
Optimising Memory Management for
Belief Propagation in Junction Trees using GPGPUs

Filippo Bistaffa, Alessandro Farinelli, Nicola Bombieri
Department of Computer Science

University of Verona
Verona, Italy

{filippo.bistaffa,alessandro.farinelli,nicola.bombieri}@univr.it

Abstract—Belief Propagation (BP) in Junction Trees (JT) is
one of the most popular approaches to compute posteriors in
Bayesian Networks (BN). Such approach has significant computa-
tional requirements that can be addressed by using highly parallel
architectures (i.e., General Purpose Graphic Processing Units) to
parallelise the message update phases of BP. In this paper, we
propose a novel approach to parallelise BP with GPGPUs, which
focuses on optimising the memory layout of the BN tables so
to achieve better performance in terms of increased speedup,
reduced data transfers between the host and the GPGPU, and
scalability. Our empirical comparison with the state of the art
approach on standard datasets confirms significant improvements
in speedups (up to +594%), and scalability (as our method can
operate on networks whose potential tables exceed the global
memory of the GPGPU).

Keywords—Belief Propagation on Junction Trees, GPGPUs.

I. INTRODUCTION

Bayesian Networks represent a powerful tool to perform
inference on uncertain data, and they have been used in a wide
range of applications in artificial intelligence and related fields.
A crucial task for BN is to compute the posterior probability
given observed events (i.e., evidence). A popular approach to
perform exact inference is to compile the BN in a Junction Tree
and then run Belief Propagation, a message passing algorithm
that updates the belief of each node in the JT propagating
the acquired evidence [1]. Exact inference on BN is known
to be computationally hard (i.e., it is NP-hard) and while BP
over JT is one of the most popular approaches to perform
exact inference, the computation associated with the message
update procedures increase dramatically with the variables’
domain size and the clique size of the JT (i.e., such procedure
is time and space exponential in the size of the largest clique).
Such computational complexity is a crucial issue hindering
the use of exact inference for BN when evidence collection
and belief update must be performed in real-time or when the
inference task is a subroutine for other algorithms [2]. To deal
with such computational complexity, researchers developed
different approaches ranging from cutset conditioning [3] to
iterative or loopy BP [4].

In this perspective, the recent development of highly paral-
lel architectures such as General Purpose Graphic Processing
Units hold great promises to significantly reduce the run time
of computational intensive algorithms by exploiting parallel
execution. The use of parallel architectures for BP has been
investigated before by [5], who focused on machines with
distributed memory, while the use of pointer jumping has been
introduced by [6]. On the other hand, the use of GPGPUs
in basic sum-product algorithms has been investigated by [7],
later developed by [8] exploiting node level parallelism.

In a recent work, [9] proposes an approach to parallelise
the BP message update phases by using GPGPUs. Here, we
also study the parallelisation of BP over JT using GPGPUs,
but, in contrast to such previous work, we focus on optimising
the memory layout of the BN tables so to achieve better
performance in terms of increased speedup, reduced data
transfers between the host and the GPGPU, and scalability.
Specifically, we propose a novel approach to parallelise BP on
GPGPU which is based on preprocessing potential tables so to
obtain full memory coalescence, which is a crucial component
for efficient memory management in GPGPUs.

In more detail, this paper advances the state of the art in
the following ways:

● It proposes an algorithm to preprocess potential tables
by organising the columns in a specified order (i.e.,
placing the shared variables in the most significant
positions), thus achieving full memory coalesced ac-
cesses in the message update phases. We formally
analyse such algorithm proving its correctness and
giving the worst case computational complexity.

● It proposes an implementation of the GPGPU kernel
that exploits the organisation of the tables specified
before. Specifically, we show that such an arrangement
enables pipelined data transfers from the host to the
GPGPU (hence optimising transfer time) and it allows
the use of highly efficient routines for crucial parts
of the BP message update algorithm (reduction and
scattering).

