterizing measures, which we call profiles:

• Average Time Occupancy, ATO(d, h): for each day
d of the week, it represents the average number of
visitors inside the POI at time h (h has the granularity
of hours); the average is calculated considering the
same day for a given interval (e.g., last year);

• Average Visiting time, AVT(np): it provides the av-
erage visiting time given a number of visitors inside
the POI; the average is computed considering all the
enriched records, by grouping the records for the
same value of np.

The Average Time Occupancy ATO(d, h) reflects how
much crowded a POI is on average, and it should show
some peaks at specific hours (e.g. mid morning). As for
the Average Visiting Time AVT(np), intuitively it should be
an increasing function, i.e, as the number of user inside a
POI increases, the visiting time should increase, since the
crowding slows the visit.

With the profiles defined above, the duration of a POI
visit at time t, introduced in Def. 1 and denoted by pv(t),
can be computed as follow. Given the time t we can derive
the day d and the hour h, we then compute the average
number of user for that day at that hour, np = ATO(d, h),
and then we derive the average visiting time from AVT(np):

pv(t) = AVT(ATO(d, h)), (6)

with d day and h hour of the request derived from t.
Algorithms in Fig. 3-4 illustrate the implementation of

two MapReduce jobs for computing the ATO and AVT
statistics, respectively. In particular, given a user record rj ,
the Mapper in Fig. 3 builds a tuple by isolating from its
timestamp tcij : the day d of the week and the hour h. The key
of each produced value is represented by these information
together with the POI identifier pj , while the value is the
number of visitors currently in the POI. More than one
reducer can be concurrently executed, each one working on
the values related to one key at time. In particular, for each
key it produces the average number of visitors that occupies
a particular POI in a given time (hour) of a week day.

Fig. 4 describes the construction of AVT for each possible
number of visitors in a POI. In particular, given a user
record, each Mapper produces a pair having as key the user
identifier and as value the tuple composed of the timestamp,
the POI, and the number of users currently in the POI. More

Mapper

1: procedure MAP(rj = 〈tcij , pj , uid, n
p
j 〉)

2: d←− DAYOFWEEK(tcij );h←− HOUR(tcij )
3: return (〈d, h, pj〉, npj )
4: end procedure

Reducer

5: procedure REDUCE(k, 〈x1, x2, . . . 〉)
6: v ←− AVG(x1, x2, . . . )
7: return (k, v)
8: end procedure

Fig. 3. MapReduce job for the initialization of the ATO(d, h) using the
available historical data.



6

Mapper

1: procedure MAP(rj = 〈tcij , pj , uid, n
p
j 〉)

2: return (uid, 〈tcij , pj , n
p
j 〉)

3: end procedure

Reducer

4: procedure SETUP
5: Πtt ←− retrieve from cache
6: Vmap ←− ∅
7: end procedure

8: procedure REDUCE(k, 〈x1, . . . xn〉)
9: 〈x′1, . . . , x′n〉 ←− SORT(x1, . . . , xn) . by timestamp

10: for j ∈ [1, n− 1] do
11: vtj = tcij+1 − tcij − πtt(pcj , pcj+1,m)
12: Vmap.ADD(〈pj , npj 〉, vtj)
13: end for
14: end procedure

15: procedure CLEANUP
16: for (〈pj , npj 〉, 〈v1, v2, . . . 〉) ∈ Vmap do
17: return (〈pj , npj 〉,AVG(v1, v2, . . . ))
18: end for
19: end procedure

Fig. 4. MapReduce job for the initialization of the AVT(np) using the
available historical data.

than one reducer can be executed, each one working on a set
of values regarding the same user. Before the execution of
any reducer, a SETUP procedure is performed which loads in
memory a data structure containing the travel time between
any given pair of POIs using a particular travel model
(denoted as Πtt). In each iteration, a reducer sorts the user
records by timestamp and determines the visiting time for
each POI considering the timestamp between consecutive
visits and the travel time between them. Then the reducer
updates a map which contains for each POI and possible
number of visits, the computed visiting time. Finally, in the
CLEANUP procedure, the computed visiting times related to
the same POI and number of visits is averaged, producing
the AVT.

The above definition may suggest that the system does
not adapt to the estimated level of crowding as more rec-
ommendation are provided by the system, since ATO(d, h)
is computed offline. We will show in Sect. 4.6 that the actual
ATO′(d, h) profile used by the recommendation engine con-
tains a dynamic variable component, which is continuously
updated during the day. The system, therefore, is able to tai-
lor the recommendation to the estimated level of crowding.

