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This paper presents a new algorithm called Snap Rounding with Restore (SRR), which aims to make ge-
ometric datasets robust and to increase the quality of geometric approximation and the preservation of
topological structure. It is based on the well-known Snap Rounding algorithm, but improves it by eliminat-
ing from the snap rounded arrangement the configurations in which the distance between a vertex and a
non-incident edge is smaller than half-the-width of a pixel of the rounding grid. Therefore, the goal of SRR
is exactly the same as the goal of another algorithm, Iterated Snap Rounding (ISR), and of its evolution,
Iterated Snap Rounding with Bounded Drift (ISRBD). However, SRR produces an output with a quality of
approximation that is on average better than ISRBD, both under the viewpoint of the distance from the
original segments and of the conservation of their topological structure. The paper also reports some cases
where ISRBD, notwithstanding the bounded drift, produces strong topological modifications while SRR does
not. A statistical analysis on a large collection of input datasets confirms these differences. It follows that the
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guaranteed geometric approximation and a good topological approximation.
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1. INTRODUCTION

The importance of processing geometric datasets in order to make them robust is
widely recognized and is continually increasing, since the availability of geometric data
is steadily growing, and new applications are developed which use geometric data. The
impact of a lack of robustness in some applications has been analyzed for instance in
[Belussi et al. 2012; Thompson and van Oosterom 2006].

A geometric dataset is robust if it can be processed by the same algorithm in different
environments always producing the same result. This condition can be achieved by
guaranteeing that the distance between any vertex and non-incident edge is greater
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0:2 A. Belussi et al.

than a given minimum value. In the literature several techniques and algorithms have
been proposed in order to make a dataset robust, some of them are treated in Section 2.
One of these techniques, which is also the starting point of this work, is represented by
the Snap Rounding (SR) algorithm, firstly defined in [Hobby 1993], [Hobby 1999] and
further optimized in [Goodrich et al. 1997] and [de Berg et al. 2007]. SR takes a set of
segments as input and transforms it into an arrangement such that: (i) all segments
have been split at their intersection points obtaining two or more segments for each
original one; (ii) all segments that traverse a hot pixel have been split at the hot pixel
centre; (iii) segment endpoints (even those created by the previous steps) have been
rounded to a given finite precision grid. Halperin and Packer [Halperin and Packer
2002] showed an important drawback of SR: the dataset produced by this algorithm
may still be not robust because the distance between a vertex and a non-incident edge
can be extremely small.

In order to overcome this problem, in [Halperin and Packer 2002] the authors pro-
pose a new algorithm, called Iterated Snap Rounding (ISR), which performs additional
snapping operations for eliminating such non-robust configurations. However, while
ISR solves the robustness problem of SR, it introduces a new problem: in some config-
urations the distance between the produced segments and the original ones can be very
large, thus degrading the guaranteed quality of the approximation with respect to SR.
In [Packer 2008] the authors try to solve this defect by proposing an evolution of ISR,
called ISR with Bounded Drift (ISRBD). ISRBD guarantees that the distance between
the output segments and their corresponding original ones is less than a user-specified
parameter δ; the minimum value of δ is about 3 times the maximum deviation of SR.

(a) original segments (b) output of SR

(c) output of ISRBD (d) output of SRR

Fig. 1. Example of linear collapsing.

The potential lack of robustness of the original SR algorithm can produce another
important drawback: the SR execution may be not stable, namely repeating SR on the
result of a previous execution may produce a different dataset. In [Hershberger 2011]
an algorithm is defined, called Stable Snap Rounding, which produces an arrange-
ment that is very similar to the one produced by SR, but is stable. This is achieved
by modifying SR so that it does not use the rounded pixels for snapping. Stable SR
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is not considered further in this paper, since it does not preserve the property for
which ISR (ISRBD) has been introduced (elimination of non-robust configurations, i.e.
near-degenerate output), although it eliminates one of the negative aspects of non-
robustness.

This paper proposes an algorithm, called Snap Rounding with Restore (SRR), which
is based, like ISR and ISRBD, on a first SR step followed by the elimination of the
non-robust configurations produced by this step. However, this elimination is per-
formed without degrading the quality of the approximation; indeed, as simulations
have shown, on average the quality of the geometric approximation is even improved,
while an effort is made to avoid as much as possible topological degradation. An intu-
itive idea of this fact can be gained by observing Fig. 1 and Fig. 2, which will be dis-
cussed in more detail in Section 5. The main problem of ISRBD is due to the behaviour
of the algorithm in presence of small angles between segments, as in Fig. 1: while IS-
RBD produces a linear collapse of the original segments, SRR tries to maintain them
well separated. This kind of geometric configurations occurs rather frequently in vec-
tor data representing geographical information. For example, geometric realizations
of network graphs (frequently used in the representation of transport or service net-
works) might present cases in which many chains with a curvilinear shape converge
in the same node. A linear collapse in this kind of geometric configurations should
be avoided in order to preserve the topological properties of the graph in its vector
realization.

(a) original segments (b) output of SR

(c) output of ISRBD (d) output of SRR

Fig. 2. Example of linear collapsing of polygon boundaries.

Moreover, Fig. 2 exemplifies the case where segments are used to represent polygon
boundaries. In this case, ISRBD has a strong distortion effect on the polygonal topol-
ogy, and this effect could have worse consequences if the original dataset was intended
to represent a polygon with two holes. Of course this example assumes that the grid
of cells does not correspond to the grid of the floating point representation of numbers,
but to a coarser grid applied to a scene that contains two small holes in a small poly-
gon. Finally, notice that the linear collapsing produced by SR algorithms can have a
negative impact on the correctness of geometries with respect to their geometric type.
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Sometimes the consequence of the collapse is the violation of a constraint that is re-
quired by the geometric type of the geometry. For example, a constraint of the type
Surface of OGC standards [OGC 2011] requires that the outer boundary of a surface
must not have self-overlapping: by allowing linear collapsing this constraint might be
violated. Therefore, it is important to reduce linear collapsing as much as possible.

The fundamental idea applied by SRR is as follows: in order to eliminate a situation
where a vertex and a non-incident edge are too near to each other, it is not always
convenient to perform a snapping operation. Instead, it may be convenient to spread
them apart. This idea is very general and can be applied in several ways; in SRR the
assumption is that if an edge has been moved by the SR algorithm too close to a vertex,
then it is convenient to move it in the opposite direction, thus bringing it back towards
its original position; this operation is called Restore.

The improvement of output quality obtained by SRR is paid in terms of complexity.
The complexity of the proposed algorithm in the worst case is O(n4 ∙ log(n)) (where n
is the number of edges generated after the first SR iteration). However, in all prac-
tical cases, for example in applications dealing with geographical datasets, where a
real scene cannot consist of a set of segments in which each segment intersects all the
others, the complexity is reduced to O(n2 ∙ log(n)) as discussed in more details in Sec-
tion 4.6. Finally, by means of experiments on synthetic and real datasets, we compare
SRR only with ISR and ISRBD since also they ensure the elimination of the non-robust
configurations.

The paper is organized as follows: Section 2 presents several related contributions
about the discrete representation of geometric datasets. Section 3 summarizes some
background information about the SR algorithm; since SRR is based on many concepts
defined by SR, this background is necessary to understand and evaluate it. Section 4
presents the SRR algorithm and the main properties of its output. Section 5 discusses
the approximation induced by SRR and compares the algorithm with ISRBD, since
the two algorithms pursue the same goals. Section 6 reports the experimental results
obtained on a large number of segment arrangements, and the behaviour of SRR is
compared with respect to the other existing algorithms considering a few quantitative
parameters.

2. RELATED WORK

Geometric algorithms are usually defined under the simplified assumption that com-
putations are performed with an infinite-precision arithmetic which cannot be actually
provided by the adopted computer representations. This assumption raises great dif-
ficulties in implementing robust geometric algorithms. In the literature, several tech-
niques have been proposed in order to overcome this problem. Some of them analyze a
group of algorithms and propose an approach that ensures the exact computation by
means of a greater precision in number representation. For instance, in [Boissonnat
and Preparata 2000] a robust implementation of the well known plane sweep approach
for intersecting segments has been proposed that requires a precision, which is triple
of the input. More recently, the Exact Geometric Computation (EGC) model [Chen
2001] has been proposed; it provides a general approach for making robust the eval-
uation of geometric algorithms. This can be achieved by representing the underly-
ing mathematical objects in an exact manner through the use of algebraic numbers
which allow to perform computations without errors. By definition, an algebraic num-
ber is the root of an univariate polynomial with integer coefficients. For instance, the
number

√
5 has no finite representation, but it can be represented exactly as the

pair (X2 − 5, [1, 4]), interpreted as the root of the polynomial X2 − 5 lying in inter-
val [1, 4]. These techniques have made many progresses so that for certain problems
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the introduced performance penalty is acceptable. However, when the computation is
performed on curved objects (they can be approximated in linear geometry thought
linestrings having many vertices) or in three-dimensional space, the overhead is still
large. An alternative approach has been proposed which is called Controlled Pertur-
bation (CP) [Halperin and Shelton 1998; Halperin 2010; Packer 2011] and belongs to
the family of Finite-Precision Approximation techniques. This method proceeds by per-
turbing the input slightly but in a controlled manner such that all predicates used by
the algorithm are guaranteed to be evaluated correctly with floating-point arithmetic
of a given precision, and the degeneracies are removed. The algorithms of the Snap
Rounding approach belong to the same family of Finite-Precision Approximation tech-
niques where you find CP. However, they are mainly based on the application of some
rounding algorithms that convert an arbitrary-precision arrangement of segments into
a fixed-precision representation.

In [Greene and Yao 1986] the authors propose a first rounding scheme for polygonal
subdivisions that precedes the Snap Rounding idea. In particular, they discuss a tech-
nique for transforming geometric concepts and algorithms from the continuous domain
to the discrete one, by defining an interface between these two domains which satis-
fies certain invariants. The first Snap Rounding algorithm (SR) for an arrangement
of segments has been given in [Hobby 1999]. After this work many alternatives have
been proposed with the aim to improve the asymptotic time complexity of the process,
to provide on-line algorithms, or to support 3D extensions. In particular, in [Guibas
and Marimont 1995] the authors define a dynamic algorithm for snap rounding an
arrangement of segments, as well as providing elementary proofs of the topological
properties maintained by SR. Their algorithm is dynamic because it uses a random-
ized hierarchy of vertical cell decompositions in order to make efficient the localization
of segment intersections and the deletion of segments. Conversely, [Goodrich et al.
1997] improves SR when many segments intersect a pixel by proposing an efficient
algorithm that does not require to firstly determine all segment intersections, but it is
based on an incremental construction. In [de Berg et al. 2007] the authors propose an
SR variant whose complexity depends upon the number of intersections between the
input segments and guarantees the additional property that no degree-2 vertices are
present in the interior of the produced edges. A first method for rounding curvilinear
arrangements is presented in [Eigenwillig et al. 2007], where the authors extend the
SR algorithm from straight-line segments to Bézier curves of arbitrary degree. The
extension of the SR algorithm to the 3D space is considered in [Goodrich et al. 1997;
Fortune 1998].

