
Under consideration for publication in Knowledge and Information
Systems

A Graph-based Meta Model for
Heterogeneous Data Management

Ernesto Damiani1, Barbara Oliboni2, Elisa Quintarelli3 and Letizia Tanca3

1Dipartimento di Informatica, Università degli Studi di Milano (Italy) and Etisalat British

Telecom Innovation Center, Khalifa University of Science and Technology (Abu Dhabi);
2Dipartimento di Informatica, Università degli Studi di Verona (Italy);
3Dipartimento di Elettronica, Informazione e Bioignegneria, Politecnico di Milano (Italy)

Abstract. The wave of interest in data-centric applications has spawned a high vari-
ety of data models, making it extremely difficult to evaluate, integrate or access them
in a uniform way. Moreover, many recent models are too specific to allow immediate
comparison with the others, and do not easily support incremental model design. In
this paper we introduce GSMM, a meta-model based on the use of a generic graph
that can be instantiated to a concrete data model by simply providing values for a
restricted set of parameters and some high-level constraints, themselves represented as
graphs. In GSMM, the concept of data schema is replaced by that of constraint, which
allows the designer to impose structural restrictions on data in a very flexible way.
GSMM includes GSL, a graph-based language for expressing queries and constraints
that besides being applicable to data represented in GSMM, in principle, can be spe-
cialised and used for existing models where no language was defined. We show some
sample applications of GSMM for deriving and comparing classical data models like
the relational model, plain XML data, XML Schema, and time-varying semistructured
data. We also show how GSMM can represent more recent modelling proposals: the
triple stores, the BigTable model and Neo4j, a graph-based model for NoSQL data. A
prototype showing the potential of the approach is also described.

Keywords: Meta-modelling; Heterogeneous data; Graph-based Data Model; Graph-
based Constraints

Received xxx
Revised xxx
Accepted xxx

2 E. Damiani et al

1. Introduction

The mass of digital data made available to applications has exploded in the last
few years, and a rich panoply of flexible data modelling techniques, both struc-
tured and semistructured1, have been proposed. Even more than volume, data
diversity makes it difficult to access data in a uniform way and to integrate the
heterogeneous results obtained from queries. Nevertheless, simultaneous use of
differently prescriptive data representations has become the norm, and struc-
tured data models are often used side-by-side with semi-structured ones. The
result is a plethora of data sources with no unique schema and, consequently, a
possibly irregular, incomplete or even totally absent structure.

The current wave of interest in flexible data modelling has been largely driven
by applications; in particular, the XML data model (W3C, 1998) has become
widespread since the late Nineties because its hierarchical nature made it suit-
able to catalog-style applications, including large bioinformatics repertoires of
proteins, genomes and DNA (Chen, Oughtred, Berman and Westbrook, 2004).
Later, attention has shifted to analytics applications (e.g. Web clickstream anal-
ysis) where data needs to be translated from the data model used for their
collection to others more suitable for analysis; this model shifting, often called
model management, was initially envisaged by Bernstein et al. (Bernstein, Halevy
and Pottinger, 2000) and has been later investigated for service interoperabil-
ity (Zang, Calinescu and Kwiatkowska, 2011).

Today, flexible data modelling is playing a major role in the design of NoSQL
databases for Big Data applications (Cattell, 2011). All NoSQL databases claim
to be schema-less, which means there is no schema enforced by the database man-
agement systems. However, during data integration or data exchange, schema-
less databases still need a supervised migration, due to the schema implicitly
assumed when accessing the data. For example, migrating the schema of the
data from a document datasource to a target relational database requires that a
domain expert determines an appropriate schema that accurately describes the
data, avoiding duplication and sparsity. Although NoSQL databases have been
investigated from a number of viewpoints, above all scalability and performance,
not much has been done in the way of effective comparison between two different
NoSQL systems from the data modelling point of view, and even less to foster
cross-system reuse of semi-structured modelling choices. Individual comparisons
have been attempted in some vertical domains (Vicknair, Macias, Zhao, Nan,
Chen and Wilkins, 2010), but a general methodology and formalism for com-
paring and translating data models, though important during data integration
processes, is still lacking.

We believe that being able to assess and compare data models using precise
criteria, like run-time model revision, has acquired even more importance in the
face of the large-scale storage systems needed for Big Data management. Un-
fortunately, structured and semistructured data models are often too specific to
allow immediate comparison with each other, and do not easily support incre-
mental model design; as a consegquence, a unified framework to represent them
is mandatory.

In this paper we describe the General Semistructured Meta-Model (GSMM) (Damiani,

1 We say that data are semi-structured when, although some structure is present, it is not
as strict, regular, or complete as the one required by the traditional database management
systems (Abiteboul, 1997).

A Graph-based Meta Model for Heterogeneous Data Management 3

Oliboni, Quintarelli and Tanca, 2003). A simple meta-model which accommo-
dates both structured and semistructured information, GSMM leverages the use
of constraints to accommodate all kinds of structures in a truly flexible way.
Thanks to this distinctive feature, GSMM can be applied for the translation of
any data model proposed in the literature into a common formalism, and is useful
for easy a priori comparison and discussion of the features of concrete models,
such as allowed sets of values, handling of object identifiers, relationship repre-
sentation, and support for run-time model revisions, e.g. to adapt to new query
and access patterns; moreover, it supports effective inter-model translation and
design.

GSMM includes a graph-based language, named General Semistructured Lan-
guage (GSL), used to express the queries and the constraints in a concise and un-
ambiguous way, as suggested by Bekiropoulos et al. (Bekiropoulos, Keramopou-
los, Beza and Mouratidis, 2010), and more recently by Fan and Lu (Fan and
Lu, 2017). Rather than being a formal representation of schema-based semistruc-
tured data using tree grammars as formal framework (Makoto, Lee, Mani and
Kawaguchi, 2005), in the wake of the proposals of Atzeni et al., and Bernstein
et al. (Atzeni, Cappellari, Torlone, Bernstein and Gianforme, 2008; Bernstein
et al., 2000) our highly expressive meta-model and language accommodate semi-
or fully structured data, allowing the representation of intensional information
where a rigid schema is not possible.

Indeed, to deal with data that are “schema-less” and “self-describing”, we
allow the modeller to impose restrictions on the structure of data by means of
constraints graphically expressed in GSL. In the line of widely accepted standards
like XML Schematron (Benda, Kĺımek and Nečaský, 2013), our constraints are
not expressed as a part of the schema, but stand by themselves and are directly
applied to the data. In this way, our meta-model provides the data designer with
a powerful tool for enforcing the desired degree of precision of the structure,
supporting flexibility at the data representation level.

Differently from XML Schematron and in line with the most recent Data
Modeling trends, we choose the graph paradigm because it is readily understood
and widely accepted by data modellers. Indeed, graphs are a natural formalism to
express relationships between concepts and are enjoying huge popularity among
non-specialists, for instance, as a way to represent social network information
(e.g. Twitter, Facebook, and LinkedIn). Also, graph-theoretical algorithms, such
as procedures to compute sub-graph matching, are well understood and studied
in the literature.

GSMM is based on a generic graph that can be instantiated into a number of
concrete models by providing a) values for a restricted set of parameters (labels)
and b) some high-level constraints, themselves represented as graphs. Although
our meta-model is entirely implementation-agnostic, we discuss in detail its ap-
plication to a number of practical data models, including the relational model
and the graph-based model used by NoSQL databases like Neo4j (Kaur and
Rani, 2013). Of course, we cannot show how to apply our meta-model to all pos-
sible data models, but our worked-out examples aim to provide designers with
the necessary intuition of carry out their own meta-model-based comparisons

4 E. Damiani et al

between any two of the many available NoSQL models, including column-family
models like BigTable2.

The structure of the paper is as follows: in Section 2 we introduce the GSMM
meta-model, and in Section 2.2 we describe GSL, the graph-based formalism
to express queries and constraints on GSMM data. In Section 2.3 we describe
different types of constraints, while in Section 3 we apply them in order to
represent and compare some well-known semistructured data models with our
unified formalism. In Section 3.8 we classify the set of parameters for inter-model
comparison, and in Section 4 we report an example of inter-model translation. In
Section 5 we describe related work, and in Section 6 we sketch some conclusions
and possible lines for future work.

2. The meta-model and the graph-based constraints

Our self-contained, graph-based meta-model can represent various aspects of
(semi)structured data, such as static or dynamic information, crisp or fuzzy data;
furthermore, it is general enough that most data models proposed in the litera-
ture can be derived from it, including the relational model, OEM (Papakonstantinou,
Garcia-Molina and Widom, 1995), DOEM (Chawathe, Abiteboul and Widom,
1998; Chawathe, Abiteboul and Widom, 1999), XML (W3C, 1998), WG-Log (Damiani
and Tanca, 1997), and PSTDM (Combi, Oliboni and Quintarelli, 2012), just to
name a few.

We will apply GSMM also to represent recent data models inspired by OEM,
like Neo4j (Section 3.7), which is graph-based and has proven exceptionally suit-
able to express (and explore) local relationships between nodes. Also, we will
handle BigTable models, also called soft schemata (Chang et al., 2008), which
can be seen as a semistructured version of standard relational schemata. BigTable
defines a variable set of columns to be chosen at instantiation time within a col-
umn family and - consequently - allows choosing among multiple structures for
each table entry.

