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Abstract A spatial object is characterized not only by its geometric extents,
but also by the spatial relations existing with its surrounding objects. An im-
portant kind of spatial relations is represented by topological relations. Many
models have been defined in literature for formalizing the semantics of topolog-
ical relations between spatial objects in the Euclidean 2D and 3D space [7,4,
3]. Nevertheless, when these relations are evaluated in available systems many
robustness problems can arise, which are essentially related to the discrete rep-
resentations adopted by such systems. In a Spatial Data Infrastructure (SDI)
the perturbations introduced by the exchange of data between different sys-
tems can increase the robustness problems.

This paper deals with a set of rules for the representation of spatial datasets
which allow to evaluate topological relations in a robust way using existing
systems. These rules are well-known and described in literature and are based
on a few basic assumptions on the system behavior which are fulfilled by
today’s systems. The main contribution of this paper is to determine in detail
which rules are sufficient in order to make each topological relation robust;
it turns out that the rules depend not only on the topological relation being
considered, but also on the geometric types of the involved geometries and on
the dimension of the space in which they are embedded, thus giving rise to a
very large number of possible combinations. The paper analyses the topological
relations and a significant subset of the geometric types defined in the most
recent version of the Simple Feature Access (SFA) model published by OGC,
considering both a 2D and a 3D space. The extension of the work to the
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types which have been left out can be done using the same concepts and
methodology.

Keywords Robustness · Topological relations · Spatial Data Infrastructure ·
Discrete representation · Distributed systems

1 Introduction

Topological relations are a fundamental formal tool for describing spatial prop-
erties of data in geographical applications: this occurs for example in schema
definitions, in order to define spatial integrity constraints, and also in query
specification, where topological relations can be used for retrieving information
of interest for the user, and in update processes where topological relations
are used to specify data quality [20,16].

Although many abstract models have been studied in literature [7,4,3,
19] for defining the semantics of topological relations between geometric ob-
jects embedded in a Euclidean space, the problems arising when topological
relations are evaluated on data have been much less explored. Topological re-
lations have been defined by using the 9-intersection matrix approach [7] or
other axiomatic approaches [19], while for their evaluation specific computa-
tional geometry algorithms have been implemented in systems which work on
data represented as vectors in a discrete space. The evaluation of topologi-
cal relations should be robust, i.e. two different evaluations performed by the
same or by different systems on the same dataset should produce the same
result; moreover, in the distributed and heterogeneous context of a Spatial
Data Infrastructure (SDI), where datasets are exchanged between systems,
also the evaluation of topological relations performed by different systems on
data which has been exchanged through the network should remain identi-
cal. However, satisfying this requirement can be difficult for several reasons
discussed in the next subsection.

1.1 Robustness Problems in the Evaluation of Topological Relations

The first difficulty in obtaining a robust evaluation of topological relations is
due to the finite numerical representation of coordinates in the vector represen-
tation. The existence of robustness problems in the execution of computational
geometry algorithms which use finite numbers (e.g. floating point) for the rep-
resentation of coordinates in the Euclidean space, instead of the real numbers
theoretically required, is well known [2,11]. For example, consider the 5 seg-
ments in Fig. 1.a, where the grid represents the finite 2D space. The size of
the grid cells can be very small; for instance, with EPSG:32632 WGS84/UTM
coordinates represented by standard FP64 numbers the grid interval is in the
worst case 2−29 meters. In Fig. 1.a all the segment vertices are on the cell
corners, but the distance between a segment and a vertex of another segment
can be very small, much smaller than the cell size, as shown by the 3 vertices
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of segments s2, s3 and s5 with respect to segment s1. In these cases different
systems can produce different evaluations of the topological relations between
segments s2, s3, s5 and segment s1. In order to provide experimental evidence
of this problem, we have moved one endpoint of segment s2 to all positions of
a square of 64 × 64 grid positions and evaluated its topological relation with
segment s1 using two spatial DBMSs: PostGIS [21] and Oracle Spatial [15].
Indeed, the two systems have produced different evaluations in many cases
when the endpoint was very near to s1.

s1

s2

s3

s4
s5

s11

s2

s3

s4
s5 s12

s13

(a) Non-robust situation (b) After application of robustness rules

Fig. 1 Topological relations between segments in a discrete space.

The problems related to the adopted finite number representation are made
even worse by the data perturbation occurring during the exchange of data
between different systems. Such exchanges can introduce perturbations in ge-
ometric representation as a result of the conversions between different formats
and precisions. For instance, the GML language [14], an OGC and ISO stan-
dard for the exchange of spatial data, adopts a decimal encoding of coordinates
represented as character strings, and the conversion from and to the floating
point representation adopted by most current systems can introduce perturba-
tions. Moreover, in order to reduce the size of datasets, the number of decimal
positions in the decimal representation is reduced with respect to the one that
would be required in order to keep the original precision. These perturbations
can cause a modification of the topological relation between two segments; for
example, in Fig. 1.a a small perturbation of the x coordinate of one vertex of
s3 can transform the evaluation of the relation between s1 and s3 from disjoint
to crosses.

Finally, the robustness problem in the evaluation of topological relations
is also related to the dimension of the geometric space (2D or 3D) embedding
the objects. For example, in Fig. 1.a segments s1 and s4 have a macroscopic
intersection in 2D, such that in this space every system will likely evaluate the
topological relation as a crosses. Conversely, in a 3D space a small difference
in the z-value of the position corresponding to the intersection of their planar
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projections could cause some systems to evaluate the relation as disjoint while
others would still evaluate it as crosses. Therefore, in many cases a distinct
analysis of the robustness of topological relations in 2D and 3D is necessary.

1.2 An Approach for Determining the Robustness Rules Required by
Topological Relations

In literature several robustness rules have been proposed in order to solve the
mentioned robustness problems, and they are to some extent applied by sys-
tems. These rules refer to the representation of the data, not to the algorithms
adopted for evaluating the relation. The most important one is based on the
identification of common geometric primitives between different objects. These
common primitives can be either stored once and referred to by the objects
(topological structures [6]) or repeated identically in all objects which share
them. This robustness rule can solve many of the mentioned problems, but not
all of them. A complementary robustness rule, which has been suggested, for
instance in [23], consists in ensuring that a minimum distance is kept between
all geometric primitives which are not identical. Fig. 1.b shows a possible ap-
plication of these rules to the situation of Fig. 1.a: by applying the first rule,
segment s1 has been broken and is now a line constituted by segments s11,
s12 and s13; by applying the second rule, one vertex of segment s2 has been
moved away from s1 so that their relationship is interpreted as disjoint.

The primary goal of this paper is to develop an approach for identifying
for each topological relation the set of robustness rules which are sufficient
to make robust their evaluation; if no other kinds of rules are discovered and
applied, these rules are also necessary in order to guarantee the robustness.

As a secondary goal, this paper shows the application of this approach to
a wide set of topological relations, trying to cover many of the most relevant
situations occurring with data compliant with current standards. However,
since the rules required by each topological relation depend also on the type
of geometries being considered and on the space (2D or 3D) in which they
are embedded, the analysis has been restricted to the following topological
relations and data types:

– All topological relations that can be expressed using the well known ap-
proach of Egenhofer et al. [7] based on the 9-intersection matrix: the topo-
logical relations of the Simple Feature Access (SFA) model published by
OGC [13] are a subset of them.

– The geometric types of the most recent version of the SFA, considering
both a 2D and a 3D space, but without the collection types.

The approach can be also applied to the collection types in [13], but this
would require much space without producing a deeper understanding. Notice
that the data types of the most recent SFA version embed the primitives in
3D space but do not include 3D objects (i.e., solids).

The approach presented in this paper is based on the following key points:
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1. Definition of a set of vector predicates: a vector predicate is an elemen-
tary predicate which can be evaluated in the discrete vector model and is
necessary in order to implement some topological relations (Sec. 2).

2. Definition of a set of critical vector predicates: a critical vector predicate
is a vector predicate whose evaluation is non robust due to the discussed
problems (Sec. 3.1).

3. Determination of which robustness rules are necessary and sufficient for
making each critical vector predicate robust, taking into account a rea-
sonable formalization of the systems’ behavior in the considered SDI envi-
ronment. Notice that the given rules are sufficient to guarantee robustness,
because their application ensures that topological relations are evaluated in
the same way by any implementation. Conversely, the given rules are neces-
sary to guarantee robustness, because if they are not satisfied the evaluation
of topological relations becomes not robust, namely the execution of dif-
ferent algorithm implementations may produce different results (Sec. 3.2).

4. Determination of which critical vector predicates are required for the eval-
uation of each topological relation on some geometrical types (Sec. 4).

5. Derivation of the robustness rules required by a topological relation be-
tween two geometries from 3 and 4 (Sec. 4).

Finally, Sec. 5 illustrates the results of some experiments performed in order
to confirm the effectiveness of the proposed robustness rules.

1.3 Related Work

Geometric algorithms are typically described assuming an infinite precision
that cannot be provided by the adopted computer representations. This as-
sumption raises great difficulties in implementing robust geometric algorithms.
A variety of techniques have been proposed in recent years to overcome these
issues. For instance, the Exact Geometric Computation model [2] provides a
method for making robust the evaluation of geometric algorithms. This can be
achieved either by computing every numeric value exactly, or by using some
symbolic or implicit numeric representation that allows predicate values to be
computed exactly. Exact computation is theoretically possible whenever all the
numeric values are algebraic, which is the case for most current problems in
computational geometry. This technique has made much progress, so that for
certain problems the introduced performance penalty is acceptable. However,
when the computation is performed on curved objects or in 3D space the over-
head is still large. For this reason, an alternative approach has been proposed
which is called Controlled Perturbation (CP) [9] and belongs to the Finite-
Precision Approximation Techniques. This method proceeds by perturbating
the input slightly but in a controlled manner such that all predicates used
by the algorithm are guaranteed to be evaluated correctly with floating-point
arithmetic of a given precision. The algorithms of the Snap Rounding family,
such as the one in [11] and [10], are examples of this approach. They require
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the application of rounding algorithms that convert an arbitrary-precision ar-
rangement of segments into a fixed-precision representation. However, even if
such algorithms guarantee the robustness of the result, the quality of the geo-
metric approximation in terms of similarity with the original arrangement can
be quite low and some topological relations can be modified. Conversely, the
aim of this paper is to define rules that can guarantee, when they are satisfied,
that a dataset is robust w.r.t. topological relation evaluation. In case of rule
violations SR algorithms could be one possible mean for modifying the dataset
in order to fulfill the rules.

In the geographical field, topological data models have been defined which
use a representation based on topology instead of on coordinates (see for in-
stance [6,22]). A GIS topology is a set of rules that models how points, lines
and polygons share coincident geometries, for instance imposing that adjacent
features will have a portion of common boundary. A topological data model
manages spatial relationships by representing spatial objects as an underlying
graph of topological primitives: nodes, faces and edges. The original model has
been defined for representing objects in a 2D space; however, several extensions
to the 3D space have been defined. The Formal Data Structure (FDS) [12] has
been the first data structure to consider spatial objects as an integration of
geometric and thematic properties. It includes three levels: features related to
thematic class, four elementary objects (point, line, surface, and body) and
four primitives (node, arc, face, and edge). The model requires that elementary
objects shall be disjoint and a 1 to 1 correspondence exists between objects
and primitives. In order to overcome some difficulties of FDS in modeling ob-
jects with indiscernible boundary, the TEtrahedral Network (TEN) has been
proposed in [17]. This model includes 4 primitives: tetrahedron, triangle, arc,
and node, where the first one is a real 3D primitive. The Simplified Spatial
Model (SSM) [24] has been the first topological structure that focuses on vi-
sualization aspects of queries as 3D models. It includes only two primitives:
nodes and faces, while an arc can be part of two faces. Finally, the Urban Data
Model (UDM) [5] represents the geometry of a body or of a surface using pla-
nar convex faces, defined as sets of nodes. In [8] the author defines the concept
of geometric realm as a planar graph over a finite resolution grid. Problems of
numerical robustness and topological correctness are solved below and within
the realm layer so that spatial algebras defined above a realm enjoy very nice
algebraic properties. Realms also interact with a database management system
to enforce geometric consistency on object creation or update. All these topo-
logical representations ensure data quality and relation preservation, but they
cannot be applied in a distributed context where data is transferred among
different systems. On the contrary, in order to deal with a distributed con-
text where data are exchanged among different systems and evaluated using
different algorithm implementations, this paper assumes that geometries are
represented with a traditional discrete vector model and defines a set of rules
for making robust existing algorithms used to evaluate topological relations.

In [5] the authors face the problem of developing systematic, robust, correct
and efficient implementation strategies and optimized evaluation methods for



Data Representation Rules for Robustness of Topological Relation 7

topological predicates between all combinations of the three spatial data types:
point, line and polygons. In particular, they recognize four main problems in
existing algorithms: even if the plane sweep algorithm is the basis of any topo-
logical relation evaluation, (1) each topological predicate usually requires an
own, tailored plane sweep algorithm leading to a great number of algorithms;
moreover, (2) different outputs can be required on the basis of the consid-
ered predicate, and (3) each single algorithm is an ad-hoc implementation for
which it is difficult to demonstrate that it covers all cases and guarantees
mutual exclusiveness among relations. Finally, (4) the kind of query (verifi-
cation or determination) usually impacts the evaluation process. For solving
these issues a two phases approach is proposed: in a first exploration phase the
plane sweep algorithm is used for determining the given configuration between
two spatial objects (e.g. their intersections), while in a subsequent evaluation
phase the collected information is used to determine the existing relation.

The problem of developing correct and efficient implementation techniques
of topological predicates is also treated in [18]. The authors consider all com-
binations of complex spatial data types including two-dimensional point, line,
and region objects. The solution consists of two phases: an exploration phase,
which summarizes all intersection and meeting situations in two precisely de-
fined topological feature vectors, and an evaluation phase, which determines
the kind of the topological predicate. Besides this general evaluation method,
the authors present an optimized method for predicate verification and an
optimized method for predicate determination.