● It empirically compares the proposed approach to
[9] on the same dataset. Our results show significant
improvements, achieving speedups at least 59% higher
than the alternative method and reaching peaks of
+594% in this gain. Moreover, our method can scale
up to networks whose potential tables do not fit in the
global memory of the GPGPU.

The rest of the paper is organised as follows: Section II
illustrates the background on BP on JT and outlines some
previous approaches to this problem. Section III provides
a method to obtain an appropriate representation of poten-
tial tables in memory, so as to achieve an high GPGPU
computational throughput through optimal memory accesses.
Section IV discusses our empirical evaluation and Section V
concludes the paper.

II. BACKGROUND

The purpose of this section is threefold. First, in Sec-
tion II-A we define the theoretical concepts and the algorithms
related to BP. Second, Section II-B outlines the features of
GPGPU architectures, used to implement our highly-parallel
approach to BP. Finally, Section II-C discusses previous works
for BP on GPGPUs, focusing on the recent work by [9], used
as a reference in our empirical evaluation.

A. Belief Propagation in Junction Trees

A BN is a compact representation of a joint distribution
over a set of random variables Z , structured as a directed
acyclic graph whose vertices are the random variables and the
directed edges represent dependency relationships among the
random variables.

The propagation of beliefs (or posteriors) runs over a
derived graph J called junction tree, generated from a BN
by means of moralisation and triangulation [1]. Every vertex
of the junction tree contains a subset of the random variables
that forms a maximal clique in the moralised and triangu-
lated BN, each associated to a potential table represented by
T = ⟨X , d,R, φ⟩ such that:

● X ⊆ Z is an ordered tuple defining the variables of
the clique associated to T .

● d is an ordered tuple of natural numbers such that each
di is the size of the domain of variable Xi.1

● R is an ordered tuple of rows: in particular, each row
r =Ri is, in turn, an ordered tuple of natural numbers
(such that ∀ri ∈ r,1 ≤ ri ≤ di), defining a particular
assignment of the variables in X .

● φ is an ordered tuple representing the actual potential
values of the table, one for each row Ri: in particular,
φi is the potential value associated to the variable
assignment represented by Ri.

Notice that, in standard BP,R contains all the possible vari-
able assignments over their domains, hence ∣R∣ = ∣φ∣ =∏

∣X ∣

i=1 di.
Assuming that Ti and Tj are potential tables associated to
adjacent cliques in the junction tree, we associate a separator
Sij to the edge connecting Ti and Tj , which indicates the
shared variables between the two tables, i.e., S = X ∩ Y ,
where X and Y denotes the tuples of variables of Ti and
Tj respectively. BP is then invoked whenever we receive new
evidence for a particular set of variables E ⊆ Z , requiring
to update the potential tables associated to the BN in order
to reflect this new information. To this end, a two-phase
procedure is employed: first, in the evidence collection phase,
messages are collected from each vertex Ci, starting from the
leaves all the way up to a designated root vertex (Algorithm 1).

Algorithm 1 COLLECT (J,Ci)

1: for all Cj child of Ci do
2: MESSAGEPASS (Ci,COLLECT (J,Cj))

3: return Ci

Then, during evidence distribution, messages are dis-
tributed from the root R to the leaves (Algorithm 2).

1If a is an ordered tuple, ai refers to its ith element.

Algorithm 2 DISTRIBUTE (J,R)

1: for all Cj child of R do
2: MESSAGEPASS (R,Cj)
3: DISTRIBUTE (J,Cj)

4: return Ci

In both phases, each recursive call comprises a message
passing procedure, which implements the actual propagation
of beliefs between the potential tables Ti and Tj associated to
cliques Ci and Cj . More specifically, such operation involves
two steps:

1) Reduction: the potential table Sij is updated to S∗ij .
In particular, each row of S∗ij is obtained summing
the corresponding rows of Ti, i.e., the ones with a
matching variable assignment.

2) Scattering: Tj is updated with the new values of
S∗ij , i.e., every row of Tj is multiplied for the cor-
responding Rij = S∗ij/Sij . Following [9], we assume
that 0/0 = 0.