Definition 1. A GSMM graph is a directed labeled graph 〈N,E〉, where N =
{n1, . . . , nk} is a (finite) set of nodes ni, each associated to a tuple of labels Lni

,
with |Lni

| ≥ 0 and |Lni
| = |Lnj

|∀i, j ∈ {1, . . . , k} and E = {e1, . . . , ep} is a set
of edges ej = 〈(nh, nk), Rej 〉, with nh and nk in N , and Rej a tuple of labels
such that |Rej | ≥ 0 and |Rei | = |Rej |∀i, j ∈ {1, . . . , p}.

In order to represent the data, we must associate graph nodes with content
(i.e,. a value) by means of node labels. Simple nodes are nodes whose content label
is a value, such as an integer or a string. Complex nodes have a ⊥ (undefined)
value for the content label, showing that they represent abstract objects. The
content of a complex node n is actually the sub-graph rooted in n.

2.1. Instantiation GSMM Parameters

In order to obtain a specific concrete model suitable to represent data in a given
context, all one has to provide is a set of instantiation parameters, which are

2 Big Table is the model shared by popular NoSQL databases like Apache HBase and Cassan-
dra (Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes and Gruber, 2008).

A Graph-based Meta Model for Heterogeneous Data Management 5

the node and edge label cardinalities, and the domains of node and edge labels.
In other words, the cardinalities and domains of the sets of node and edge labels
are model-dependent, and fixed: once a concrete model has been instantiated, all
its nodes have the same number of labels, and the same happens for all its edges.
Among the meta-model instantiation parameters are the sets of base types, used
as domains of the content labels of simple nodes. By delegating all the specific
model features to the choice of the instantiation parameters, the comparison
between different concrete models becomes straightforward, since they exactly
express the concrete models. The comparison criteria are listed below:

1. Cardinality of the tuple of node labels. The higher is cardinality, the wider is
the set of properties that can be associated with each node in the concrete
model.

2. Cardinality of the tuple of edge labels. The tuple of labels that can be associ-
ated to edges shows the granularity of the concrete model’s representation of
semantic relationships between objects. For example, the OEM model repre-
sents only the containment relationship because a single edge label is actually
used to represent the name of the edge endpoint, whereas the WG-Log model
includes an edge label to specify the semantics of a relationship between two
objects, which in turn have their own labels. So the cardinality of WG-Log
edge labels is higher than the one of OEM.

3. Domains of node and edge labels. The sets of node and edge labels, together
with their domains, allow to compare the application contexts of concrete
models. In particular, labels may range over:

– time intervals, allowing the representation of time by associating a tempo-
ral label to the attached item (node or edge);

– the singleton set {isa}, for the representation of specialization/generaliza-
tion relationships;

– object identifiers, hence the OID label associated to nodes allows explicit
OID representation;

– simple values (i.e., base types) admitted in the concrete model, e.g. natural
numbers, to be used to represent ordering between the set of children of
a chosen node. Thus, we can compare models with respect to the set of
allowed base types;

– simple values/OID pairs, i.e., simple values that are replicas of objects
represented elsewhere. Checking whether this type is supported, we can
assess the concrete model’s degree of capability for de-normalisation, an
important flexibility feature.

For example, in temporal applications (Oliboni, Quintarelli and Tanca, 2001)
the node labels in Ln are the object identifier, the node name (i.e., a string),
the node type (Complex or Simple), the content (an elementary value, e.g. a
number, a string), and the temporal element ranging on union of time intervals,
thus |Ln| = 5. The edge labels in Re are the edge name, the edge type (Temporal
or Relational) and the temporal element, so |Re| = 3. In Figure 1 we report a
simple GSMM graph representing temporal information related to Mega Book
Store about the book Harry Potter and the Prisoner of Azkaban.

Some or all the instances of a particular concrete model will share some
additional properties that depend on the real-world objects they represent or on
the semantics of objects and relations taken into account by the model. In our

6 E. Damiani et al

<2,Name, Simple, ⊥, Mega Book Store >

<Sells, Relational, [01/01/1999,now)>

<1,BookShop, Complex, [01/01/1980,now), ⊥>

<6,Book, Complex, [01/01/1999,now), ⊥>

<HasProperty, Relational, [01/01/1999,now)>

<HasProperty, Relational, [01/01/1980,now)>

<HasProperty, Relational, [01/01/1999,now)>

<7, Price, Simple, ⊥, $ 7.99 > <8, Title, Simple, ⊥, Harry Potter and the Prisoner of Azkaban>

Fig. 1. A simple example of GSMM graph for a temporal database.

approach, these properties are represented by means of GSL constraints, added
to the concrete model.

2.2. The GSL Language

Classical database constraints are used to impose (semantic) restrictions on data;
typically, they are expressed with reference to a schema of which themselves
become a part. In the case of flexible data models, however, often there is no
a-priori, and thus a different notion of constraint is required. GSL is capable of
expressing constraints in ways that schema languages cannot. For example, by
means of GLS we can require that the content of an element be controlled by
one of its siblings, or impose that the root element of a tree, regardless of what
type it belongs to, must have specific attributes. More importantly, besides being
used to constrain specific values, GSL constraints can be stated for the entire
data model we want to represent, becoming part of the description of what that
model can or cannot express. We start by introducing the general notion of rule,
which is either a query or a constraint, to be applied to instances of GSMM
data graphs. In general, our rules are composed by (i) a graph, which is used to
identify the sub-graphs (i.e., the portions of a database where the rule is to be
applied), and (ii) a set of formulae, which dictate the restrictions imposed on
those subgraphs.

For the graph part of a rule we use a variant of G-Log (Paredaens, Peel-
man and Tanca, 1995), a Turing complete complex object query language. GSL
queries are composed of colored patterns, i.e., graphs whose nodes and edges are
colored. A GSL rule has three colors: red solid (RS) and red dashed (RD) indi-
cate respectively information that must and must not be present in the instance
where the rule is applied, while green (G) indicates a desired situation in the
resulting instance.

Unlike G-Log (Paredaens et al., 1995), in GSL we express forbidden situations
by means of negated formulae. This does not increase the expressive power of
GLS, yet it makes rules and rule sets much more readable; it is easy to prove
that the two formalisms are equivalent.

In GSL, the specification of logical formulae associated with rules allows to
predicate on the variable labels that appear in the graph part. In particular, we
introduce two sets of variables VL and VR, used as node labels and edge labels in
GSL rules. In general, variables in VL and VR may range over domains of node
and edge labels of the considered concrete model, or may assume an undefined
value (i.e., ⊥) when the label itself does not have a specific value.

A Graph-based Meta Model for Heterogeneous Data Management 7

CourseProfessor
Teaches

Result

Fig. 2. A GSL graph representing a query for finding all professors who do not teach any
course.

Definition 2. A colored directed labeled graph is an ordered pair 〈G,Col〉, where
G = 〈N,E〉 is a GSMM data graph and Col : N ∪ E → {RS,RD,G} is a total
function. For each subset C of {RS,RD,G}, CGC denotes the part of the colored
graph CG containing only the colors of C.

For example, CG{RS} represents the red solid part of CG. Now we introduce
the construct we use to specify rules:

Definition 3. A GSL graph G is a pair 〈G,F〉 where G is a colored directed
labeled graph 〈〈N,E〉, Col〉 and F is a set of formulae. Moreover, the following
properties hold:

–node labels can be either constants or variables in VL;

–edge labels can be either constants or variables in VR;

–F is a set of Conjunctive Normal Form formulae on the constants and variables
of G.

We remark that GSL graphs are not necessarily connected. Examples of GSL
graphs are shown in Figures 2, 3.(c), 4, and 53, because the constraint applies
to any pair of nodes connected by an edge, independently of their actual labels;
the difference between GSL graphs used to express queries and those represent-
ing constraints is in the semantics of their application on a given instance (see
Definition 9).

Indeed, when we use GSL graphs to express queries, the graph itself is applied
to an instance (that in general does not satisfy it), and its application consists in
modifying the instance, so that the obtained graph is satisfied by the result. In
other words, query semantics is given as a set of pairs of instances (I, I ′), where
I ′ ⊇ I is the result of applying the query to I.

For example, the query in Figure 2 requires to find all professors who do not
teach any course (note the use of a RD sub-graph for expressing the negation).
Its application adds to the original instance a node labeled “Result” with some
outgoing edges pointing to all the Professor nodes satisfying the requirements
specified in the query.

When a GSL graph is used to express a constraint, again, an instance satisfies
the rule iff, whenever the red part is satisfied, also the green part is satisfied.

3 In the remainder of the paper we denote constants by means of lowercase words, whereas
words denoting variables start with a capital letter.

8 E. Damiani et al

However, in this case we do not require the input instance I to be modified to
satisfy the rule, but only check whether the rule is satisfied by I itself.

Applying queries or constraints is a morphism between graphs representing
rules and graphs representing database instances. We formalise this morphism
as embedding (Paredaens et al., 1995):

Definition 4. An embedding i of a labeled graph G0 = 〈N0, E0〉 into another
labeled graph G1 = 〈N1, E1〉, is a total mapping i : N0 → N1 such that:

1. ∀n ∈ N0, Li(n)
.
= Ln (where

.
= means that if both labels in the same position

are constants they must be equal, or if in a given position one of the labels is
a variable then it is mapped on the corresponding constant), and

2. ∀〈〈n1, n2〉, L〉 ∈ E0 : 〈〈i(n1), i(n2)〉, L〉 ∈ E1.