Two important variants of SR are considered in this paper: the Iterated Snap Round-
ing (ISR) and the Iterated Snap Rounding with Bounded Drift (ISRBD). ISR has been
presented in [Halperin and Packer 2002] and is equivalent to iteratively perform a SR
step until all vertices and non-incident edges in the rounded arrangement become well
separated. ISRBD [Packer 2008] augments ISR with simple and efficient procedures
that guarantee the quality of the geometric approximation of the original segments,
while still maintaining the property that vertices and non-incident edges are well sep-
arated. Another interesting variant of SR has been presented in [Hershberger 2011]
which is called Stable Snap Rounding (StableSR). It has all advantages of SR and is
also idempotent (i.e., stable). In other words, if StableSR is applied to the output of
either StableSR or SR, it produces no effect. However, as it is stated in the paper, Sta-
bleSR may produce rounded segments that intersects hot pixels, passing arbitrarily
close to the pixel center. For this reason, StableSR is not further considered in this
paper, since the aim of SRR is to ensure the same properties of ISR (or ISRBD) plus
enhancing the quality of the approximation both under the viewpoint of the distance
from the original segment and the conservation of the topological structure.
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3. BACKGROUND

This section presents a set of basic concepts which are fundamental for understanding
the remainder of this paper and in particular the SRR behaviour. Every snap rounding
algorithm is based on the concept of arrangement of segments.

Definition 3.1 (Arrangement). Let S be a collection of line segments in the plane.
The arrangement A of S is the decomposition of the plane into vertices, edges, and
faces induced by S. In particular:

(1) A vertex of A is either a segment endpoint or the intersection between two segments
of S.

(2) An edge of A is a connected set of points belonging to one segment of S that do
not belong to any other segment of S. Each edge starts and ends at vertices of the
arrangement. The set of edges corresponding to a single original segment forms a
polygonal chain.

(3) A face of A is a subset of the plane not contained in any segment of S.

Definition 3.2 (Snap Rounding). Snap Rounding (SR) is a method for converting
arbitrary precision arrangements of segments into fixed-precision representations
[Hobby 1999].

Definition 3.3 (Hot pixel). Given an arrangement of segments and a subdivision of
the plane into a grid of unitary cells, called pixels, a pixel is said to be hot if it contains
a vertex of the arrangement.

(a) (b)

Fig. 3. Example of application of the SR algorithm. (a) Initial set of segments. (b) Arrangement after the
SR execution: each segment endpoint and each intersection point has been snapped to the pixel center.

Algorithm 1 (Snap Rounding (SR)). Given a set of segments S whose end-points
are represented using finite precision coordinates, and a grid of pixels having integer
coordinates, a possible SR algorithm proceeds as follows:

— It firstly computes the initial arrangement A, corresponding to the set S, splitting
intersecting segments into several edges.

— Subsequently, each vertex of the arrangement A is replaced by the center of the hot
pixel containing it, and each polygonal chain c of the arrangement is replaced by a
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polygonal chain d whose vertices are the centers of the hot pixels met by c in the
same order as they are met by c. 1

Example 3.4 (SR application). Fig. 3 illustrates an example of SR application.
Given the configuration in Fig. 3.a, the SR algorithm produces the result shown in
Fig. 3.b. Notice that after the execution of SR some vertices and edges of the original
setting may be collapsed, while some segments have been split into two or more parts
in correspondence to intersections.

Property 3.1 (SR features). As proved in [Hobby 1999; de Berg et al. 2007], the SR
algorithm has the following properties:

(1) Fixed-precision representation: Given a set of segments S and a grid of unitary
square pixels, all vertices of the arrangement A produced from S by SR are located
at the pixel centers.

(2) Geometric similarity: For each segment s of the original set S, its approximation
in the resulting arrangement A is a chain c ∈ A which lies within the Minkowski
sum of s and a cell of unit square (i.e. a cell with side length equal to the chosen
pixel size) centered at the origin. Fig. 4 illustrates an example of Minkowski sum
of a segment s and a cell of unitary square.

(3) Topological similarity: The original set of segments S and the resulting arrange-
ment A are topologically equivalent up to the collapsing of features. More specif-
ically there is a continuous deformation of the original segments to their snap-
rounded counterparts such that no segment ever passes completely over a vertex
of the arrangement.

Fig. 4. In the figure the gray polygon represents the Minkowski sum of the black segment and a cell of
unitary square centered at the origin.

SR makes the vertices of the original segments well separated when they are not
snapped together. However, this is not true when vertices and non-incident edges are
considered. In other words, after the execution of the SR algorithm, the distance be-
tween a vertex and a non-incident edge can be extremely small w.r.t. the width of a
pixel in the used grid. For instance, Fig. 5.a shows a set of original segments and
Fig. 5.b the arrangement produced by SR: after the application of the SR algorithm
the distance between an endpoint of the horizontal segment and the oblique segment
is very small, namely they share the pixel highlighted in gray in Fig. 5.b. Notice that

1The notion of tolerance square is considered during the segment intersection: whenever a hot pixel is
crossed by one or more segments, the presence of an intersection is assumed and they are all split and
snapped to the corresponding hot pixel center.
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(a) (b)

Fig. 5. In (a) and (b) an example of the robustness problem of the result produced by SR is shown. In (a)
the initial arrangement is shown; in (b) the SR result. Notice that in (b) the distance between the vertex and
the edge crossing the gray pixel is less than

√
2 ps/2, where ps is the chosen pixel size.

they are not snapped together by the SR algorithm, because the input right segment
does not pass through the corresponding hot pixel before the rounding took place.

Definition 3.5 (Critical Pixel). A critical pixel is a hot pixel which is crossed by an
edge whose start and end nodes are outside the pixel. 2

Using the notion of critical pixel, the robustness condition for a dataset can be re-
formulated as follows: a rounded arrangement is robust if it does not contain critical
pixels. The elimination of critical pixels from the result of SR is the goal of SRR.

4. SNAP ROUNDING WITH RESTORE (SRR)

This section presents the SRR algorithm. First the key ideas are presented, then the
algorithm is explained, some important properties are stated, and finally an example
of its behaviour is illustrated.

4.1. Key Ideas of SRR

SRR performs an initial SR step which snaps each vertex of the arrangement to the
center of the corresponding hot pixel. In SRR an additional property is added to each
edge e of the arrangement produced by SR: the property OS(e) which represents the set
of original segments from which the edge has been generated. This SR step is followed
by a Restore procedure which solves the possibly generated critical pixels by adding
a vertex to the edges crossing each one of them. In order to understand the basic idea
applied by the Restore procedure, we start with a simple example.

Fig. 6.a shows the output of an SR step (solid lines) together with the two segments
which constitute the input dataset (dashed lines). The pixel 〈3, 2〉 (highlighted3) is a
critical pixel, because it contains a vertex and a crossing edge, e. In order to eliminate
this critical pixel there are fundamentally two options, which constitute the two basic
operations in SRR:

2An edge crosses a pixel, if it passes through its interior, while if it only intersects the pixel boundary, it
touches the pixel but does not cross it.
3By default in all the figures the lower left pixel has coordinates 〈1, 1〉.
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(a) SR result (b) Snap operation

(c) Spread operation (d) PixelEnvelope of a segment

Fig. 6. A set consisting of two original segments (dashed lines), the result of SR (a) and of the Snap (b) and
Spread (c) operations (continuous lines). In (d) the PixelEnvelope of a segment s is shown.

— Snap: this is the classical approach and consists of adding the critical pixel to the
vertices of the crossing edge, thus producing a chain which contains the center of
the critical pixel as a vertex, as shown in Fig. 6.b.

— Spread: this operation consists in adding to the crossing edge a new vertex, such
that the edge becomes a chain which does not cross the pixel that was critical, as
shown in Fig. 6.c.

Notice that while snapping can be performed in a unique way, there are several
pixels which can be chosen for performing the Spread operation. Therefore, the core of
the Restore procedure consists in the Choose-Pixel function, which determines the
pixel to use for rerouting the edge that crosses a critical pixel. For instance, in Fig. 6.c
the pixel 〈4, 3〉 has been chosen, thus becoming a new hot pixel of the arrangement.

4.2. The SRR Algorithm

Listing 1 illustrates the SRR algorithm. The algorithm assumes the existence of a
grid of unitary pixels; in the sequel the existence of the grid is implicitly assumed
and not explicitly recalled. Moreover, the algorithm starts from a set of segments S,
produces the corresponding arrangement A and works on A in order to resolve critical
configurations by splitting the edges of the arrangement. The edges obtained after a
split are collected in the set of edges of the arrangement A, since they can be iteratively
split by the algorithm.

The algorithm performs firstly an SR operation producing the arrangement A; af-
ter the SR step the function CriticalPixels creates the critical pixel set CPS. In the
main cycle, Restore is the fundamental procedure. The Restore procedure processes
all critical pixels which were created by the previous iteration, but, since the restore
operation may produce new critical pixels, at the end of the while cycle the function
CriticalPixels is invoked on the modified arrangement and produces a new critical
pixel set CPS, which can be non-empty and therefore a new iteration may be required.
Notice that the necessary edge splitting is performed at the end of the foreach cycle so
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LISTING 1: Snap-Rounding with Restore.

Input: A finite-precision set of segments S and a grid g with unitary pixels.
Output: A fixed-precision arrangement A of S.

begin
A ← ∅; CPS← ∅;
Snap-Rounding(S, g, ∗A);
CriticalPixels(A, ∗CPS);
while CPS 6= ∅ do

splitEdges← ∅;
foreach cp ∈ CPS do

Restore(cp,A, ∗splitEdges);
end
UpdateArrangement(splitEdges, ∗A);
CriticalPixels(A, ∗CPS);

end
return A;

end

In the pseudo-code: (i) the notation x← expr is used for the assignment operation; (ii) the procedure
parameters with the prefix ”*” are passed by reference and are modified by the procedure, while the other
ones are passed by value and are not modified.

that, during an iteration, the Restore procedure always works on the same arrange-
ment A, while splitEdges collects the edges to be split together with the corresponding
vertices. They will be used for updating the arrangement in the UpdateArrangement
procedure. The whole algorithm terminates when an iteration does not produce any
new critical pixels.