The approach adopted in this paper is different from the one in [5,18] be-
cause it does not propose different evaluation strategies or algorithms, but it
identifies a set of rules for data representation whose compliance guarantees
a robust evaluation of topological relations using the existing algorithms. The
reason is that in a distributed context it is convenient to guarantee robustness
by modifying the geometry representation in a way that any algorithm imple-
mentation can produce the same evaluation, rather than rely on a modified
implementation that cannot be available everywhere.

2 Discrete Vector Model

This section presents a discrete vector model that contains the data structures
and the operations that are usually implemented in current spatial database
management systems in order to deal with the evaluation of topological rela-
tions. This model is used in this paper as a formal description of an imple-
mentation of a part of the Simple Feature Access (SFA) model of OGC [13],
which is an abstract specification. The SFA model contains classes describ-
ing geometries of the 2D space, but with the possibility to store also the z
coordinate usually representing the height above or below sea level (such ge-
ometry representation model is often called 2.5D model). Moreover, the type
PolyhedralSurface is available for representing surfaces in 3D space, as sets of
polygon patches with some constraints. The complete type hierarchy is shown
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in Fig. 2. The main characteristics of these types are supposed to be known
by the reader, please refer to [13] for more details.

Geometry

ReferenceSystems::
SpatialReferenceSystem

ReferenceSystems::
MeasureReferenceSystem

Point Curve Surface GeometryCollection

LineString Polygon PolyhedralSurface

MultiSurface MultiCurve MultiPoint

Line LinearRing
Triangle TIN

MultiPolygon MultiLineString

+spatialRS

+measureRS

1..*    
+patch

1..*     
+patch

2..*
+vertex

1..*  +ring

0..*  
+element

0..*  
+element

0..*  
+element

Fig. 2 Geometric type hierarchy of the Simple Feature Access (SFA) model.

As explained in the introduction, we consider only the basic types of the
SFA model, since a robustness analysis for the whole set of geometric types
cannot be presented due to space constraints. The considered types are: Point,
LineString, Polygon and PolyhedralSurface, and we focus on the implementa-
tion of the tests that are necessary for evaluating the topological relations on
geometries of these types. Moreover, we assume that: (i) in LineString geome-
tries and Polygon rings successive collinear segments are not admitted (they
can be merged in one segment); (ii) in PolyhedralSurface type adjacent copla-
nar patches are not admitted (they can be substituted by the patch obtained
by merging them) and (iii) patches have no holes, this does not represent a
significant limitation, since it is very difficult in a discrete space to represent
collinear segments or coplanar patches, and holes in a surface can be gener-
ated by a set of patches without holes that together form a shape similar to a
ring. Notice that conditions (i) and (ii) does not prevent that two different ge-
ometries can have collinear segments or patches, this situation is only avoided
inside the same geometry. Finally remember that polyhedral surfaces in the
SFA model are simple, i.e. they are surfaces with neither self-intersections nor
self-tangency.
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2.1 Discrete Vector Model Types

In the considered discrete vector model each geometry is described as a set of
vertices embedded in a discrete space. A vertex is represented as a tuple of
coordinates, namely by two or three real numbers encoded using a discrete ap-
proach, like the floating point model. In the sequel, these numbers are denoted
as finite numbers. In the model definition we aim to identify those operations
that require a computation on finite numbers, thus having a direct effect on the
robustness of topological relation evaluation. The model is composed of some
basic vector types that are used to implement the considered SFA types, some
basic predicates and operations, and some derived predicates and operations.
The following definitions formalize the model.

Definition 1 (Basic vector types)

– A vertex v is a tuple of finite numbers representing a 2D or 3D coordinate:
v = (x, y) or v = (x, y, z), respectively.

– Let (v1, v2) be a pair of vertices, a segment is the linear interpolation
between them.

– Let (v1, . . . , vn) be a list of vertices, its linear interpolation is a ring if and
only if v1 = vn.

– A patch is a finite part of a plane whose boundary is defined by a ring. ut

Definition 2 (SFA types) Given a geometry g belonging to basic types of
the SFA model [13], its discrete representation DR(g) is defined as a follows
(v denotes a generic vertex):

– If g ∈ Point then DR(g) = v.
– If g ∈ LineString then DR(g) = (v1, . . . , vn) with n > 1.

The linear interpolation between any two consecutive vertices vi, vi+1 is
a segment si. Therefore, its discrete representation can be simplified as
follows: DR(g) = (s1, . . . , sm) with m = n− 1 and si = (vi, vi+1).

– If g ∈ Polygon then DR(g) = ((v1,1, . . . , v1,n1), . . . , (vk,1, . . . , vk,nk
)) with

ni > 2 and k > 0, where each list of vertices is a ring: the first one represents
the outer boundary, while the other ones represent the inner boundaries
(i.e. possible holes). Notice that since a Polygon can be defined only in a
2D space, all boundary rings are coplanar.
Using the ring definition, the discrete representation of g ∈ Polygon can
be simplified as follows: DR(g) = (r1, . . . , rk) with k > 0, where each
ri = (vi,1, . . . , vi,ni

) is a ring .
– If g ∈ PolyhedralSurface then DR(g) = ((v1,1, . . . , v1,n1

), . . . , (vk,1, . . . , vk,nk
))

with ni > 2 and k > 0, where each list of vertices is a ring representing a
polygon without holes.
Using the patch definition, the discrete representation of a PolyhedralSur-
face can be simplified as DR(g) = (p1, . . . , pk) with k > 0 and where each
pi is a planar patch defined by the ring (vi,1, . . . , vi,ni

). ut

Def. 2 considers only the basic types of the SFA model, in accordance with
what previously stated. For a formal definition of all SFA type properties and
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of the other SFA types deriving as specialization of the GeometryCollection
class, please refer to [13].

In Def. 3 a set of basic operations and predicates is defined for analyzing
the implementation of the topological relation evaluation in a discrete vector
space. Indeed, each of them identifies a type of processing on finite numbers
that is required in many cases.

Definition 3 (Basic vector predicates and operations) The signature of
each operation has the syntax: 〈ret type〉〈geom〉.〈op name〉(〈par type〉〈par name〉).

Operations

– dist : vertex × vertex → real, v1.dist(v2) returns the Euclidean distance
between two vertices v1 and v2.

– start : segment→ vertex, s.start() returns the start point of the segment s.
– end : segment→ vertex, s.end() returns the end point of the segment s.
– ray : segment × P (segment) → integer, s.ray(S) returns the number of

segments of S that the semi-straight line starting from s.start() and passing
through s.end() intersects (excluding the possible intersection at s.start()).

– ∪ : segment×· · ·× segment→ segment, s1∪· · ·∪sn joins n overlapping (or
touching) segments that lie on the same straight line, if the segments are
disjoint or do not lie on the same straight line, it returns the empty geome-
try.1 Given two set of segments Si = {si1, . . . , sin} and Sj = {sj1, . . . , sjm},
the compact notation Si∪Sj can be used to denote the join of its contained
segments: Si ∪ Sj = si1 ∪ · · · ∪ sin ∪ sj1 ∪ sjm.

– bnd : patch→ P (segment), p.bnd() returns the set of segments defining the
boundary of the patch p.

Predicates

– eq : vertex × vertex → boolean, v.eq(v0) tests the equality between two
vertexes; two vertices are equal only if they are bitwise identical.

– cnt : segment × vertex → boolean, s.cnt(v) tests the containment between
a vertex v and the interior of a segment s: v ⊂ I(s).

– int : segment×segment→ boolean, s1.int(s2) tests the intersection between
the interiors of two segments: dim(I(s1) ∩ I(s2)) = 0. If the intersection
has dimension 1, it returns false.

– cnt : patch×vertex→ boolean, p.cnt(v) tests the inclusion between a vertex
v and the interior of a patch p: v ∈ I(p).

– int : patch× segment→ boolean, p.int(s) tests the intersection between the
interior of a patch p and the interior of a segment s: dim(I(s) ∩ I(p)) = 0.
If the intersection has dimension 1, it returns false.

– int : patch × patch → boolean, p1.int(p2) tests the intersection between
the interior of two patches: dim(I(p1) ∩ I(p2)) = 1. If the intersection has
dimension 2, it returns false. ut

1 This operation is applied to segments produced as intermediate result of other operations
and cannot be applied to segments of a LineString that are not collinear by definition.
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Notice that, the set of basic predicates is very small and does not contain
all the elementary predicates that one could expect. For example, there is no
test of boundary intersection between two segments. Indeed, the boundary
intersection between two segments can be obtained by comparing for equality
the vertices of their boundaries using other three basic operations/predicates:
s.start(), s.end() and v.eq(v0). In a similar way, many other expected opera-
tions can be derived from these basic ones.

Since in many cases during topological relation evaluation the same expres-
sions have to be reused, the most common repeated expressions are introduced
below as derived operations and predicates. Some expressions do not identify
an exact algorithm for their evaluation, but they identify the need for some ba-
sic operations and predicates, thus requiring a specific type of processing. For
example, the test of segment overlapping s.ov(s0) requires to test the contain-
ment of a vertex in a segment and can avoid the test of segment intersection.

Definition 4 (Derived vector predicates and operations)

Operations and predicates on vertices
Semantics of operations and predicates is shown in Tab. 11 of App. A. In the
sequel the list of operations and predicates is presented (v, vi, vi,j represent
a vertex). Notice that, for evaluating topological relations only the test of
equality between two vertices will be required (see Sec. 2.2), since also the
belong-to relation, the intersection computation, and the test of not empty
intersection between two sets of vertices can be derived from it.

– set : vertex×P (vertex)→ boolean, v.bel(V ) tests if a vertex v belongs to a
set of vertices V = {v1, . . . , vn}.

– ∩ : P (vertex) × P (vertex) → P (vertex), {v1,1, . . . , v1,n} ∩ {v2,1, . . . , v2,m}
returns the common vertices between {v1,1, . . . , v1,n} and {v2,1, . . . , v2,m}.

Operations and predicates on segments
Semantics of operations and predicates is shown in Tab. 12 of App. A. In the se-
quel the list of operations and predicates is presented (s, si are segments). No-
tice that, for evaluating topological relations only the test of equality between
two vertices and the containment of a vertex in a segment will be required
(see Sec. 2.2), since also the equality relation and the topological relations: in,
overlaps and disjoint between two segments can be derived from them.

– bnd : segment→ P (vertex), s.bnd() returns the boundary of a segment s.
– eq : segment× segment→ boolean, s1.eq(s2) tests the equality between two

segments s1 and s2.
– bel : segment × P (segment) → boolean, s.bel(S) tests if the segment s

belongs to the set of segments S = {s1, . . . , sn}.
– in : segment×segment→ boolean, s1.in(s2) tests the inclusion between two

segments: s1 ⊂ s2.
– ov : segment× segment→ boolean, s1.ov(s2) tests the intersection between

two segments that requires they share a portion of line, but excludes in-
clusion or equality (i.e. dim(I(s1) ∩ I(s2) = 1).
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– dj : segment × segment → boolean, s1.dj(s2) tests of interior disjointness
between two segments (I(s1) ∩ I(s2) = ∅).

– diff : segment× P (segment)→ P (segment), s.diff(S) computes the differ-
ence between a segment s and a set of segments S that overlap s.

Operations and predicates on patches
Semantics of operations and predicates is shown in Tab. 13 of App. A. Notice
that, for evaluating topological relations the necessary tests on patches are:
containment and overlapping of a segment in a patch, and relations overlaps,
disjoint, in and equals between patches. Moreover, for specifying the contain-
ment of a segment in a patch in particular cases, an additional operation is
introduced, called p.bndov(s), that returns the set of boundary segments of
a patch p that overlap or are contained in a segment s. Finally, we remark
that for evaluating the overlaps relation between a patch and a segment the
predicate p.cnt(s) is not necessary. In the sequel p, pi represent a patch:

– ver : patch→ P (vertex), p.ver() returns the patch vertices.
– cntint : patch × segment → boolean, p.cntint(s) tests the inclusion between

a segment s and a patch interior (I(s) ⊂ I(p)).
– cnt : patch × segment → boolean, p.cnt(s) tests the inclusion between a

segment s and a patch p (s ⊂ p).
– ov : patch × segment → boolean, p.ov(s) tests the overlapping between a

segment interior and a patch interior (dim(I(s)∩I(p)) = 1∧¬(I(s) ⊂ I(p)).
– dj : patch × segment → boolean, p.dj(s) is a test of disjointness between a

segment interior and a patch interior (I(s) ∩ I(p) = ∅).
– eq : patch × patch → boolean, p1.eq(p2) tests the equality between two

patches p1 and p2.
– int2 : patch × patch → boolean, p1.int2(p2) is a test of interior intersection

of dimension 2 between two patches interior (dim(I(p1) ∩ I(p2)) = 2).
– in : patch × patch → boolean, p1.in(p2) tests the inclusion between two

patches (p1 ⊂ p2).
– dj : patch × patch → boolean, p1.dj(p2) is a test of interior disjointness

between two patches (I(p1) ∩ I(p2) = ∅).
– ov : patch × patch → boolean, p1.ov(p2) is a test of interior overlapping

between two patches (dim(I(p1) ∩ I(p2)) = 2 ∧ ¬(I(p1) ⊂ I(p2)) ∧
¬(I(p2) ⊂ I(p1))). ut

In order to simplify as much as possible the specification of the evaluation
tests for topological relations, which are illustrated in Sec. 2.2, some additional
derived operations and predicates are presented in Tab. 14 of App. A, that
apply to geometries of types: LineString, Polygon and PolyhedralSurface.