An embedding i is also extended to edges by defining the mapping i(〈〈n1, n2〉, R〉)
as 〈〈i(n1), i(n2)〉, R〉.

Thus, a graph is embeddable into another one if they share the same paths
and if the relation between the first and the second graph is a function.

The following two definitions specify the concept of graph matching with
respect to the positive or negative requests represented in coloured graphs.

Definition 5. Let G be a graph, C = 〈〈N,E〉, Col〉 a colored graph, and C ′ =
〈〈N ′, E′〉, Col′〉 a subgraph of C. Let b1 be an embedding between C ′ and G and
b2 be an embedding between C and G. The embedding b2 is an extension of b1
if b1 = b2 | N ′4.

Definition 6. Let G be a graph, C = 〈〈N,E〉, Col〉 a colored graph, and C ′ =
〈〈N ′, E′〉, Col′〉 a subgraph of C. An embedding b between C ′ and G is con-
strained by C if either C = C ′, or there is no possible extension of b to an
embedding between C and G.

In other words, we may informally say that in GSL (like in G-log) a semi-
structured instance satisfies the graph part of a rule, if every embedding of the
red solid part of the rule in the instance that is constrained by the red dashed
part, can be extended to an embedding of the whole solid part (red and green).

Definition 7. Let G be a graph and C = 〈C,F〉 a rule. C is applicable in G if
there is an embedding of C{RS} in G.

Definition 8. Let G be a graph and C = 〈C,F〉 a rule. G satisfies C (G |= C)
if either C is not applicable in G, or, for all embedding b of C{RS} in G that
are constrained by C{RS,RD}, b can be extended to an embedding b′ of C{RS,G}
in such a way that the set of formulae F is true w.r.t. the variable substitution
obtained from b′.

Consider, for example, the graphs GT and GF and the constraint R in Fig-
ure 3, requiring that, whenever a b node has a “child”, that child is labeled c.
GT satisfies the constraint R, whereas GF does not satisfy the same constraint
because of the subgraph in the dashed region.

Definition 9. Let G = 〈G,F〉 be a GSL graph. Sem(G) is a set of pairs {〈I, v〉},
where:

4 The notation b2 | N ′ stands for the restriction of mapping b2 to the nodes in N ′.

A Graph-based Meta Model for Heterogeneous Data Management 9

A

(a) (b) (c)

{ x = C }

B B

C C

A

B B

C D

B

x

GT GF R

Fig. 3. Constraint satisfaction: only the graph GT satisfies the constraint R.

–I is an instance, and

–each v is a labeled graph I ′ ⊇ I, such that I ′ |= G and I ′ is minimal, if G is
a query;

–v ∈ {0, 1}, and v = 1 if I |= G, v = 0 otherwise, if G is a constraint.

We remark that, in order to reduce constraint checking time, one can check
violation instead of constraint satisfaction. Intuitively, there is a constraint viola-
tion if there is at least a subgraph G1 of G matching (with respect to embedding
notion) the graph part of the constraint that does not satisfy the formulae in F .
The set F is the conjunction of its formulae, and thus, there is a violation if at
least one is false.

2.3. Constraints

In the next section we describe the use of GSL for the representation of the con-
straints that express restrictions on the structure and types of the data entities
supported by a concrete data model. By comparing the constraints of two differ-
ent concrete models, we obtain a qualitative assessment, or even a quantification,
of their flexibility.

To start with, however, we shall familiarise with the notation by observing
some simple constraints that hold for a specific database instance, representing
information about Professors, Students and Courses, rather than for an entire
data model (Bunemann, Fan, Siméon and Weinstein, 2001), (Bunemann, Fan
and Weinstein, 1998).

We consider a database whose model is expressed according to GSMM and
represent some simple constraints in Figure 4. The constraint of Figure 4.(b)
contains a formula that imposes restrictions on the possible values of a label.
In Figure 5 we show some cardinality constraints. The application of both
Figure 5.(a) and Figure 5.(b) expresses the constraint stating that every Professor
Teaches exactly one Course.

10 E. Damiani et al

Student Student

CourseCourse

SSN

=

AttendsAttends

(a)

xCourse
Teaches

(b)

Student

Attends

(c)

ProfessorProfessor
=

Course

{ x = Professor}

Fig. 4. (a) A constraint asserting that the SSN of a student functionally determines the courses
the student is taking; (b) a constraint stating that courses are only taught by professors and
requiring (green part) that for each course there is at least one student attending it; (c) the
constraint forbids two different professors to teach the same course.

3. Constraints and concrete models

In this section we describe the two types of constraints supported by our meta-
model.

– High level, or “concretisation”, constraints.
Concretisation constraints hold for all instances of a given concrete data model.
They provide a concise representation of the data model’s expressive power.
For example, to characterise the XML data model we can use a concretisa-
tion constraint stating that each attribute must be connected to its parent
element by means of an “attribute-of” edge. For all concrete models support-
ing a “content” label, we should also specify the constraint that abstract (i.e.,
non-terminal) nodes content is undefined (as anticipated in natural language
after Definition 1).
Figure 6 shows this constraint in the XML context. We remark that in this
case labels are composed by variables.

– Low level, or “domain related”, constraints.
These constraints are defined on instances of concrete models. The introduc-
tory examples shown in Section 2.3 belong to this category. While all the
instances of a particular concrete model must satisfy all the high level con-
straints specified for that model, only some of the instances satisfy a particular
low level constraint.

A Graph-based Meta Model for Heterogeneous Data Management 11

CourseProfessor
Teaches

(a)

CourseCourse
=

Professor

(b)

TeachesTeaches

Professor

Course Course CourseCourse

(c)

Teaches
Teaches Teaches

Teaches

===

=

Fig. 5. (a) Every Professor Teaches at least one Course; (b) every Professor Teaches at most
one Course; (c) each Professor must teach exactly three courses.

{ content1 = ⊥ }

<tag1, type1, order1, content1>

<tag2, type2, order2, content2>

<etype>

Fig. 6. Content label of non-terminal nodes must be undefined.

12 E. Damiani et al

For example, the low-level constraint of Figure 11.(g) (on the GSMM temporal
instance of Figure 11.(b)) dictates that the time interval of a Book must start
after the time interval of its Author.
This constraint makes sense in all the instances representing bookshops infor-
mation, and actually contributes to the semantics of the “Author of” relation-
ship. Depending on the particular concrete model, we may need to represent
also dynamic low-level constraints, defined on temporal semistructured data
to impose restrictions on data evolution. For example, the constraint of Fig-
ure 11.(g) is a dynamic low level constraint.

We remark that, given two models M1 and M2 the way to translate M1

into M2 may not be unique. For instance, the data designer might be called to
make choices about how to translate a model where order is supported into an
unordered model (e.g. XML versus relational).

We do not provide guidelines to the designers except for the recommendation
to be coherent in the choices made within the same system.

Next, we show the use of our meta-model to specify some classic flexible data
models. This exercise will help us to:

1. Show how the features of GSMM allow the expression of many different con-
straints;

2. Show how to perform an inter-model comparison w.r.t. the modelling con-
structs provided by the different models (Section 3.8 and Figure 15);

3. Show our meta-model capability of supporting inter-model translation (Sec-
tion 4).

3.1. The Relational Data Model

Mappings between graph-based and relational data models have been deeply
investigated (Virgilio, Maccioni and Torlone, 2014). No wonder that we can rep-
resent both a relational schema and its instance by using a semistructured data
graph 〈N,E〉, where:

– the cardinality |Ln| of the sets of node labels is 3. Each node ni = 〈oidi,
namei, typei〉 has an object identifier oidi ∈ UID, and the node type typei ∈ {
DBname, RelationName, Att, KeyAtt, SetOfAtt, AttValue }.

– the cardinality |Re| of the tuple of edge labels is 0, and each edge ej =
〈(nh, nk)〉 with nh and nk in N .

An example of a relational database schema, a possible graph-based represen-
tation for the schema and an instance (similar to the one proposed by Virgilio et
al. (Virgilio et al., 2014)), is reported in Figure 7. We also represent the related
GSMM graphs.

In Figure 7.(e) and 7.(f) we represent a primary key and a foreign key con-
straint.

Representing instances of a relational schema by using our graph-based data
model is a straightforward application of the same technique, as shown in Fig-
ure 7(d).

