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Abstract—GPU-accelerated applications are becoming in-
creasingly common in high-performance computing as well as
in low-power heterogeneous embedded systems. Nevertheless,
GPU programming is a challenging task, especially if a GPU
application has to be tuned to fully take advantage of the
GPU architectural configuration. Even more challenging is the
application tuning by considering power and energy consumption,
which have emerged as first-order design constraints in addition
to performance. Solving bottlenecks of a GPU application such
as high thread divergence or poor memory coalescing have a
different impact on the overall performance, power and energy
consumption. Such an impact also depends on the GPU device
on which the application is run. This paper presents a suite of
microbenchmarks, which are specialized chunks of GPU code that
exercise specific device components (e.g., arithmetic instruction
units, shared memory, cache, DRAM, etc.) and that provide the
actual characteristics of such components in terms of throughput,
power, and energy consumption. The suite aims at enriching stan-
dard profiler information and guiding the GPU application tuning
on a specific GPU architecture by considering all three design
constraints (i.e., power, performance, energy consumption). The
paper presents the results obtained by applying the proposed suite
to characterize two different GPU devices and to understand how
application tuning may impact differently on them.

I. INTRODUCTION

With the growth of computational power and programma-
bility, Graphic Processing Units (GPUs) have become increas-
ingly used as general-purpose accelerators. They not only
provide high peak performance, but also excellent energy
efficiency [9]. As a consequence, besides supercomputers,
GPUs are quickly spreading in low-power and mobile devices
like smartphones. NVIDIA Tegra X1 [I] and Qualcomm
Snapdragon [2] are some among the several system-on-chip
examples available in the mobile market that integrate GPUs
with other processing units (i.e., CPUs, FPGAs, DSPs).

On the other hand, the large number of operating hardware
resources (e.g., cores and register files) employed in GPUs to
support the massive parallelism leads to a significant power
consumption. The elevated levels of power consumption have
a sensible impact on such many-core device reliability, aging,
economic feasibility, performance scaling and deployment into
a wide range of application domains. Different techniques
have been proposed to manage such high levels of power
dissipation and to continue scaling performance and energy.
They include approaches based on dynamic voltage/frequency
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FIG. 1: Overview of application tuning through MIPP.

scaling (DVES) [6], CPU-GPU work division [7], architecture-
level/runtime adaptations [14], dynamic resource allocation
[5], and application-specific (i.e., programming-level) opti-
mizations [17]. Particularly in this last category, it has been
observed that source-code-level transformations and applica-
tion specific optimizations can significantly affect the GPU
resource utilization, performance, and energy efficiency [13].

In this context, even tough profiling tools (e.g., CUDA
nvprof, AMD APP) exist to help programmers in the applica-
tion analysis and optimization, they do not provide a complete
view of the GPU features (especially on power consumption
and energy efficiency) neither they provide a correlation among
these design constraints.

For this reason, this paper presents MIPP, a suite of
microbenchmarks that aims at characterizing a GPU device
in terms of performance, power, and energy consumption. In
particular, it aims at understanding how application bottlenecks
involving selected functional components or underutilization
of them can affect the code performance, power consumption,
and energy efficiency on the given device. The functional
components include arithmetic instruction units, memories
(shared, cache, DRAM, constant), scheduling and synchroniza-
tion components.

Figure 1 shows how the suite can be applied during an



application tuning. First, the microbenchmarks are run on the
GPU device to characterize the device in terms of perfor-
mance, power and energy over its main functional components.
Then, the application under tuning is profiled by using a stan-
dard profiling tool. The profiling results provide information on
bottlenecks and underutilization of functional components. The
microbenchmark results extend such an information by quan-
titatively showing how such bottlenecks and underutilization
affect performance, power and energy. The proposed model
allows the flow (underlined by grey arrows in Figure 1) to be
iterated for incremental tuning of the application.

The suite has been applied to characterize two different
GPU devices (i.e., an NVIDIA Kepler GTX660 and a low
power embedded system NVIDIA Jetson TK1). The results
show how the same code optimizations have a different impact
on the design constraints on the two different GPU architec-
tures.

The paper is organized as follows. Section II presents the
analysis of the related work. Section III introduces the most
important concepts and terminology of GPU programming.
Section IV presents the microbenchmark suite. Section V
reports the experimental results, while Section VI is devoted
to concluding remarks.