It is easy to see that both these steps require several
independent computations spanning over multiple rows of the
considered tables, suggesting a multi-threaded algorithm in
which such degree of parallelism can be exploited by means
of GPGPUs, i.e., general purpose graphics processing units.

B. GPGPU Architecture

GPGPUs are designed for compute-intensive, highly par-
allel computations. To this end, more transistors are devoted
to data processing rather than data caching and flow control.
These architectures are especially well-suited for problems that
can be expressed as data-parallel computations where data ele-
ments are mapped to parallel processing threads. The GPGPU
(device) is mainly employed to implement compute-intensive
parts of an application, while control-dominant computations
are performed by the CPU (host).

In our approach, the GPGPU is programmed using the
CUDA programming framework [10], which requires the def-
inition of a kernel, a particular routine executed in parallel
by thousands of threads on different inputs. Threads are
organised in thread blocks, sharing fast forms of storage and
synchronisation primitives. On the other hand, physical and
design constraints limit the number of threads per block,
since all the threads of a block are expected to reside on the
same streaming multiprocessor (SM) and must share limited
memory resources. Memory management is a crucial aspect
in the design of efficient GPGPU algorithms, since memory
accesses are particularly expensive and have a significant
impact on performance. As a consequence, memory accesses
must be carefully devised to achieve high computational
throughput (see Section III-B1). In what follows, we provide
some background on previous approaches to BP on GPGPUs
that can be found in literature.

C. Related Work

The most recent solution technique for BP on GPGPUs
is presented by [9], in which the authors propose a way
to parallelise the atomic operations of propagation, so that
it could be embedded in different algorithms. The authors

devise a two-dimensional parallelism, in which an higher level
element-wise parallelism is stacked on top of a lower level
arithmetic parallelism, to better exploit the massive compu-
tational power provided by modern GPGPUs. In particular,
element-wise parallelism is achieved by computing each of
the ∣S∣ reduction-and-scattering operations in parallel, which
require ∣S∣ mapping tables (one per row of S) to allow each
concurrent task to correctly locate its input data from the
corresponding potential tables. On the other hand, arithmetic
parallelism represents the multi-threaded computation of each
reduction-and-scattering operation, by means of well known
parallel algorithms that can be found in literature [11].

Although this approach represents a significant contribution
to the state of the art, there are some drawbacks that hinder
its applicability. In particular, the proposed memory layout is
not suitable for a GPGPU programming model, for two main
reasons:

● GPGPU threads need to access data in sparse and
discontinuous memory locations by means of an addi-
tional indexing table, breaking coalescence and dras-
tically reducing the throughput of memory transfers
(Figure 4). Coalescence is a crucial feature that should
be exploited in order to reduce memory accesses to
the global memory, hence improving the compute-to-
memory ratio and achieving a greater computational
throughput.

● Since input data is organised in a discontinuous pattern
rather than in continuous chunks, it is mandatory to
transfer the entire potential tables to the global mem-
ory of the GPGPU before starting the computation of
the BP algorithm, hindering two desirable properties:
i) this approach is not applicable to potential tables
that do not fit into global memory, since the sparsity
of the data prevents any possibility of splitting them
into smaller parts, and ii) since the computation cannot
be started before the entire input data has been copied
to the GPGPU, the cost of memory transfers cannot
be amortised by means of technologies like NVIDIA
CUDA streams.

To overcome these limitations, we propose a better way to
organise potential tables in memory, hence devising a better
approach to BP on GPGPUs.

III. GPGPU MESSAGE COMPUTATION

In this section, we describe our contribution to the com-
putation of BP on GPGPUs. In particular, we first introduce
an appropriate representation of potential tables in memory,
detailing how we can preprocess original tables to maximise
the performance through optimal data transfers and memory
accesses. Such representation is then exploited by the actual
BP algorithm computed by means of a CUDA kernel.