2.2 Testing Topological Relations in the Discrete Vector Model

This paper considers all topological relations that can be expressed using the
well known approach of Egenhofer et al. [7] based the 9-intersection matrix.
The topological relations of the SFA model are a subset of them.
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The 9-intersection matrix is defined by using the concepts of interior (inter-
nal part), boundary and exterior (external part) of a geometric object. Given
a geometric object a of the abstract type Geometry and the operations: a.PS()
returning the point set represented by a, a.boundary(), returning the geomet-
ric object representing the boundary of a (or the emptyGeometry if a has an
empty boundary), the following point sets are defined:

1. interior of a, denoted as I(a): it is the point set a.PS()\a.boundary().PS().
Namely, it is the set of object points that do not belong to its boundary.

2. boundary of a, denoted as B(a): it is the point set a.boundary().PS().
3. exterior of a, denoted as E(a): it is the point set a.space()\a.PS(). Namely,

it is the set of points from the space embedding a that do not belong to
the object itself.

Definition 5 (Topological relation) Given two geometric objects a and
b of any geometric type, the definition of a topological relation is given, us-
ing the combinatorial topology approach and the Dimensionally Extended 9-
Intersection Model (DE-9IM) [4], by assigning the following matrix:

R(a, b) =

 dim(I(a) ∩ I(b)) dim(I(a) ∩B(b)) dim(I(a) ∩ E(b))
dim(B(a) ∩ I(b)) dim(B(a) ∩B(b)) dim(B(a) ∩ E(b))
dim(E(a) ∩ I(b)) dim(E(a) ∩B(b)) dim(E(a) ∩ E(b))

 (1)

where the possible values are {F, 0, 1, 2, T, ∗} with the meaning F : empty set,
0: point, 1: curve, 2: surface, *: any, T : 0,1,2. ut

In the sequel, we show how each cell of the 9-intersection matrix can be
evaluated in the discrete vector model presented above. Given the discrete
representation DR(g1), DR(g2) of two geometries g1, g2, the content of each cell
can be computed by evaluating a given logical expression which contains some
of the vector operations and predicates previously presented and has DR(g1),
DR(g2) as parameters. The logical expressions are obtained by considering for
each cell all the possible combinations of geometry types that are admissible.
Since this matrix can be used for the definition of any topological relation, the
obtained set of expressions is sufficient for evaluating any topological relation
defined by means of a 9-intersection matrix. This approach is similar to the one
applied in [18], but is extended to the 3D space types of the SFA specification.

Proposition 1 (Evaluation of matrix cells using vector predicates)
Given two geometries a and b, the following tables show for each combination
of types the cells of the matrix that have to be evaluated: one table regards
the 2D space, the other one the 3D space. In the table the following symbols
are used: T (F ) indicates that the cell for the considered combination of types
(type(a)/type(b)) is always true (false), while Tab(x) means that Tab. x of
App. B shows the logical expression that implements in the discrete model the
test required for evaluating the cell. Finally, if the cell can be evaluated con-
sidering the test specified for another cell ci,j of the matrix Mt1,t2 , this cell is
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specified by the symbol ct1,t2i,j .

2D Point (PT) LineString (LN) Polygon (PL)

PT MPP MPL MPGTab(15) F ¬c1,1
F F F

¬c1,1 F T


Tab(15) Tab(19) Tab(23)

F F F

T e1(∗) T


Tab(15) cPL

1,1 Tab(23)

F F F

T T T


LN MLP = MT

PL MLL MLGTab(18) Tab(19) Tab(24)

Tab(19) cPP
1,1 e2(∗)

Tab(24) e2(∗) T


Tab(16) cLL1,1 Tab(24)

cPG
1,1 cPL

1,1 e3(∗)
T cLL1,3 T


PL MGP = MT

PG MGL = MT
LG MGGTab(21) cGL

1,1 Tab(25)

cLG1,1 cLL1,1 cLG1,3
Tab(25) cGL

1,3 T


(*) e1: if ln.bnd() 6= ∅ then T else F ; e2: if ln.bnd() = ∅ then F else cPL

1,3;

e3: if ln.bnd() = ∅ then F else cPG
1,3.

3D Point (PT) LineString (LN) PolyhedralSurface (PS)

PS MSP MSL MSLTab(15) F T

cLP1,1 F T

Tab(23) F T


Tab(20) cSP1,1 T

cLL1,1 cLP1,1 cLL1,3
Tab(24) e1(∗) T


Tab(22) cSL1,1 Tab(25)

cSL1,1 cLL1,1 cSL3,1
Tab(25) cSL3,1 T


(*) e1: if ln.bnd() = ∅ then F else cSP3,1.

Proof The completeness proof of the above tables and of the cases illustrated
in App. B is presented in [1]. ut

3 Robustness of Vector Predicates

The discrete representation of geometries may produce many unexpected prob-
lems during query evaluation and quality tests, due to the two main problems
highlighted in the introduction: numerical weakness of algorithms implemen-
tation and data perturbation induced by transfer. Sec. 3.1 formalizes such
problems and defines a set of assumptions about the considered environment,
then Sec. 3.2 analyses the robustness of the vector predicates used in the eval-
uation of topological relations.

3.1 Assumptions on Systems and Implementations

Let us consider two systems, denoted here as S (source) and D (destination),
which exchange spatial data and evaluate topological relations on such ex-
changed data. During the transfer a transformation may occur on each vertex;
let vS be a vertex in S and vD the same vertex in D, the transformation from
vS to vD is captured by a mapping f(), such that vD = f(vS).

The behavior of current systems displays a set of problems with respect
to robustness. In the sequel these problems are listed and for each one some
minimal assumptions on the system behavior are stated. They are considered
as necessary preconditions in order to build robustness rules.
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Problem 1 (Numerical weakness in algorithms implementation) An
aspect that introduces ambiguity in the evaluation of topological relations is
the necessity of implementing a system of linear equations in order to evaluate
some elementary geometric tests. These tests are used in all implementations
of the basic vector predicates. They are ambiguous due to the finite precision
of the discrete geometric representation and of the algorithms implementation
in current GIS systems. ut

In particular, the following tests might lead to ambiguous results, when
performed on different systems.

Problem 1.1 (Vertex-Vertex equality/disjunction) If the two vertices
are close to each other, different systems may return different results. ut

Problem 1.2 (Vertex-Segment relative position) If the distance between
a vertex v and a segment s is very small, then different systems may return
different results The relative position between an (oriented) segment and a
close vertex in a 2D/3D space can be: (i) the segment contains the vertex; (ii)
the segment is on the left of the vertex; (iii) the segment is on the right of the
vertex. Left and right refers to the unique plane that contains both s and v.
For example, s can contain v and f(s) might be on the left of f(v) or s can
be on the right of v and f(s) on the left of f(v). ut

Problem 1.3 (Segment-Segment intersection/disjunction in 3D) In
some cases different systems return different results if the two segments are
close to each other. ut

Segment-segment intersection in 2D is not an independent elementary
problem, since it can be reduced to Prob 1.2, as it will be shown in Sec. 3.2.

Problem 1.4 (Vertex-Patch relative position) If the distance between a
vertex v and a patch p is very small, then different systems can return different
results. The relative position between a vertex and an (oriented) patch in the
3D space can be: (i) the patch contains the vertex; (ii) the patch is above the
vertex; (iii) the patch is below the vertex. ut

Problem 1.5 (Vertex-Vertex distance computation) Computing the dis-
tance between two vertices in different systems can return different results. ut

In order to achieve the robustness in these elementary tests, the following
assumptions are introduced. In particular, Ass. 1 is important to preserve ver-
tex identity, and Ass. 3 is important to preserve the disjunction of geometries.

Assumption 1 (Equality preservation in data exchange) The map-
ping f() representing the exchange of geometries between a source system
S and a destination system D is a function, namely: ∀v1, v2 ∈ V(v1.eq(v2) =⇒
f(v1).eq(f(v2))) where V is the set of vertices in the source system S. ut
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Assumption 2 (Bounded error in distance computation) Given two
vertices transferred from system S to system D, the evaluation of their relative
distance in the two systems can be not equal, but the difference is less then a
threshold T : ∀v1, v2 ∈ V(| v1dist(v2)− f(v1).dist(f(v2)) |< T ). ut

Assumption 3 (Minimum distance for preserving relative positions)
In the transfer of geometries from system S to system D, it is possible to
determine a threshold distance TD (TD >> T ) such that the following con-
ditions hold, where V is the set of vertices, S is the set of segments and P is
the set of patches in the source system S.

Assumption 3.1 (Vertex-Vertex minimum distance) ∀v ∈ V (∀v1 ∈ V
(v.dist(v1) > TD + T =⇒ (¬v.eq(v1) =⇒ ¬f(v).eq(f(v1))). ut

Assumption 3.2 (Vertex-Segment minimum distance) ∀v ∈ V (∀s ∈ S
(v.dist(s) > TD+T =⇒ ((s is on the left of v) ∧ (f(s) is on the left of f(v))
∨ (s is on the right of v) ∧ (f(v) is on the right of f(v))))) ut

Assumption 3.3 (Segment-Segment 3D minimum distance) ∀s ∈ S3D
(∀s1 ∈ S3D(s.dist(s1) > TD + T =⇒ (¬s.int(s1) =⇒ ¬f(s).int(f(s1))). ut

Assumption 3.4 (Vertex-Patch minimum distance) ∀v ∈ V (∀p ∈ P
(v.dist(p) > TD+T =⇒ ((p is above v) ∧ (f(p) is above f(v)) ∨ (p is below v)
∧ (f(p) is below f(v))))). ut

The requirement TD >> T is necessary because the uncertainty in the
distance computation T would make Ass. 3 useless. Notice that with the pre-
cision levels provided by current systems, TD is significantly smaller than the
average error in the coordinate representation with respect to real positions
of points (spatial accuracy): TD << Absolute-Positional-Error. Moreover, the
value for TD can be chosen by applying the following considerations: (i) TD
only depends on the precision in coordinate representation; (ii) this precision
in the floating point representation depends on the magnitude of the numbers
to be represented: the higher is the magnitude, the lower is the precision, the
higher will be TD. For example, considering the worse case in EPSG:32632
WGS84/UTM coordinates which implies a precision around 10−9 meters, the
value of TD should be significantly greater than 10−9, so that also the numer-
ical weakness of distance evaluation can be adsorbed. Finally, notice that as
shown in Sec. 1.1 in real datasets it is not correct to assume that TD is the
minimum distance among the represented vertices, segments and patches, if
this property has not been explicitly implemented.

The second problem that can impact the robustness of elementary tests is
due to the perturbation that a dataset can suffer in a transfer process from
one system to another one.

Problem 2 (Perturbation in data exchange) The data transfer between
two systems S and D may cause a perturbation that slightly modifies the
discrete representation of geometries. ut
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In order to deal with this problem, the following minimal assumption is stated.

Assumption 4 (Boundedness of perturbation in data exchange) The
perturbation introduced in a vertex representation by the mapping f() has an
upper bound, called PB (Perturbation upper bound). In other words, given
a vertex v, the distance between v and f(v) is always less than PB : ∀v ∈
V (v.dist(f(v)) < PB). ut

If a sequence of n data transfers is considered instead of a single one,
then it is also assumed that the combined effect of all perturbations cannot
diverge: ∀v ∈ VS(v.dist(fn(. . . (f1(v)))) < PB). Otherwise, after each pertur-
bation the robustness rules that will be presented in next section will guarantee
the preservation of the elementary tests, but the perturbed dataset will possi-
bly not satisfy the robustness rules any more, thus requiring a procedure for
restoring robustness before another perturbation is applied.

3.2 Robustness Evaluation of Vector Predicates

The implementation of topological relations on the discrete vector model
makes use of a set of predicates, which include in their definition the elemen-
tary operations described in Sec. 2. For the reasons highlighted above, some
of these predicates can return different results in different systems, and are
called here critical vector predicates. This section introduces the set of critical
vector predicates that are used in the evaluation of topological relations and
defines a set of rules for making them robust.

Given the problems on systems and implementations described in Sec. 3.1,
the vector predicates, introduced by Def. 3 of Sec. 2, can be proved to be
critical with respect to robustness, since their evaluation on the same data
can change when data are transferred from one system to another one.

Proposition 2 (Lack of robustness in basic predicates and opera-
tions) Given the systems and implementation problems described in Sec. 3.1,
the predicates of Def. 3 are all not robust, and hence are called critical vector
predicates. Among the operations presented in Def. 3, only the following two
operations are not robust: v.dist(v0) and s.ray(S).

Proof The lack of robustness of v.eq(v0), s.cnt(v) and p.cnt(v) is a direct
consequence of Prob. 1.1, 1.2 and 1.4, respectively. Relatively to s.int(s0), in
3D it is a direct consequence of Prob. 1.3; while in 2D, it is not robust since
it can be reduced to a combination of elementary operations which are not
robust. In particular, if two segments s1 and s2 intersect each other in 2D
then the relative positions of the end points of s1 w.r.t. s2 are opposite (i.e.,
one is on the left of s2, the other one is on the right). These relative positions
are subject to Prob. 1.2 and thus s.int(s0) is not robust also in 2D. Similarly,
p.int(s) is not robust since it can be reduced to a combination of elementary
operations that are not robust. In particular, since p.int(s) requires that the
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Fig. 3 Critical situations for vector predicates.

intersection dimension is zero, then p and s have to be not coplanar and the
possible relative positions of s w.r.t. p are those ones shown in Fig. 3.a, Fig. 3.b
and Fig. 3.c, which are subject to Prob. 1.2, 1.3 and 1.4, respectively. A similar
reasoning is true also for p.int(p0) by considering the boundary segments of one
patch w.r.t. the other one. The lack of robustness of the operation v.dist(v0)
is a direct consequence of Prob. 1.5. Finally the operation s.ray(S) is not
robust due to the Prob. 1.3, because the variation in segment intersection
detection produces a different intersection count and thus a different result of
the s.ray(S) operation. ut

3.2.1 Robustness Rules for Basic Critical Predicates

This section introduces a set of rules that, applied on the datasets in the source
system S, make non ambiguous the evaluation of the critical vector predicates
identified in Def. 3. These rules are classified into two categories: Identity Rules
(IR) and minimum Distance Rules (DR). The following IR are used to ensure
the robustness of topological relation evaluation and are based on Ass. 1.