In order to illustrate the logic of the Restore procedure presented in Listing 2 the
functions Pe(), Cvs() and Fcvs() are specified in the following Definitions 4.1, 4.4
and 4.5.

Definition 4.1 (Pixel Envelope (Pe)). Given a segment s and a grid g of unitary
square pixels, the pixel envelope of s, denoted as Pe(s), returns the set of pixels of g
crossed by the segment itself.

An example of pixel envelope for a segment s is shown in Fig. 6.d.

Definition 4.2 (Pixel Frame (Pf)). Given a critical pixel cp in a grid g of unitary
square pixels, the pixel frame of cp, denoted Pf(cp), is the set of pixels of g surrounding
cp.

Definition 4.3 (Useful Vertex). Given a critical pixel cp in a grid g of uni-
tary square pixels and an edge e crossing it, called critical edge, the predicate
Useful-Vertex(p, cp, e) is true if by splitting e at the center of p the resulting chain
does not cross cp any more.

Definition 4.4 (Candidate Vertex Set (Cvs)). Given a critical pixel cp in a grid g of
unitary square pixels and an edge e crossing it, the function CandidateVertexSet, de-
noted as Cvs(cp, e, os), returns the set of pixels p such that:

Cvs(cp, e, os) = {p | p ∈ Pe(os) ∧ p ∈ Pf(cp) ∧ Useful-Vertex(p, cp, e)}

where os ∈ OS(e) and OS(e) represents the set of original segments corresponding to
the edge e.

In Fig. 6.a, SR generates a critical pixel 〈3, 2〉 with a critical edge e; by applying the
above definitions it follows that Cvs(〈3, 2〉, e, s) = {〈2; 3〉, 〈3; 3〉, 〈4; 3〉}. Notice that the
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pixel 〈4, 3〉, which has been chosen by the algorithm SRR, produces a chain that does
not cross cp although it touches it.

Definition 4.5 (Free Candidate Vertex Set (Fcvs)). Given an arrangement A and a
set of pixels C produced by the function Cvs(), the function FreeCandidateVertexSet,
denoted as Fcvs(A, C) returns the set obtained from C as follows: Fcvs(A, C) = {p|p ∈
C ∧ ¬(∃e ∈ A : e.crosses(p))}

In Fig. 6.a the set returned by Cvs(〈3, 2〉, e, s) is equal to the set returned by
Fcvs(a, Cvs(〈3, 2〉, e, s)), because there are no other edges crossing the pixels in
Cvs(〈3, 2〉, e, s). For simplicity, in the sequel the shorter term “set Cvs()” is used instead
of “the set returned by the function Cvs()”, and similarly for the function Fcvs(). The
other functions used by the Restore/ChoosePixel procedures are explained in Tab. I.

In the sequel we refer to the execution block, which contains the call to the SR
algorithm and the first call of the CriticalPixel function (see Listing 1), as the pre-
liminary step of SRR; therefore, the Restore procedure is executed for the first time
during the first iteration of the main cycle of SRR. In order to simplify the discussion
of the properties of the algorithm, the rules applied by Restore/ChoosePixel are re-
stated in Tab. II, which represents exactly the same control flow presented in Listing 2
and identifies three possible situations that are labelled as rules: R1, R2 and R3. In
Tab. II columns 2 and 3 express the conditions on the critical pixel and critical edge
being evaluated, column 4 identifies the pixel which is returned by the function, col-
umn 5 interprets the choice in terms of the spread or snap operations and column 6
states whether the choice implies the generation of a new critical pixel, thus causing a
further iteration of the algorithm. In the last column “YES” means that a new critical
pixel is explicitly added by the rule. Also the other rules can produce critical pixels,
but only indirectly, since they move some edges.

Listing 1 and 2 define an abstract implementation of the SRR approach. This im-
plementation is not optimized, however it is suitable for analyzing the fundamental
properties of the output produced by SRR. In section 4.6 a more efficient implemen-
tation of the core procedures of the SRR algorithm is proposed and its computational
complexity is discussed in detail.

4.3. Properties of SRR

The main properties of SRR are stated by the following propositions. We first deal with
SRR termination, then with preservation of SR properties: fixed precision representa-
tion, geometric similarity and topological similarity.

4.3.1. Termination of the Algorithm. In order to prove SRR termination some preliminary
results are presented regarding the properties of the arrangement A produced after
each SRR iteration (while cycle in Listing 1).

PROPOSITION 4.6 (FIXED-PRECISION REPRESENTATION IN SRR ITERATIONS).
Given an arrangement A and a grid of pixels, each chain of the arrangement, which

is produced after an iteration of SRR, is composed of edges that start/end in hot pixel
centers.

PROOF. This proposition is a direct consequence of the algorithm: indeed, after the
preliminary step of SRR, from Property 3.1.1 of SR the proposition is true; at each suc-
cessive iteration, if an edge is split into two or more edges with the Restore procedure,
then the resulting edges start and end in hot pixel centers. Indeed, in the Restore pro-
cedure the vertices for splitting an edge are produced by the ChoosePixel procedure,
which always returns hot pixel centers. Therefore, also the chains containing the split
edge are updated and pass through hot pixels centers.
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LISTING 2: Restore & ChoosePixel & UpdateArrangement.

Restore procedure
Input: A critical pixel cp, the current arrangement A and the set of edge to be split splitEdges.
Result: The modified set splitEdges containing the edges to be split.

begin
foreach e ∈ A do

if e.crosses(cp) then
foreach os ∈ OS(e) do

newVertex← ChoosePixel(cp, e, os,A);
splitEdges.addEdge(e, os, newVertex);

end
end

end
end

ChoosePixel function
Input: A critical pixel cp, a critical edge e and an original segment os of e, the current

arrangement A.
Output: The center c of the chosen pixel.

begin
cvs← Cvs(cp, e, os);
if Fcvs(A, cvs) 6= ∅ then

return the center of the pixel p ∈ Fcvs(A, cvs) such that p.distance(os) is minimal.
else

if cp ∈ Pe(os) then
return the center of cp

else
return the center of the pixel p ∈ cvs such that p.distance(os) is minimal.

end
end

end

UpdateArrangement procedure
Input: An arrangement A and a set set splitEdges containing the edges to be split.
Result: The modified arrangement A.

begin
foreach (e, os) ∈ splitEdges.getEdges() do

S ← e.split(splitEdges.getV ertices(e, os));
A.addEdges(S, os);
A.dropEdge(e);

end
end

PROPOSITION 4.7. Given an arrangement A and a grid of pixels, every new hot
pixel generated at each iteration of SRR belongs to the pixel envelope of one original
segment of A.

PROOF. New hot pixels are generated starting from the first iteration of SRR. Given
a chain c representing an original segment os, new vertices can be generated in c when
the Restore procedure is applied to a critical pixel cp crossed by c. This procedure
generates new hot pixels by calling the function ChoosePixel, which chooses them
from the set Cvs(cp, e, os), being e the edge of c crossing cp. Since by Def. 4.4 we have
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Table I. The functions used by the Restore and ChoosePixel procedures.

Functions Description

splitEdges.addEdge(e, os, v)

If the pair (e, os) is already stored in splitEdges the vertex v is added
to its ordered list of split vertices, otherwise the edge e is added
together with its original segment os to the set of edges to be split
and the list of split vertices is set to (v).

splitEdges.getEdges()
It returns a set containing pairs (e, os) each one representing an
edge e that has to be split together with its original segment.

splitEdges.getVertices(e, os)
It returns a list of vertices where the edge e associated to os has to
be split.

e.split(Lv)
It returns the list of edges obtained by splitting the edge e at each
vertex v of the list Lv .

A.addEdges(Se, os)
It adds to the arrangement A all the edges belonging to Se and as-
sociates the original segment os to each added edge.

A.dropEdge(e) It deletes the edge e from the arrangement A.

e.crosses(cp)
It returns true if the edge e crosses the critical pixel cp, i.e. it inter-
sects cp interior, false otherwise.

p.distance(s)
It returns the Eucledian distance between the center of the pixel p
and the segment s.

Pe(os), Cvs(cp, e, os) and
Fcvs(A, cvs)

Their semantics is specified in Def. 4.1, 4.4 and 4.5 respectively.

Table II. Actions performed by the ChoosePixel (cp, e, os,A) function. Fcvs () stands for
Fcvs (A, Cvs(cp, e, os)) and Cvs() stands for Cvs(cp, e, os).

Rule Fcvs() 6= ∅ cp ∈ Pe(os) Returned Pixel Operation
New critical

pixels

R1 TRUE not relevant
the pixel p ∈ Fcvs() such
that p.distancs(os) is mini-
mal

Spread NO

R2 FALSE TRUE cp Snap NO

R3 FALSE FALSE
the pixel p ∈ Cvs() such
that p.distance(os) is min-
imal

Spread YES

that:

Cvs(cp, e, os) ⊂ Pe(os)

then, the new hot pixels are always pixels of Pe(os). Therefore, every vertex of any
output chain c produced by each iteration of SRR is located at the center of a pixel of
Pe(os), where os is the original segment of c.

PROPOSITION 4.8 (SRR GEOMETRIC SIMILARITY IN SRR ITERATIONS). Each
output chain produced by each iteration of SRR lies in the Minkowski sum of its
original segment os and a unitary cell centered at the origin.

PROOF. After the preliminary step of SRR (first two statements of Listing 1), each
resulting chain has this characteristic from Property 3.1.2 of SR. Any subsequent it-
eration of SRR could introduce new vertices into the chain representing os, which are
always located in pixels of Pe(os) from Prop. 4.7. Thus, every vertex of any output
chain c produced by SRR is located at the center of a pixel of Pe(os). Assuming unitary
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cells, the center of the pixels of Pe(os) cannot be located at a distance greater than√
2/2 from os, otherwise they would not have been pixels of PE(os). Thus, having this

maximum distance from os they are inside the Minkowski sum of os and a unitary cell
centered at the origin. Finally, as the considered Minkowski sum is a convex hull, also
the chain c is inside it, since it passes through vertices located at the center of pixels
of Pe(os).