A Graph-based Meta Model for Heterogeneous Data Management 13

TUPLE

MOVIE(MovieID,Title, Year)
ACTOR(ActorID, Name)
CHARACTER(CharacterID, Name)
CAST(MovieID, ActorID, CharacterID)

TUPLE TUPLETUPLE

Title

MovieIDYear NameActorID NameCharacterIDMovieID CharacterID

Actor-ID

<2, MOVIE, RelationName> <3, ACTOR, RelationName> <4, CHARACTER, RelationName> < 5, CAST, RelationName>

<10, MovieID, KeyAtt>

<11, Title, Att> <13, ActorID, KeyAtt>

<16, Name, Att>

<15, CharacterID, KeyAtt> <17, MovieID, KeyAtt>

<19, CharacterID, KeyAtt>

<18, ActorID, KeyAtt>

<14, Name, Att>

(a)

(b)

(c)

{ name3 <> name4 }

MOVIE ACTOR CHARACTER CAST

DB

TUPLE

TUPLE

TUPLETUPLE

Title

MovieIDYear

Name

ActorID

Name

CharacterID

MovieID CharacterID

ActorID

MOVIE

ACTOR

CHARACTER CAST

DB

TUPLE

MovieID CharacterID

ActorID

TUPLE

Name
CharacterID

TUPLE

Name

ActorID
Harry Potter

Hermione Granger

Char1

Char2
Mov1

Act1
Act2

Mov1

Mov1

Act1

Char1 Act2

Char2

Daniel Radcliffe Emma Watson

Harry Potter and the
Philosopher's Stone

2001

<1, DB, DBname>

<7, TUPLE, SetOfAtt>

<12, Year, Att>

<6, TUPLE, SetOfAtt> <8, TUPLE, SetOfAtt> <9, TUPLE, SetOfAtt>

<2, MOVIE, RelationName> <3, ACTOR, RelationName> <4, CHARACTER, RelationName> < 5, CAST, RelationName>

<10, MovieID, KeyAtt>

<21, Harry Potter and the Philosopher's Stone, AttValue>

<13, ActorID, KeyAtt>
<16, Name, Att>

<15, CharacterID, KeyAtt> <17, MovieID, KeyAtt>
<19, CharacterID, KeyAtt>

<18, ActorID, KeyAtt>

<14, Name, Att>

(d)

<1, DB, DBname>

<7, TUPLE, SetOfAtt>

<12, Year, Att>

<6, TUPLE, SetOfAtt> <8, TUPLE, SetOfAtt> <9, TUPLE, SetOfAtt>

<11, Title, Att>

(e) (f)

<20, Mov1, AttValue> <22, 2001, AttValue>

<23, Act1, AttValue>

<24,Daniel Radcliffe, AttValue>

<25, Char1, AttValue>

<26,Harry Potter, AttValue>

<27, Mov1, AttValue>

<28, Act1, AttValue>

<29, Char1, AttValue>

<oid1,name1,RelationName>

<oid2,TUPLE,SettOfAtt>

<oid4,name2,KeyAtt>

<oid6,name3,AttValue>

<oid3,TUPLE,SettOfAtt>

<oid5,name2,KeyAtt>

<oid7,name4,AttValue>

<oid1,DB,DBname>

<oid2,ACTOR,RelationName>

<oid4,TUPLE,SettOfAtt>

<oid6,ActorID,KeyAtt>

<oid3,CAST,RelationName>

<oid5,TUPLE,SettOfAtt>

<oid7,ActorID,KeyAtt>

<oid8,name8,AttValue> <oid9,name9,AttValue>

{ name8 = name9 }

Fig. 7. (a) A relational database schema and its graph-based representation; (b) graph-based
representation of a relational instance; (c) the GSMM graph for the relational schema and
(d) corresponding instance; (e) a primary key constraint (with the key composed by a unique
attribute); (f) one of the foreign key constraint on the MOVIE relation.

14 E. Damiani et al

(a)

<oid1, type1, content1>

{type2 = Root}

<oid2, type2, content2>

<ename>

(b)

<oid1, type1, content1>

{type2 = Object}

<oid2, type2, content2>

<ename>

Fig. 8. (a) A node without incoming edges must have type Root; (b) each node with an
incoming edge has as type Object.

3.2. The Object Exchange Model

The Object Exchange Model (OEM) (Papakonstantinou et al., 1995) has been in-
troduced in the context of the seminal TSIMMIS project carried out at Stanford
University, one of the first attempts to support fast integration of heterogeneous
information sources.

OEM is a graph-based data model where the basic idea is that each object
has a label that describes its meaning. The label is used to extract information
about objects that represent the underlying data.

The information that can be extracted is limited to the inclusion/containment
relationship; indeed OEM does not actually represent the semantics of relation-
ships between objects.

An OEM graph is a GSMM rooted graph 〈N,E, r〉, where:

– the cardinality |Ln| of the sets of node labels is 3. Each node ni = 〈oidi,
typei, contenti〉 has an object identifier oidi ∈ UID, and the node type typei ∈
{ Root, Object }.

– the cardinality |Re| of the tuple of edge labels is 1, and each edge ej =
〈(nh, nk), Rej 〉 with nh and nk in N , has a label Rej = 〈enamej〉, where
enamej is actually the name of the pointed node nk.

Again, r ∈ N is the root of the graph, and the root node has type “Root”.
Consequently, an OEM graph must satisfy the high level constraints in Fig-
ure 8.(a) and 8.(b).

3.3. XML and XML Schema

In this section we apply our meta-model to derive a simple concrete model sup-
porting XML information and XML Schema. XML datasets are often called

A Graph-based Meta Model for Heterogeneous Data Management 15

<?xml version="1.0" encoding="UTF-8"?>
<computer>

<maker> Toshiba </maker>
<model >

<modelname serialcode = “12303B” > Satellite Pro 4200 </modelname>
<year> 2001 </year>
<description>

A versatile laptop computer product.
</description>

</model>
<plant>

<address> Osaka, Japan</address>
</plant>

</computer>

Fig. 9. A well-formed XML document

documents because they can be serialised as plain text. However, unlike generic
text documents, XML documents are not completely unstructured.

A XML document is a sequence of nested elements, each delimited by a pair
of start and end tags (e.g., <tag> and </tag>). The sequence is itself enclosed
by a root element. Figure 9 shows a well-formed XML document.

3.3.1. Plain XML

Plain XML documents like the one in Figure 9 can be represented quite straight-
forwardly in our framework: a Plain XML graph is a GSMM rooted graph 〈N,E, r〉,
where:

– the cardinality |Ln| of the sets of node labels is 4. Each node ni has as tuple
of labels Lni

= 〈tagi, typei, orderi, contenti〉; the type label typei indicates
whether the node is the Root, an Element, Text, Attribute, Processing In-
struction or Comment5, whereas the label orderi assumes as value a natural
number representing the relative order of the node w.r.t. other children of
its parent node, or ⊥ for root, text and attribute nodes. Moreover, the label
contenti can assume PCDATA or ⊥ (undefined) as value.

– The cardinality |Re| of the tuple of edge labels is fixed to 1, where the unique
label represents the edge type. Each edge ej = 〈(nh, nk), Rj〉, with nh and
nk in N , has a label Rj = 〈etypej〉, where the label etypej ∈ {AttributeOf,
SubElementOf}. Note that edges simply represent the “containment” relation-
ship between different items of an XML document and do not have names.

For Plain XML the following high level constraints hold: (i) in an XML
document the root node has type label “Root”, (ii) the content label of element
nodes is undefined (as shown in Figure 6), and (iii) the tag label for text nodes
is not explicitly specified.

5 Plain XML documents may also contain ENTITY nodes, not unlike macro calls that must be
expanded before parsing. We do not consider ENTITY expansion in this paper.

16 E. Damiani et al

3.3.2. XML Schema

Although XML information can be treated as schema-less data, the notion of
XML Schema has been introduced to represent sets of instances sharing the
same structure. An XML Schema is an XML document complying to a standard
structure, itself expressed as a schema; for example a schema’s root node has
always the label “schema” and may have a child of type namespace (W3C, 2001).

Our representation of XML schemata is twofold:

– An XML schema is a low-level constraint that identifies a set of instances.

– An XML schema is itself an XML document; as such, it is represented as in
Section 3.3, and must satisfy a suitable set of low level constraints.

An XML Schema graph is a GSMM rooted graph 〈N,E, r〉, obtained as an
extension of a Plain XML graph. In particular:

– the cardinality |Ln| of the tuples of node labels is 6. Each node ni has as tuple
of labels Lni the corresponding labels of the Plain XML representation plus
the two labels urii, representing the resource identifier attached to that node,
and namespacei, representing the node namespace.

– the cardinality |Re| of the tuples of edge labels is 1, where the unique label
represents the edge type as in Plain XML.

This approach is a simple and effective way to characterise XML schemata
and all their instances a-priori. Specifically, an XML graph representing a schema
must satisfy, among others, the low-level constraints shown in Figure 10.

3.4. Time

In this section we apply our high level data model to the context of tempo-
ral applications (see for example TGM (Oliboni et al., 2001)) for representing
semistructured data dynamics. In this case we use a time interval to represent
when an object exists in the outside world or in the database.

A semistructured temporal graph is a GSMM rooted graph 〈N,E, r〉, where:

– the cardinality |Ln| of the sets of node labels is 5, where each node ni =
〈oidi, namei, typei, contenti, timei〉 has an object identifier oidi ∈ UID, the
node name, the node type in {Complex, Simple}, a time interval timei ∈
V ∪ {⊥}, where V is a set of time intervals, and the node content.

– The cardinality |Re| of the sets of edge labels is fixed to 3, where each edge ej =
〈(nh, nk), Rj〉, with nh and nk in N , has three labels Rj = 〈enamej , etypej ,
Etj〉, where etypej ∈ {Relational, Temporal} is the type of the edge, and
the last one Eti ∈ V is the time interval representing the valid time. Edges
the Relational type are used to represent classical relationships between two
nodes, Temporal edges are used to store represent the update of the content
of a given node (it allows the representation of historical values).