II. RELATED WORK

Different papers have been presented to evaluate functional
and architectural characteristics of GPUs through microbench-
marking.

The first work has been presented in [15], in which
the authors developed a microbenchmark suite to measure
the CUDA-visible architectural characteristics of the Nvidia
GT200 (GTX280) GPU. Such a measure includes various
undisclosed characteristics of the processing elements and
the memory hierarchies. The analysis exposes undocumented
features that impact program performance and correctness. The
results can be useful for improving performance optimization,
analysis, and modeling on GPU architectures and offer ad-
ditional insight on the decisions made in developing such a
manycore architecture.

In [10], the authors evaluated throughput and the power
efficiency of three 128-bit block ciphers (AES, Camellia, and
SC2000) on Nvidia Geforce GTX 680 with Kepler architecture
and on AMD Radeon HD 7970 with GCN architecture. For the
comparison, the authors used Nvidia Geforce GTX 580 and
AMD Radeon HD 6770 with architecture of one generation
earlier. According to the experimental results, encryption pro-
cessing on Radeon HD 7970 with GCN architecture designed
for general purpose computing engenders extremely high
throughput and power efficiency. In contrast, as for GTX 680
with Kepler architecture developed for better power efficiency,
arithmetic and logical instructions comprising a large part of
block cipher are blushed off. As a result, the throughput of
AES-128 on GTX 680 was about 31 % of that on Radeon
HD 7970. Power consumption of encryption processing on
GTX 680 is certainly lower than that on GTX 580, but
the power efficiency was hampered by the low throughput
and thereby was no more than 36 % of that on Radeon
HD 7970. To investigate the obtained results, the authors
applied a microbenchmark suite, which allowed understanding

that arithmetic logical instructions are required by encryption
processing but are eliminated from some of the processing
cores in NVIDIA Kepler architecture, unlike AMD graphics
core next (GCN) architectures.

In [16], the authors propose an OpenCL microbenchmark
suite for GPUs and CPUs. They present the performance re-
sults of hardware and software features such as bus bandwidth,
memory architectures, branch architectures and thread hierar-
chy, etc., evaluated through the proposed microbenchmarks on
multi-core X86 CPU and NVIDIA GPUs.

In [4], the authors propose a microbenchmarking method-
ology based on short elapsed-time events (SETEs) to obtain
comprehensive memory microarchitectural details in multi-
and many-core processors. This approach requires detailed
analysis of potential interfering factors that could affect the
intended behavior of such memory systems. They lay out
effective guidelines to control and mitigate those interfering
factors. Taking the impact of simultaneous multithreading
(SMT) into consideration, the methodology not only can mea-
sure traditional cache/memory latency and off-chip bandwidth
but also can uncover the details of software and hardware
prefetching units not attempted in previous studies.

In [8], the authors propose a fine-grained benchmarking
approach and apply it on two popular GPUs, namely Fermi and
Kepler, to expose the previously unknown characteristics of
their memory hierarchies. Specifically, the authors investigate
the structures of different cache systems, such as data cache,
texture cache, and the translation lookaside buffer (TLB).
They also investigate the impact of bank conflict on shared
memory access latency. The benchmarking results offer a
better understanding on the GPU memory hierarchy, which
can help in the software optimization and the modelling of
GPU architectures.

Each of these contributions either presents microbench-
marks for characterizing a GPU device from a specific de-
sign constraint point of view (performance or power) or
presents and analysis of GPU performance and power of a
specific application. In contrast, we propose a comprehensive
microbenchmark suite that characterizes all the functional
and architectural units of a GPU architecture from both the
performance and power/energy consumption point of view.
Such a characterization allows software developers to under-
stand how application bottlenecks involving selected functional
components or underutilization of them can affect the code
quality by considering all the three design constraints and the
given GPU device.

III. BACKGROUND

This section summarizes the most important concepts and
the corresponding terminology of GPU programming.

GPU devices are massive multithreaded architectures com-
posed by scalable arrays of parallel processors called Stream-
ing Multiprocessors (SMs). Each SM contains a set of cores,
called Stream Processors (SPs). Each SP executes fixed-
point and floating-point single-precision operations through
dedicated ALU and FPU units. SPs are supported by spe-
cial purpose units that execute double-precision instructions
(DFU), transcendental operations (SFU), such as trigonometric



functions, and load/store units to issue memory instructions
and to calculate memory addresses. The number of SPs per
streaming multiprocessor is fixed by the compute capability of
the device, while the number of DFU, SFU, load/store units
depends on the particular chip.