PROPOSITION 4.9 (CVS FUNCTION RESULT IS NOT EMPTY). Given a critical pixel
cp and a critical edge e crossing it, such that the considered original segment os ∈ OS(e)
does not cross cp, the set returned by Cvs(cp, e, os) contains at least two pixels.

PROOF. Since os does not cross cp but e crosses cp, and the distance between an edge
and its original segment is always less than

√
2/2 according to Prop. 4.8, there always

exist some pixels which belong to both Pe(os) and Pf(cp). Thus, os always intersects
some pixels of Pf(cp), even if it may not intersect cp.

Consider first the case where a vertex v of e lies in a pixel which is adjacent to
cp as shown in Fig. 7.a, where the pixel touches cp on the left. As shown in Fig. 7.b
and Fig. 7.c, in this case there are two pixels of Pe(os) ∩ Pf(cp) which allow to split
e and avoid the crossing. The configuration shown in Fig. 7.a can be generalized to
all other configurations having a vertex on top, bottom or right of the critical pixel,
by considerations based on symmetry. Every other configuration, where v is located
farther from cp produces the same result since the pixels that avoid crossing in the
previous case do avoid crossing for any v′ located farther than v on the left (or top,
bottom, right).

(a) (b) (c)

Fig. 7. The worst case configuration from the viewpoint of rerouting a critical edge (see Prop. 4.9)

PROPOSITION 4.10 (CHOOSEPIXEL FUNCTION RESULT IS NOT EMPTY). The func-
tion ChoosePixel(cp, e, os,A) always returns a vertex, and therefore the function
Restore(cp,A, splitEdges) always produces in splitEdges the vertices that are neces-
sary for rerouting the edge of the resulting arrangement so that the critical pixel cp is
not critical in the arrangement considered in the next iteration.

PROOF. As shown in Listing 1, the ChoosePixel function has three return state-
ments that correspond to the three possible actions described in Tab. II. The structure
of the conditions of ChoosePixel ensures that an action is always reached, since:
(i) if Fcvs(A, Cvs(cp, e, os)) 6= ∅, then a pixel of FCVS is returned; (ii) otherwise, if
cp ∈ Pe(os), then the second action can always be performed, i.e. the reroute of e
can be performed at least in cp, if no other candidates are available or perform bet-
ter; (iii) finally, if cp 6∈ Pe(os), then Prop. 4.9 ensures that Cvs contains at least two
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pixels, thus, there are useful pixels for performing the reroute of e and the function
ChoosePixel always returns a not empty result.

PROPOSITION 4.11 (SRR TERMINATION). SRR terminates after a finite number of
steps.

PROOF. SRR can generate new hot pixels because it can introduce new vertices also
inside pixels that were not hot at the beginning. However, from Prop. 4.7 any new
vertex created in a chain by SRR belongs to the pixel envelope of its original segment,
and this pixel can become critical only if it contains or will contain the edge of another
chain. From this and Prop. 4.8 it follows that a pixel can become critical, namely it
may contain a vertex v and an edge e at some SRR iteration, only if v will be a vertex
of a chain related to an original segment os1 and e will be an edge of a chain related to
an original segment os2 such that:

Pe(os1) ∩ Ms(os2) 6= ∅

where Ms(os) represents the Minkowski sum of os and a unitary cell centered at the
origin. Since the number of pixels in this intersection is finite, it follows that even in
the worst case the number of new generated critical pixels is finite and the algorithm
terminates.

4.3.2. Preservation of the Properties of SR (and of ISR). In this section we show that the
properties of SR (see Section 3) and the minimum distance property of ISR are pre-
served also by SRR.

PROPOSITION 4.12 (SRR FIXED-PRECISION REPRESENTATION). Given an ar-
rangement A and a grid of pixels, if a chain of the arrangement produced by SRR
crosses a hot pixel then it passes through its center.

PROOF. Obviously from Prop. 4.6 and Prop. 4.11 (termination).

PROPOSITION 4.13 (SRR GEOMETRIC SIMILARITY). Each output chain produced
by SRR lies in the Minkowski sum of its original segment and a unitary cell centered at
the origin.

PROOF. Obviously from Prop. 4.8 and Prop. 4.11 (termination).

PROPOSITION 4.14 (SRR REDUCTION TO SR). The output of SRR is equivalent to
the output of SR applied to an arrangement where all new vertices added by SRR have
been added to the input chains associated to the initial set of segments S.

PROOF. The set of hot pixels produced by SRR can be partitioned into two sets:
the initial set of hot pixels corresponding to the endpoints of the original segments
(H) and the set of hot pixels (Hrestore) created by the successive iterations of SRR as a
result of the application of the function Restore. The hot pixels of H are those which
have been created by SR, therefore the different result produced by SRR is due only
to hot pixels of Hrestore. However, from Prop. 4.7 the pixels of Hrestore always belong to
the pixel envelope of an original segment of S. Therefore, each final chain c always
has vertices that lie inside Pe(os), where os is the original segment of c. Therefore,
the same result produced by SRR can be obtained as follows: (i) starting from S, for
each pixel hp ∈ Hrestore a new vertex is added to the chain associated to each original
segment os ∈ S, such that hp ∈ Pe(os); this vertex has to be located on os and inside
hp. (ii) an iteration of SR is applied. Since Hrestore contains the hot pixels generated
by SRR, no additional critical pixels can be produced by this SR step, which therefore
returns the same arrangement produced by SRR, since each chain is snapped to all the
hot pixels that SRR have produced (H ∪ Hrestore).
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PROPOSITION 4.15 (SRR TOPOLOGICAL SIMILARITY). SRR preserves the topology
of the input arrangement in the same sense that SR does.

PROOF. SR preserves topological properties since it can be viewed as a continuous
deformation of segments into chains such that no vertex of the input arrangement ever
crosses through a segment, as shown by Guibas et al. in [Guibas and Marimont 1995].
Thus, the proof follows directly from Prop. 4.14.

PROPOSITION 4.16 (SRR MINIMUM DISTANCE). In an arrangement A produced
by SRR each vertex is at least half a unit away from any non-incident edge.

PROOF. This property follows directly from the algorithm behavior (Listing 1): in-
deed, the algorithm terminates when the cycle while CPS 6= ∅ do ends i.e., when no
other critical pixel is produced by the Restore procedure. The proof follows from this
and Prop. 4.11 about the algorithm termination.

PROPOSITION 4.17 (SRR RESULT CANONICITY). The arrangement produced by
SRR does not depend on the order in which the critical pixels are considered in the
algorithm iterations.

PROOF. The set of critical pixels is computed by the CriticalPixel procedure before
starting each iteration of the while cycle (see Listing 1), thus it is invariant during each
iteration. Moreover, the Restore procedure always works on the same arrangement A
during an iteration; indeed, any edge rerouting produced by Restore has no effect
on the current arrangement, but only on the one that will be available in the next
iteration of the while cycle. This is shown clearly in Listing 1, since the arrangement
A for the next iteration is computed by the UpdateArrangement procedure after the
end of the foreach cycle. UpdateArrangement uses the set splitEdges produced by
Restore, which contains the edges that require a reroute operation. Therefore, the
order in which the critical pixels cp of the set CPS are considered during the foreach
cycle is irrelevant w.r.t. the resulting arrangement of each iteration. Thus, it has no
influence on the final result of the SRR algorithm.

Finally, notice that SRR output of any original segment is always weakly-monotone.
This is a direct consequence of the behavior of the CriticalPixel procedure (see Table
II) that always chooses pixels belonging to the pixel envelope of the original segment,
thus in the worst case vertical edges are generated, but never edges that go in an
opposite direction w.r.t. the direction of the original segment.

4.4. Optimizing the Quality of the Approximation

A crucial aspect of the SRR algorithm is the effort to produce a good approximation of
the original setting. Two approximation criteria are used: geometrical similarity and
topological similarity. A detailed discussion of these criteria is performed in Section
5; here it is sufficient to state that the function ChoosePixel tries to minimize the
distance between each chain and its original segment in order to maximize geomet-
rical similarity, and tries to minimize the number of snapping operations in order to
maximize topological similarity. Unfortunately, in some situations there is a conflict
between these criteria; in this case the minimization of snapping operations has been
considered more important, since the maximum distance between a chain and its orig-
inal segment is bound anyway, as shown by Prop. 4.13 . The effect of this choice will be
analyzed in Section 5.

As stated by Prop. 4.9, the set CVS of pixels among which ChoosePixel per-
forms a choice has a cardinality greater than 1 and therefore a choice is effectively
possible. The fundamental criterion adopted by ChoosePixel is: choose the pixel
p ∈ Cvs(cp, e, os) which is nearest to the original segment os. The motivation of this
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criterion is obviously to maximize the geometrical approximation of the result to the
original arrangement. However, this is not always possible or convenient, because the
pixel which is nearest to the original segment may contain an edge, thus giving rise to
the creation of a new critical pixel and hence to an iteration of the Restore procedure,
or may produce new edges that cross another hot pixel, thus eventually giving rise to
a snap operation. For these reasons the ChoosePixel function must use the more ar-
ticulated criteria illustrated by Table II than just the minimization of distance. Their
application and motivation is explained referring to some examples which are built by
adding some segments to the configuration of Fig. 6.a in order to make the added pixel
〈4, 3〉 critical and cause a second iteration of SRR. Therefore, in all following examples
we are considering the rule applied by ChoosePixel during the second iteration of
SRR in order to eliminate the critical pixel 〈4, 3〉 produced during the first iteration,
by always applying Rule 3. In all figures the result of SR is shown on the left and the
result of SRR is shown on the right.

(a) Output of SR. (b) Output of Restore after two iterations.

Fig. 8. Example of application of Rule 1 (optimal choice).

Rule 1 – There are two possible cases:

— Optimal choice (with respect to geometric approximation) - In Fig. 8 a third
segment has been added to the arrangement in Fig. 6.a so that the edge e pro-
duced by SR (and also its original segment os) crosses pixel 〈4, 3〉. Since all pixels
of Cvs(〈4, 3〉, e, os) are free, Fcvs(a, Cvs(〈4, 3〉, e, os)) = Cvs(〈4, 3〉, e, os) and Rule 1
chooses the pixel 〈5, 4〉 having minimum distance from the original segment. This is
an example of configuration where the second iteration of SRR produces its optimal
result (as shown in Fig. 8.b): the topology of the arrangement produced by SR is
completely maintained by SRR and the geometric approximation is the best one in
the given scene.