A. Table Preprocessing

Suppose we have to propagate new evidence from the
potential table T1 to the potential table T2, respectively as-
sociated to two tuples of variables X = ⟨x3, x2, x1⟩ and
Y = ⟨x5, x4, x1⟩, with the separator S = X ∩ Y = ⟨x1⟩. We
assume that x1, x3 and x5 are binary variables, while x2 and

x4 can assume 3 values. In the approach proposed by [9],
each row of the separator table S12 is assigned to a different
block of threads, which are responsible of the reduction of
the rows of T1 with a matching variable assignment and the
subsequent scattering on matching rows in T2. In Figure 1,
rows associated to different blocks of threads have been
marked in different colours, i.e., white and grey for x1 = 0 and
x1 = 1 respectively. The organisation of input data provided
by these tables is undesirable for GPGPU architectures. In
fact, threads responsible of the computation of white rows
cannot access consecutive memory addresses, as their data
is interleaved with grey rows, breaking memory coalescence.
Moreover, even if the computation of white rows requires half
of the input data, its sparsity forces us to transfer the entire
tables to the global memory before starting the algorithm.

We propose to solve these issues by means of a preproc-
essing phase, in which rows associated to the same row in
S12 (i.e., rows of the same colour, in the above example) are
stored in consecutive addresses in the corresponding potential
tables, as shown in Figure 2. Threads responsible of white rows
execute coalesced memory accesses, and start the computation
while grey rows are still being transferred to the GPGPU.
Furthermore, each block of threads easily retrieves its input
data without the need of any costly mapping table, unlike [9].

Consider T p1 = ⟨X p, dp,Rp, φp⟩ in Figure 2, resulting from
a particular permutation σ of X , in which the variables in S
are brought to the most significant2 positions in X p = σ (X).
In this way, we can assure that rows with the same assignment
of the variables in S form a contiguous chunk of memory.

T1

x3 x2 x1 φ

0 0 0 a1
0 0 1 a2
0 1 0 a3
0 1 1 a4
0 2 0 a5
0 2 1 a6
1 0 0 a7
1 0 1 a8
1 1 0 a9
1 1 1 a10
1 2 0 a11
1 2 1 a12

S12

x1 φ

0 b1
1 b2

T2

x5 x4 x1 φ

0 0 0 c1
0 0 1 c2
0 1 0 c3
0 1 1 c4
0 2 0 c5
0 2 1 c6
1 0 0 c7
1 0 1 c8
1 1 0 c9
1 1 1 c10
1 2 0 c11
1 2 1 c12

Fig. 1: Original Tables

T
p
1

x1 x3 x2 φp

0 0 0 a1
0 0 1 a3
0 0 2 a5
0 1 0 a7
0 1 1 a9
0 1 2 a11
1 0 0 a2
1 0 1 a4
1 0 2 a6
1 1 0 a8
1 1 1 a10
1 1 2 a12

S
p
12

x1 φp

0 b1
1 b2

T
p
2

x1 x5 x4 φp

0 0 0 c1
0 0 1 c3
0 0 2 c5
0 1 0 c7
0 1 1 c9
0 1 2 c11
1 0 0 c2
1 0 1 c4
1 0 2 c6
1 1 0 c8
1 1 1 c10
1 1 2 c12

Fig. 2: Preprocessed Tables

Our representation of potential tables by means of ordered
tuples imposes that dp, Rp and φp are coherently defined,
to guarantee the equivalence to the original table. While
the former can be easily obtained by applying σ on d, the
computation of Rp can be avoided, therefore only φp requires
a particular dissertation, which is covered in the following
sections.

2Variables are listed from the most significant to the least significant.