The CUDA thread model consists of four hierarchical
levels. A grid is composed by blocks of threads and each
block is divided into groups of 32 parallel thread called
warps that execute in a SIMD fashion. Threads within a
warp that take different execution flows (e.g., due to a control
flow instruction) cause branch divergence with a consequent
instruction serialization and lost of performance. In modern
GPU architectures (e.g., NVIDIA Kepler and Maxwell) each
SM can handle up to 2048 threads and 64 warps concurrently.
The number of warps per SM is called theoretical occupancy
of the device. Each SM has four warp schedulers, allowing 8
instructions to be execute per clock cycle. Thread blocks are
dynamically dispatched to the SMs through a hardware sched-
uler that works at device-level. The grid configuration and the
thread block/warp scheduling strongly affects performance.

Threads of the same block cooperate by sharing data
through fast on-chip shared memory. Shared memory is or-
ganized in a 32-column matrix (i.e., memory banks). When
multiple threads of the same block access different 32-bit
words of the same bank, a conflict occurs. Such a bank
conflict involves re-execution of the memory instructions, with
a consequent lost of performance. The GPU memory hierarchy
includes also the DRAM, constant, and L2 cache memories,
which are visible to all the threads of a grid. The constant
cache is a fast and small read-only memory space commonly
used to kernel parameter passing and for storing data that will
not change during the kernel execution. In contrast, DRAM
and L2 cache provide high latency read/write spaces to all
threads.

Finally, the access pattern of global memory accesses
is critical for the performance. In order to maximize the
global memory bandwidth and to reduce the number of bus
transactions, multiple memory accesses can be combined into
a single transaction. Memory coalescing consists of executing
memory accesses by different warp threads to an aligned and
continuous segment of memory.

IV. THE MICROBENCHMARK SUITE

We developed a suite of microbenchmarks to selectively
study the behaviour of a wide range of GPU functional com-
ponents. Figure 2 gives an overview of such a microbenchmark
suite by reporting, for each microbenchmark, the exercised
GPU component, the involved specific instructions, and the
considered features.

A microbenchmark consists of a GPU kernel code that
exercises a specific functional component of the architecture
and whose instructions can be evaluated at a clock-cycle
accuracy. The generic structure of the microbenchmark main
procedure consists of a long sequence of one or more selected
instructions (e.g., arithmetic instructions, memory accesses)
that executes without any interference deriving from other
instructions. The microbenchmarks have been implemented to
stress only a specific functional component at a time, while
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FIG. 2: Microbenchmark Classes

affecting the others as little as possible to obtain reliable and
accurate feedback.

The microbenchmark code is written by combining com-
mon CUDA C/C++ language with inline intermediate assem-
bly to avoid compiler side effects that may elude the target
properties. The parallel thread execution (PTX) is a GPU
machine-independent language that allows expressing general
purpose computation through virtual ISA. We exploited the
PTX language to force a specific operation on a data type, to
avoid compiler optimizations, to prevent caching/local-storage
mechanisms and to restrict memory access space. Several
arrangements have been adopted to preserve the code func-
tionality. As an example, registers are initialized with dynamic
values to avoid constant propagation in arithmetic benchmarks.
Finally, in order to perform an extensive computation, we apply
template meta-programming and nested loops to avoid code-
size optimizations and loop collapsing, respectively. The code
controls the intensity variability, the amount of computation,
and other aspects through parameterized procedures.

Each microbenchmark run returns information like execu-
tion time, actual throughput (to compare with the theoretical
throughput from the device specifications), average and max
power consumption, energy consumption and energy efficiency.
Some microbenchmarks (marked with "+ in Figure 2) are also
applied to exercise functional components with different inten-
sity. As an example, a microbenchmark allows analysing the
shared memory throughput by generating a different amount
of bank conflicts, from zero to the maximum value, and by
measuring the corresponding access time.

Overall, the microbenchmarks provide a quantitative model
of the target GPU architecture based on performance and
power, and provide important guidelines for the application
optimization. As shown in Figure 2, the microbenchmarks are
grouped into two classes: Arithmetic processing and memory
hierarchy.