— Suboptimal choice - Fig. 9 shows the application of Rule 1 in a case where the
pixel of optimal choice (〈5, 4〉) is not free. Since the set Fcvs(a, Cvs(〈4, 3〉, e, os)) is
not empty, Rule 1 is still applied (pixel 〈4, 4〉 is chosen). Notice that, since in this
case the critical pixel 〈4, 3〉 belongs to the envelope of the original segment os, a
snapping operation of edge e to pixel 〈4, 3〉 (i.e. an application of Rule 2) would pro-
duce a better geometrical approximation. However, the rules are designed to give
more importance to the avoidance of snapping operations than to the minimization
of the distance from the original segment (notice that the result remains in the pixel
envelop anyway).

Rule 2 – In Fig. 10 Rule 2 is applied: since there are no pixels in
Fcvs(a, Cvs(〈4, 3〉, e, os)), but the critical pixel 〈4, 3〉 belongs to Pe(os), the critical pixel
is used for snapping. In this case SRR performs a Snap operation since there is no place
for spreading the edge e without producing a new critical pixel and consequently an
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(a) Output of SR. (b) Output of Restore after two iterations.

Fig. 9. Example of application of Rule 1 (suboptimal choice).

additional iteration; the avoidance of iteration is considered more important than the
avoidance of snapping, since the creation of new critical pixels may lead to snapping
anyway.

(a) Output of SR. (b) Output of Restore after two iterations.

Fig. 10. Example of application of Rule 2 (snapping).

(a) Output of SR. (b) Output of Restore after two iterations.

Fig. 11. Example of application of Rule 3 (optimal choice but new critical pixel and new iteration with
snap).

Rule 3 – Finally, Fig. 11 shows the application of Rule 3: since there are no pixels
in Fcvs(a, Cvs(〈4, 3〉, e, os) the configuration is similar to the previous example, but in
this case the critical pixel does not belong to Pe(os) and therefore it is not possible
to perform a snapping. In this case during the second iteration the minimum distance
pixel (〈5, 4〉) is chosen although it is crossed by an edge, and the newly created hot pixel
becomes critical causing a third iteration, which leads to a snapping operation. Rule 2
is applied during the third iteration and the final result is shown in Fig. 11.b.
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4.5. Examples of the Behavior of SRR

The following two examples illustrate the behavior of SRR compared with SR. The
first example in Fig. 12 shows how SRR tries to keep the topological structure of the
input arrangement; of course, this is possible only if there is enough space between the
segments.

A more complicated case is shown in Fig. 13, where many segments converge in a
few pixels. In the upper left half of the picture the segments are relatively less dense,
while in the bottom right half the density is higher. While in the less dense portion the
topological structure is maintained, in the more dense portion many snapping opera-
tions have modified it. Notice that in this area also the SR algorithm has altered the
topological structure.

(a) Output of SR. (b) Output of SRR.

Fig. 12. SR vs SRR on a specific dataset, which is representative of configurations where some segments
are almost parallel.

(a) Output of SR. (b) Output of SRR.

Fig. 13. SR vs SRR on a specific dataset, which is representative of configurations where many segments
converge in the same pixel.
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4.6. Implementation of the Functions and Complexity of SRR

This section presents some implementation aspects of the SRR algorithm and dis-
cusses its complexity. In particular, Section 4.6.1 proposes some useful data structures
that can improve SRR performance, Section 4.6.2 illustrates how these data structures
can be computed in the preliminary step of SRR and finally Section 4.6.3 analyses the
algorithm complexity.

4.6.1. Data Structures Used by the Implementation of SRR. In the algorithm SRR presented
in Listings 1 and 2 each iteration of the main loop requires three sequential scans of
the arrangement A in order to find: (I scan) all edges which cross the critical pixel cp
being considered (in the main loop of Restore); (II scan) the new critical pixels that
can be produced by the new edges created by Restore (in the CriticalPixels function)
and (III scan) the set of edges which cross the pixel frame Pf(cp) of a critical pixel cp
(in function Fcsv(A, cvs) of the ChoosePixel procedure). In the sequel we propose to
introduce auxiliary data structures in order to avoid these scans of A:

— (I scan) This scan can be avoided by transforming the critical pixel set CPS into a
map CPSMap that associates to each critical pixel the set of the edges which cross
it. Whenever a critical pixel is discovered by the CriticalPixels function, the edges
crossing it are known and can be easily stored in CPSMap.
Therefore, the first 2 lines of the Restore procedure, i.e. the main for loop (for
e ∈ A do) and the if statement (if e.crosses(cp) then), can be substituted with for
e ∈ CPSMap(cp) do.
The CPSMap structure is computed initially by the first call of the CriticalPix-
els function, then it is updated when a new hot pixel h is created by the Restore
procedure; new critical pixels can be generated by two different processes:
(1) h has become critical itself: this is the case when the Restore procedure applies

Rule 3, choosing a pixel which was not free. In this case the Restore procedure
adds h to CPSMap, which is being prepared for the next iteration together with
the set of edges which cross it.

(2) At least one of the two newly created edges has invaded an existing hot pixel,
thus making it critical. In this case the update of CPSMap is performed by the
next call of the CriticalPixels function.

— (II scan) In order to reduce the complexity of this operation, the following idea
is applied: since (i) any edge e of A produced by an iteration of SRR is inside the
Minkowski Sum of any original segment os ∈ OS(e) and a unitary cell centered at
the origin (Prop. 4.8), and (ii) the Restore procedure can generate new hot pixels
only inside the pixel envelope Pe(os) of the considered original segment os (Prop.
4.7), it is possible to pre-compute some information which can be used for reducing
the number of hot pixels that have to be analyzed by the CriticalPixels function.
A new data structure is created for these pre-computed information and is called
Candidate Critical Edge Map (CCEMap). It stores, for each edge e of A, the set of
edges with end-points in hot pixels which could be invaded by the edges produced by
splitting edge e. These hot pixels are candidate new critical pixels, when e is split.

— (III scan) With the same reasoning we can pre-compute some other information
which can be used for reducing the number of edges to be considered for computing
the function Fcsv(A, cvs) in ChoosePixel. These auxiliary information regard the
set of edges which cross a pixel which could be used for splitting edge e. We have cho-
sen to add these critical edges in the CCEMap structure, avoiding the introduction
of a new one, thus reducing the space requirements of the optimized algorithm.

The map CCEMap is created during the first iteration of SRR and updated at the end
of each iteration of the main loop of SRR after the call to the CriticalPixels procedure.
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The rules for these update operations are presented in the next subsection, while the
algorithms used by the functions CriticalPixels and Fcvs are shown in Listing 3.
These algorithms use the CCEMap and CPSMap and splitEdges data structures and
the following definition.

Definition 4.18 (Pixel Boundary). The pixel boundary of an edge e, denoted as
Pb(e), is the pair of pixels which contain the start and end points of e.

LISTING 3: CriticalPixels procedure & Fcvs function

CriticalPixels procedure
Input: The maps CPSMap, CEEMap and splitEdges containing the set of edges that have been

split by Restore.
Result: The modified map CPSMap.

begin
foreach (e, os) ∈ splitEdges.getEdges() do

foreach e′ ∈ CCEMap(e) do
foreach ei ∈ e.split(splitEdges.getVertices(e, os)) do

(pstart, pend) = Pb(e′);
if ei.crosses(pstart) then

CPSMap.add(pstart, ei);
end
if ei.crosses(pend) then

CPSMap.add(pend, ei);
end

end
end

end
end

Fcvs function
Input: The current edge e, the set Cvs of available pixels for rerouting e and the map CCEMap
Output: Fcvs representing the set of free candidate pixels for rerouting e.

begin
Fcvs← Cvs
foreach e′ ∈ CCEMap(e) do

foreach pixel p ∈ Cvs do
if e′.crosses(p) then

Fcvs.drop(p)
end

end
end
return Fcvs

end

In function CriticalPixels CPSMap.add(p, e) is a procedure that updates CPSMap
as follows: if p is not already present in CPSMap then it adds p to CPSMap with the
associated edge set equal to {e}, otherwise it adds e to the associated edge set of p.

The optimized implementation of the algorithm SRR of Listing 1 is presented in List-
ing 4. Notice that, the function ChoosePixel receives in input the map CEEMap in-
stead of the arrangement A, moreover it modifies, when necessary, the map CPSMap∗

as requested by Rule 3 of the Restore procedure. Finally, the function CCEMap.update
will be defined in the next subsection.
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LISTING 4: Snap-Rounding with Restore implementation

SRR
Input: An finite-precision set of segments S and a grid g with unitary pixels.
Output: A fixed-precision arrangement A of S.

begin
A ← emptyArrangement;
Snap-Rounding(S, g, ∗A);
CPSMap← ∅; CCEMap← ∅;
FirstScan(A, ∗CPSMap, ∗CCEMap);
while CPSMap 6= ∅ do

CPSMap0 ← CPSMap; splitEdges← ∅;
foreach cp ∈ CPSMap do

Restore(cp, CPSMap, CEEMap, ∗CPSMap0, ∗splitEdges);
end
UpdateArrangement(splitEdges, ∗A);
CriticalPixels(CCEMap, splitEdges, ∗CPSMap0);
CPSMap← CPSMap0;
CCEMap.update(splitEdges);

end
end
–
Restore procedure
Input: A critical pixel cp, the current maps CPSMap and CCEMap, the CPSMap under

modification, denoted CPSMap0, and the set under modification containing the edges to
be split, denoted splitEdges0.

Result: The modified structures splitEdges0 and CPSMap0.

begin
foreach e ∈ CSPMap(cp) do

foreach os ∈ OS(e) do
newVertex← ChoosePixel(cp, e, os, CEEMap, ∗CPSMap0);
splitEdges0.addEdge(e, os, newVertex);

end
end
CSPMap0.drop(cp);

end

4.6.2. Pre-computing Interferences between Edges. This section analyzes how the auxil-
iary data structure Candidate Critical Edge Map CCEMap can be pre-computed in
order to avoid a complete search over the arrangement at each iteration. In particular,
the following propositions state a set of useful condition for performing such compu-
tation. Fig. 14 illustrates many of the concepts used in the following definitions and
propositions.

PROPOSITION 4.19. Let cp be a critical pixel, e be an edge crossing it, s ∈ OS(e)
be the original segment of e which is being considered in the inner loop of the Restore
procedure. If h is a pixel which could be chosen in order to split and reroute e, and e′

is an edge which crosses h so that h must be eliminated from the set fcvs of free candi-
date pixels, then all original segments s′ ∈ OS(e′) must satisfy the following condition:
distance(s, s′) < (3/2)

√
2.