1) Table Indexing: Since in any potential table T =

⟨X , d,R, φ⟩, R contains all the possible variable assignments,
we can avoid storing R in memory. In fact, since the order of
variables is fixed, given any row r = Rk, k can be computed
with:

k =
∣X ∣−1

∑
i=1

(ri

∣X ∣

∏
j=i+1

dj

Di

) + r∣X ∣ =
∣X ∣−1

∑
i=1

(ri ⋅Di) + r∣X ∣ (1)

where ri represents the value assumed by the variable Xi in r.
Notice that the tuple D is the exclusive postfix product of d,
hence we define D∣X ∣ ∶= 1. On the other hand, each ri can be
retrieved from k as ri = ⌊k/Di⌋ mod di. As a consequence, R
can be dropped from our representation of potential tables in
memory, hence, as previously claimed, the computation of Rp
is unnecessary. For a better understanding, consider the row r
with X = ⟨x1, x2, x3⟩, and d = ⟨2,16,10⟩:

r =
x1 x2 x3 φ
1 10 7 v267

From Equation 1, r will be in position k = d2 ⋅ d3 + 10 ⋅
d3 + 7 = 267 in φ. Moreover, it is easy to verify that x1 =

1 = ⌊267/D1⌋ mod d1, x2 = 10 = ⌊267/D2⌋ mod d2 and x3 = 7 =
⌊267/D3⌋ mod d3.

As mentioned before, to maintain a coherent representation
of the preprocessed table T p = ⟨X p, dp,Rp, φp⟩, the values
in φ must be correctly permuted into φp, as detailed in the
following section.

2) Table Reordering: This section will cover our approach
to achieve the column reordering detailed in Section III-A. As
mentioned before, we do not storeR, since each row r ∈R can
be retrieved from its index with the above detailed technique,
hence the computation of Rp will not be covered. On the other
hand, for any φk at index k in φ it is necessary to compute
its index kp in the preprocessed table T p to compute φp.

A naive approach would require to apply the permuta-
tion σ on each row r = Rk, which comprises 3 steps:
for each k, compute the corresponding variable assignment
⟨r1, . . . , ri, . . . , r∣X ∣⟩, apply σ on the now available sequence
of ri and, finally, obtain kp using Equation 1. Since each of
the 3 above mentioned steps has a complexity of O (∣X ∣), such
approach requires O (3∣φ∣∣X ∣) to reorder the entire table.

In what follows, we show a more efficient, approach to
calculate kp. For simplicity, we first explain how to compute
the index resulting from swapping the variables at positions i
and j. Then we provide an algorithm to compute kp by means
of a sequence of swaps.

Proposition 1: Given T = ⟨X , d,R, φ⟩ and T s = ⟨X s, ds,
Rs, φs⟩, where X s and ds has been respectively obtained
swapping Xi with Xj and di with dj (with i > j), φs is a
permutation of φ, i.e., φk = φsk′ and k′ equal to:

k′ = r1 ⋅ d2⋯di⋯dj⋯d∣X ∣ +⋯ (2a)

+ ri ⋅ dj+1⋯dj⋯d∣X ∣ (2b)

+ rj+1 ⋅ dj+2⋯dj⋯d∣X ∣ +⋯ + ri−1 ⋅ dj⋯d∣X ∣ (2c)

+ rj ⋅ di+1⋯d∣X ∣ (2d)

+ ri+1 ⋅ di+2⋯d∣X ∣ +⋯ + r∣X ∣ (2e)

Then, k′ = f (k, i, j) can also be calculated as:

k′ =

(2a)

k − k mod Dj−1 +

(2b)

Dj ⋅ dj/di ⋅ ⌊k/Di⌋ mod di +

(2e)

k mod Di

+ dj/di ⋅

(2c′)

(k mod Dj − k mod Di−1)

(2c)

+Di ⋅ ⌊k/Dj⌋ mod dj

(2d)

Proof: In the following proof, we use the following
properties, which can be demonstrated by means of basic
algebraic procedures:

k =
∣X ∣

∑
h=1

rh ⋅Dh Ô⇒

∣X ∣

∑
h=l

rh ⋅Dh = k mod Dl−1 (3)

k =
∣X ∣

∑
h=1

rh ⋅Dh Ô⇒ rh = ⌊k/Dh⌋ mod dh (4)