A. Arithmetic processing benchmarks

This class of microbenchmarks targets the complete set
of arithmetic instructions natively supported by the GPU, by



__global__ ADD_THROUGHPUT()

: int R1 = clock(); //assign dynamic values to R1,R2 to
: int R2 = clock(); //avoid constant propagation

. int startTimer = clock();

: Computation<N>(R1, R2); //call the function N times
. int endTimer = clock();
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template<int N>() //template metaprogramming
_ device__ __forceinline_ COMPUTATION(int R1, int R2)

: #pragma unroll 4096 // maximum allowed unrolling

: for (int i = 0; i < 4096; i++) do

asm volatile("add.s32 : ”=r"(R1) : "r’(R1), "1"(R2));
: end //volatile: prevent ptx compiler optimization

: Computation<N-1>(R1, R2); //recursive call

S N N

FIG. 3: Example of microbenchmark code. The code aims at measur-
ing the maximum instruction throughput of the add operation.

distinguishing between integer and floating point over 32 and
64-bit word sizes.

The benchamrks perform a long sequence of instructions to
stress the ALU components. All PTX instructions of arithmetic
benchmarks have a direct translation into the native ISA, called
SASS (Shared ASSembly), except 64-bit integer operations
and floating-point divisions that are compiled into multiple
instructions. A SM executes native instructions in one clock
cycle, providing a throughput (instructions per clock cycles)
limited by the concurrency of the exercised ALU component.
Depending on the compute capability of the device and on
the architecture, the implementation of non-native instructions
may correspond to a different number and type of ISA instruc-
tions. Arithmetic benchmarks include also four different types
of division operations classified by approximation (IEEE754
Compliance and fast hardware approximation) and normaliza-
tion (normal and de-normal numbers).

As an example, Figure 3 summarizes the microbenchmark
code developed to analyse the 32-bit integer arithmetic pro-
cessing unit (simple add). The code implements dynamic
value assignments to registers (see rows 1 and 2 in the
upper side of the figure) to avoid the constant propagation
optimization by the compiler'. The code also adopts recursive
and template-based metaprogramming. This allows generating
an arbitrarily long sequence of arithmetic instructions without
any control flow instructions. (4096 x N add instructions in
the example?).

B. Memory benchmarks

This class of benchmarks focuses on the impact of through-
put and access patterns on DRAM, shared, constant, and L2
cache memories.

The DRAM throughput benchmark executes several global
accesses to different memory locations with a stride of 128
bytes between grid threads to avoid L1 coalescing. The L2
benchmark repeats a compile-time sequence of store instruc-
tions on the same memory address. We use cache modifiers

I'Static value assignments to registers are generally solved and substituted
by the compiler optimizations through inlining operations.

2In the example, 4,096 unrolls are a good compromise between loop body
replication and template recursion. Over a fixed number of loop unrolling
iterations the compiler would insert control statements in the loop to reduce
the size of the binary code.

_device__ clock_t devClocks[RESIDENT_WARPS];
__device__ int devTMP;

template<int CONFLICTS>

__global__ SHAREDMEMCONFLICTS()

. _ shared__ volatile int SMem[1024];

: volatile int* Offset = SMem + LANE_ID * (CONFLICTS+1);
: clock_t startTimer = clock64();

: Computation<N>(Offset);// call the function N times

: clock_t endTimer = clock64();

. if (LANE_ID == () then

devClocks[WARP_ID] = endTimer - startTimer;

: if (THREAD_ID == 1024) then

devTMP = SMem[0]; // never executed
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template<int N> //template metaprogramming
_device_ _forceinline_ COMPUTATION(volatile int* Offset)

: #pragma unroll 4096
: for (int i = 0; i < 4096; i++) do
asm volatile(”st.volatile.s32 [%0], %1;” : :
”1”(Offset), ’r”’(i) : "memory” );
//'asm volatile: prevent PTX compiler optimization
end
: Computation<N-1>(Offset); //recursive call

N Ry

FIG. 4: Example of the microbenchmark code to measure the impact
of shared memory bank conflicts.
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FIG. 5: Example of memory accesses by threads with no and one bank
conflict.