Among others, instances of semistructured temporal graphs must satisfy the
high level constraints in Figures from 11.(c) to 11.(f).

In Figure 11.(b) we show a portion of a semistructured temporal graph con-
taining information about books and authors. Note that this labeled graph satis-
fies the high level constraints described above. Once an instance of a semistruc-
tured temporal graph has been constructed, low level constraints may be applied

A Graph-based Meta Model for Heterogeneous Data Management 17

(a)

<uri1, ns1, tag1, type1, order1, content1>

<uri2, ns2, tag2, type2, order2, content2>

<etype>

{ns1 = ⊥ → tag1 = Schema ∧ type1 = Root}

(b)

<uri1, ns1, Schema, Root, order1, content1>

<uri2, ns2, tag2, type2, order2, content2>

{tag2 = Element → type2 = AttributeType
 ∨ type1 = ElementType
 ∨ type2 = Description }

(c)

<uri1, ns1, Schema, Root, order1, content1>

<uri2, ns2, XmlNs, Attribute, order2, content2>

<etype>

(d)

<uri1, ns1, tag1, type1, order1, content1>

<uri2, ns2, tag2, Element, order2, content2>

{type1 = Root ∨ type1 = Element}

(e)

<uri1, ns1, tag1, type1, order1, content1>

<uri2, ns2, tag2, Attribute, order2, content2>

{type1 = Root ∨ type1 = Element}

(f)

<uri1, ns1, tag1, Attribute, order1, content1>

<uri2, ns2, tag2, type2, order2, content2>

<etype> <etype>

<etype>

<etype>

Fig. 10. (a) The root of the graph has as type root and as tag Schema; (b) Each element
node must be a root child and its label must be ElementType, attribute Type, or Description;
(c) Root must have an attribute with tag XmlNs as child; (d) Each Element node is a child of
either the root, or another Element node; (e) each Attribute node is a child of either the root,
or an Element node; (f) Each attribute Type node is a leaf.

to enforce static or dynamic properties. For example, with the constraint of Fig-
ure 11.(g) on the instance of Figure 11.(b) we could enforce that the time interval
of a Book starts after the time interval of its Author.

Note that, in general, the time interval of a relationship is not connected to
the time interval of the related objects. If we represent valid time in the real
world, the constraint above must be added because it gives semantics to the
“Writes” relation: a book can become valid only after its author was born!

18 E. Damiani et al

(c)

<oid, name, Simple, content, i>

{ (i = ⊥) }

(b)

(e)

<Author, [01/01/1990,now)>

<BookShop, [01/01/1980,now)>

<IndAuthor, [01/01/1980,now)>

<Book, [01/01/1999,now)>

Name

Name

TitlePrice

<Authors, [01/01/1980,now)>

<Writes, [01/01/1990,now)>

<HasProperty, Relational, [01/01/1990,now)>

<HasProperty, [01/01/1980,now)>

<Contains, [01/01/1990,now)>

<HasProperty, [01/01/1999,now)> <HasProperty, [01/01/1999,now)>
J.K. Rowling

Harry Potter and the Prisoner of Azkaban$ 7.99

Mega Book Store

(a)

<1, BookShop, Complex, [01/01/1980,now), ⊥>

<HasProperty, Relational, [01/01/1980,now)> <Authors, Relational [01/01/1980,now)>

<3, IndAuthor, Complex, [01/01/1980,now), ⊥>

<Contains, [01/01/1990,now)>

<4, Author, Complex, [01/01/1990,now), ⊥>

<Writes, Relational, [01/01/1990,now)>

<HasProperty, [01/01/1990,now)>

< 6, Book, Complex, [01/01/1999,now), ⊥>

<HasProperty, Relational[01/01/1999,now)> <HasProperty, Relational, [01/01/1999,now)>

<2, Name, Simple, ⊥, Mega Book Store>

<Sells, [01/01/1999,now)>

<Sells, Relational, [01/01/1999,now)>

<5, Name, Simple, ⊥, J.K.Rowling>

<7, Price, Simple, ⊥, $ 7.99> <8, Title, Simple, ⊥, Harry Potter and the Prisoner of Azkaban>

<oid1, name1, type1, content1, i1>

<oid2, name2, type2, content2, i2>

<ename, etype, ei>

{type1 = Complex}

(d)

<oid1, name1, type1, content1, i1>

<oid2, name2, Simple, content2, i2>

{e_name = HasProperty}

(f)

<oid1, name1, Simple, content1, i1>

<oid2, name2, Simple, content2, i2>

<ename, temporal, ei>

{ename = ⊥ ∧ ei = ⊥ }

(g)

<oid1, Author, Complex, content1, [t1,t2)>

<oid2, Book, Complex, content2, [t3,t4)>

{ t3 > t1 }

<ename, etype, ei>

<ename, temporal, ei>

Fig. 11. (a) A simple TGM instance representing Bookshop temporal database; and (b) the
corresponding GSMM graph. Some examples of high level constraints: (c) simple nodes do not
have a time interval; (d) simple nodes are leaves; (e) edges pointing to simple nodes are named
“HasProperty”; (f) temporal edges do not have a name, neither they have a time interval. A
low level constraint on time: (g) the time interval of a Book starts after the time interval of its
Author.

A Graph-based Meta Model for Heterogeneous Data Management 19

3.5. The Triplestore database

A Triplestore dataset allows the storage and retrieval of triples. A triple is a
data entity in the form subject-predicate-object. Example of triples are “Peter
is 40” or “The t-shirt is white”. Triples can be easily managed by using the
Resource Description Framework (RDF). The RDF data model uses triples for
expressing statements about resources (in particular web resources) and supports
reification, i.e., the possibility to add properties (e.g. provenance properties) of
a relation/predicate.

We can represent a triple-based database by using a GSMM graph 〈N,E〉,
where:

– the cardinality |Ln| of the sets of node labels is 2. Each node ni = 〈oidi,
namei〉 has an object identifier oidi ∈ UID, which can be an URI for the
RDF model, and a string representing the node label namei. In case we need
to represent the RDF Blank Node, we suppose to have ⊥ as value of namei.

– the cardinality |Re| of the set of edge labels is 1, and each edge ej = 〈(nh, nk),
Rj〉 with nh and nk in N , has a label Rj = 〈epredicatej〉, where epredicatej ∈
{TO,FROM}.

A triplestore dataset, is translated into GSMM by introducing nodes for sub-
jects, predicates and objects (see Figure 12.(b) for an example), and must satisfy
the high level constraint in Figure 12.(c) each node having an incoming edge la-
beled < TO > (i.e., representing a predicate) must also have a not dangling
incoming edge labeled < FROM >. Predicates are modeled as nodes to support
the RDF reification.

3.6. BigTable

Under the BigTable data model, each table is a collection of rows composed of
an arbitrary number of cells, and uniquely identified by a key. BigTable rows are
often called wide rows, because the columns cells belong to are not pre-defined
as in relational databases.

GSSM can represent a BigTable database by defining a graph node per cell.
The property ID and the property value of each cell are stored in the value of
the corresponding GSSM node. Each GSSM node gets its set of outgoing edges
via the BigTable row containing the corresponding cell’s adjacency list (often
called adjacency row). We remark that according to this construction each out-
going edge is represented individually, expressing the fact that in BigTable each
element of the adjacency list has its own cell in the adjacency row. The GSSM
representation (see Figure 13(a)) shows us that, compared to other concrete data
models, BigTable supports efficient insertions and deletions. The maximum num-
ber n of cells allowed per row in a concrete BigTable model can be represented by
specifying a GSSL concretisation constraint over the maximum degree of nodes
in the GSSM graph that represents it. As an example, in Figure 13.(b), we report
the constraint specifying that the maximum cells per row must be n = 3.

We can represent a triple-based data model by using a GSMM rooted graph
〈N,E, r〉, where:

– the cardinality |Ln| of the sets of node labels is 3. Each node ni = 〈oidi, namei,

20 E. Damiani et al

<1, Peter>

< 2, IS >

<3, 40>

Peter is 40
Susan is 35
Peter marries Susan

<4, Susan> <5, 35>

< 7, MARRIES >

< FROM >

< TO >

< TO >

< FROM >
< TO >

< FROM >

(c)

<oid1, name1>

<oid2, name2>

<TO>

(a)

(b)

<oid3, name3>

<FROM>

Fig. 12. (a) A triplestore database and (b) its GSMM graph. The high level constraint: (c)
each node representing a predicate, i.e., having an incoming edge labeled < TO >, must have
also an incoming edge labeled < FROM >.

contenti〉 has an object identifier oidi ∈ UID, a string as namei and a content
contenti that could be ⊥.

– the cardinality |Re| of the tuple of edge labels is 0.

If a given BigTable model backend supports key-order, the outgoing edges will
be ordered by the ID of their endpoint. Again, the GSSM representation allows
one to assess the concrete model’s runtime flexibility: ease of updating node IDs
means that nodes which are frequently co-accessed can easily be assigned IDs
with small absolute difference at run-time.

3.7. The Neo4j Graph Database

Neo4j is an open-source and graph-based database that stores data structured
in graphs rather than in tables (Kaur and Rani, 2013).