4.3 Exploration of the solution space
Looking for an exact solution of the optimization problem
defined in Eq. (5) is computationally expensive, thus we
need to resort to well known heuristics. Our solution builds
trip recommendations using a dominance-based Multi-
Objective Simulated Annealing (MOSA) [28] technique.
Multi-Objective Simulated Annealing. At each step of
the simulated annealing procedure, the current solution is

replaced with a random one with a probability that de-
pends both on the difference between the corresponding
objective values and a global parameter T (temperature),
which is progressively decreased during the process. This
behaviour avoids the stuck on local optima, which is the
main drawback of many heuristics proposed for the solution
of the optimization problem. It has been proven that, using
a simulated annealing approach, the solution converges to
the global optimum if annealed sufficiently slow [35].

The exploration of the solution space is based on the
comparison between the current solution τcurr with a new
potential solution τnew, obtained through a perturbation of
the current solution τcurr. The perturbation could be, for
instance, a POI removal or addition, or a change in the
order of the POI. The comparison is done by considering
the objective function f̄ = 〈fn, fd, ftt, ftd, fsr, fsm〉 defined
in Eq. (4). As stated in Sect. 3, with multi-objective optimiza-
tion, we can define a partial order on the solution based
on the concept of dominance: a trip τnew dominates another
trip τcurr, denoted as τnew ≺ τcurr, if it is better in at least one
objective function and equivalent in the remaining ones.

Trips τcurr and τnew are mutually non-dominating if and
only if neither dominates the other. The set of mutually non-
dominating solutions is called Pareto-set, and it is denoted by
S . A solution not dominated by any other solution is called
Pareto-optimum. From the Pareto-set S we can compute the
Pareto-front F ⊆ R6, which is the set of points in the
objective space, i.e., F = {f̄(τ) | τ ∈ S}

The goal of a MOSA algorithm is to move the current
Pareto-front towards the optimal Pareto-front (the Pareto-
front of the Pareto-optimum set) while encouraging the
diversification of the candidate solutions. In particular, the
probability of making a transition from the current solution
τcurr towards a new solution τnew is specified by an accep-
tance probability function P (τcurr, τnew, T ) which depends
upon the global parameter T (temperature) and the energy
of the two solutions. The energy of a solution τ , denoted by
E(τ,F), measures the portion (number of solutions) of the
current Pareto-front that dominates τ , i.e.,

E(τ,F) = |{v ∈ F | v ≺ f̄(τ)}|. (7)

Note that the energy of a solution τ belonging to the Pareto-
front is 0. Given two solutions τcurr and τnew, where τcurr
is part of the Pareto-set, and therefore f̄(τcurr) is part of
the Pareto-front F , we can compute the energy difference
between τcurr and τnew by considering the extended Pareto-
front F ′ = F ∪ f̄(τnew) as following:

∆E(τnew, τcurr,F ′) =
E(τnew,F ′)− E(τcurr,F ′)

|F ′|
(8)

The acceptance probability P (τcurr, τnew, T ) is then

P (τcurr, τnew, T ) = min

(
1, exp

(
−∆E(τnew, τcurr,F ′)

T

))
(9)

Note that it is possible to escape local optima, since a
candidate solution τnew that is dominated by one or more
members of the current estimated Pareto-front, may still
be accepted with a probability defined in Eq. (9). On the
other hand, candidate solutions that move the estimated
front towards the true front are always accepted, since
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P (τcurr, τnew, T ) = 1. The temperature T is actually a
monotonically decreasing function, that decreases at every
iteration at a very slow rate till it reaches a minimum value.
Basic building block: TRSA Algorithm. The exploration
of the solution space is based on a building block called
TRSA (Trip Recommendation Simulated Annealing) and
illustrated in Fig. 5. Starting from a given Pareto-set Sinit and
a trip τ ∈ Sinit, the algorithm looks for potential new trips
to be added to Sinit in order to advance the Pareto-front F .

TRSA

1: procedure TRSA(Sinit, τ , TDmax, Tmin, Tinit)
2: S ←− Sinit
3: F ←− COMPUTEPARETOFRONT(S)
4: T ←− Tinit
5: while T > Tmin do
6: τ ′ ←− PERTURB(τ, TDmax)
7: F ′ ←− F ∪ f̄(τ ′)
8: ∆E ←− COMPUTEENERGYDIFF(τ ′, τ,F ′)
9: P ←− min(1, exp(−∆E/T ))

10: if rand(0, 1) < P then
11: REMOVEDOMINATED(S, τ ′,F , f̄(τ ′))
12: S ←− S ∪ τ ′
13: F ←− F ∪ f̄(τ ′)
14: τ ←− τ ′
15: end if
16: UPDATETEMPERATURE(T )
17: end while
18: return S
19: end procedure

Fig. 5. TRSA algorithm.