[11] to avoid L1 cache hits that can occur in the store
operations. Shared and constant memory benchmarks consist
of a sequence of load/store instructions respectively. In the
coalescing benchmark, we vary the number of threads within
a warp that access to continuous locations. For example, to
test the impact of the worst memory access pattern (no coa-
lescence) we apply the same stride of the DRAM throughput
benchmark, to evaluate 1/16 of coalescence we divide the
warp threads into 16 groups of two threads where each group
accesses in different addresses. The access size benchmark
copies one large array into another multiple times and, in each
execution, we vary the data type size.

Figure 4 summarizes the microbenchmark code developed



to measure the impact of shared memory bank conflicts on the
memory access throughput. The procedure first computes, for
each thread of a warp, the address offsets of shared memory
that can lead to bank conflicts (Line 2 in the upper side
of Figure 4, where LANE_ID represents the thread id in the
warp, and CONFLICTS represents the number of conflicts to
generate). Figure 5 shows, for example, the offsets generated
to lead to no and to one bank conflict. Then, it performs a long
sequence of store operations with no interrupt or intermediate
operation. The code implements volatile quantifiers (1ines
1, 2 in the upper side of Figure 4) to avoid local-storage opti-
mization by the compiler. As for the simple add example, the
code adopts recursive and template-based metaprogramming to
generate an arbitrarily long sequence of arithmetic instructions
(4,096 x N store instructions in the exampl)e. In the last
step (Line 7 in the upper side of the figure) each warp sends
the timing results to the host through global memory. Line
8, 9 ensure that the result is stored in global variable with a
fake write instruction (that is never executed since the higher
thread id in a block is 1023) to prevent dead code elimination
by the compiler.

Similarly, other microbenchmarks of this class exercise
their corresponding functional components with different in-
tensity. This allows characterizing the components behaviour
under different workloads. For example, the global memory
throughput is affected by access pattern that involves a dif-
ferent number of memory transactions or by saturation of the
instruction pipeline. Varying the intensity of a microbenchmark
allows us to better understand the main factors that affect
the performance and the power consumption in real-world
applications, where functional components show a wide range
of utilization values.

In general, the microbenchmarks have been developed
to guarantee enough computation time (i.e., at least of
some milliseconds) to overcome the limitation of the sam-
pling frequency in the measurement of the power features
(Pmax; Ptotal, Pavg) and to minimize the RLC effect in the
kernel starting/ending phases.

V. EXPERIMENTAL RESULTS

We run the microbenchmark suite to characterize two
different GPU devices. The first is an NVIDIA Kepler GeForce
GTX 660 with CUDA Toolkit 7.5, AMD Phenom II X6 1055T
(3GHz) host processor, and Ubuntu 14.04 operating system.
The second is a Tegra K1 SoC (Kepler architecture) on an
NVIDIA Jetson TK1 embedded system, with CUDA Toolkit
6.5, 4-Plus-1 Cortex A15 host processor, and Ubuntu 14.04
operating system.

Performance information has been collected through
CUDA runtime API to measure the execution time for the
memory, scheduling, and synchronization microbenchmarks
and through the clock device instruction for arithmetic
processing microbenchmarks to provide high accuracy.

Power and energy consumption information has been col-
lected through the Powermon2 power monitoring device [3].
The device allows measuring the voltage and the current values
from different sources at the same time with a frequency
of 1024 Hz for every sensors. The GTX 660 requires five
12V pins, three for the pci-express power connectors and two

for auxiliary connectors. We used a pci-express interposer to
isolate the GPU power connectors from the motherboard. The
Jetson TK1 requires only a DC barrel connector adapter to
enable the power monitoring. We designed specific API and
procedures to allow microbenchmarks to communicate and to
synchronize with the Powermon device. The analysis has been
performed with the default GPU frequency setting.

Tables I and II report the results obtained by running
the Arithmetic Processing benchmarks on the GTX 660 and
TK1, respectively. The benchnmarks, which are organized over
columns, consist each one of 10° instructions per SM (i.e.,
consider that the GTX 660 consists of 5 SMs, while the TK1
consists of 1 SM). For each benchmark, the tables report
the execution time, the theoretical peak throughput of the
corresponding functional unit provided in the device speci-
fications [12] (Spec Throughput) and that measured through
the proposed benchmark (Real throughput). The device
specifications do not include the theoretical peak throughput
of the Integer 64-bit simple unit since such an operation has
not an embedded hardware implementation (it is performed by
combining different hardware units).