Graph-based data models allow the representation of connections and make
available information by using navigation operations. This issue is becoming very

A Graph-based Meta Model for Heterogeneous Data Management 21

<1, RelationName1, ⊥>

<2, CellName1, CellContent1>

<3, CellName2, CellContent2>

<4, CellName3, CellContent3>

<5, CellName4, CellContent4>

<6, CellName5, CellContent5>

<7, CellName6, CellContent6>

<8, CellName7, CellContent7>

<9, CellName8, CellContent8>

<10, CellName9, CellContent9>

<11, CellName10, CellContent10>

<12, CellName11, CellContent11>

(a)

<oid1, name1, ⊥ >

<oid2, name2, content2>

=

<oid3, name3, content3>

<oid4, name4, content4>

<oid5, name5, content5>

(b)

Fig. 13. (a) The GSMM graph of a table in the BigTable data model; (b) the maximum cells
per row constraint for n = 3.

important in the information management context, since nowadays there are no
isolated pieces of information: as an example we can consider the Internet of
Things (IoT) where every data source is connected and huge amounts of data
correspond to even larger amounts of links expressing relations among them. For
this reason, graph-based models are often used as a general description of Big
Data.

In Neo4j data are stored in form of nodes and relationships (edges). Nodes
and edges can have zero or multiple properties, each associated with a value.
Moreover, a given node can also be labelled with multiple labels: each node label
indicates a name of the node itself; each edge can be labelled with a type label
(see Figure 14.(a) for an example). Differently from the other data models we
have dealt with, Neo4j allows one to use multiple (and not predefined) labels,
thus, in our translation into GSMM each label or property will be considered a
node.

A Neo4j graph is a GSMM graph 〈N,E〉, where:

– the cardinality |Ln| of the sets of node labels is 3. Each node ni = 〈oidi,
label/propertyi, propertyvaluei〉 has an object identifier oidi ∈ UID, the node
name label/propertyi which assumes values in the string domain and repre-
sents the name (label) or the property of the node, and the propertyvaluei,
which indicates either the value of the property or can assume as value ⊥ in
case the label/propertyi represents a property.

– the cardinality |Re| of the tuple of edge labels is 1. Each edge ej = 〈(nh, nk), Rej 〉
with nh and nk in N , has a label Rej =< etypej > with etypej ∈ {TO,
FROM,has property, has label}.

Similarly to the high level constraint specified for the Triplestore model (see
Figure 12.(c)), also in the translation of Neo4j, each node having an incoming
edge labeled < TO > (i.e., representing an edge in the original Neo4j graph)
must also have a not dangling incoming edge labeled < FROM >.

22 E. Damiani et al

Person
Author

name = “W. Shakespeare”
born = 1564

Tragedy

title = “Romeo and Juliet”
city = “Verona”

PROTAGONIST_OF

Character

name = “Romeo Montague”
role = “Lover”

WROTE
period = “1594-1595” PROTAGONIST_OF

title = “Titus Andronicus”

BELIEVED_WRITTEN_BY

(a)

Character

name = “Juliet Capulet”

<4, name, W. Shakespeare>

<7, WROTE, ⊥>

<18, PROTAGONIST_OF, ⊥ }>

<1, ⊥, ⊥>

<2, Person, ⊥>

<3, Author, ⊥>

<5, born, 1564>

<6, ⊥, ⊥>

<8, period, 1594-1595>

<9, ⊥, ⊥>

<10, Tragedy, ⊥>

<11, title, Romeo and Juliet>

<12, city, Verona>

<13, ⊥, ⊥>

<14, BELIVED_WRITTEN_BY, ⊥ }>

<23, ⊥, ⊥>

<16, title, Titus Andronicus>

<15, ⊥, ⊥>

<20, Character, ⊥>

<21, name, Romeo Montague>

<22, role, Lover>

<23, PROTAGONIST_OF, ⊥ }>

<22, ⊥, ⊥>

<24, Character, ⊥>

<25, name, Juliet Capuleti>

<17, ⊥, ⊥>

<19, ⊥, ⊥> <FROM> <TO>

<TO>

<FROM>

<TO>

<FROM>

<TO>

<FROM>

<h
as

_l
ab

el
>

<has_property>

<h
as

_la
be

l>

<h
as

_la
be

l>

<h
as

_la
be

l>
<h

as
_p

ro
pe

rty
>

<h
as

_p
ro

pe
rty

>

<h
as

_p
ro

pe
rty

>

<h
as

_la
be

l>
<h

as
_p

ro
pe

rty
> <has_property>

<h
as

_l
ab

el
>

<h
as

_l
ab

el
>

<h
as

_la
be

l>
<h

as
_p

ro
pe

rty
>

<h
as

_la
be

l>
<h

as
_p

ro
pe

rty
> <has_property>

(b)

Fig. 14. (a) A Neo4j graph and (b) its corresponding GSMM graph.

3.8. Parameters

Instantiation parameters shown in the table in Fig. 15 are the cardinality of node
labels (named |Ln|), the cardinality of edge labels (named |Re|), the domain of
node labels (named Node Label Domain), and the domain of edge labels (named
Edge Label Domain), for the six concrete models described above6. By inspecting
Table 15, we can carry out fast “a-priori” comparison of the models. For example,
OEM only distinguishes two kinds of nodes, while OEM edges are labeled with
a single label (actually, this label corresponds to the name of the pointed node,
and edges represent the containment relation). The XML Infoset is quite similar
to OEM, though it has a wider repertoire of node types and uses an enumeration
type rather than a generic string for the edge label value. Intuitively, a model
that uses enumeration values as edge labels can support design rules, saying
when attribute rather than element containment should be used. Note that all
the XML-based models represent order between node children, while OEM and
TGM do not. Plain XML is the one model that does not provide object identifiers.

6 For the sake of conciseness Table 15 does not explicitly consider Base Types, because they
may be very large.

A Graph-based Meta Model for Heterogeneous Data Management 23

Fig. 15. Instantiation of meta-model parameters for some concrete models

4. Inter-model translation

Our meta-model can be used for inter-model comparisons and translation as
well. In particular, given two or more concrete models expressed by means of
the GSMM formalism, we would like to be able to translate instances from one
model to another one.

The translation task is mainly based on the following steps:

– for each node and edge label of the source model, try to find a corresponding
label in the destination model. Whenever this basic translation is not possible,
try to express each node or edge label of the source model, which does not
have a corresponding label into the destination model, with a construct (e.g.
a label, an additional node or edge) available in the destination model.

– to each label of the destination model that is not useful to express components
of the instances of the source model assign an undefined value.

Next, we show how our technique can facilitate the inter-model translation
process by considering TGM and plain XML as examples of concrete models.

4.1. Translating TGM into XML

We start from a TGM instance G translated into the corresponding GSMM graph
G = 〈N,E, r〉.

In order to obtain another GSMM graph G′ = 〈N ′, E′, r′〉 related to an XML
document, which represents the information originally contained in G, we have
to apply the primitives represented in Figure 16:

24 E. Damiani et al

<oid, name, type, te, content> <name, XMLtype, , content>

<id, attribute, , oid>

subelement−ofattribute−of

<oid, name, type, te, content>

<name, type, te>

<name, type, te>

<edgetype, attribute, , type>

subelement−of

subelement−of

subelement−of

attribute−of

<idref, attribute, , oid>

subelement−of

<edge2name, element, , >

attribute−of

<edgename, attribute, , name>

<temporalelement, element, , te>

<temporalelement, element, , te>

attribute−of

Node Translation

Edge Translation

Fig. 16. Translating TGM into Plain XML.

1. for each n ∈ N , with n = 〈oid, name, type, te, content〉, transform it in a
subtree of G′ composed by three nodes n1, n2, and n3.
The first node n1 has as tag label name, as type label root if n = r, element
otherwise, an undefined order label, and content as content label (note that
content is a defined value only for simple nodes of the TGM graph).
The two children of n1, named n2 and n3 have the labels 〈id, attribute,⊥, oid〉
and 〈temporalelement, element,⊥, te〉, respectively.
Note that the edge connecting n1 to n2 is labeled attribute− of , whereas the
edge from n1 to n3 is labeled subelement − of . Moreover, we do not use the
order label of Plain XML because TGM does not consider an order relation
between the children of a given node.

A Graph-based Meta Model for Heterogeneous Data Management 25

2. For each edge e = 〈(m1,m2), Re〉 ∈ E, with Re = 〈name, type, te〉, we trans-
form it into a subtree of four nodes n1, n2, n3, and n4.
The node n1 is an element with tag edge2m2

7 (and undefined order and
content labels) which has three children: n2 is an element which has as tag
temporalelement and as content te, n3 is an attribute with tag edgetype and
value type, n4 is an attribute with tag edgename and value name.

3. TGM instances are modeled as DAGs whereas XML documents can be repre-
sented in a graphical way by means of trees.
The third primitive of Figure 16 is introduced in order to solve this distinction
between the two concrete models we are considering.
If the original graph G contains a node n with more than one incoming edge,
we translate one path to n as explained in the previous two steps, and we
consider all the other edges to n as elements with an idref attribute whose
value is the object identifier of the pointed node.

4.1.1. An algorithm for translating TGM into XML

The above considerations allow us to formalise a depth-first algorithm for trans-
lating a TGM graph represented with the GSMM formalism into plain XML
code.