Rule 1 (IR1: Vertex-Segment) For each vertex v that has to lie in a seg-
ment s = (v1, v2), a new vertex vh bitwise identical to v has to be introduced
in the s representation splitting it into two new segments s1 = (v1, vh) and
s2 = (vh, v2) [8]. Therefore, after the rule IR1 has been applied, the following
condition is always true: ∀v ∈ S(∀s ∈ S(¬s.cnt(v))). ut

Notice that, in a discrete vector model after splitting a segment s the
resulting segments s1 and s2 are usually not collinear due to the involved
approximations, except for some statistically rare cases. Since the presence
of collinear segments complicates some predicate definitions and in general
requires to transform all tests between two segments into tests between a
segment and a set of segments without really affecting the contribution, in this
paper the vector model does not consider the presence of collinear segments
in the representation of a geometry.

Rule 2 (IR2: Segment-Segment) All intersections between two segments
s1 and s2 have to be represented by splitting them through the insertion of
a new common vertex, which has to be represented only once or by means of
several identical instances, namely instances that have bitwise identical coor-
dinates. Therefore, after the rule IR2 has been applied, the following condition
is true: ∀s1 ∈ S(∀s2 ∈ S(¬s1.eq(s2) =⇒ ¬s1.int(s2))). ut
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Rule 3 (IR3: Vertex-Patch) All vertex-patch intersections must be repre-
sented by a vertex v contained in the patch definition. Therefore, the patch
representation has to be split in two and the vertex v has to be inserted as a
new start/end point of a new segment composing one of the patch boundaries.
Therefore, after the rule IR3 has been applied, the following condition is true:
∀v ∈ S(∀p ∈ S(¬p.cnt(v))). ut

These rules are not sufficient alone to guarantee the robustness for all
critical predicates. In particular, in order to solve the situation highlighted in
Prob. 1.1-1.4 and given Ass. 4 and 3, the following other rules are introduced.

Rule 4 (DR0: Vertex-Vertex) For all pairs of vertices v1 and v2 of S, the
distance between them is either zero or is greater than a Minimum Granted
Distance (MGD): ∀v1 ∈ S(∀v2 ∈ S(v1.dist(v2) = 0∨ v1.dist(v2) > MGD)). ut

Rule 5 (DR1: Vertex-Segment) For all vertices v and for all segments
s of S, the distance between them is either zero or is greater than MGD :
∀v ∈ S(∀s ∈ S(s.dist(v) = 0 ∨ s.dist(v) > MGD)). ut

Rule 6 (DR2: Segment-Segment) For all pairs of distinct segments s1
and s2 of S, the distance between them is either zero or is greater than MGD :
∀s1 ∈ S(∀s2 ∈ S(s1.dist(s2) = 0 ∨ s2.dist(s2) > MGD)). ut

Rule 7 (DR3: Vertex-Patch) For all vertices v (representing isolated points
or segment end points) and for all patches p of S, the distance between them is
either zero or is greater than MGD : ∀v ∈ S(∀p ∈ S(p.dist(v) = 0 ∨ p.dist(v) >
MGD)). ut

Considering Ass. 3, 2 and 4, MGD should be always be always greater than
2×PB + TD + T, since we need to guarantee a distance TD + T between two
geometries even if each of them moves towards the other by PB.

Notice that in 2D space DR2 is implied by DR1 and that the minimum
granted distance between patches and segments is implied by DR2 and DR3.

Theorem 1 (Robustness of critical vector predicates) Given Ass. 1, 3
and 4 the necessary and sufficient rules to be applied on dastasets in the source
system (S) in order to guarantee the robustness evaluation of the critical vector
predicates in the destination system (D) are those shown in Tab. 1. Notice
that for the mentioned assumptions, when IR1, IR2 and IR3 are applied on S,
predicates s.cnt(v), s1.int(s2) and p.cnt(v) are always false.

Proof v1.eq(v2) Considering the first row, DR0 is a sufficient condition for

the robustness of v1.eq(v2). If v1.eq(v2) is true in S, then Ass. 1 preserves
the truth of the predicate; while, if v1.eq(v2) is false, then given Ass. 1 and
Ass. 3.1, DR0 guarantees that two distinct vertices remain distinct. Regarding
the necessity of DR0, observe that without it a false v1.eq(v2) can become true
after a perturbation due to data transfer.

s.cnt(v) Considering the second row, IR1+DR1 are sufficient conditions

for the robustness of s.cnt(v). If s.cnt(v) is true, IR1 has not been applied
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Table 1 Robustness conditions for critical vector predicates

Predicate in 2D space in 3D space

v1.eq(v2) DR0 DR0
s.cnt(v) IR1 + DR1 IR1 + DR1
s1.int(s2) IR1 + DR1 IR1 + IR2 + DR2
p.cnt(v) IR1 + DR1 IR1 + IR3 + DR3
p.int(s) NA IR1 + IR2 + IR3 + DR2 + DR3
p1.int(p2) NA IR1 + IR2 + IR3 + DR2 + DR3

correctly, hence after its application this case cannot occur. Conversely, if
s.cnt(v) is false, then either v is an end point of s or v is disjoint from s. In
the first case, given Ass. 1, IR1 is sufficient for preserving in data transfer the
identity between a vertex and a segment end point, which preserves the falsity
of f(s).cnt(f(v)) avoiding the vertex to move into the segment interior. In
the second case, given Ass. 4 and Ass. 3.2, DR1 is sufficient for preserving the
spatial disjunction among a vertex and a segment interior, which preserves the
falsity of f(s).cnt(f(v)). Regarding the necessity of IR1 (DR1), observe that
without IR1 (DR1) the first (second) case described above cannot be robust.

s1.int(s2) Considering the third row, in 2D DR1 is sufficient to preserve

s1.int(s2), if two segments intersect, then the relative position of one segment
end point with respect to the other one is opposite (i.e., one end point is on
the left, and the other one on the right of the other segment); hence, given
Ass. 4 and Ass. 3.2, after a data transfer DR1 preserves the relative position
of vertices with respect to segments and s1.int(s2) is preserved. The same
reasoning applies for two disjoint but very close segments. In addition, IR1 is
applied so that, given Ass. 1, it avoids that a s1.cnt(s2.start()) (or any of the
other possible containment between s1 interior and s2 end points) becomes
a f(s1).int(f(s2)). In 3D IR2 is also introduced in order to avoid that two
crossing segments become disjoint, and DR2 is introduced in place of DR1
since, given Ass. 3.3, it preserves the spatial disjunction of segments, avoiding
that two disjoint segments become interior crossing segments. Regarding the
necessity of DR1 in 2D, observe that without it, due to Prob. 1.2, the relative
positions of one segment end points with respect to the other segment can
change converting two crossing segments in two disjoint segments or vice versa;
finally, without IR1 a s1.cnt(s2.start()) (or other similar situations) can be
transformed after data transfer into a f(s1).int(f(s2)).

p.cnt(v) Considering the fourth row, in 2D if p.cnt(v) is true then the
relative position of v with respect to a segment of p boundary has to be
preserved; DR1 is sufficient to preserve this condition, since, given Ass. 4 and
Ass. 3.2, after a data transfer DR1 preserves the relative position of vertices
with respect to segments. In addition, IR1 is applied so that, given Ass. 1,
it avoids that, given a segment s of p boundary such that v.eq(s.start()) (or
v.eq(s.end())) becomes a f(p).cnt(f(v)). Finally, if p.dj(v), then given Ass. 4
and Ass. 3.2, DR1 is sufficient for preserving the relative position between a
vertex and the segment of p boundary. Regarding the necessity of DR1 in 2D
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we can observe that without DR1, due to Prob. 1.2, the relative positions of
a vertex with respect to a segment of a patch boundary can change moving
the vertex inside or outside the patch; finally, without IR1 a v.eq(s.start()) (or
v.eq(s.end())) can be transformed after data transfer into a f(p).cnt(f(v)).

In 3D, IR1+IR3+DR3 are sufficient conditions for the robustness of p.cnt(v).
In particular, if p.cnt(v) is true, then IR3 has not been applied correctly, hence
after its application this case cannot occur. Conversely, if p.cnt(v) is false then
either v is an end point of some segments of p boundary (indeed, IR1 excludes
that v lies in the interior of some boundary segments) or v is disjoint from p. In
the first case, given Ass. 1, IR3 is sufficient for preserving in data transfer the
identity between a vertex and a segment end point, which preserves the falsity
of f(p).cnt(f(v)) avoiding the vertex to move into the patch interior. In the
second case, given Ass. 4 and Ass. 3.3, DR3 is sufficient for preserving the spa-
tial disjunction among a vertex and a patch interior, which preserves the falsity
of f(p).cnt(f(v)). In addition, IR1 is introduced so that, it avoids a vertex v to
be contained in one segment of the patch boundary; moreover, when v is equal
to an internal vertex of the patch, given Ass. 1, it avoids that f(p).cnt(f(v))
becomes true. Regarding the necessity of IR3, observe that without it the first
case described above cannot be robust. The necessity of DR3 is justified by the
second case; finally IR1 is necessary in order to avoid that, due to Prob. 1.2,
an internal vertex of the patch moves inside it.

p.int(s) Considering the fifth row, in 3D IR1+IR2+IR3+DR2+DR3 are

sufficient conditions for the robustness of p.int(s). If p.int(s) is true, then the
relative position of the end points of s with respect to the patch p is opposite
(i.e., one end point is above, and the other one below the patch); hence, given
Ass. 4 and Ass. 3.4, after a data exchange DR3 preserves the relative position
of vertices with respect to patches and p.int(s) is thus preserved. Conversely,
if p.int(s) is false, then the following cases are possible: (i) s is disjoint from
p, or (ii) s interacts with segments of p boundary (sp). In the first case, given
Ass. 3.3 and Ass. 3.4, IR3+DR3+DR2 preserve disjointness, avoiding that
an end point v of s, such that p.cnt(v), crosses the p border (IR3); or an
end point of s changes its relative position w.r.t. p (DR3), or s changes its
relative position w.r.t. a segment of p boundary (DR2). In the second case, if
s.int(sp) is true then, given Prob. 1.3, a perturbation might transform it into
a f(p).int(f(s)); IR2 avoids the possibility of having this case. Finally, IR1
avoids the possibility of having that sp.cnt(s.start()) (or sp.cnt(s.end())) is
true, thus the last possible case is that sp.start().equal(s.start()) (or any other
combination of start/end points) and this is preserved by IR1 and Ass. 1.
Regarding the necessity of the conditions, observe that without each of the
listed rules, one of the above described cases cannot be robust.

p1.int(p2) The proof for the sixth row is very similar to the previous one,
since the preservation of patch intersections requires the preservation of inter-
section between patch boundary segments and patch interiors. The only case
that has to be considered in addition is the situation in which two patches
are intersecting without requiring the intersection of any patch boundary seg-
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ments with other patch interior (see Fig. 4), in this case the preservation of
segments intersection is sufficient, and hence IR2 is required. ut

Fig. 4 Example of intersecting patches without any interior and boundary intersections.

Before stating robustness rules for critical vector operations, let us re-
mark that in this context the required robustness for the operation v.dist(v0)
is not that the distance between two vertices is kept unmodified, but it is
sufficient that: given two vertices v1 and v2 such that v1.dist(v2) > 0, then
f(v1).dist(f(v2)) > 0.

Theorem 2 (Robustness of critical vector operations) Given Ass. 1-
4, the necessary and sufficient rules to be applied on datasets in the source
system S in order to guarantee the robustness of the critical vector operations
evaluation on target system D are the following ones: (i) for v.dist(v0) DR0
is required (ii) for s.ray(S0) DR1 is required.

Proof v.dist(v0) If DR0 is satisfied, then, given Ass. 3, a distance v1.dist(v2) >

0 cannot become equal to zero in D. Vice-versa, if the distance v1.dist(v2) > 0
becomes zero in D then DR0 is violated, thus DR0 is also a necessary condition.

s.ray(S) Consider that this predicate is used to verify if a point (s.start())

is inside or outside a ring (S0), thus the alteration of the number of inter-
sections between the ray and the segments of S0 far from s.start() can only
occur when two segments of S0 produce a shape similar to a cusp so that in S
system the cusp intersects the ray and in D system it does not (or vice versa).
Hence, the count is decreased (or increased) of two, which does not change
the inside/outside evaluation. Therefore, the only problem regards what hap-
pens very near to s.start(), however, if DR1 guarantees the robustness of the
relative position of a vertex and a segment, then DR1 is sufficient to ensure
the robustness of s.ray(S0). The need comes directly from the fact that the
only alteration of the s.ray(S0) result can occur when s.start() crosses one
segment of S0, which violates DR1. ut

3.2.2 Robustness Rules for Derived Critical Predicates

A derived critical predicate is a predicate which can be expressed in terms of
other predicates, at least one of which is critical. A derived critical predicate
becomes robust if and only if its constituent predicates become robust. Among
all possible derived predicates, here are considered the ones that are useful for
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the implementation of the topological relation evaluations, which have been
presented in Def. 4. In this section the conditions for guaranteeing their robust
evaluation are shown.

Table 2 Robustness conditions for derived critical vector predicates. Terms DR10 (DR20)
means that DR0 is implied by DR1 (DR2), and DR21 that DR1 is implied by DR2.