PROOF. Let p be a point which belongs to the intersection of e′ and h. (i) Since by
Proposition 4.7, e′ belongs to the Minkovski Sum of all original segments s′ ∈ OS(e′),

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: March 2014.



Snap Rounding with Restore 0:23

Fig. 14. Examples of pixel frame (PF (cp)) of a pixel cp, extended MBR (EMBR(e)) of an edge e, Minkowski
Sum (MS(s′)) of an original segment s′ and a critical edge e′ of a given edge e.

the maximal distance of p from any s′ is
√

2/2. Moreover, (ii) since by the rules of the
Restore procedure, h ∈ Pe(s), the maximal distance of p from s is

√
2. Therefore, since

p has to satisfy both conditions (i) and (ii), it follows that the distance between s and s′

has to be less than (3/2)
√

2.

Definition 4.20 (Pixel and Extended MBR). The pixel MBR and the extended MBR
of an edge e, denoted as PMBR(e) and EMBR(e), are set of pixels defined as fol-
lows: PMBR(e) is the set of pixels which intersect MBR(e), while EMBR(e) is the set
PMBR(e) augmented by the pixels which are adjacent to it. Fig. 14 illustrates the
EMBR of the edge e.

PROPOSITION 4.21. Let cp be a critical pixel, e be an edge crossing it, h be a pixel
which could be chosen in order to split and reroute e, and e′ be an edge which crosses h
so that h must be eliminated from the set fcvs of free candidate pixels; then e′ intersects
EMBR(e).

PROOF. By the rules of the Restore procedure, h ∈ Pf(cp). Moreover, since e crosses
cp and h is adjacent to a pixel crossed by e, h ∈ EMBR(e) Therefore, from the fact that
e′ crosses h, it follows that e′ intersects EMBR(e).

PROPOSITION 4.22. Let e be an edge, h ∈ Pb(e) be a hot pixel, and e′ be an edge
which crosses h; the following condition must hold between all pairs of original seg-
ments s ∈ OS(e) and s′ ∈ OS(e′): distance(s, s′) < (3/2)

√
2.

PROOF. Let p be a point which belongs to to the intersection of e′ and h. If h ∈
PB(e), then by Proposition 3.1 ∀s ∈ OS(e)(h ∈ PE(s)), and therefore the maximum
distance(p, s) is

√
2. Moreover, since e′ is contained in Minkovskj Sum of s′ by Propo-

sition 4.7, the maximal distance of p from s′ is
√

2/2. Therefore, since p has to satisfy
both conditions (i) and (ii), it follows that the distance between s and s′ must be less
than (3/2)

√
2.

Proposition 4.19 is very similar to Proposition 4.22, except for the fact that here
all original segments must satisfy the condition on the distance. The reason of this
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difference is that in Proposition 4.19 the creation of a hot pixel h for splitting an edge is
being evaluated with respect to at least one original segment, while in Proposition 4.22
h is an already created hot pixel and therefore all the original segments of edges having
this vertex must be considered.

PROPOSITION 4.23. Let e be an edge, h ∈ Pb(e) be a hot pixel and e′ be an edge
which crosses h; the following conditions must hold: (i) e′ intersects PMBR(e), and (ii)
e intersects PMBR(e′).

PROOF. Condition (i): Pb(e) is contained in PMBR(e) by definition, thus if h ∈ Pb(e)
then h ∈ PMBR(e), and therefore if e′ crosses h then e′ intersects PMBR(e). Condition
(ii), e′ crosses h =⇒ h ∈ PMBR(e′), while h ∈ PB(e) =⇒ e intersects h; therefore, e
intersects PMBR(e’).

Given the above proposition, the rules for building the Candidate Critical Edge Map
of an edge e (CCEMap(e)) are defined by the following two conditions:

C.1 e′ ∈ CCEMap(e) only if there exists a pair of original segments 〈s, s′〉, s ∈
OS(e), s′ ∈ OS(e′), such that distance(s, s′) < (3/2)

√
2;

C.2 e′ ∈ CCEMap(e) only if EMBR(e) intersects EMBR(e′).

PROPOSITION 4.24 (C.1 AND C.2 ARE SUFFICIENT FOR PRUNING EDGES IN SRR).
If two edges 〈e, e′〉 do not satisfy conditions C1 and C2, then: (i) e′ cannot cross the

pixel frame of a critical pixel crossed by e and therefore it does not need to be considered
by function Fcvs; (ii) e′ cannot cross a hot pixel h ∈ PB(e) and therefore it needs not to
be considered by function CriticalPixels.

PROOF. The assertion in (i) is a direct consequence of Propositions 4.19 and 4.21,
while the assertion in (ii) is a direct consequence of Propositions 4.22 and 4.23.

Therefore, by Proposition 4.24, CCEMap satisfies the requirements for its use
in Listing 3. In particular, conditions C1 and C2 are weaker than the conditions
stated by the Propositions 4.19-4.23; therefore, the sets contained in CCEMap are
larger than it could be achieved by a more complex data structure. However, they
have the advantage of being symmetric, and thus easier to update. The func-
tion CCEMap.update(splitEdges), introduced at the end of SRR implementation
in Listing 4, can now be defined in details as follows. For each entry (e, os) ∈
splitEdges.getEdges() the following steps are executed:

(1) the set of edges {e1, ..., en} obtained by splitting e using the expression
e.split(splitEdges.getV ertices(e, os)) substitute e as key entries of CCEMap;

(2) for each e′ ∈ CCEMap(e), if conditions C1 and C2 hold for e′ and ei ∈ {e1, ..., en}
the following update operations are executed:
— e′ is inserted in CCEMap(ei)
— ei is inserted in CCEMap(e′)

4.6.3. Complexity Analysis. Like SR, SRR is an output-sensitive algorithm since its com-
plexity depends on the initial number n0

h of hot pixels in the arrangement produced by
SR and on the number nnew

h of new hot pixels which are produced by the Restore
procedure. n0

h depends on the number ns of original segments and the number I of in-
tersections among them. Indeed, trivially in the worst case, n0

h = 2ns+I. With a similar
reasoning, the initial number of edges n0

e in the arrangement produced by SR is equal,
in the worst case, to ns +2I. Finally, let nh be the number of hot pixels contained in the
final arrangement; clearly nh = n0

h + nnew
h and let ne be the number of edges contained

in the final arrangement; clearly ne = n0
e −nsplit

e +nnew
e = n0

e −nnew
h +2nnew

h = n0
e +nnew

h .
Thus, nnew

h is the fundamental parameter for assessing the output complexity of SRR.
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In order to capture the behavior of the implementation of SRR presented in this
section, it is useful to consider some parameters which take care of the “density” of the
arrangement; let dEP be the maximum number of edges which can intersect a single
pixel, and dEE be the maximum number of edges which satisfy the conditions C1 and
C2 for an edge e (i.e. the maximum cardinality of the sets returned by CCEMap(e)).

The following elements determine the computational complexity of SRR:

(1) The initial SR step – using the algorithm presented in [Hobby 1999] it has a com-
plexity of O((ns + I) log(ns)).

(2) The execution of the FirstScan procedure – by applying a plane-sweep ap-
proach, which has to compute the maps CPSMap and CCEMap; it has a cost of
O(n0

e log(n0
e)), since the initial number of edges of the arrangement A is n0

e and the
auxiliary data structures require log(n0

e) for access.
(3) The cost of the i-th iteration of the Restore procedure (let ni

cp be the number of
critical pixels created by iteration i and processed by iteration i + 1) – Restore
has to determine, for each critical pixel produced by the previous iteration (in total
ni−1

cp pixels), all the edges which can interfere with it (the upper bound of this edge
number is given by density parameter dEP ). Therefore, its cost is O(ni−1

cp ∗ dEP ∗
dEE ∗ log(ni

e)), where the logarithmic term is due to the access to the tree map
CCEMap with ni

e edges, and dEP takes care of the cycle for each e ∈ CPSMap(cp)
do of Restore, and dEE takes care of the scan of interfering edges in the Fcvs
function.

(4) The cost of the i-th iteration of the CriticalPixel function – this function has to
process each new edge e ∈ SplitEdges created by Restore (dEP ∗ni

cp) and to scan all
edges present in CCEMap(e) (dEE). Therefore, its cost is O(ni

cp∗dEP ∗dEE ∗log(ni
e)).

(5) The cost of updating the CCEMap at each iteration is O(ni
e log(ni

e)). The same cost
has the updateArrangement procedure at each iteration.

It follows that Restore and CriticalPixel have the same cost at each iteration and
by summing all iterations the total cost is dominated by the term: O(ncp ∙ dEP ∙ dEE ∙
log(ne)) where ncp is the total number of critical pixels created by Restore and ne is
the number of edges contained in the final arrangement. Since nnew

h is an upper bound
of ncp then the total cost is: O(nnew

h ∙ dEP ∙ dEE ∙ log(ne)).
Clearly, the cost of the algorithm depends on the assumptions which can be done on

the “density” parameters dEP and dEE. The worst case assumption is that they grow
with the number of original segments ns, but in many applications it is possible to
consider them constants depending on the rounding factor. For example, consider a
transport network: the number of roads (edges) which intersect a given area (pixel)
does not depend on the total number of roads but on the density of roads and on the
size of the area (pixel size, hence rounding factor). Moreover, since the goal of SRR is
to preserve topology, it is not meaningful to use it with a rounding factor that collapses
too many edges.

In the worst case, the terms dEP and dEE can be both substituted with n0
e, repre-

senting the total number of edges generated after the initial SR iteration, and ne with
n0

e + nnew
h .

Finally, the following proposition states an upper bound to nnew
h . In the sequel we

denote n0
e as n, since it characterizes the input of SRR.

PROPOSITION 4.25 (NEW HOT PIXELS GENERATED BY SRR (UPPERBOUND(nnew
h ))).

The maximum number of hot pixels that SRR can generate is equal to n ∙ (n − 1).

PROOF. The construction process of the SRR result can be simulated by supposing
to start from the arrangement A produced by the initial SR step and by adding to an
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initially empty arrangement one edge of A at a time. In this process an edge shared by
several chains is counted only once.

By adding a new edge e to an arrangement, e generates new hot pixels and thus
possibly new critical pixels in two cases: (i) the end points of e becomes critical pixels;
(ii) e interior crosses pixels containing a vertex of the arrangement (previously existing
hot pixels).