The function COMPUTEPARETOFRONT() uses the input
Pareto-set S for initializing the Pareto-front F . As long as
the temperature T is greater than the minimum value Tmin,
the algorithm explores the solution space by perturbating the
current solution τ . The possible perturbations can regard
any POI except the first one (since it’s the starting point
declared by the user) and they can be:

• adding a POI in a random position;
• removing a POI;
• replacing a POI with another one;
• shifting the position between two POIs.

Given the set of transformations, it is clear that, even if
we start from a set of popular trips, it is possible to explore
freely the solutions space, and any POI not present in the
starting point can be included during such exploration, and
it could be part of the final recommendation.

The function PERTURB(), while looking for a new poten-
tial trip τ ′, evaluates its total trip time, λτ ′ , and considers
only the trips for which λτ ′ < TDmax.

The algorithm then computes the energy of τ ′ (line 8),
and the probability of accepting τ ′ (line 9). If τ ′ is accepted,
we remove from S the trips dominated by τ ′, and from F
the corresponding points (line 11), we add the trip to S and
continue to explore. At each iteration, the temperature is
updated according to a cooling strategy, such as the ones
defined in [36].

Using the TRSA Algorithm. The initial Pareto-set Sinit
contains a set of equivalent solutions, and the aim of TRSA is
to look for better solutions starting from a trip τ ∈ Sinit. This
exploration can be done on a single machine. In parallel,
other machines may try to improve the Pareto-front F start-
ing from other trips τ ′ ∈ Sinit. Therefore TRSA represents
the basic building block of the overall parallel computation.
In Sect. 4.5 we will show how these parallel computation
is done with MapReduce. Before, we need to determine
the main input of the TRSA algorithm: the initial Pareto-
set Sinit. Such input can be determined in parallel using the
MapReduce framework.

4.4 Initial Pareto-set

The initial Pareto-set Sinit is built using the popular trips
computed offline (see Sect. 4.2) and stored in the main
database. The evaluation of these potential solutions in-
cludes the verification of the main constraint, i.e., the dura-
tion of the selected trips cannot be longer than the total trip
duration TDmax. This is done with the help of the profiles
ATO(d, h) and AVT(np) stored in the cache. Moreover, we
need to check that each potential trip is not-dominated by
the trips currently inserted in Sinit.

The evaluation of the potential trips to be added to Sinit
may be expensive. Nevertheless, it can be done easily in
parallel, since each trip is independent from the others (see
algorithm in Fig. 6). Given a query Q that defines the start
point, the travel mode and the mandatory maximal dura-
tion, we extract all the popular trips that have a compatible
duration: the duration interval of the popular trips has been
computed offline considering as a starting point the first
POI of the trip, and a visiting time for each POI equal to
the average visiting time computed over all the visits at that
POI. For each of these popular trips, the MAP method checks
if the trip satisfies Q, it actually computes the total duration
considering the starting point specified in the query and
the time at which the trip will start. If the trip satisfies the
query, it is added to S . The addition is done with the help of
the function UPDATE(S, τ), which ensures that S does not
contain duplicates and that dominated values are removed.
Since multiple MAP calls may be executed by the same JVM,
we return the S in the CLEANUP method called at the end
of the task.

The REDUCE method collects the partial Pareto-sets
computed by the MAP tasks, and merge them using the
UPDATE(S, τ). Since it is necessary to verify that the merged
Pareto-sets do not contain dominated solutions, there could
be only one reducer. Nevertheless, most of the work is
done by the mappers, then the reduce simply compares the
proposed solutions.

4.5 Stochastic parallel search of the optimum

As reported in Sect. 2, different solutions have been pro-
posed in literature for parallelizing the Simulated Annealing
algorithm with MapReduce. The approach we adopt is sim-
ilar to the one presented in [23]: we use different mappers
for executing independent iterations of the TRSA algorithm,
starting from different solutions τ ∈ Sinit, and we then use
the reducer to compute the final result.
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Mapper

1: procedure SETUP
2: Smap ←− ∅
3: end procedure

4: procedure MAP(id, τ )
5: if τ satisfies Q then
6: Smap ←− UPDATE(Smap, τ)
7: end if
8: end procedure

9: procedure CLEANUP
10: return (Q,Smap)
11: end procedure

Reducer

12: procedure REDUCE(Q, 〈S1,S2, . . . 〉)
13: Sinit ←− ∅
14: for Si ∈ 〈S1,S2, . . . 〉 do
15: for τ ∈ Si do
16: Sinit ←− UPDATE(Sinit, τ)
17: end for
18: end for
19: return (Q,Sinit)
20: end procedure

Fig. 6. MapReduce job for the initialization of the Pareto-set Sinit. The
key id read by the mapper is a generic identifier associated to each row
and can be safely ignored.

The initial Pareto-set Sinit computed in Fig. 6 is stored
both in the cache (so that all mappers can access to it)
and in a parallel data structure that makes easy to access
to each τ ∈ Sinit in parallel by the different mappers. The
MapReduce pseudo-code is shown in Fig. 7.