Derived Predicate in 2D space in 3D space Basic Predicates

v.bel(V), V1 ∩V2

V1 ∩V2 6= ∅, s.eq(s0),
s.bel(S), ln1.eq(ln2)

DR0 DR0 v.eq(v0)

pg1.eq(pg2) DR0 – v.eq(v0)

p.eq(p0), ps1.eq(ps2) – DR0 v.eq(v0)

s.ov(s0) IR1 + DR1 IR1 + DR1 s.cnt(v)

s.in(s0) IR1 + DR10 IR1 + DR10 v.eq(v0), s.cnt(v)

s.dj(s0) IR1 + DR10 IR1 + IR2 + DR20,1
v.eq(v0), s.cnt(v),
s.int(s0)

p.ov(s) IR1 + DR10
IR1 + IR2 + IR3 +
DR20,1 + DR3

v.eq(v0), s.cnt(v),
s.int(s0), p.cnt(v),

p.cnt(s), p.ov(p0),
p.in(p0), p.int2(p0)

IR1 + DR10
IR1 + IR2 + IR3 +
DR20,1 + DR3

v.eq(v0), s.cnt(v),
s.int(s0), s.ray(S),
p.cnt(v)

p.dj(s) IR1 + DR10
IR1 + IR2 + IR3 +
DR20,1 + DR3

v.eq(v0), s.cnt(v),
s.int(s0), s.ray(S),
p.cnt(v), p.int(s)

p1.dj(p2) IR1 + DR10
IR1 + IR2 + IR3 +
DR20,1 + DR3

v.eq(v0), s.cnt(v),
s.int(s0), s.ray(S)
p.cnt(v), p.int(p0)

Lemma 1 (Robustness of derived critical vector predicates) Under
the hypothesis of Thm. 1 and Thm. 2, the derived vector predicates of Def. 4
become robust with the application of the rules shown in Tab. 2 (second and
third column for 2D and 3D space, respectively).

Proof The derived vector predicates listed in the first column are defined in
terms of basic predicates listed in the fourth column (see Def. 3); hence accord-
ing to Thm. 1 and Thm. 2, the sufficient and necessary rules for guaranteeing
their robustness derive from the union of the rules that guarantee the robust-
ness of the basic predicates that define them. ut

4 Robustness of Topological Relations Evaluation

The previous section discussed the robustness of vector predicates and oper-
ations. The obtained results are applied in this section for deriving the ro-
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bustness of topological relations. Remember that, if no rules are introduced
on discrete geometries representation, vector predicates are all not robust.

The results are presented by showing, for each possible pair of geometric
types, a robustness matrix which specifies in each cell the required rules for
guaranteeing a robust evaluation. In particular, the necessary robustness rules
are identified by means of a set of predefined robustness levels, that are de-
fined below. Basically, greater level number means an increasing number of
robustness rules to be applied.

Definition 6 (Robustness levels) Considering the results shown in Thm. 1
and Lemma 1, the following robustness levels are introduced level R: no ad-
ditional rules are necessary to guarantee robustness; level 0 : DR0 is required;
level 1 : IR1 and DR1 are required; level 2 : IR1, IR2 and DR2 are required;
level 3 : IR1, IR3 and DR3 are required; level 4 : IR1, IR2, IR3, DR2 and DR3
are required. ut

The following theorems present the robustness matrix for each combination
of geometric types in 2D and 3D space, respectively. Notice that different cells
and different combinations of types require different robustness rules. More-
over, the embedding space has also an impact on this analysis. In the tables
each matrix cell contains a 4-tuple (L0L1L2LT ) representing the robustness
level that is required to implement the test dim(f(A) ∩ f(B)) = x, where
x ∈ {0, 1, 2, T}. In the 4-tuples the symbol F in position i is used to indicate
that the intersection producing the dimension i is always false.

Theorem 3 (2D Robustness matrices) Tab. 3 shows the robustness ma-
trices for all the possible combinations of geometric types in 2D space.

Proof The presented robustness matrices have been obtained by considering
the expressions presented in Prop. 1 for intersection evaluation in each matrix
cell and the results of Thm. 1, Thm. 2 and Lemma 1. In particular, for each
combination of types a matrix has been computed, and for each matrix cell
the corresponding vector expression has been analyzed and the critical basic or
derived vector predicates contained in it have been identified, then according
to Thm. 1, Thm. 2 and Lemma 1 the maximum level of robustness required
by the identified critical predicates has been computed. ut

Theorem 4 (3D Robustness Matrices) Tab. 4 shows the robustness ma-
trices for all the possible combinations of geometric types in 3D space.

Proof See proof of Thm. 3. ut

As an example of the application of these results to some topological re-
lations of SFA model we consider here the disjoint and touch relations, which
can be defined using the 9-IM matrix as shown in the following definition.
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Table 3 Robustness matrices in 2D space.

2D Point (PT) LineString (LN) Polygon (PL)

PT (pt, pt) (pt, ln) (pt, pg) (0FF0) F (0FF0)

F F F

(0FF0) F T


 (1FF1) (0FF0) (1FF1)

F F F

T (RFFR) T


 (1FF1) (1FF1) (1FF1)

F F F

T T T


LN (ln, pt) = (pt, ln)T (ln, ln) (ln, pg) (1FF1) F T

(0FF0) F (RFFR)

(1FF1) F T


 (11F1) (1FF1) (F1F1)

(1FF1) (0FF0) (1FF1)

(F1F1) (1FF1) T


 (F1F1) (11F1) (F1F1)

(1FF1) (1FF1) (F1F1)

T (RFFR) T


PL (pg, pt) = (pt, pg)T (pg, ln) = (ln, pg)T (pg, pg) (1FF1) F T

(1FF1) F T

(1FF1) F T


 (F1F1) (1FF1) T

(11F1) (1FF1) (F1F1)

(F1F1) (F1F1) T


 (FF11) (F1F1) (FF11)

(F1F1) (11F1) (F1F1)

(F1F1) (F1F1) T



Table 4 Robusness matrices in 3D space.

3D Point (PT) LineString (LN) PolyhedralSurface (PS)

PT (pt, pt) (pt, ln) (pt, ps) (0FF0) F (0FF0)

F F F

(0FF0) F T


 (1FF1) (0FF0) (1FF1)

F F F

T (RFFR) T


 (3FF3) (1FF1) (3FF3)

F F F

T (RFFR) T


LN (ln, pt) = (pt, ln)T (ln, ln) (ln, ps) (1FF1) F T

(0FF0) F (RFFR)

(1FF1) F T


 (21F2) (1FF1) (F2F2)

(1FF1) (0FF0) (1FF1)

(F2F2) (1FF1) T


 (44F4) (21F2) (F4F4)

(3FF3) (1FF1) (3FF3)

T (F2F2) T


PS (ps, pt) = (pt, ps)T (ps, ln) = (ln, ps)T (ps, ps) (3FF3) F T

(1FF1) F (RFFR)

(3FF3) F T


 (44F4) (3FF3) T

(21F1) (1FF1) (F2F2)

(F4F4) (3FF3) T


 (4444) (44F4) (FF44)

(44F4) (21F2) (F4F4)

(FF44) (F4F4) T



Definition 7 (Disjoint and touches relations of SFA) The formal defi-
nition of each relation is presented below together with the specification of the
corresponding set of 9-intersection matrices. Notice that the set of matrices
can change with respect to the considered geometric types. In particular, the
following notation is used pt denotes a point, c denotes a curve, s denotes a
surface, while a, b are generic geometries.

– DJ: a.disjoint(b) ≡def a.PS() ∩ b.PS() = ∅
Rdj(pt, pt) = [FFT FFF TFT ]
Rdj(pt, c/s) = [FFT FFF T ∗ T ]
Rdj(c/s, pt) = Rdj(pt, c/s)

T

Rdj(c/s, c/s) = [FFT FF ∗ T ∗ T ]
– TC: a.touch(b) ≡def (I(a) ∩ I(b) = ∅) ∧ (a.PS() ∩ b.PS() 6= ∅)

Rtc(pt, c/s) = [FTF FFF TTT ]
Rtc(c/s, pt) = Rtc(pt, c/s)

T

Rtc(c, s) = [F ∗ ∗ ∗ T ∗ T ∗ T ]∪ [FT ∗ ∗ ∗ ∗ T ∗ T ]∪ [F ∗ ∗ T ∗ ∗ T ∗ T ]2

Rtc(s, c) = Rtc(c, s)
T

2 only in 3D spaces
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Rtc(c, c) = [F ∗ T ∗ T ∗ T ∗ T ]∪ [F ∗ T T ∗ ∗ T ∗ T ]∪ [FTT ∗ ∗ ∗ T ∗ T ]
Rtc(s, s) = [F ∗T ∗T ∗ T ∗T ]∪ [F ∗T T ∗∗ T ∗T ]1∪ [FTT ∗∗∗ T ∗T ]2 ut

Tab. 5 and Tab. 6 show the minimum and maximum level of robustness
for all the intersection tests required by disjoint in 2D and 3D, respectively.
Notice that, as expected, the required robustness level changes according to the
considered combination of geometric types, e.g. a.DJ(b) has robustness level
(0, 0) for the combination (pt, ln) in 2D, while has (1, 1) for the combination
(ln, pg) in the same space; and also according to the embedding space, e.g.
ln.DJ(ln) has robustness level (0, 1) in 2D, while has (1, 2) in 3D. Each table

Table 5 a.DJ(b) in 2D. The notation f(cx,y) means that the cell is a derived cell and its
test can be avoided since it is implied by the test of cx,y .

2D Point (PT) LineString (LN) Polygon (PL)

PT
Rdj(pt, pt)=
[FFT FFT TFT]

Rdj(pt, ln)=
[FFT FFF T*T]

Rdj(pt, pg)=
[FFT FFF TTT] 0 F f(c1,1)

F F F

f(c1,1) F T


 1 0 f(c1,1, c1,2)

F F F

T ∗ T


 1 1 f(c1,1, c1,2)

F F F

T T T


Robust. level = [0,0] Robust. level = [0,1] Robust. level = [1,1]

LN Rdj(ln, pt) = Rdj(pt, ln)
T Rdj(ln, ln) =

[FFT FF* T*T]
Rdj(ln, pg) =
[FFT FF* TTT] 1 1 f(c1,1)

1 0 ∗
f(c1,1) ∗ T


 1 1 f(c1,1, c1,2)

1 1 ∗
T f(c1,2) T


Robust. level = [0,1] Robust. level = [0,1] Robust. level = [1,1]

PL Rdj(pg, pt) = Rdj(pt, pg)
T Rdj(pg, ln) = Rdj(ln, pg)

T Rdj(pg, pg) =
[FFT FFT TTT] 1 f(c1,1) f(c1,1)

f(c1,1) 1 f(c1,1)

f(c1,1) f(c1,1) T


Robust. level = [1,1] Robust. level = [1,1] Robust. level = [1,1]

cell contains for a pair of geometric types t1, t2:

– The 9-intersection matrix of the relation using the following notation: (i)
the matrix cells that must be considered for testing the relation (necessary
cells) are underlined; (ii) the cells in bold are not to be considered, since
their value is fixed for the considered geometric types; (iii) finally, the cells
in italics are functions of the necessary ones (derived cells).

– The 9-intersection matrix of the relation showing in each necessary cell its
robustness level, and for each derived cell the cells from which they depend.

– The robustness level of the relation is described by specifying the minimum
and maximum level of robustness of the tests regarding necessary cells.

As a further example, App. C considers the robustness behavior the relation
Touches. In particular, Tab. 26 and Tab. 27 show the minimum and maximum
level of robustness required for all intersection tests.
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Table 6 a.DJ(b) in 3D. The notation f(cx,y) means that the cell is a derived cell and its
test can be avoided since it is implied by the test of cx,y .

3D Point (PT) LineString (LN) PolyhedralSurface (PS)

PT Same as 2D Same as 2D
Rdj(pt, ps)=
[FFT FFF T*T] 3 1 f(c1,1, c1,2)

F F F

T ∗ T


Robust. level = [0,0] Robust. level = [0,1] Robust. level = [1,3]

LN Same as 2D
Rdj(ln, ln) =
[FFT FF* T*T]

Rdj(ln, ps) =
[FFT FF* TTT] 2 1 f(c1,1)

1 0 ∗
f(c1,1) ∗ T


 4 2 f(c1,1)

3 1 ∗
T ∗ T


Robust. level = [0,1] Robust. level = [1,2] Robust. level = [1,4]

PS Rdj(ps, pt) = Rdj(pt, ps)
T Rdj(ps, ln) = Rdj(ln, ps)

T Rdj(ps, ps) =
[FFT FF* T*T] 4 4 f(c1,1)

4 2 ∗
f(c1,1) ∗ T


Robust. level = [1,3] Robust. level = [1,4] Robust. level = [2,4]

In the following section topological relations in (IN), contains (CT), equals
(EQ), overlap (OV), and cross (CR) are used in addition to the DJ and TC, in
order to discuss the presented experiments. The assumed semantics for these
relations is the one presented in [13].

5 Experimental Results

This section describes the results of some experiments performed with the
aim to confirm the effectiveness of the robustness rules defined in Sec. 3.2. In
particular, we want to show that different rules are required according to: (i)
the considered topological relation, (ii) the types of the geometries and (iii)
the space in which geometries are embedded. Each experiment evaluates the
topological relations existing between the geometries of two datasets having
EPSG:32632 WGS84/UTM Zone 32N coordinates; the considered cases are:
(i) Points and LineStrings in 2D; (ii) Polygons and Polygons in 2D; (iii)
LineStrings and LineStrings in 3D; (iv) Points and PolyhedralSurfaces in 3D.