TGM2XML(set of nodes N, set of edges E, node r)
{
for all nodes n in N
paint n white

TGM2XMLCODE(N,E,r)
}

TGM2XMLCODE(set of nodes N, set of edges E, node n)
{
paint n grey
if (n = <oid,nodename,type,contentvalue,t> is a complex node)
{

write:‘‘<nodename id=‘‘oid’’>
<temporalelement> t </temporalelement>’’

for all outgoing edges e_i=((n,x_i),<Ename_i,relational,Et_i>)
pointing to a white node x_i
{

write:‘‘<edge2x_i edgename=‘‘Ename_i’’ type=‘‘relational’’>
<temporalelement> Et_i </temporalelement>’’

TGM2XMLCODE(N,E,x_i)
write:‘‘</edge2x_i>’’

}
for all outgoing edges e_i=((n,x_i),<Ename_i,relational,Et_i>)

pointing to a black node x_i
{

7 An edge pointing to m2.

26 E. Damiani et al

write:‘‘<edge2x_i edgename=‘‘Ename_i’’
type=‘‘relational’’ idref=‘‘objx_i’’>
<temporalelement> Et_i </temporalelement>’’

write:‘‘</edge2x_i>’’
}
paint n black
write:‘‘</nodename>’’

}
else
{
write:‘‘<nodename id=‘‘oid’’> contentvalue ’’
if (n has a temporal outgoing edge to x_j)
write:‘‘<edge2x_j edgename=‘‘Temporal’’ type=‘‘temporal’’>

</edge2x_j>’’
write:‘‘</nodename>’’
paint n black

}
}

Consider the TGM instance reported in Figure 11.(a) and its translation into
GSMM of Figure 11.(b). The XML code produced by TGM2XML is the following:

<BookShop id = 1>
<TimeInterval> [01/01/1980,now) </TimeInterval>
<Edge2Name edgename = HasProperty type = relational>
<TimeInterval> [01/01/1980,now) </TimeInterval>
<Name id = 2> Mega Book Store </Name>

</Edge2Name>
<Edge2IndAuthors edgename = Authors type = relational>
<TimeInterval> [01/01/1980,now) </TimeInterval>
<IndAuthors id = 3>
<TimeInterval> [01/01/1980,now) </TimeInterval>
<Edge2Author edgename = Contains type = relational>

<TimeInterval> [01/01/1990,now) </TimeInterval>
<Author id = 4>
<TimeInterval> [01/01/1990,now) </TimeInterval>
<Edge2Name edgename = HasProperty type = relational>
<TimeInterval> [01/01/1990,now) </TimeInterval>
<Name id = 5> J.K. Rowling </Name>

</Edge2Name>
<Edge2Book edgename = Writes type = relational>
<TimeInterval> [01/01/1999,now) </TimeInterval>
<Book id = 6>
<Edge2Price edgename = HasProperty type = relational>
<TimeInterval> [01/01/1999,now) </TimeInterval>
<Price id = 7> 7.99 </Price>

</Edge2Price>
<Edge2Title edgename = HasProperty type = relational>
<TimeInterval> [01/01/1999,now) </TimeInterval>
<Title id = 8>

Harry Potter and the Prisoner of Azkaban

A Graph-based Meta Model for Heterogeneous Data Management 27

</Title>
</Edge2Price>

</Book>
</Edge2Book>

</Author>
</Edge2Author>

</IndAuthors>
</Edge2IndAuthors>
<Edge2Book edgename = Sells type = relational idref = 6>
<TimeInterval> [01/01/1999,now) </TimeInterval>

</Edge2Book>
</BookShop>

4.2. A software translator

Note that the element Edge2Book has an idref attribute, because the node
labeled Book in the graph of Figure 11.(b) has two ingoing edges.

We have developed a software tool for translating TGM graphs into XML
documents and viceversa. Figures 17.(a) and 17.(b) show how the textual repre-
sentation of a TGM graph reporting information about Books is translated into
an XML document. In the bottom part of Figure 17, we show the reverse step:
the XML document about Books which is produced by the previous translation
(Figure 17.(c)) is coded into the TGM graph depicted in Figure 17.(d).

5. Related work

Our meta-model’s main goal is the uniform representation of flexible data models;
it can be applied to inter-model comparison and translation, aimed at mediation
between heterogeneous data sources. An early approach to this problem was
a unified framework for the management and the exchange of semistructured
data (Atzeni and Torlone, 2001), described according to a variety of formats and
models. In particular they consider various schema definition languages for XML,
OEM and a model to store Web data, and show that the primitives adopted by
all of them can be classified into a rather limited set of basic types. On these basic
types, they define a notion of “meta-formalism” that can be used to describe, in a
uniform way, heterogeneous representations of data, and give the definition of an
effective method for the translation between heterogeneous data representations.
The main difference between this early proposal and our meta-model is related
to schemata: Atzeni et al. (Atzeni and Torlone, 2001) assumes that a schema is
available for each data source, whereas we do not require to have the schema
in advance, but rather consider schemata as constraints that can be specified if
needed. Another early effort is the Hypergraph Data Model (HDM) (McBrien
and Poulovassilis, 1999), a simple low level modelling language based on a hyper-
graph data structure together with a set of associated constraints. Here the con-
straint specification language is not formalised; the authors define a small set
of transformations as schemata expressed in HDM, which are used for inter-
model transformation. Again, the main difference between this proposal and
our meta-model is related to schemata translation. Our work focuses on flexible

28 E. Damiani et al

(a) (b)

(c) (d)

Fig. 17. (a) A tool for translating TGM graphs into XML document; (b) the XML translation
of a TGM graph; (c) a tool for translating an XML document into a TGM graph; (d) the
visualization of the resulting TGM graph.

models which may be schemaless thus, we do not target schemata translation,
but provide a very general graph-based formalism allowing the representation of
different aspects of data. Our inter-model translation, as shown by example in
Section 4, relies on the generality of nodes and edge labels, which can be spe-
cialised to the labels allowed by the source and destination models. Moreover,
while the meta-model by McBrien et al. (McBrien and Poulovassilis, 1999) pro-
vides some basic primitives whereof the basic constructs of models can be built,
ours provides a high level, general formalism whose specializations are the mod-
els themselves. Other early proposals ((Bernstein and Pottinger, 2003), (Bowers
and Delcambre, 2000), and (Levy, Rajaraman and Ordille, 1996)) dealing with
inter-model translation do not propose a unifying meta-model but focus on the
possibility to translate information from a model to another. Bernstein et al.
provide a generic framework that can be used to merge models in different con-
texts (Bernstein and Pottinger, 2003). Bowers et al. proposed an approach to
represent, in a uniform way, information coming from different models (Bowers
and Delcambre, 2000). They use RDF and provide a mapping formalism for inter-
model translation. With the advent of NoSQL data models and systems, some
researchers pointed out the need of analyzing these new systems for a data mod-
elling point of view (Indrawan-Santiago, 2012), while others noticed that small
differences in data modelling features may have a huge impact on performance
of NoSQL systems (Angles, 2012) However, we are not aware of any attempt

A Graph-based Meta Model for Heterogeneous Data Management 29

to provide a comprehensive meta-model and a comparison framework like our
own. Rather, recent research has focused on one-on-one data model comparison
in vertical domains. Lee et al. identify a set of informal expressive power criteria
that lead to choosing the XML Infoset over the relational model as a concrete
data representation for patient data (Lee, Tang and Choi, 2013). Unfortunately,
lack of formalisation of their criteria prevents them for providing a rigorous as-
sessment methodology.
When choosing a NoSQL data model, the computer scientist is faced with the
contrasting requirements of dealing with data whose structure is not easily cap-
tured by traditional approaches, and allowing for fast revisions of representa-
tional choices at run-time. The use of GSMM and GSL marks a step forward
toward a rigorous treatment of the fundamental issues of flexible data model-
ing and querying. For example, GSMM provides a way for a posteriori schema
derivation: intuitively, a schema represents an instance if it contains its skele-
ton while disregarding multiplicities and values. Given a data-base instance, we
can obtain a schema by drawing a constraint that defines the structure of the
document (Cortesi, Dovier, Quintarelli and Tanca, 2002). In particular the con-
straint specifies, by means of first-order formulae, all the possible paths starting
from the root node, and sets also the admitted labels of nodes and edges. We
claim that such schemata may play an important role in assessing similarity and
differences between individual data representations.

6. Conclusions and Future work

We have presented a graph based meta-model (GSMM) and a language (GSL)
aimed at bringing flexible data model properties into a unified framework. In
our future work we will define flexibility metrics on concrete data models based
on their GSSM representations. We expect to be able to establish benchmarks
supporting a priori assessment of data models, guiding adoption decisions. An-
other line of investigation concerns the use of GSL as a language for those models
where no language is defined. As an example, consider the Unified Modeling Lan-
guage (UML), where schemata (models, in UML notation) may be specified by
means of different notations, at different levels of detail (e.g. class diagrams). A
specification based on GSMM could allow the expression of constraints to be as-
sociated to a UML class diagram or to any UML diagram. Moreover, constraints
expressed in GSL may easily be transformed from more general to more specific
representations of the same information by means of different UML notations.

References

Abiteboul, S. (1997), Querying Semi-Structured Data, in ‘Proceedings of the International
Conference on Database Theory’, Vol. 1186 of Lecture Notes in Computer Science, pp. 262–
275.