Each mapper performs an execution of the TRSA algo-
rithm, i.e., it explores the solution space starting from a trip
τ . The output of each mapper contains the improved Pareto-
set Si, and these sets are combined together by a single
reducer to eliminate dominated and redundant solutions.
Note that, also for this job, most of the work is done by
the mappers, which explores the solution space through
perturbations.

4.6 Closing the loop: Profile update
The recommendation system takes as input a set of popular
trips and compute the best solutions for a user query Q.
To this aim, since the query contains the maximum trip
duration TDmax, the system uses the profiles stored in the
cache to compute the duration of the potential solutions.
If we use the profiles ATO(d, h) and AVT(np) (defined in
Sect. 4.2) computed offline, we obtain a static system that
redistribute the users according to average values. This
approach may be still important, since not all tourists make
use of the recommendation system, therefore the averages
may be a good indication of the level of crowding.

Nevertheless, with the diffusion of smartphones, we may
expect that an increasing number of tourists will use the
recommendation system, therefore we should be able to

Mapper

1: procedure MAP(id, τ )
2: Smap ←− ∅
3: Sinit ←− retrieve from cache
4: Smap ←− TRSA(Sinit, τ,TDmax, Tmin, Tinit)
5: return (Q,Smap)
6: end procedure

Reducer

7: procedure REDUCE(Q, 〈S1,S2, . . . 〉)
8: S ←− ∅
9: for Si ∈ 〈S1,S2, . . . 〉 do

10: for τ ∈ Si do
11: S ←− UPDATE(S, τ)
12: end for
13: end for
14: return (Q,S)
15: end procedure

Fig. 7. MapReduce job for the execution of the TRSA algorithm. The key
id read by the mapper is a generic identifier associated to the trip and
can be safely ignored.

update the profiles to reflect the actual tourist distribution
over the POIs. In particular, we consider the Average Time
Occupancy ATO(d, h) profiles. While building offline these
profiles, it is possible to identify the two main components
for such profiles: the occupancy due to (i) registered and
(ii) anonymous users. While we can not have any impact
on the anonymous users, we may be able to influence the
registered users, since they are the tourists that make use
of the recommendation system. Therefore, in our system we
consider the following Average Time Occupancy profiles:

ATO′(d, h) = ATOanon(d, h) + ETOreg(d, h) (10)

where ATOanon(d, h) is the component due to anonymous
users, and ETOreg(d, h) is the Estimated Time Occupancy
computed considering the registered users and the recom-
mendations done so far by the system.

The profiles ETOreg(d, h) are reset at the beginning of
each day with the average behaviour of the user in the
past. As the system issues recommendations, it records
the choices of the users, and it updates the estimation of
the POI occupancy assuming that the user will follow the
recommended trip, spending the estimated time in each
POI and for traveling from one POI to the next. Even if
the actual user behaviour may vary, the overall estimation
of the POI occupancies should not be significantly affected,
since they are the results of aggregated values. In Sect. 5 we
will show how different combinations of ETOreg(d, h) and
ATOanon(d, h) can produce different effects on the system.

4.7 Discussion
The current recommendation system considers a set of
objective functions in the search for the optimal solution.
Using the Avergage Time Occupancy ATO′(d, h) defined in
Eq. (10), for a given trip τ we can estimate the number of
visitors inside a POI at the time the tourist should reach the
POI (and this estimate includes the recommendations done
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so far), and we can compute the time spent inside the POI
from the AVT(np) profile. The level of crowding influences
the number of visitors inside a POI, and the corresponding
computation of the visiting time. Selecting POIs without
considering the current level of crowding may result in
spending time in crowded POIs, which in turn influences
the number of POIs that can be visited. Since one of the
objective functions includes the number of visited POIs,
optimizing using such objective function means finding the
solution where the time spent in the visited POI is at its
minimum. In particular, in the following section we study
the effectiveness of the proposed method by considering
different behaviours of registered users. For instance, we
try to determine the impact on the overall system of users
variability in following the recommendation.

We can consider additional objective functions that take
into consideration the affinity with the user interests, or the
constraints related to the tourist budget, or the relevance of a
POI using rankings. All these extensions are straightforward
to implement, and we consider here only the functions
defined in Eq. (4) in order to show the effectiveness of our
approach.

5 CASE STUDY AND EXPERIMENTS

We evaluated the recommendation system described in
this paper using real-world traces collected for registered
tourists visiting the city of Verona, Italy.