In all experiments, first the topological relations among each pair of datasets
have been computed without any manipulation. Then, the coordinates of the
geometries have been rounded using a grid of different granularities ranging
from 10−6 to 10−1, in order to simulate a data perturbation, and the relations
have been evaluated again. Only the results regarding DJ and TC are reported
since only these two relations have been analyzed in the previous section.

The experiment results are reported in tables which show the number of
relation changes and the number of violations of the robustness rules which
are required according to the theorems of the previous sections. Remember
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that the DRx violations are always computed on the original geometries with
an increasing value of MGD. In all tables the number of rules violations are
always greater than the number of relation changes; this is in accordance with
the fact that a relation change always requires a rule violation and not vice
versa, since a lack in robustness does not necessarily imply a relation change.
When available, we have used in the experiments real datasets produced by
different providers, since the production processes might have had an impact
on dataset robustness.

Points and LineStrings in 2D

The following four datasets containing Points and LineStrings in 2D space,
produced by different subjects, have been considered:

– Road Elements (REnorth) and Road Junctions (RJnorth) of a town of
Northen Italy: containing 3851 and 2856 geometries, respectively.

– Road Elements (REcent) and Road Junctions (RJcent) of a village in Cen-
tral Italy: containing 7458 and 2401 geometries, respectively.

The computed relations are: DJ, TC and IN. Remember that the DJ rela-
tion on types (pt,ln) in 2D space has a robustness level 1 (see Tab. 5), which
requires that IR1 and DR1 rules are satisfied by robust datasets; the TC re-
lation in the same case has a robustness level 0 (see Tab. 26 in App. C), thus
only DR0 has to be satisfied for obtaining robustness.

The results of the experiments are shown in Tab. 7, where the number of
changes for TC and DJ relations after data perturbations of different sizes are
reported (we consider both the gained and the lost TC/DJ relations). The
results regard both the north and cent datasets and also the violations of the
DR0 and DR1 rules in both datasets are shown in the last columns. There are
no violations of IR1 in both datasets.

Table 7 Number of relation changes between pairs of geometries computed by the query
REx onQ RJx (where Q = RE.MBR ∩RJ.MBR 6= ∅). The cardinality of the result is 8651
(6596) pairs for x=north (x=cent). First column contains the simulated perturbation PB,
in the next columns the number of changes w.r.t. no rounded datasets regarding relation
TC and relation DJ are reported and the last two columns report violations of DR0 and
DR1 considering MGD = 2×PB. For DR0 in brackets the number of violations between a
junction and a point of a road element boundary are reported.

# TC changes # DJ changes # violations of rules
IN→ TC DJ→ TC DJ→ IN DR0 DR1

(DR0 boundary)
PB north cent north cent north cent north cent north cent

10−6 0 0 16 3 0 0 42(42) 3(3) 54 3
10−5 0 0 48 3 1 0 55(55) 3(3) 112 3
10−4 0 0 76 3 0 0 330(330) 5(5) 693 5
10−3 0 0 2255 5 2 0 2297(2291) 5(5) 2339 6
10−2 0 1 2089 8 2 0 2301(2293) 14(14) 2344 16
10−1 0 2 2282 15 4 0 2346(2312) 37(35) 2382 40
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The results of this experiment are consistent with the assumptions and the
robustness rules presented in the previous section, since:

– no TC relations are lost after perturbations: this is consistent with Ass. 1
that preserving coordinate equality preserves existing TC relations between
Points and LineStrings;

– some new TC relations have been produced in this experiment for pertur-
bations of size 10−2 and 10−1 and some DR0 violations are detected: this is
consistent with Thm. 3 and Def. 7, since DR0 is required by the robustness
rule of TC to avoid that a different relation becomes a TC relation;

– no IR1 violations are observed in both datasets, no new DJ relations are
generated by perturbations, while many of them are lost due to DR0 and
DR1 violations: this is consistent with Thm. 3 and Def. 7.

Further observations on this experiment are: (i) more relation changes are
observed on the north than on the cent datasets, and accordingly the number
of violations of DR0 and DR1 is higher for north than cent datasets. (ii) Since
this experiment regards points and vertices of LineStrings, each violation of
DR0 always produces at least one violation of DR1. Indeed, the number of
observed DR1 violations is higher than the number of DR0 violations.

Table 8 Number of relation changes between pairs of geometries computed by the query
RAx onQ VAx (where Q = RA.MBR ∩ VA.MBR 6= ∅). The cardinality of the result is
20667 (5885) pairs for x=north (x=cent). Columns are organized as in Tab. 7. The last two
columns report violations of DR1 considering MGD = 2× PB.

# TC changes # DJ changes # violations
TC→ OV OV→ TC DJ→ TC DJ→ OV OV→ DJ of DR1

CT→ TC
PB north cent north cent north cent north cent north cent north cent

10−6 139 0 4361 0 2346 0 81 0 32 0 358200 0
10−5 111 0 5484 0 2639 0 32 0 4 0 359066 0
10−4 114 0 5552 0 2663 0 22 0 5 0 359844 8
10−3 119 0 5555 0 2658 0 25 0 2 0 363126 16
10−2 101 0 5529 1 2634 0 32 0 6 0 366124 2340
10−1 99 1 5545 2 2632 0 29 0 1 0 391114 12518

Polygons in 2D
The following four datasets containing polygons have been considered:

– Road Areas (RAnorth) and Vehicular Areas (VAnorth) of a town of Northen
Italy: containing 2955 and 5860 geometries respectively.

– Road Areas (RAcent) and Vehicular Areas (VAcent) of a village in Central
Italy: containing 436 and 1769 geometries, respectively.

The same process described before has been performed also on these datasets.
The computed relations are: DJ, TC, OV, CT and IN. Remember that we
focus on the DJ and TC relations, which on types (pg, pg) in 2D space have
both a robustness level 1 (see Tab. 5 and Tab. 26 in App. C), which requires
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that IR1 and DR1 have to be satisfied by robust datasets. The results of this
experiment are reported in Tab. 8, where columns are organized as described
in the previous experiment, but in this case only the violations of DR1 are
reported. Moreover, there are 68 violations of IR1 in the north datasets and
no violation in the cent datasets, which are not shown in the table since identity
rules do not depend on the considered MGD.

The results are consistent with the system assumptions and robustness
rules presented in the previous sections, in particular:

– The changes of TC into OV relations in the north datasets indicate a lack
of robustness that has been detected by the violations of IR1 and DR1
rules, that were required by TC relation according to Thm. 3 and Def. 7.

– The great number of changes of DJ into TC or OV relations in the north
datasets again indicates a lack of robustness that is certified by the high
number of DR1 violations, indeed DR1 is required for DJ robustness ac-
cording to Thm. 3 and Def. 7.

– The significant number of DR1 violations in cent datasets for a perturba-
tion of 10−1 does not produce changes in DJ relations, which means that
although cent datasets are not robust no change in TC or DJ relations
occurs (in the experiments we registered some changes of OV relations).

– The only case of TC change in cent dataset for a perturbation of 10−1 is
due to a violation of DR1, that after the perturbation has not modified
the touching segments but has produced a cross of a polygon boundary by
another vertex, thus transforming the TC in an OV relation.

– As in the previous experiment, the DJ relation changes more frequently
than the TC relation and changes are more frequent in the north than
in the cent datasets. Accordingly to this behavior, the number of DR1
violations is higher in north than cent datasets.

Table 9 Number of relation changes between pairs of geometries computed by the query
REx onQ REx (where Q = RE.MBR ∩ RE.MBR 6= ∅). The cardinality of the result is 9612
(12632) pairs for x = north (x = cent). Columns are organized as in Tab. 7. The last two
columns report violations of DR2 considering MGD = 2× PB.

# TC changes # DJ changes # violations of
TC→ DJ TC→ CR DJ→ TC DJ→ CR DR2

PB north cent north cent north cent north cent north cent

10−6 0 0 0 0 0 0 0 0 0 4
10−5 0 0 0 0 0 0 0 0 0 6
10−4 0 0 0 0 0 4 0 0 0 26
10−3 0 0 0 0 0 10 0 0 376 28
10−2 0 0 0 0 442 13 0 0 1322 38
10−1 0 0 0 0 725 13 0 0 2202 74

LineStrings in 3D
In order to test the rules also in the 3D space, we have considered the datasets
of road elements, which contain 3D LineStrings, and we have computed the
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relations among them in 3D. The computed relations are: DJ, TC and CR.
The DJ and TC relations on types (ln, ln) in 3D space have both a robustness
level 2 (see Tab. 6 and Tab. 27 in App. C), thus IR1, IR2 and DR2 have to
be satisfied for obtaining robustness.

Results are reported in Tab. 9, where columns are organized as described
in the previous experiment, but in this case only the violations of DR2 are
reported. There are no violations of IR1 and IR2 in both datasets.

The results are consistent with the system assumptions and robustness
rules presented in the previous sections, in particular:

– In 3D space both DJ and TC relations change only with perturbations
greater than 10−4 for cent and 10−3 for north datasets. As highlighted in
previous experiments, also in this case we observe a greater robustness of
existing TC relations w.r.t. existing DJ relation in both datasets.

– Also the number of DR2 violations is consistent, according to Thm. 4 and
Def. 7, with the observed relation changes and shows that north and cent
datasets are robust for DJ and TC relations in case of perturbations of
10−4 and 10−3, respectively.

Table 10 Number of relation changes between pairs of geometries computed by the query
Pointsx onQ PSurfacex (where Q = Point.geometry ∩ PSurface.MBR 6= ∅) and x repre-
sents the dataset cardinality (x ∈ {5000, 10000}). The cardinality of the result is 6826741
(27497550) pairs for x = 5000 (x = 10000). Columns are organized as in Tab. 7. The last
two columns report violations of DR3 (DR1) considering MGD = 2× PB.

# TC changes # DJ changes # violations
TC→ DJ TC→ IN DJ→ TC DJ→ IN IN→ DJ of DR3

IN→ TC (DR1)
PB 5K 10K 5K 10K 5K 10K 5K 10K 5K 10K 5K 10K

10−6 342 725 5 23 280 521 16 45 235 520 0(302) 1(608)
10−5 371 714 6 20 279 478 24 32 230 509 0(302) 1(608)
10−4 313 703 2 22 273 466 10 43 238 518 3(302) 8(608)
10−3 384 676 7 9 265 505 19 35 237 522 15(302) 72(608)
10−2 357 692 6 16 286 490 11 38 238 519 182(302) 753(608)
10−1 339 754 11 17 260 495 17 38 231 518 1708(302) 7141(608)

Points and Polyhedral Surfaces in 3D
Finally, a test on some synthetic datasets has been performed in order to
test the robustness rules between points and polyhedral surfaces in the 3D
space. Datasets of two cardinalities have been considered: 5000 and 10000.
The computed relations are: DJ, TC and IN. The DJ and TC relations on
types (pt, ps) in 3D space have a robustness level 3 (see Tab. 6) and robustness
level 1 (see Tab. 27 in App. C), respectively; thus IR1 and DR1 have to be
satisfied for obtaining robustness of TC relation and IR1, IR3 and DR3 for
robustness of DJ relation. Results are reported in Tab. 10, where columns are
organized as described in the previous experiment, but in this case the results
regard both the 5K and the 10K datasets and also the violations of DR1 and
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DR3 in both datasets are shown in the last columns. There are 531 (1108)
violations of IR1 and 246 (548) violation of IR3 in 5K (10K) datasets.

The results of this experiment are consistent with the system assumptions
and robustness rules presented in the previous sections, since:

– some changes of existing TC relations occurred and, according to Thm. 4
and Def. 7, in this case they are consequences of the detected IR1 violations;
indeed, a higher number of IR1 violations w.r.t the number of TC relation
changes was produced;

– for similar reasons, the new DJ relations produced by a change of IN re-
lations are consequences of the detected IR3 violations and all changes of
existing DJ relations are due to DR1 and DR3 violations.

As final test we considered five pairs of datasets containing randomly gen-
erated points and polyhedral surfaces in the 3D space (each dataset having
1000 geometries). Such datasets had been prepared so that IR1 and IR3 rules
were always satisfied and DR1 and DR3 rules were satisfied up to a perturba-
tion of 10−1; we computed the relations between points and surfaces, resulting
in 1667 TC relations and 1058 DJ relations (only the pairs with intersecting
MBR were considered in the queries). Then, we simulated perturbations from
10−6 to 10−1 and recomputed the relations between points and surfaces on
rounded geometries. No relation change was observed after any perturbation
in any pair of datasets.

Overall, the experiment results highlight that different datasets have dif-
ferent behaviours with respect to robustness in topological relation evaluation.
In particular, datasets 〈REnorth,RJnorth〉 and 〈RAnorth,VAnorth〉 showed a bad
behaviour, i.e. many relations changed after perturbation, while 〈REcent,RJcent〉
and 〈RAcent, VAcent〉 showed a more robust behaviour, indeed even after heavy
perturbations only a few relations changed. Notice that the higher robustness
of cent datasets with respect to north ones is not visible during the common
display and navigation operations. Finally, we observe that in the 3D space
the synthetic datasets violate robustness rules even if they are randomly gen-
erated (only IR1 violations were somehow injected in the datasets), showing
that the proposed rules are not trivially satisfied by a spatial dataset.

6 Conclusion and Future Work

Evaluating topological relations in distributed environments with many datasets
and many systems that interoperate, such as an SDI, can be a tough task to
perform. One reason of this situation regards the quality of datasets, indeed
when the quality of the processed data is low, different results can be obtained
in different systems regarding the computation of topological relations among
geometries. This issue is usually called robustness and the goal of this paper
is to guarantee the robust evaluation of topological relations among different
systems. In particular, the considered context has been illustrated by means of
(i) a reference vector model for representing geometries of the Simple Feature
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Access model extended to the 3D space (i.e. including polyhedral surfaces);
(ii) a set of basic predicates on vector geometries, that can be critical with re-
spect in system evaluations; (iii) a set of problem definitions and assumptions
on systems behaviour.