For both the GTX 660 and TK1, the benchmarks underline
that the theoretical peak throughput of several functional units
(e.g., complex multiply, population count, shift Integer 32-
bit etc.) can be actually reached. The measured peak values
often exceed the conservative theoretical values provided by
the device specifications. In contrast, the peak throughput of
selected functional units, such as the simple 32-bit either
Integer or Floating Point add cannot be actually fully ex-
ploited. We assume this is due to the actual latency of the
fetching subunits, which do not support the throughput of
the computation subunits. Even though the two devices are
fairly different (desktop-oriented GTX 660, and low-power
embedded system TK1), the benchmarks underline they rely
on equivalent Kepler SMs, whose peak performance are fully
comparable.

Finally, Tables I and II report information about power and
energy consumption, which are not provided with the device
specifications. Power and energy characteristics refer to the
whole GPU device and underline the structural characteristics
of the two GPU device architectures (5 SMs vs. 1 SM). They
also underline that the difference of maximum power among
functional units (e.g., add, mult, shift, etc.) is negligible
when considering a single SM (see JTK1). It becomes more
evident when considering all SMs (e.g., see the difference
between FP 32-bit special and Integer 32-bit instructions in
GTX 660). The tables also show that FP 64-bit operations
have an significant impact on the energy consumption of both
the devices (15 times higher than Integer/FP 32-bit simple and
Integer compare instructions).

Tables III and IV report the results obtained by running
the microbenchmarks of the memory class to evaluate the
throughput of the different device memories. The results allow
understanding how the throughput differs among memories and
how it differs between the two devices. As an example, an
application running on the TK1 accesses the constant memory
4 times faster than in DRAM. The same application running
in the GTX 660 accesses the constant memory 20 times
faster than in DRAM. Moreover, the table shows that DRAM
accesses strongly affect the average and the max power of GTX



INTEGER FP
INTEGER 32-BIT 64-BIT FP 32-BIT 64-BIT
SIMPLE COMPLEX Pop. COUNT SHIFT BiT OP. COMPARE SIMPLE SIMPLE SPECIAL SIMPLE
Execution Time (ms) 9.6 343 343 343 36.7 9.8 245 9.7 36.6 137.0
Spec Throughput .
(OPs x Cycle) x SM 160 32 32 32 32 160 n.a. 192 32 8
Real Throughput
(OPs x Cycle) x SM 126.1 34.7 34.7 34.7 34.3 1222 51.2 1260 339 8.8
Avg. power (W) 54.4 54.4 53.7 52.5 56.8 54.3 57.6 55.7 60.6 53.3
Max Power (W) 62.0 59.0 56.0 56.0 60.0 59.0 62.0 62 65.0 59.0
Energy (J) 0.5 1.9 1.8 1.8 2.1 0.5 1.4 0.5 22 73
Energy efficiency 2,057.1 576.3 5838 597.0 514.6 2,020.0 760.2 1,990  483.9 146.9
(MIPS x Watt) x SM
nano Joule per 0.5 17 17 17 19 0.5 12 0.5 2.1 6.8
instruction
TABLE I: GTX 660 - Characterization with Arithmetic Processing benchmarks.
INTEGER FP
INTEGER 32-BIT 64-BIT FP 32-BIT 64-BIT
SIMPLE CoMPLEX  Popr. COUNT SHIFT BiT OP. COMPARE SIMPLE SIMPLE  SPECIAL SIMPLE
Execution Time (ms) 122.6 466.2 467.8 466.1 5224 1253 368.6 1239 4810 1.864
Spec Throughput
(OPs x Cycle) x SM 160 32 32 32 32 160 na 192 32 8
Real Throughput
(OPs x Cycle) x SM 1235 32.1 32.1 32,0 29.1 121.9 412 1232 307 8
Avg. Power (W) 113 11.0 11.0 11.1 11.1 113 112 113 113 10.8
Max Power (W) 13.0 13.0 13.0 14.0 13.0 14.0 14.0 13.0 15.0 13.0
Energy (J) 1.4 5.1 52 52 5.8 1.4 4.1 14 5.4 20.2
Energy efficiency 7718 208.6 208.1 207.4 184.4 7553 260.2 765.7 198.0 532
(MIPS x Watt) x SM
nano Joule per 13 48 48 48 54 13 338 13 5.1 188
instruction
TABLE II: Jetson TKI - Characterization with Arithmetic Processing benchmarks.
DRAM L2 SHARED CONSTANT DRAM L2 SHARED CONSTANT
Execution Time (ms) 1,170 1,013 220.2 60.8 Execution Time (ms) 18,777 16,878 14.915 3,905
Real Throughput Real Throughput
(OPs per Cycle) 1.0 L1 53 19.6 (OPs per Cycle) 038 03 1.0 38
Avg. power (W) 92.1 71.5 59.2 63.3 Avg. power (W) 14.5 11.5 11.0 11.2
Max power (W) 102.0 80.0 62.0 68.0 Max power (W) 18.0 15.0 14.0 13.0
Energy (J) 107.8 72.5 13.0 3.8 Energy (J) 272.1 2234 164.1 43.9
Energy efficiency 10.0 14.8 82.4 279.1 Energy efficiency 39 438 6.5 25
(10° Transactions/Watt) (10° Transactions/Watt)
nano Joule per 100.4 675 12.1 36 nano Joule per 253.4 208.1 152.8 409