5.1 Available dataset

The tourist office of the city of Verona offers a sightseeing
city pass called “VeronaCard”: for a given fee, the tourist
may visit up to 22 POIs around the city within a specific
time-frame (e.g., 24 hours, or 48 hours). Every time a tourist
with the VeronaCard enters in a POI, a record is created:
it contains the VeronaCard number (unique identifier), the
timestamp of the entrance and the POI identifier. The
dataset includes approximately 1,200,000 records that spans
5 years. We use such a dataset for our experiments. We were
not able to find publicly available datasets similar to the one
described here that could be used to study our solutions in
different contexts. From the Verona’s tourist office dataset,
we derive a set of data and measurements that we use in
our experiments. We start by building the trips followed by
the tourists with a VeronaCard, i.e., the sequence of visited
POIs, obtaining approximately 250,000 trips. For each trip,
given two consecutively visited POIs, with the help of the
Google APIs, we compute the travel time and distance of
the path connecting such two POIs. Since Verona is a small
city and all the POIs are within walking distance, we assume
walking as main travel mode. Knowing the travel time, we
derive the visiting time for each POI, at different times of the
day. In addition, we compute the number of tourists inside
each POI1.

Table 1 shows some statistics related to trips. We grouped
trips with the same number of visited POIs, |τ |: for each

1. The information about the exact number of tourists visiting a POI
is available partially for a subset of POIs, therefore, for the purpose of
our experiments, we prefer to compute in the same way the number of
visitors with the described approach for all the POIs.

TABLE 1
Statistics about the collected trips. The columns report: the number of

visited POIs, the number of trips with such number of POIs, the
average duration of the trip (hour:min), the average travel time, and the

average travel distance.

|τ | # trips λ̄τ avg trav. time avg trav. dist.
2 14,520 04:10 00:10 750m
3 31,455 04:20 00:17 1,5Km
4 40,878 06:00 00:26 2,0Km
5 37,900 07:50 00:34 2,7Km
6 28,261 09:00 00:42 3,4Km
7 16,139 10:30 00:51 4,0Km
8 7,823 11:30 00:60 4,7Km
9 3,060 12:00 01:10 5,5Km

group, we show the number of trips with that number of
POIs, the average duration of the trips (considering the first
POI as the starting POI), the average travel time and travel
distance – we first sum the travel times and travel distances
of the paths for each trip, and then compute the average.

We use the processed dataset to build the POI profiles
defined in Sect. 4.2: for any POI, we compute the Aver-
age Time Occupancy ATO(d, h) and the Average Visit-
ing Time AVT(np). Fig. 8-9 show sample ATO(d, h) and
AVT(np) profiles for two POIs called “Casa di Giulietta”
and “Castelvecchio”, respectively. As for the average time
occupancy (Fig. 8), we show the curves for July’s Sundays
(the average number of visitors computed considering the
Sundays in July). As expected, there are two peak hours, in
the morning and the afternoon. Interestingly, the peak hours
for the two POIs in the afternoon are slightly different.

 0

 10

 20

 30

 40

 50

 60

8 9 10 11 12 13 14 15 16 17 18

N
u

m
. 

v
is

it
o

rs

Time of the day (h)

Casa di Giulietta
Castelvecchio

Fig. 8. Average Time Occupancy ATO(d, h) for two POIs in Verona. The
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Fig. 9. Average Visiting Time AVT(np) for two POIs. The averages are
computed considering the whole dataset.

Relatively the average visiting time (ATV curves shown
in Fig. 9), we notice an increasing visiting time as the
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number of visitor increases, which indicates the impact of
crowding in the visiting time.

As a final step, our offline processing collects the most
popular trips, which will be used by the recommendation
engine as a starting point when a new query is submitted.

5.2 Experimental methodology

In order to test our recommendation system, we need to
provide a set of queries. To this aim, we consider our dataset
and the trips we built from such a dataset. For a given day,
we consider the trips collected that day: for each trip, we
create a query where (i) the initial coordinates at which the
trip starts are the coordinates of the first POI, (ii) the time
at which the trip begins is the time of the access to the first
POI, and (iii) the maximum trip duration is given by the
computed trip duration time augmented with an estimated
duration of the last visit2. For that set of queries, we observe
the output from two possible perspectives: the POI and the
trip viewpoint. From the POI viewpoint, we record for each
POI the number of visitors over time, and we build the
time occupancy curve for that day. From the trip viewpoint,
we record the values of the objective functions defined in
Eq. (4).

We compare three different approaches:

• No recommendation: we simply consider that the user
follows the trip as built from the dataset, i.e., the
query result is actually the trip from which the query
has been derived, which is the trip performed by the
user autonomously;

• Recommendation based on averages: we use the static
version of the ATO(d, h) profiles, i.e., the recommen-
dation are based on the average occupancy of the
previous observation interval (e.g., last year);

• Adaptive Recommendation: we use the ATO′(d, h) pro-
files, which are updated after every recommendation
based on the recommendation given so far.