Given such context, the following results have been formally derived: (i)
a set of expressions for testing the conditions of the 9-intersection matrix
cells [7] in terms of vector predicates; (ii) a set of rules that guarantee the
robustness of evaluation for the basic critical predicates; (iii) a set of rules
that guarantees the robustness evaluation of topological relation defined with
the 9-intersection matrix, with respect to the embedding space (2D or 3D)
and involved geometric types. Finally, the results of some experiments on real
datasets have also been presented, in order to show the effectiveness of the
proposed approach in characterizing the robustness of spatial datasets with
respect to topological relation evaluations.

Future work includes the definition of algorithms for rectifying geometries
in spatial datasets in order to (i) preserve as much as possible the existing topo-
logical relations and (ii) satisfy the proposed rules for guaranteeing robustness
in topological relations evaluation. Moreover, the study will be extended to
3D volume type.
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A Derived Vector Predicates and Operations

This section presents the semantics of derived vector predicates and derived operations
introduced in Sec. 2.1.

Table 11 Expressions for derived operations and predicates regarding vertices. In the table
symbols v, v1, . . . , vn denote a vertex, while V , V1, V2 are sets of vertices.

Signature Derivation expression Dependency

boolean v.bel(V ) v.eq(v1) ∨ · · · ∨ v.eq(vn) v.eq(v0)
set(vertex) V1 ∩ V2 {v | ∃v1 ∈ V1 : v.eq(v1) ∧ ∃v2 ∈ V2 : v.eq(v2)} v.eq(v0)
boolean V1∩V2 6= ∅ ∃v1 ∈ V1(∃v2 ∈ V2(v1.eq(v2))) v.eq(v0)

Table 12 Expressions for derived operations and predicates regarding segments. In the
table symbols s, s0, s1, . . . , sn denote a segment, while S is a set of segments.

Signature Derivation expression Dependency

set(vertex) s.bnd() {s.start(), s.end()} s.start(), s.end()
boolean s1.eq(s2) (s1.start().eq(s2.start())∧s1.end().eq(s2.end())) ∨ v.eq(v0)

(s1.start().eq(s2.end()) ∧ s1.end().eq(s2.start()))
boolean s.bel(S) ∃si ∈ S(s.eq(si)) v.eq(v0)
boolean s1.in(s2) (s1.start().eq(s2.start()) ∧ s2.cnt(s1.end())) ∨ v.eq(v0), s.cnt(v)

(s1.start().eq(s2.end()) ∧ s2.cnt(s1.end())) ∨ s.start(), s.end()
(s1.end().eq(s2.start()) ∧ s2.cnt(s1.start())) ∨
(s1.start().eq(s2.end()) ∧ s2.cnt(s1.end())) ∨
(s2.cnt(s1.start()) ∧ s2.cnt(s1.end()))

boolean s1.ov(s2) (s1.cnt(s2.start()) ∧ s2.cnt(s1.end())) ∨ s.cnt(v)
(s1.cnt(s2.start()) ∧ s2.cnt(s1.start())) ∨ s.start(), s.end()
(s1.cnt(s2.end()) ∧ s2.cnt(s1.end())) ∨
(s1.cnt(s2.end()) ∧ s2.cnt(s1.start()))

boolean s1.dj(s2) ¬s1.int(s2) ∧ ¬s1.ov(s2)∧ v.eq(v0), s.cnt(v)
¬s1.in(s2) ∧ ¬s1.eq(s2) ∧ ¬s2.in(s1) s.int(s0)

set(segments) s.diff(S) = {si | si.in(s) ∧ ∀sj ∈ S(si.dj(sj))} ∧ v.eq(v0), s.cnt(v)
s.diff(S) S ∪ s.diff(S) = S ∪ {s} s.int(s)

Notice that the operation s.diff(S) produces a result only if the set S contains some
segments that overlap s, otherwise the result is always the empty geometry, since the second
condition is not satisfied.

sB

sA

Fig. 5 Examples of possible cases that make true the predicate p.cnt(s). Notice that seg-
ments sA and sB do not satisfy the predicate p.cntint(), while all the other segments do.
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Table 13 Expressions for derived operations and predicates regarding patches. In the table
symbols p, pi denote patches, s, si denote a segment, S is a set of segments, while v, vi
denote a vertex.

Signature Derivation expression Dependency

set(vertex) p.ver()
⋃

s∈p.bnd() s.bnd()
p.bnd(), s.start(),
s.end()

boolean p.cntint(s) ∀v ∈ s.bnd()(p.cnt(v) ∨ s.start(), s.end()
∃si ∈ p.bnd()(si.cnt(v) ∨ s.cnt(v), p.cnt(v)

v.bel(si.bnd()))) ∧ s.int(s0), s.ray(S)
∀sp ∈ p.bnd()(¬s.int(sp) ∧ ¬s.ov(sp)) ∧ v.eq(v0)
(s.ray(p.bnd()) mod 2) = 1

set(segments) {sp | sp ∈ p.bnd() ∧ (sp.ov(s) ∨ sp.in(s))} p.bnd(), s.start(),
p.bndov(s) s.end(), s.cnt(v),

v.eq(v0)
boolean p.cnt(s) p.cntint(s) ∨ ∃sp ∈ p.bnd()(sp.ov(s)) ∧ p.bnd(), p.cnt(v),

∀sj ∈ (s.diff(p.bndov(s)))(p.cntint(sj)) s.start(), s.end(),
s.cnt(v), s.int(s0),
s.ray(S), v.eq(v0)

boolean p.ov(s) (∃v ∈ s.bnd()(p.cnt(v) ∨ v.bel(p.ver()) ∨ p.bnd(), p.cnt(v),
∃sp ∈ p.bnd()(sp.cnt(v))) ∧ s.start(), s.end(),

(∃s1 ∈ p.bnd()(s1.int(s)) ∨ s.int(s0), s.cnt(v),
∃vi ∈ p.ver()(s.cnt(vi) ∧ v.eq(v0)
¬∃s2 ∈ p.bnd()(vi.bel(s2.bnd()) ∧

(s2.ov(s) ∨ s2.in(s))))))
∨ (∃s1 ∈ p.bnd()(s1.int(s)) ∧
∃s2 ∈ p.bnd()(¬s2.eq(s1) ∧ s2.int(s)))

∨ (∃vi ∈ p.ver()(s.cnt(vi) ∧
¬∃s2 ∈ p.bnd()(vi.bel(s2.bnd()) ∧

(s2.ov(s) ∨ s2.in(s))) ∧
∃vj ∈ p.ver()(¬vi.eq(vj) ∧ s.cnt(vj) ∧
¬∃s2 ∈ p.bnd()(vj .bel(s2.bnd()) ∧

(s2.ov(s) ∧ s2.in(s)))))
boolean p.dj(s) ¬p.int(s) ∧ ¬p.cnt(s) ∧ ¬p.ov(s) p.int(s), p.bnd()

p.cnt(v), s.ray(S),
s.start(), s.end(),
s.int(s0), s.cnt(v),
v.eq(v0)

boolean p1.eq(p2) ∀s1 ∈ p1.bnd()(∃s2 ∈ p2.bnd()(s1.eq(s2))) ∧ p.bnd(), v.eq(v0)
∀s2 ∈ p2.bnd()(∃s1 ∈ p1.bnd()(s2.eq(s1)))

boolean p1.int2(p2) (∃si ∈ p1.bnd()(p2.cnt(si) ∨ p2.ov(si)) ∧ the same as
∃sj ∈ p1.bnd()(¬sj .eq(si) ∧ p.cnt(s)

(p2.cnt(sj) ∨ p2.ov(sj))))
∨ (∃si ∈ p2.bnd()(p1.cnt(si) ∨ p1.ov(si)) ∧
∃sj ∈ p2.bnd()(¬sj .eq(si) ∧

(p1.cnt(sj) ∨ p1.ov(sj))))
boolean p1.in(p2) (∀s1 ∈ p1.bnd()(p2.cnt(s1) ∨ the same as

∃s2 ∈ p2.bnd()(s1.eq(s2) ∨ s1.in(s2)))) p.cnt(s)
∧ ¬p1.eq(p2)

boolean p1.dj(p2) ¬p1.int(p2) ∧ ¬p1.int2(p2) ∧ ¬p1.eq(p2) the same as
p.cnt(s)+
p1.int(p2)

boolean p1.ov(p2) p1.int2(p2) ∧ ¬p1.in(p2) ∧ ¬p2.in(p1) the same as
∧ ¬p1.eq(p2) p.cnt(s)
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Table 14 Expressions for derived operations and predicates regarding linestrings (line),
polygons (poly) and polyhedral surfaces (psur). In the table the following notation is used:
DR(line) = ln = {s1, . . . , sk} (k > 0), DR(poly) = pg = {ring1, . . . , ringl} = {pat1, . . . , patl}
(l > 1) and DR(psur) = ps = {p1, . . . , pm} (m > 0), where si is a segment, pati is a patch,
and pi is a polygon.

Signature Derivation expression

vertex ln.start() if ¬s1.start.eq(sk.end()) then s1.start() else ∅
vertex ln.end() if ¬s1.start.eq(sk.end()) then sk.end() else ∅
set(vertex) ln.bnd() if ¬s1.start.eq(sk.end()) then {s1.start(), sk.end()} else ∅
set(vertex) ln.intVer() {si.start() | si ∈ ln} \ ln.bnd()
boolean ln1.eq(ln2) ∀s1 ∈ ln1(∃s2 ∈ ln2(s1.eq(s2))) ∧

∀s2 ∈ ln2(∃s1 ∈ ln1(s2.eq(s1)))

linestring pg.extBnd() ring1
set(linestring) pg.intBnd() if |pg| > 1 then {ring2, . . . , ringl} else ∅
set(linestring) pg.bnd() {pg.extBnd()} ∪ pg.intBnd()
patch pg.extPat() pat1
set(patch) pg.intPat() {pat2, . . . , patl}
boolean pg1.eq(pg2) pg1.extBnd().eq(pg2.extBnd()) ∧

∀ln1 ∈ pg1.intBnd()(∃ln2 ∈ pg2.intBnd()(ln1.eq(ln2))) ∧
∀ln2 ∈ pg2.intBnd()(∃ln1 ∈ pg1.intBnd()(ln1.eq(ln2)))

set(segment) ps.bnd() {s | ∃!p ∈ ps(s.bel(p.bnd()))}
set(segment) ps.intSeg() {s | ∃p ∈ ps(s.bel(p.bnd()) ∧ ¬s.bel(ps.bnd()))}
set(segment) ps.intVer() {v | ∃p ∈ ps(∃s ∈ p.bnd()(v.bel(s.bnd()))) ∧

¬∃s′ ∈ ps.bnd()(v.bel(s′.bnd())))}
boolean ps1.in(ps2) ∀pi ∈ ps1(∃pj ∈ ps2(pi.eq(pj))
boolean ps1.eq(ps2) ps1.in(ps2) ∧ ps2.in(ps1)

B Proof Tables

This section reports the proof tables for Prop. 1. The following notation is used inside such
tables: pn, ln, pg, and ps represent the discrete representation in the vector model of point,
linestring, polygon and polyhedral surface, respectively. Similarly, v, s, and p denotes a
vertex, segment, and patch, respectively.

Table 15 Proof Interior-Interior Intersection (pt/∗)

Case Testing conditions Scene

(pt1/pt2)
dim=0/T

pt1.eq(pt2)

(pt/ln)
dim=0/T

∃s ∈ ln(s.cnt(pt)) ∨ pt.bel(ln.intVer())
 

ln pt 
 

(pt/pg)
dim=0/T

pg.extPat().cnt(pt) ∧
¬∃p ∈ pt.intPat()(p.cnt(pt) ∨ pt.bel(p.ver())
∨ ∃s ∈ p.bnd()(s.cnt(pt)))

 

pt 
pt 

pg

(pt/ps)
dim=0/T

∃p ∈ ps(p.cnt(pt) ∨
pt.bel(ps.intVer()) ∨
∃s ∈ ps.intSeg()(s.cnt(pt))))

 
pspt 
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Table 16 Proof Interior-Interior intersection (ln/pg)

Case Testing conditions Scene

ln/pg
dim=1/T

∃s ∈ ln(∃v ∈ s.bnd()(pg.extPat().cnt(v)∧
¬∃p ∈ pg.intPat()(p.cnt(v)∨
∃s1 ∈ p.bnd(s1.cnt(v)) ∨ v.bel(p.ver())

 
pg   

 lnOK  
 lnNO 

∃s ∈ ln(∃ln1 ∈ pg.bnd()(
∃s1 ∈ ln1(s.int(s1))))

 
 

 lnOK

∃s ∈ ln(pg.extPat().cnt(s)
¬∃p ∈ pg.intPat()(p.cnt(s)))

 lnOK lnNO 

 

Table 17 Proof Interior-Interior intersection (ps/ps) dim=T – (only in 3D space).