In the first case, by propagating the rerouting procedure, it is possible through
spreading propagation to introduce a number of new hot pixels equal to 2(i− 1), where
i is the current number of edges in the arrangement, namely (i− 1) hot pixels for each
end point of the added edge.

In the second case, the situation corresponds to the propagation of the effects of
another previously inserted edge, that propagates its drift also to the new added one,
thus for every previously inserted edge, in total (i − 1) edges, two new hot pixels can
be generated, and overall 2(i − 1) pixels.

However, the two cases cannot occur together with the maximum cardinality, as
shown in Fig. 15. In this figure the worst case configurations (i.e. those that produce
the maximum number of hot pixels) between an existing edge e (and its original seg-
ment s) and the inserted edge e′ (and its original segment s′) are shown. Notice that in
Fig. 15.a two new hot pixels are created (in the figure the arrows point to them) and
they split the edge e. These two new hot pixels can become critical with respect to other
edges (not shown in the figure for simplicity) and thus producing a spreading propa-
gation obtaining in the worst case 2(i − 1) new hot pixels. In Fig. 15.b the produced
hot pixels are always two but one pixel splits e and the other one e′ and thus again in
the worst case 2(i − 1) new hot pixels are generated. In conclusion, in every possible
configurations two non intersecting segments cannot produce more than two hot pix-
els, thus with propagation in total no more than 2(i − 1) pixels. There are other two
possible configurations for two non intersecting segments (corresponding to orthogonal
segments), which are not shown in the figure, since they only create one hot pixel, thus
producing in the worst case (i − 1) new hot pixels.

Summing up on all edges generated after the initial SR step, the total number of
new hot pixels is:

n∑

i=1

2(i − 1) = 2
n∑

i=1

(i − 1) = 2
n(n − 1)

2
= n(n − 1) (1)

By combining the cost O(nnew
h ∙ dEP ∙ dEE ∙ log(ne)) with the result of Equation 1 about

nnew
h , it follows that the algorithm complexity in the worst case scenario (dEP = n and

dEE = n) is O(n4 ∙ log(n)), but by considering the assumptions on the expected values
for the density parameters dEP and dEE in real applications, the complexity in many
cases is reduced to O(n2 ∙ log(n)).

Finally, the upper bound for the total number of vertices of the arrangement pro-
duced by SRR is 2n + n(n − 1) = n2 + n.

5. SRR APPROXIMATION AND COMPARISON WITH ISRBD

The aim of the rounding algorithm is to approximate the original dataset, but different
application domains may give more importance to different approximation criteria.
Often there exists a conflict between such criteria and this makes the definition of an
algorithm which is the best under all circumstances very difficult.

This section shows why SRR may be more suited for some rounding applications
than ISRBD, which is the only known algorithm with the same guaranteed output
properties. It is important to distinguish between the guaranteed properties, i.e. worst
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(a) (b)

Fig. 15. Two possible configurations of non intersecting segments that produce two new hot pixels when
SRR is applied (see, proof of Prop. 4.25). The inserted edge is denoted by e′ (and its original segment by s′),
while the existing edge is denoted by e (and its original segment by s); the arrows show the additional hot
pixels.

case properties, and the average characteristics of the output produced by a rounding
algorithm. As proved in the previous section, SRR guarantees, like ISRBD, the same
guaranteed properties of SR listed in Section 3, namely Fixed precision, Guaranteed
Geometric Similarity and Topological Similarity. However, these are worst case prop-
erties; the average quality of the output datasets can be very different among different
algorithms. This section compares the average geometric similarity and topological
similarity of SRR and ISRBD through a reasoning approach; while the next section
shows the result of a statistical analysis.

5.1. Geometrical Similarity

There is a general agreement in literature in considering the Hausdorff distance be-
tween the original segments and the corresponding output chains as a measure of the
geometric similarity. The following arguments suggest that the average geometrical
approximation of SRR is better than the one of ISRBD; these arguments are not proofs
of an average superiority, and counterexamples can be created where SRR is worse.
However, this kind of reasoning is useful to give a foundation to the results of the
statistical analysis.

Observation 1. SRR guarantees the same maximum distance as SR, while even if
the user-specified threshold δ is taken at its minimum value, ISRBD can guarantee
only 3 times the maximum distance granted by SR.

PROOF. The proof can be found in [Packer 2008].

Observation 2. The approximation obtained by performing a Spread operation on
critical pixels produced by the SR step is always better than the approximation ob-
tained by performing a Snap operation.

PROOF. After the initial SR step, a critical pixel can be produced only because a seg-
ment has invaded a hot pixel making it critical: indeed, if the original segment already
crossed the pixel, then the SR step would have snapped it. Therefore, the original seg-
ment has been moved towards the critical pixel and as a consequence, the Spread op-
eration moves the result back towards the original segment (by adding a vertex which
belongs to the original segment envelope), thus reducing the distance, while the Snap
operation moves it in the opposite direction, thus increasing the distance.
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This second observation means that, when a critical pixel allows a spreading oper-
ation, the approximation of SRR is better than the one of ISRBD. This should be the
case if a dataset is not too dense.

5.2. Topological Similarity

In order to measure the topological similarity between the original arrangement and
the produced one the following aspects are considered:

(1) Number of snapping operations: this elementary parameter is meaningful,
since the snapping operation modifies the topological structure.

(2) Degree of linear collapsing: for each edge which is shared by different chains
representing different original segments, the length of the shared edge multiplied
by the number of corresponding segments gives an indication of the amount of
collapsing segments.

(3) Polygonal similarity: if the original dataset represents a set of polygons, then
also the degree of correspondence between the faces produced by the algorithm and
the original arrangement constitutes an indication of the topological similarity.

The following general premise should be considered: there is a tradeoff in making a
dataset robust and keeping the level of topological approximation, because in order to
make the dataset robust space is needed and sometimes the lack of space leads to snap-
ping and linear collapsing. Since SRR and ISRBD are applied after SR and both algo-
rithms perform additional operations in order to eliminate critical pixels and obtain a
robust dataset, in some cases they need to apply additional snapping operations and
this might alter existing topological relations among segments. In situations where
the density of segments is extremely high, the approximation will degrade, since a
high level of snapping is necessary and it is almost impossible to perform any analysis
of SRR and ISRBD behavior. However, in many applications, if a reasonable round-
ing is performed, than there can be dense spots, but they are surrounded by less dense
space, where keeping the level of topological approximation is possible. Notice that, SR
algorithms are usually applied with very fine grid, thus the above reasoning on data
density has to be referred to such situations, i.e. where you have many segments in
very small cells (10−3 or smaller). In geographical applications for example such kind
of density is very rare.

Number of Snapping Operations. SRR is designed to avoid snapping, while ISRBD is
based on snapping. In SRR a snapping operation is performed only if a critical pixel
produced by SR causes a (sequence of) spreading operations which end up into a snap-
ping operation, due to a set of high density pixels. It is reasonable to assume that at
least in low density datasets the number of snapping operations performed by SRR is
very low, while in very dense situations the degree of snapping of SRR could tend to
the one of ISRBD. In the next section the statistical analysis confirms this assumption.

Linear Collapsing. The principal problem of ISRBD with respect to linear collapsing is
due to the behaviour of the algorithm in presence of small angles between segments.
In Fig. 1.a an initial setting is shown where a segment is tangent to a curve, which
is represented as a sequence of small segments (usually called a linestring). Fig. 1.b
shows the result of SR while Fig. 1.c and Fig. 1.d show the result of ISRBD and SRR,
respectively. The larger line in Fig. 1.c shows the drift limit imposed by the “drift
bound” of ISRBD; the minimum value of the drift bound δ stated in [Packer 2008]
has been used,

√
2 ∙ 3/2, thus minimizing the drift problem of ISRBD. Fig. 1.c allows

one to observe that, although the drift of the segment is bound, this does not avoid
a linear collapsing which is due to a different drift: the drift of the topological node
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which represents the point of tangency between the segment and the curve. It is easy
to construct examples to show that this kind of node drift can be very large if the angle
between the segment and the linestring is small.

Polygonal Similarity. The example of Fig. 2.a shows a set of segments which are in-
tended to represent three polygons. After SR the polygons are correctly represented by
three faces, as shown in Fig. 2.b. In this case the application of ISRBD has a strong
distortion effect on the polygonal topology, as shown in Fig. 2.c; this is measured by
the fact that the number of faces has grown to five. This effect can have worse con-
sequences if the original dataset was intended to represent a polygon with two holes,
as in many types of applications; in this case the result of ISRBD represents a non
valid geometry. Conversely, the result of SRR is topologically correct in this example,
as shown in Fig. 2.d.

Notice that the number of faces can grow or shrink in consequence of snapping;
this is due to the fact that a linear collapsing can eliminate a face or, like in Fig. 2.c,
split one face into several faces. Therefore, a comparison of the number of faces cannot
be used as an indication of the degree of polygonal similarity. Clearly, this is just an
example; it is easy to build examples where SRR snaps almost as much as ISRBD.
However, the goal of the example is to show that the impact of snapping and of linear
collapsing on polygonal similarity can be very strong.

6. QUANTITATIVE EVALUATION OF ALGORITHMS

Several experiments have been performed using both randomly generated and real
datasets.

6.1. Experiments on Randomly Generated Datasets

In this set of experiments we have considered datasets of segments between two points
uniformly random generated in a square. All these sets have been generated in the
same 100×100 pixels grid, so that the cardinality of each set becomes an indicator of the
density of the segments. The test considers 10 different datasets for each cardinality.

The following statistics have been collected:

— Error (total and average): the error measures the area delimited by each output
chain on one side and the corresponding original segment on the other one. This
measure gives at the same time an estimate of the Hausdorff distance and a hint on
the area variation produced if segments are considered as polygon boundaries.

— Number of vertices in the resulting arrangement: this is an indicator of the result
dimension.

— Percentage of hot pixels crossed by an edge that SRR and ISRBD consider w.r.t the
number of vertices produced by SR: this is an indicator of the additional cost of
ISRBD and SRR algorithms w.r.t. SR.

— Percentage of additional snapping operations performed by ISRBD and SRR w.r.t.
SR.

— Percentage of additional collapsing segments (measured by counting the edge length
n times if n is the number of chains that share it) performed by ISRBD and SRR
w.r.t. SR.

— The execution time required by SRR, ISR and ISRBD with respect to SR.