Angles, R. (2012), A comparison of current graph database models, in ‘Proceedings of the 2012
IEEE 28th International Conference on Data Engineering Workshops’, ICDEW ’12, IEEE
Computer Society, Washington, DC, USA, pp. 171–177.

Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P. A. and Gianforme, G. (2008), ‘Model-
independent schema translation’, The VLDB Journal 17(6), 1347–1370.

Atzeni, P. and Torlone, R. (2001), A Unified Framework for Data Translation over the Web, in
‘Proceedings of the 2nd International Conference on Web Information System Engineering’,
IEEE Computer Society, pp. 350–358.

30 E. Damiani et al

Bekiropoulos, K., Keramopoulos, E., Beza, O. and Mouratidis, P. (2010), ‘A list of features
that a graphical xml query language should support’, Comput. Syst. Sci. Eng. 25(5).

Benda, S., Kĺımek, J. and Nečaský, M. (2013), Using schematron as schema language in concep-
tual modeling for xml, in ‘Proceedings of the Ninth Asia-Pacific Conference on Conceptual
Modelling - Volume 143’, APCCM ’13, Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, pp. 31–40.

Bernstein, P. A., Halevy, A. Y. and Pottinger, R. A. (2000), ‘A vision for management of
complex models’, SIGMOD Rec. 29(4), 55–63.

Bernstein, P. A. and Pottinger, R. (2003), Merging Models Based on Given Correspondences,
Technical Report UW-CSE-03-02-03, University of Washington.

Bowers, S. and Delcambre, L. (2000), Representing and transforming model-based information,
in ‘Proceedings of Int. Workshop on the Semantic Web at the 4th European Conference on
Research and Advanced Technology for Digital Libraries (SemWeb)’.

Bunemann, P., Fan, W., Siméon, J. and Weinstein, S. (2001), ‘Constraints for Semistructured
Data and XML’, SIGMOD Record 30, 47–54.

Bunemann, P., Fan, W. and Weinstein, S. (1998), Path constraints on semistructured and
structured data, in ‘Proceedings of 17th Symposium on Principles of Database System’,
ACM Press, pp. 129–138.

Cattell, R. (2011), ‘Scalable sql and nosql data stores’, SIGMOD Rec. 39(4), 12–27.
Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T.,

Fikes, A. and Gruber, R. E. (2008), ‘Bigtable: A distributed storage system for structured
data’, ACM Trans. Comput. Syst. 26(2), 4:1–4:26.

Chawathe, S. S., Abiteboul, S. and Widom, J. (1998), Representing and Querying Changes in
Semistructured Data, in ‘Proceedings of the Fourteenth International Conference on Data
Engineering’, IEEE Computer Society, pp. 4–13.

Chawathe, S. S., Abiteboul, S. and Widom, J. (1999), ‘Managing historical semistructured
data’, Theory and Practice of Object Systems 5(3), 143–162.

Chen, L., Oughtred, R., Berman, H. M. and Westbrook, J. (2004), ‘Targetdb: a target reg-
istration database for structural genomics projects’, Bioinformatics Applications Notes
20(16), 2860–2862.

Combi, C., Oliboni, B. and Quintarelli, E. (2012), ‘Modeling temporal dimensions of semistruc-
tured data’, J. Intell. Inf. Syst. 38(3), 601–644.

Cortesi, A., Dovier, A., Quintarelli, E. and Tanca, L. (2002), ‘Operational and Abstract Seman-
tics of a Query Language for Semi–Structured Information’, Theoretical Computer Science
275(1–2), 521–560.

Damiani, E., Oliboni, B., Quintarelli, E. and Tanca, L. (2003), Modeling semistructured data
by using graph-based constraints, in ‘OTM Workshops Proceedings’, Lecture Notes in
Computer Science, Springer-Verlag, Berlin, pp. 20–21.

Damiani, E. and Tanca, L. (1997), Semantic Approches to Structuring and Querying Web
Sites, in ‘Procedings of 7th IFIP Working Conference on Database Semantics (DS-97)’.

Fan, W. and Lu, P. (2017), Dependencies for graphs, in ‘Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems’, PODS ’17,
ACM, pp. 403–416.

Indrawan-Santiago, M. (2012), Database research: Are we at a crossroad? reflection on nosql,
in ‘Proceedings of the 2012 15th International Conference on Network-Based Information
Systems’, NBIS ’12, IEEE Computer Society, Washington, DC, USA, pp. 45–51.

Kaur, K. and Rani, R. (2013), Modeling and querying data in nosql databases, in ‘Proceedings
of the IEEE International Conference on Big Data’, pp. 1 – 7.

Lee, K. K.-Y., Tang, W.-C. and Choi, K.-S. (2013), ‘Alternatives to relational database: Com-
parison of nosql and xml approaches for clinical data storage’, Comput. Methods Prog.
Biomed. 110(1), 99–109.

Levy, A. Y., Rajaraman, A. and Ordille, J. J. (1996), Querying heterogeneous information
sources using source descriptions, in ‘Proceedings of the Twenty-second International Con-
ference on Very Large Databases’, VLDB Endowment, Saratoga, Calif., Bombay, India,
pp. 251–262.

Makoto, M., Lee, D., Mani, M. and Kawaguchi, K. (2005), ‘Taxonomy of xml schema languages
using formal language theory’, ACM Trans. Internet Technol. 5(4), 660–704.

McBrien, P. and Poulovassilis, A. (1999), A uniform approach to inter-model transformations,
in ‘Conference on Advanced Information Systems Engineering’, pp. 333–348.

Oliboni, B., Quintarelli, E. and Tanca, L. (2001), Temporal aspects of semistructured data,

A Graph-based Meta Model for Heterogeneous Data Management 31

in ‘Proceedings of The Eighth International Symposium on Temporal Representation and
Reasoning (TIME-01)’, IEEE Computer Society, pp. 119–127.

Papakonstantinou, Y., Garcia-Molina, H. and Widom, J. (1995), Object Exchange Across Het-
erogeneous Information Sources, in ‘Proceedings of the Eleventh International Conference
on Data Engineering’, IEEE Computer Society, pp. 251–260.

Paredaens, J., Peelman, P. and Tanca, L. (1995), ‘G–Log: A Declarative Graphical Query
Language’, IEEE Transaction on Knowledge and Data Engineering 7(3), 436–453.

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y. and Wilkins, D. (2010), A comparison of
a graph database and a relational database: A data provenance perspective, in ‘Proceedings
of the 48th Annual Southeast Regional Conference’, ACM SE ’10, ACM, New York, NY,
USA, pp. 42:1–42:6.

Virgilio, R. D., Maccioni, A. and Torlone, R. (2014), Graph-driven exploration of relational
databases for efficient keyword search, in K. S. Candan, S. Amer-Yahia, N. Schweikardt,
V. Christophides and V. Leroy, eds, ‘Proceedings of the Workshops of the EDBT/ICDT
2014 Joint Conference (EDBT/ICDT 2014), Athens, Greece, March 28, 2014.’, Vol. 1133
of CEUR Workshop Proceedings, CEUR-WS.org, pp. 208–215.

W3C (1998), ‘World Wide Web Consortium. Extensible Markup Language (XML) 1.0’.
http://www.w3C.org/TR/REC-xml/.

W3C (2001), ‘World Wide Web Consortium. XML Schema’.
http://www.w3C.org/TR/xmlschema-1/.

Zang, T., Calinescu, R. and Kwiatkowska, M. Z. (2011), ‘Metamodel-driven soa for collabora-
tive e-science application’, Comput. Syst. Sci. Eng. 26(3).

Author Biographies

Ernesto Damiani is a Professor of computer science at the University
of Milan, where he leads the SEcure Service-oriented Architectures
Research (SESAR) Lab. He is the Founding Director of the Center on
Cyber-Physical Systems at Khalifa University, in the UAE. He received
an honorary doctorate from Institut National des Sciences Appliques
de Lyon, France (2017) for his contributions to research and teaching
on Big Data analytics. He is the Principal Investigator of the H2020
TOREADOR project on Big data as a service. His research spans
Cyber-security, Big Data and cloud/edge.

Barbara Oliboni is assistant professor at the Department of Com-
puter Science of the University of Verona. She received the Ph.D. de-
gree in Computer Engineering by the Politecnico of Milan. Her main
research interests are related to the database field, with an empha-
sis on semistructured data, temporal information, business processes
management, and clinical information management. She is member of
the AIME (Artificial Intelligence in MEdicine) board. She is part of
the Program Committee of International Conferences, and reviewer
for International Journals.

32 E. Damiani et al

Elisa Quintarelli obtained her Ph.D. in Computer and Automa-
tion Engineering at Politecnico di Milano where is now an Associate
Professor. She is the author of about 80 papers and her research inter-
ests are in databases, with a focus on semistructured data, intentional
query answering, data mining and context-based personalization. She
is part of the Program Committee of International Conferences, and
reviewer for International Journals.

Letizia Tanca received a PhD in Applied Mathematics and Com-
puter Science in 1988 and now is a full professor at Politecnico di
Milano. She is the author of about 150 papers on databases and
database theory, deductive and active databases, graph-based lan-
guages, semantic-web information management, and more recently on
context-aware knowledge management and Big Data analytics.

Correspondence and offprint requests to: Barbara Oliboni, Dipartimento di Informatica, Uni-

versità degli Studi di Verona (Italy). Email: barbara.oliboni@univr.it