Case
Necessary
conditions

Scene

ps1/ps2
dim=T

∃p1 ∈ ps1(∃p2 ∈ ps2(p1.eq(p2) ∨ p1.int2(p2)))
same last row of
Table 22

∃s ∈ ps1.intSeg()(∃p ∈ ps2(
p.ov(s) ∨ p.cnt(s)))∨

∃s ∈ ps2.intSeg()(∃p ∈ ps1(
p.ov(s) ∨ p.cnt(s)))

see Table 22

∃s1 ∈ ps1.intSeg()(∃s2 ∈ ps2.intSeg()(
s1.ov(s2) ∨ s1.int(s2) ∨ s2.in(s1) ∨ s1.eq(s2)∨
s1.int(s2)))

see Table 22

∃v ∈ ps1.intVer()(∃p ∈ ps2(p.cnt(v)∨
∃s ∈ p.bnd()(s.cnt(v))))∨
∃v ∈ ps2.intVer()(∃p ∈ ps1(p.cnt(v)∨
∃s ∈ p.bnd()(s.cnt(v))))

see Table 22

∃v1 ∈ ps1.intVer()(∃v2 ∈ ps2.intVer()(
v1.eq(v2)))

see Table 22
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Table 18 Proof Interior-Interior Intersection (ln/ln) Notice that testing conditions are
presented on several rows: each row describes a disjunct which is a conjuction of a necessary
condition and an additional one (usually the last one is used to take into account the
dimension requirement)

Case
Necessary
conditions

Additional
conditions

Scene

ln1/ln2

dim=0
ln1.intVer()∩

ln2.intVer() 6= ∅
∀s1 ∈ ln1(∀s2 ∈ ln2(
s1.int(s2) ∨ s1.dj(s2)))

 ln2 ln1 
 

∃v ∈ ln1.intVer()(
∃s ∈ ln2(s.cnt(v))) ∨

∃v ∈ ln2.intVer()(
∃s ∈ ln1(s.cnt(v)))

∀s1 ∈ ln1(∀s2 ∈ ln2(
s1.int(s2) ∨ s1.dj(s2)))

 ln1 ln2 

∃s1 ∈ ln1(∃s2 ∈ ln2

(s1.in(s2)))
∀s1 ∈ ln1(∀s2 ∈ ln2(
s1.int(s2) ∨ s1.dj(s2)))

 ln1 ln2 

ln1/ln2

dim=1

∃s1 ∈ ln1(∃s2 ∈ ln2

(s1.eq(s2)∨ s1.in(s2)∨
s2.in(s1) ∨ s1.ov(s2))

 ln1 ln2 

ln1 ln2 

ln2 

ln1 

ln1/ln2

dim=T
ln1.IntVer()∩

ln2.IntVer() 6= ∅

 
ln1 ln2 

∃v ∈ ln1.intVer()(
∃s ∈ ln2(s.cnt(v)))∨
∃v ∈ ln2.intVer()(
∃s ∈ ln1(s.cnt(v)))

 
ln1 

ln2 

∃s1 ∈ ln1(∃s2 ∈ ln2

(s1.eq(s2)∨ s1.in(s2)∨
s2.in(s1)∨s1.int(s2)∨
s1.ov(s2)))

the same scenes of the
3rd and 4th row.

Table 19 Proof Interior-Boundary intersection (pt/ln) and (ln/ln) –

Case Testing conditions Scene

pt/ln
dim=0/T

pt.bel(ln.bnd())
 

lnpt 

ln1/ln2

dim=0/T
∃v ∈ ln2.bnd()(v.bel(ln1.intVer())∨
∃s ∈ ln1(s.cnt(v)))

 ln1 ln2 
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Table 20 Proof Interior-Interior Intersection (ln/ps) – (only in 3D space)

Case
Necessary
conditions

Additional
conditions

Scene

ln/ps
dim = 0

∃s ∈ ln(∃p ∈ ps(
p.int(s))∨

∃s1 ∈ ps.intSeg()(
s.int(s1))∨

∃v1 ∈ ps.intVer()(
s.cnt(v1)))

∀s ∈ ln(∀p ∈ ps
(p.int(s) ∨ p.dj(s)))∧

∀s ∈ ln(∀s1 ∈ ps.intSeg()
(s.dj(s1) ∨ s.int(s1)))

 

ps

lnOK 

∃v ∈ ln.intVer()(
∃p ∈ ps(p.cnt(v))∨
∃s1 ∈ ps.intSeg()(
s1.cnt(v))∨
∃v1 ∈ ps.intVer()(
v.eq(v1)))

∀s ∈ ln(∀p ∈ ps
(p.int(s) ∨ p.dj(s)))∧

∀s ∈ ln(∀s1 ∈ ps.intSeg()
(s.dj(s1)∨s.int(s1)))∧

 lnNOlnOK 

 

 lnNO
 

 

ln/ps
dim = 1

∃s ∈ ln(∃p ∈ ps(
p.cnt(s) ∨ p.ov(s))∨
∃s1 ∈ ps.intSeg()(
s.ov(s1) ∨ s1.in(s)∨
s.eq(s1)))

 
lnOK 

lnNO 

 

ln/ps
dim=T

∃s ∈ ln(∃p ∈ ps(¬p.dj(s))∨
∃s1 ∈ ps.intSeg()(
s.ov(s1) ∨ s.in(s1)∨
s1.in(s) ∨ s.eq(s1) ∨ s.int(s1))∨
∃v1 ∈ ps.intVer()(s.cnt(v1))

 lnOK 

∃v ∈ ln.intVer()(
∃p ∈ ps(p.cnt(v))∨
∃s1 ∈ ps.intSeg()(
s1.cnt(v))∨
∃v1 ∈ ps.intVer()(
v.eq(v1)))

 lnOK 

Table 21 Proof Interior-Interior Intersection (pg1/pg2 ) – (only in 2D space)

Case Testing conditions Scene

pg1/pg2
dim=2/T

pg1.extPat().eq(pg2.exPat())
 

∃s ∈ pg1.bnd()((pg2.extPat().ov(s)∨
pg2.extPat().cnt(s))∧
¬∃p ∈ pg2.intPat()(p.cnt(s)))∨
∃s ∈ pg2.bnd()((pg1.extPat().ov(s)∨

pg1.extPat().cnt(s))∧
¬∃p ∈ pg1.intPat()(p.cnt(s)))
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Table 22 Proof Interior-Interior intersection (ps1/ps2) dim=0/1/2 – (only in 3D space).

Case
Necessary
conditions

Additional
conditions

Scene

ps1/ps2
dim=0

∃v ∈ ps1.intVer()(
v.bel(ps2.intVer()))

∀p1 ∈ ps1(∀p2 ∈ ps2(
p1.dj(p2)))

 

∃v ∈ ps1.intVer()(
∃p ∈ ps2(p.cnt(v)∨
∃s ∈ p.bnd()(s.cnt(v))))∨
∃v ∈ ps2.intVer()(
∃p ∈ ps1(p.cnt(v)∨
∃s ∈ p.bnd()(s.cnt(v))))

∀p1 ∈ ps1(∀p2 ∈ ps2(
p1.dj(p2)))

 

∃s1 ∈ ps1.intSeg()(
∃s2 ∈ ps2.intSeg()(
s1.int(s2)))

∀p1 ∈ ps1(∀p2 ∈ ps2(
p1.dj(p2)))

 

ps1/ps2
dim=1

∃p1 ∈ ps1(∃p2 ∈ ps2(
p1.int(p2)))

∀p1 ∈ ps1(∀p2 ∈ ps2(
p1.dj(p2) ∨ p1.int(p2)

 

pNO 

pOK 

∃s ∈ ps1.intSeg()(
∃p ∈ ps2(p.cnt(s)∨
p.ov(s)))∨

∃s ∈ ps2.intSeg()(
∃p ∈ ps1(p.cnt(s)∨
p.ov(s)))

∀p1 ∈ ps1(∀p2 ∈ ps2(
p1.dj(p2) ∨ p1.int(p2)

 

pNO 

pOK 

 

∃s1 ∈ ps1.intSeg()(
∃s2 ∈ ps2.intSeg()(
s1.ov(s2) ∨ s1.in(s2)∨
s1.eq(s2)))

∀p1 ∈ ps1(∀p2 ∈ ps2(
p1.dj(p2) ∨ p1.int(p2)

 

pNO 

pOK 

ps1/ps2
dim=2

∃p1 ∈ ps1(∃p2 ∈ ps2(
p1.eq(p2) ∨ p1.int2(p2)))

 pOK 
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Table 23 Proof Interior-Exterior intersection (pt/ln), (pt/pg) and (pt/ps)

Case Testing conditions Scene

pt/ln
dim=0/T

∀v ∈ ln.bnd()(¬pt.eq(v))∧
∀vi ∈ ln.intVer()(¬pt.eq(vi))
∀s ∈ ln(¬s.cnt(v)))

 
ln ptNO 

ptOK

pt/pg
dim=0/T

(¬pg.extPat().cnt(pt)∧
∃p ∈ pg.intPat()(p.cnt(pt)))∧

∀ln ∈ pg.bnd()(∀s ∈ ln(¬s.cnt(pt)∧
∀v ∈ s.bnd()(¬pt.eq(v)))

 ptNO 

ptOK 

pt/ps
dim=0/T

∀p ∈ ps(¬p.cnt(pt))∧
∀s ∈ ps.bnd()(¬s.cnt(pt)∧
∀v ∈ s.bnd()(¬pt.eq(v)))

 

ptOK 

ptNO

Table 24 Proof Interior-Exterior intersection (ln/ln), (ln/pg) and (ln/ps)

Case Additional conditions Scene

ln1/ln2

dim=1/T
∃s1 ∈ ln1(∀s2 ∈ ln2(s1.dj(s2)∨

s1.int(s2) ∨ s1.ov(s2) ∨ s2.in(s1)))

 
ln1 

ln2 

ln/pg
dim=1/T

∃s ∈ ln(¬pg.extPat().cnt(s))∨
∃s ∈ ln(∃p ∈ pg.intPat()(p.cnt(s)))∨
∃ln ∈ pg.bnd()(∃s1 ∈ ln(s.int(s1)))

 lnpg 

ln/ps
dim=1/T

∃s ∈ ln(∀p ∈ ps(
p.int(s) ∨ p.dj(s) ∨ p.ov(s))∧

¬∃s2 ∈ ps.intSeg()(s.in(s2) ∨ s.eq(s2)))

 ln  
 

 ps  
ln 
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Table 25 Proof Interior-Exterior intersection (pg/pg) and (ps/ps)– Case C.3.11 and
C.3.16.

Case Additional conditions Scene

pg1/pg2
dim=2/T

∃s ∈ pg1.extPat().bnd()(
(¬pg2.extPat().cnt(s)∨

(pg2.extPat().cnt(s)∧
∃p ∈ pg2.intPat()(p.ov(s) ∨ p.cnt(s)))))

  

pg1 

pg1 

ps1/ps2
dim=2/T

∃p1 ∈ ps1(∀p2 ∈ ps2(p1.dj(p2)∨
p1.ov(p2) ∨ p1.int(p2)))

 ps1 

ps2 

C Robustness Levels of the Relation Touches

This section analyses the robustness behaviour of the relation Touches. Tables 26 and 27
shows the minimum and maximum level of robustness required for all intersection tests. The
notation f(cxy) means that the cell is a derived cell and its test can be avoided since it is
implied by the test of cxy . The term RobLev stands for robustness level.

Table 26 Analysis of the robustness behavior of a.TC(b) in 2D.

2D Point (PT) LineString (LS) Polygon (PL)

PT NA

Rtc(pt, ln)= [FTF FFF TTT] f(c1,2) 0 f(c1,2)

F F F

T f(c1,2) T


RobLev = [0,0]

Rtc(pt, pg)= [FTF FFF TTT] f(c1,2) 1 f(c1,2)

F F F

T T T


RobLev = [1,1]

LS
Rtc(ln, pt) =

Rtc(pt, ln)
T

Rtc(ln, ln) = [F*T *T* T*T] 1 ∗ f(c1,1)

∗ 0 ∗
f(c1,1) ∗ T


Rtc(ln, ln) =[FTT *** T*T] 1 1 f(c1,1)

∗ ∗ ∗
f(c1,1) ∗ T



Rtc(ln, pg) = [F** FT* T*T] 1 ∗ ∗
f(c1,1) 1 ∗

T ∗ T


Rtc(ln, pg) =[FT* F** T*T] 1 1 ∗

f(c1,1) ∗ ∗
T ∗ T


RobLev = [0,0] RobLev = [0,1] RobLev = [1,1]

PL
Rtc(pg, pt) =

Rtc(pt, pg)
T Rtc(pg, ln) = Rtc(ln, pg)

T

Rtc(pg, pg) =[FFT FTT TTT] 1 f(c1,1) f(c1,1)

f(c1,1) 1 f(c1,1)

f(c1,1) f(c1,1) T


RobLev = [1,1] RobLev = [1,1] RobLev = [1,1]
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Table 27 Analysis of the robustness behavior of a.TC(b) in 3D.

3D Point (PT) LineString (LS) Polyhedral Surface (PS)

PT NA
Same as 2D
RobLev = [0,0]

Same as 2D
RobLev = [1,1]

LS Same as 2D

Rtc(ln, ln) = [F*T *T* T*T] 2 ∗ f(c1,1)

∗ 0 ∗
f(c1,1) ∗ T


Rtc(ln, ln) = [FTT *** T*T] 2 1 f(c1,1)

∗ ∗ ∗
f(c1,1) ∗ T



Rtc(ln, ps) = [F** *T* T*T] 4 ∗ ∗
∗ 1 ∗
T ∗ T


Rtc(ln, ps) = [FT *** T*T] 4 2 ∗

∗ ∗ ∗
T ∗ T


Rtc(ln, ps) = [F** T** T*T] 4 ∗ ∗

3 ∗ ∗
T ∗ T


RobLev = [0,0] RobLev = [0,2] RobLev = [1,4]

PS
Rtc(ps, pt) =

Rtc(pt, ps)
T Rtc(ps, ln) = Rdj(ln, ps)

T Rtc(ps, ps) = [F*T *T* T*T] 4 ∗ f(c1,1)

∗ 2 ∗
f(c1,1) ∗ T


Rtc(ps, ps) = [F*T T** T*T] 4 ∗ f(c1,1)

4 ∗ ∗
f(c1,1) ∗ T


Rtc(ps, ps) = [FTT *** T*T] 4 4 f(c1,1)

∗ ∗ ∗
f(c1,1) ∗ T


RobLev = [1,1] RobLev = [2,4] RobLev = [2,4]