For the last case, we initially assume that half of the users
recorded in each day are anonymous i.e., ATOanon(d, h) =
0.5 · ATO(d, h). Then, in order to evaluate the dynamic ef-
fects produced by the ETOreg(d, h) profile on the ATO′(d, h)
one (i.e., on the level of crowding), for each query we
perform different experiments by varying the percentage
of anonymous users w.r.t. to the total number of users. In
this way, we can evaluate the impact of non-registered users
on the recommendation system. Moreover, we study the
robustness of the method w.r.t. some variability on the user
behaviour. To do so, we first assume that the users actually
behave as expected, i.e., if we estimate a visiting time for
a POI or a travel time for a path, it will take exactly those
estimated times to visit that POI or to travel along that path.
Then, we introduce some variability by considering the case
in which some delays are collected during the visits.

The MapReduce TRSA algorithm has been imple-
mented using SpatialHadoop [37], an extension of Apache
Hadoop [38] which provides a native support for spatial

2. For any trip, we are not able to know the visiting time of the last
POI, since we do not have the next visited POI used to compute such
value. The estimated duration of the last visit is simply the average
visiting time for that POI.

data, in terms of spatial data types, operations and indexes.
SpatialHadoop has been successfully applied in order to
efficiently perform spatial analysis and validation of huge
amount of geographical data [39], [40], [41].

5.3 Results

POI viewpoint. Figure 10 shows the number of visitors over
time for the POI called “Casa di Giulietta” on February
14th, 2015, with or without a recommendation system. It
is interesting to note that a static recommendation simply
changes the peak hour with respect to a system with no
recommendation, since it uses the average peak hour of the
past days, but it does not adapt to the estimated number
of users in the POI. Instead, our dynamic recommendation
spread the tourists over time. In this case the percentage of
registered users has been set to 50% of the total number.
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Fig. 10. Number of visits at “Casa di Giulietta” considering the behavior
of the tourists without recommendation (basic) and with the two ap-
proaches based on average (static) and adaptive (dynamic) profiles for
POIs with a percentage of registered users equal to 50%.

The same observations can be made when looking to
other POIs. Figure 11 shows two famous POIs in Verona,
namely the Arena and the Sant’Anastasia church. Also in
these cases, we notice that our solution is able to spread the
tourists more evenly over the visiting time.

As a further confirmation, we consider all the POIs of
the datasets, and compute the average number of visitors
over the day, as well as the minimum and the maximum
number of visitors for that day. Figure 12 shows such values
when tourists has no recommendation (basic), have static
recommendation (static) and our dynamic recommendation
(dynamic) – the POIs are ordered by average number of
visitors. The effect of an ideal recommendation system is
to avoid peaks, so that the tourists will not spend time in
the waiting line or in a crowded place. This means that the
difference between the maximum number of tourists and
the average number of tourists should be minimum, as our
dynamic approach obtains. In the basic and in the static
scenarios, instead, the gap between the average number of
visitors and the maximum number of visitors is is some case
extremely wide.

Trip viewpoint. Fig. 13 illustrates three different alternative
trips: the red one is an original trip performed by a user
without any recommendation. It starts from the POI named
“Torre dei Lamberti” at 11:06, then it stops at “Casa di
Giulietta” at 12:33, and finally it reaches “Arena” at 14:15.
The blue path is a solution produced by the TRSA algo-
rithm using only recommendation based on average crowding
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Fig. 11. Number of visits at “Arena” (top) and “Sant’Anastasia Church”
(bottom), considering the behavior of the tourists without recommenda-
tion (basic) and with the two approaches based on average (static) and
adaptive (dynamic) profiles for POIs.
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Fig. 12. Average, minimum and maximum number of visits at different
POIs (identified by id and ordered by average number of visits), con-
sidering the behavior of the tourists without recommendation (basic)
and with the two approaches based on average (static) and adaptive
(dynamic) profiles for POIs.

information. As you can notice, the trip starts from the same
POI and at the same time (query parameters), then it stops
at “City Sightseeing” at 12:16, it proceeds towards “Casa
di Giulietta” at 13:15, and it finally arrives at “Arena” at
14:15. In this case, the tourist arrived at “Casa di Giulietta”
during the peak hour (13:15) for this specific day, since
the algorithm considers only average historical static infor-
mation about the POI occupancies. Finally, the green line
represents the trip produced by the TRSA algorithm consid-
ering adaptive recommendation with 50% of registered users.

Fig. 13. An original path (the red one) together with two paths produced
by our TRSA algorithm, the blue one obtained by using only historical
statistical data about the level of crowding, while the green one consid-
ering also dynamic and adaptive information about the level of crowding.