transaction

transaction

TABLE III: GTX 660 - Characteristics of accesses on
DRAM, L2, shared and constant memories.

660 and TK1 devices while, the on-chip memories (shared and
constant memories) have sightly higher average power than
arithmetic instructions.

Figure 6(a) shows the impact of thread coalescence in
DRAM memory accesses on the GTX 660 performance, power
and energy. The figure shows the effect starting from no

TABLE 1V: Jetson TKI - Characteristics of accesses on
DRAM, L2, shared and constant memories.

coalescence (one memory transaction per warp thread access),
1/16 coalescence (one transaction per two warp threads), until
FULL coalescence (one transaction per a whole 32-threads
warp). The figure shows how performance and energy are
proportional to the reached coalescence. In contrast, max and
average power reach the highest values at 1/8 coalescence,
and they decrease until FULL coalescence. This is due to the
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fact that from NO to 1/8, the coalescence is incrementally
supported by the 32-Byte L2 memory banks, which saturate
at 1/4 coalescence (i.e., each set of 4 transactions per warp,
each one 32-Byte large, saturate a 32-Byte L2 bank). From 1/4
on, the coalescence relies on the 128-Byte L1 memory banks.
Figure 6(b) reports the same analysis on the TK1, for which
the decreasing of the max power can be observed at the FULL
coalescence state only.

Figures 7(a) and 7(b) report the impact of size of the thread
accesses on DRAM, starting from 1-Byte to 16-Bytes blocks
(per thread). The analysis confirms the correlation between

performance and energy consumption with average and max
power and it quantifies the additional power required to reach
the best performance and energy optimizations.

Figures 8(a) and 8(b) quantify the impact of bank con-
flicts in shared memory on power, performance, and energy
consumption. They underline that the bank conflicts similarly
impact on performance and energy on the two devices. In
contrast the analysis underlines that up to 7 conflicts do not
affect the max power on the GTX 660, while up to 7 conflicts
strongly affect the max power on the TK1.



Overall, the results obtained by running the proposed suite
on a given GPU device allows understanding the specific
impact of a tuning step on the design constraints (performance,
power, and energy consumption). Improving the code perfor-
mance that affect a specific functional component (e.g., coa-
lescence of memory accesses) may violate a design constraint
on a device, while it may not on a different device (see for in-
stance the different effect on peak power on GTX660 and TK1
by increasing the memory coalescence). Combined with the
standard profiler information, the proposed microbenchmark
suite can efficiently guide developers in choosing among the
possible optimizations during the whole iterative tuning flow.

VI. CONCLUSIONS

This paper presented MIPP, a suite of microbenchmarks
that aims at characterizing a GPU device in terms of per-
formance, power, and energy consumption. MIPP aims at
understanding how application bottlenecks involving selected
functional components or underutilization of them can affect
code performance, power consumption, and energy efficiency
on a given device. The paper presented the results obtained
by applying the microbenchmark suite to characterize two
different GPU devices, i.e., an NVIDIA Kepler GTX660 and a
low power embedded system NVIDIA Jetson TK1. The results
showed how the same code optimizations have a different
impact on the design constraints on the two different GPU
architectures.
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