The obtained results are represented considering cardinality as subdivided into two
categories: low cardinality up to 160 segments, since some spatial configurations can
be obtained only in a non-dense set, and high cardinality up to 500 segments.

Figures 16(a) and (b) report the plots of the measured average and total error for
each of the considered algorithms applied to low and high cardinality datasets, respec-
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(a) Low cardinality datasets

(b) High cardinality datasets

Fig. 16. Experiment results about average and maximum error of SR, ISR and SRR.

tively. Notice that, SRR has an average and total error that is always less than the one
produced by the other two techniques.

Figure 17 shows the plots of the number of additional vertices in the resulting ar-
rangement and the number of critical pixels. Notice that, the number of additional
vertices produced by SRR w.r.t. SR is always less than 4%. Moreover, the number of
critical pixels considered by SRR is always less than 4% w.r.t the number of hot pixels
of SR, thus the additional effort required by the SRR algorithm is acceptable since it
grows linearly w.r.t. dataset cardinality.

Figures 18 (a) and (b) show the plots of the percentage of additional snapping per-
formed by ISRBD and SRR w.r.t. SR. Notice that ISRBD in average performs more
snapping than SRR. The difference is more evident considering the length of collaps-
ing segments which is shown in the same figures. Finally, as expected, the difference
between the two algorithms reduces when cardinality (i.e., segment density) increases,
since snapping operations become dominant w.r.t. spreading ones.

Figures 19 (a) and (b) show the plots of the execution time of all the implemented al-
gorithms w.r.t. the number of edges after the first SR step (n). All the algorithms have
been implemented in Java 7u21 using the Java Topology Suite API for performing the
required geometric operations, and have been executed on an machine with an Intel i5
2500K processor and 16GB of RAM. The tests have been performed by randomly gener-
ating several sets of edges with different cardinalities, starting from 50 to 400 with an
interval of 50; for each cardinality 20 different sets have been processed. The ISR and
ISRBD implementations use a plane-sweep approach during the search of new critical
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(a) Low cardinality datasets

(b) High cardinality datasets

Fig. 17. Experiment results about the percentage of vertices of the produced arrangement and of critical
pixels considered for ISR and SRR.

pixels in order to reduce the number of comparisons, while the SRR implementation
uses the optimizations discussed in the previous section

Notice that, as shown by Fig. 19 (a) SRR implementation requires an extra time
which is similar to that one required by ISR and ISRBD and when the segment den-
sity increases SRR becomes the worst algorithms since the effect of dEP and dEE is
highlighted; in Fig. 19 (b) only SRR and SR are shown in order to highlight the extra
time required by SRR after the initial SR step. Finally, the plot of SRR confirms the
dependency of SRR execution time on the parameter n expressed by O(n2log(n)).

6.2. Experiments on Real Datasets

The SRR algorithm has been applied also on some real-world datasets and its output
has been compared with the one produced by SR, ISR and ISRBD. In particular, two
datasets have been used, which regard the road network of an Italian northern munic-
ipality. The two datasets will be denoted in the following as D1 and D2, respectively,
and have these main characteristics:

— D1 contains 6,254 MultiLinestrings with a total of 106,860 vertices.
— D2 contains 3,342 MultiLinestrings with a total of 48,883 vertices.

The experiments have been performed considering for each dataset three different
grids with a pixel size of 1.0, 0.1 and 0.01 meters, respectively. The obtained results
are shown in Table III where the following information are reported for each algorithm
and for each grid: the percentage of additional vertices w.r.t. to SR, the percentage of
critical pixels w.r.t. the number of vertices produced by SR, the number of additional
iterations performed after the first snapping one, the execution time required by the
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(a) Low cardinality datasets

(b) High cardinality datasets

Fig. 18. Experiment results about percentage of additional snapping operations and of additional collapsing
segments which have been produced by SRR and ISRBD w.r.t. SR.

algorithm, the kind of rules applied by SRR, and some information about the geomet-
ric and topological similarity of the result. In particular, as regards to the geometric
similarity, the table reports the total and average Hausdorff distance of the result w.r.t.
to the original arrangement, considering firstly all edges and secondly only the edges
treated with the Rule 1 by SRR. Conversely, as regards to the topological similarity,
the table shows the additional vertex snapping and the additional edge collapsing per-
formed by each algorithm.

The experiments highlight that the total and average distance from the original
arrangement is smaller for the result produced by SRR, than the distance of the re-
sult produced by ISR and ISRBD. Similarly, the percentage of additional snapping is
smaller for SRR than ISR and ISRBD, and such percentage decreases as the percent-
age of application of Rule 1 w.r.t. Rule 2 increases. Notice that Rule 3 is never applied,
in other words every time Rule 1 cannot be applied, it happens that the critical pixel
belongs to the pixel envelop of the original segment. This depends from the fact that,
in real-word cases, datasets are not particularly dense, so that if there exists a pixel in
the candidate vertex (i.e. a nearby pixel which allows the edge to exit the critical pixel)
it is usually free.

Fig. 21 illustrates an example of situation in which SRR applies Rule 1 producing
a result which is more similar to the initial situation than the one produced by ISR.
In particular, (a) shows the initial situation where five vertices can be identified which
are labeled from v1 to v5. The application of SR produces the situation in (b) where
vertices v1 and v2 are collapsed into the center of pixel (2,1), while vertices v3, v4 and
v5 are collapsed into the center of pixel (3,1). In (b) pixel (2,1) is critical, since the upper
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(a)

(b)

Fig. 19. Experiment results about the time performance of all algorithms and the time required by SRR
w.r.t. SR. Both plots show the time in sec w.r.t. the number of edges produced by SR (which is the first step
of each algorithm).

segment crosses it without passing through its center. The solution produced by ISR is
illustrated in (c) where an additional vertices v6 is added to the upper edge producing
a collapse of the upper and lower segments. Conversely, SRR produces the solution in
(d), where the additional vertex added to the upper segment is located at the center of
pixel (2,2), maintaining the upper segment separated from the lower one.

7. CONCLUSION

A new algorithm SRR (Snap Rounding with Restore) has been defined for making
an arrangement produced by the SR algorithm robust. It has been shown that SRR
obtains the same goal as ISRBD, since it makes the arrangement robust, but it does
not incur in the possibility of a degradation of the quality of approximation. It has been
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Fig. 20. A portion of the real-world datasets considered for the experiments.

Table III. Column names have the following meaning: PS is the pixel size in meters, column M is the applied
algorithm, V is the number of additional vertices w.r.t. to the ones produced by SR (reported in row SR). CP is the
number of critical pixels found by the applied algorithm and IT is the number of additional iterations performed after
SR, T(s) is the time in seconds, THD is the total Hausdorff distance and AHD is the average Hausdorff distance
between the original segment and the resulting chain, computed considering only the segments that have been
subjected to a spreading during SRR. Finally, TS is the number of additional snapping w.r.t. SR (reported in row
SR) while EC is the number of additional edge collapsing w.r.t. SR (reported in row SR), and Rules contains the
type of rule applied by SRR.

PS M V CP IT T(s) THD AHD TS EC Rules

Dataset 1

1.0 SR 197,816 - - 745 14.6644 0.5431 10,755 141 -
ISR +70 35 1 752 19.2885 0.7144 +35 +40 -
ISRBD +64 35 1 753 19.2885 0.7144 +35 +30 -
SRR +70 35 1 751 14.7345 0.5457 +8 +10 78% R1, 22%R2

0.1 SR 200,856 - - 773 0.7651 0.0500 101,644 41 -
ISR +30 15 1 789 1.1064 0.0737 +15 +16 -
ISRBD +40 15 1 794 1.1064 0.0737 +13 +10 -
SRR +30 15 1 810 0.7976 0.0532 0 +8 99% R1, 1% R2

0.01 SR 201,214 - - 805 0.0114 0.0057 19 -
ISR +2 2 1 807 0.0175 0.0087 +2 +2 -
ISRBD +6 2 1 816 0.0175 0.0087 +2 +2 -
SRR +2 2 1 814 0.0114 0.0057 +0 +1 100% R1

Dataset 2

1.0 SR 89,672 - - 159 5.1674 0.5741 46,111 64 -
ISR +32 16 3 164 7.9215 0.8801 +16 +16 -
ISRBD +14 17 3 173 7.9216 0.8802 +17 +10 -
SRR +28 14 1 163 5.1674 0.5742 +5 +5 65% R1, 35% R2

0.1 SR 90,948 - - 168 0.1704 0.0569 46,081 37 -
ISR +12 6 3 177 0.2757 0.0919 +6 +10 -
ISRBD +6 6 3 189 0.2757 0.0919 +4 +7 -
SRR +8 4 1 170 0.1705 0.0568 +1 +4 75% R1, 25% R2

0.01 SR 91,080 - - 156 0.0053 0.0053 46,057 20 -
ISR +2 1 1 158 0.0102 0.0102 +1 +2 -
ISRBD +8 1 1 164 0.0101 0.0101 +0 +2 -
SRR +2 1 1 157 0.0054 0.0054 +0 +1 100% R1

proved that SRR guarantees the same level of approximation of the original SR, and
the experimental analysis shows that on average the obtained approximation is better.
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(a) (b)

(c) (d)

Fig. 21. Example from the experiments on real data: (a) Initial situation in purple, (b) SR result in blue,
initial situation in dashed purple. (c) ISR result in green after one iteration, SR result in dashed blue. (d)
SRR result in red, SR result in dashed blue.

SRR tries to perform only few additional snapping operations after those performed
by SR, thus preserving the topological structure of the input dataset better than IS-
RBD. In fact, it is impossible to completely avoid to perform snapping in those situa-
tions in which the density of the geometries with respect to the rounding dimension
makes spreading them unfeasible due to space lack. However, these configurations
should be rare in real applications, if the degree of rounding is reasonable with respect
to the topological structure and geometrical density of the dataset.

The SRR algorithm is therefore particularly suited for those applications where not
only robustness is required, but also maintaining the original topological structure is
important. We are convinced that the general idea, which consists in spreading two
geometries which are too near to each other instead of snapping them, can be ap-
plied to produce robustness also in different contexts. For instance, considering the
computation of topological relations in a tolerance model, where the test of equality
between two points is based on a tolerance threshold, new algorithms for creating
robust datasets might apply the ”spreading instead of snapping” idea. Moreover, in
more specific application contexts with focused requirements, new algorithms can be
designed which are able to produce arrangements with specific properties, for example
the preservation of topology admitting some kinds of geometric deformations. Further
research work can be done in these directions.
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