In this case, the trip starts from the same POI and at the
same hour, but it proceed towards “Museo Conte” at 12:16,
then it visits “Centro Internazionale di Fotografia” at 13:04
and it arrives at “Casa di Giulietta” at 14:40 when the peak
hour is passed. Notice that, the recommendation system has
improved the values of the objective functions, indeed the
blue trip enhanced fn, since it includes an additional POI,
while the green trip enhanced more objective functions: it
has an additional POI, ftt is decreased of 36% and ftd of
49% with respect to the red trip.

Fig. 14 illustrates the effects of considering the presence
of scenic routes as an objective function. In particular, the
green line represents a trip τg which covers three POIs:
the amphitheater “Arena” and two churches, “Complesso
del Duomo” and “Chiesa di Santa Anastasia”. It has length
of 1.7Km and contains a scenic route (i.e., the red portion)
which passes near the Adige river. Conversely, the blue line
represents a shorter trip τb. It connects the same POIs of
τg and has a length of 1.5Km, but it does not contain any
scenic route. τg survives in the Pareto set, since it includes a
scenic route, while τb does not. Thus, since the cumulative
objective function includes also fsr (taking into account the
scenic routes of the trips), τg is not dominated by τb and by
any other trip with no scenic routes despite having better
values of the other objective functions.

Similarly, Fig. 15 illustrates the role of the smoothness
function in the optimization process. The blue and the green
paths represent trips having approximately the same length
(1.1Km), but the blue one contains one comeback, while the
green one is a circular path that can be a preferable choice
for a tourist. Again the same mechanism described before
allows the survival of the green path in the Pareto set.

Table 2 reports some data about the quality of the
produced recommendations considering a 50% of regis-
tered users. More specifically, we have considered the three
POIs that have been most frequently chosen as the starting
point for a trip: “Arena” (p1s), “Casa di Giulietta” (p2s) and
“Castelvecchio” p3s. For each of these POIs, the table reports
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Fig. 14. Effect of including scenic routes as an objective function to be
optimized. The green line is a path which covers three POIs: “Arena”,
“Complesso del Duomo” and “Chiesa di Santa Anastasia” and contains
a scenic route (i.e., the red portion), while the blue line is a shorter path
connecting the same POIs but does not contain any scenic route.

Fig. 15. Effect of considering the smoothness as an objective function
to be optimized. The blue and the green paths have approximately the
same length (1.1Km), but the blue one contains one comeback, while
the green one is a circular path that can be a preferable by a tourist.

the number of historical records, the size of the initial esti-
mated Pareto-front built from these records, the percentage
of improvement of the various objective functions w.r.t.
the original trips. The table shows that each component of
the objective function is improved by the TRSA algorithm.
Moreover, both the improvements of each objective function
and the overall improvement increase with the number of
available historical trips. Table 3 reports the improvement of
the objective functions by grouping the obtained trips w.r.t.
their initial total time (λτ ) instead of the starting points. In
particular, such perspective reveals that the improvement
is greater when the overall duration of the trip increases,
see rows 2 and 3. This is reasonable since, if the available

time increases, there is more room for improvements. For
instance, as regards to ftt, for short trips it is likely that the
original users have already reduced the travel time as much
as possible by themselves, while for longer trips the system
can help in finding shorter trips not considered by the users.
Similarly, relatively to fsr , as the amount of available time
increases, the insertion of more scenic routes into a trip
becomes easier, thus improving the trip choice.

Finally, Table 4 shows some additional statistics. In par-
ticular, it groups the suggested trips by the number of POIs
they contain, reporting the average duration, the average
travel time and the average travel distance for each group.
Notice that, comparing these statistics with the content of
Table 1, which contains the same values computed on the
original trips, all the quantities decrease in Table 4 consider-
ing group o trips with the same number of POIs; moreover,
we can see that the suggested trips contain more POIs
with respect to the original ones with the same or similar
duration. Thus confirming the improvement obtained by the
recommendation system.

TABLE 2
Statistics about the recommendations produced with a 50% of

registered users. For each starting point we show the number of
available trips, the size of the initial Pareto-front, the percentage of

improvement of each objective function w.r.t. its original trip, the
percentage of cases in which at least two objective functions are

improved.

ps #τ | F | fn fd ftt ftd fsr fsm %2fimpr

p1s 124,800 11,300 99% 71% 95% 89% 15% 58% 99%
p2s 28,000 3,930 99% 48% 94% 86% 14% 34% 97%
p3s 21,175 3,359 99% 38% 91% 82% 11% 35% 93%

TABLE 3
Statistics about the recommendations produced with a 50% of

registered users. In this case the original trips are not grouped by the
starting points as in Table 2, but by considering their initial total time
(trip duration). In particular, the first column denotes the considered

intervals of duration (in hours).

λτ #τ | F | fn fd ftt ftd fsr fsm %2fimpr
< 6 59,262 6,332 99% 22% 90% 80% 10% 29% 93%

6− 8 44,971 4,805 99% 50% 97% 94% 15% 54% 99%
> 8 69,742 7,452 99% 99% 96% 89% 18% 53% 97%

TABLE 4
Statistics about the recommendations produced with a 50% of

registered users. The columns report: the number of visited POIs, the
number of trips with such number of POIs, the average duration of the

trip (hour:min), the average travel time, and the average travel distance.

|τ | # trips λ̄τ avg trav. time avg trav. dist.
4 18,643 03:58 00:14 948m
5 40,619 04:16 00:23 1,5Km
6 23,492 06:10 00:31 2,1Km
7 21,479 07:20 00:42 2,8Km
8 14,942 08:43 00:48 3,2Km
9 19,235 10:19 00:59 3,9Km
10 13,326 11:37 01:05 4,3Km
11 12,694 12:07 01:12 4,7Km
12 9,5454 12:14 01:13 4,9Km

5.4 Sensitivity analysis
Variability in the number of registered users. The previous
experiments consider a percentage of registered users equal
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to 50%. In order to evaluate the effects of the number
of registered users w.r.t. the number of anonymous ones,
we evaluate the various test queries considering different
percentage of ETOreg(d, h). Fig. 16 illustrates the number
of visitors over time for POI called “Casa di Giulietta”
on February 14th, 2015, obtained by considering different
percentages of registered users. As you can notice, as such
percentage increases, the quality of the system improves.
When the percentage becomes equal to 30% the dynamic
component has limited effects and some pick hours remain,
while a percentage equal to 50% is enough to obtain a good
result and increasing such percentage means improving the
balancing effect. More specifically, considering the relative
standard deviation (RSD) as a measure of the variability in
the POI occupancy, with a percentage of registered users
equal to 30%, the RSD is 64%, while it becomes 47% with a
50% of registered users and finally it is only 25% with a 70%
of registered users.
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Fig. 16. Number of visits at “Casa di Giulietta” considering different
percentages of registered users.

Variability in user behaviour. In the previous experiments,
we assume that all registered users follow the recommen-
dations provided by the system, namely they visit all the
prescribed POIs spending the estimated visiting and travel-
ling time. In order to evaluate the robustness of the system
in presence of variability in users’ behaviour, we consider
the case in which some delays are collected during the POI
visits. We then plot the user presence in the POIs to see if
new peaks may appear.

In particular, we assume that a percentage of the regis-
tered users accumulates a delay uniformly distributed be-
tween zero and one hour during their day. Fig. 17 illustrates
the number of visitors over time for POI called “Casa di
Giulietta” on February 14th, 2015, obtained by considering
a 60% of registered users and varying the percentage of
them that collect a random delay in the recommended trip.
The results confirms the robustness of the technique to
some modifications in the users’ behaviour (e.g., 30%), some
differences with respect to the reference case are visible
only when the number of registered users that does not
follow the suggestions are bigger than 50-60%. In particular,
considering again the RSD on the POI occupancy, it was
equal to 31% for the original case when all registered users
follows the suggestions (reference), it becomes 40% when a
30% of registered users accumulate some dalays and it is
50% when the percentage of error is 70%.

Incentives for limiting the variability. The variability in the
number of registered users and in user behaviour may have
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Fig. 17. Number of visits at “Casa di Giulietta” considering different
percentages of delay collected during the visits of each POI in the
recommended trips.

an impact on the quality of the recommendations. In order
to limit such variability, it would be interesting to explore
the benefits that a set of incentives might introduce. The
design of the recommendation application, in fact, may con-
sider the “gamification” approach [42]: the tourists might
receive some gains (e.g., discounts at the shops of the PoIs)
if they use the recommendation system – i.e., they become
registered users – and if they follow the recommended
trip. Since this approach is complementary to our proposed
system, we will study its impact in our future work.

6 CONCLUSION AND FUTURE WORK

Personalized trip recommendation systems tailor the sug-
gestions to the users based on their constraints and require-
ments. Nevertheless, they do not consider the impact of
the recommendations on the level of crowding of the POIs
they recommend to visit. In this paper, we took a step to
fill this gap. We proposed a system that efficiently searches
the solution space through a MapReduce implementation
of the multi-objects optimization problem and balances the
users among the POIs by including the predicted level of
crowding. We evaluate our implementation using a real
dataset, showing consistent improvements over the paths
usually autonomously chosen by the tourists.

We also evaluate the robustness of the proposed method
w.r.t. to both variability in the number of registered users,
i.e., the percentage of users that follows the recommen-
dation, and in the user behaviour, considering possible
changes in the suggested paths. Our road-map includes a
more extensive evaluation of the impact that errors may
have on the predictions of the level of crowding, and the
corresponding quality of the recommendations.
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