From Equation 1 we can easily verify that k′ = (2a) + (2b) +
(2c) + (2d) + (2e). Similarly, k can be written as:

k =

(2a)

r1 ⋅D1 +⋯ + rj−1 ⋅Dj−1 +rj ⋅Dj +

(2e)

ri+1 ⋅Di+1 +⋯ + r∣X ∣

+

(2c′)

rj+1 ⋅Dj+1 +⋯ + ri−1 ⋅Di−1 +ri ⋅Di

To prove the correctness of Proposition 1, we must show that:

● (2a) = k − k modDj−1

● (2b) =Dj ⋅ dj/di ⋅ ⌊k/Di⌋ mod di

● (2c) = dj/di ⋅ (k modDj − k modDi−1)

● (2d) =Di ⋅ ⌊k/Dj⌋ mod dj

● (2e) = k modDi.

Now, it is easy to see that (2a), (2d) and (2e) are not
affected by the swap of Xi and Xj : in fact, since (2a) refers
to all the variables before Xj (and, consequently, before Xi),
all the terms D1⋯Dj−1 contain both di and dj , hence the
swap does not produce any effect. On the other hand, (2e)
contains neither di nor dj , since it refers to all the variables
after Xi, thus (2e) is not affected either. Using Property 3,
we can calculate (2a) as the difference between k and all the
terms from rj ⋅ Dj on, i.e., (2a) = k − k modDj−1, while
(2e) is given by k modDi. Finally, in (2d) none of the terms
di+1⋯d∣X ∣ = Di contains either di or dj , thus (2d) = rj ⋅Di =

Di ⋅ ⌊k/Dj⌋ mod dj .

On the contrary, (2b) and (2c) are affected by the swap of
Xi and Xj : to calculate them, we first have to calculate (2c′) as
the difference between all the terms from rj+1 ⋅Dj+1 on and all
the terms from ri ⋅Di on, i.e., (2c′) = k modDj−k modDi−1.
Using Property 4, we can also compute ri = ⌊k/Di⌋ mod di and
rj = ⌊k/Dj⌋ mod dj . Finally, di needs to be substituted with dj
in all the terms Dj⋯Di−1 in (2b) and (2c), since Xj has
been moved to a less significant position, taking the place of
Xi which has been moved to a more significant one. Thus, we
multiply (2c′) by dj/di to compensate for this effect and obtain
(2c). Equivalently, we calculate (2b) =Dj ⋅dj/di ⋅⌊k/Di⌋ mod di
by swapping di with dj in Dj .

The result provided in Proposition 1 is used to reorder
any potential table T according to the layout detailed in
Section III-A. More formally, let P = ⟨P1, . . . ,Pn⟩ be a
sequence of n swaps, each represented by an ordered3 pair
of positions Pi = ⟨ai, bi⟩, so that we permute X into σ (X)

(moving the desired subset of variables to the most significant
positions) by means of the sequence of i swaps of the variables
in positions ai and bi, as described in Proposition 1. Then, φp

is computed with the following algorithm:

Algorithm 3 REORDERTABLE(φ,P)

1: for all k ∈ {1,⋯ , ∣φ∣} do
2: kp ← k
3: for all ⟨ai, bi⟩ ∈ P do ▷ For every swap in P
4: kp ← f (kp, ai, bi) ▷ Proposition 1
5: SWAP (Xai ,Xbi) ▷ Swap variables
6: SWAP (dai , dbi) ▷ Swap variable domains

7: φp
kp
← φk ▷ Write φk in position kp of φp

8: return φp ▷ Return φp

Notice that the sequence of swaps P required to move ∣S ∣

variables to the most significant positions of the tables Ti and
Tj can be computed as follows. Consider Ti and let us assume
that s shared variables (with 0 ≤ s ≤ ∣S ∣) are already within the
first ∣S ∣ positions of the corresponding variable tuple X . Then,
it is sufficient to swap the ∣S ∣ − s shared variables with index
greater than ∣S ∣ with the non-shared ones which are placed
within the first ∣S ∣ positions. On the other hand, table Tj can
be preprocessed by swapping each shared variable Yh with
Yk such that Yh = Xk for k ∈ {1, . . . , ∣S ∣}. Notice that this
algorithm ensures the same order of the shared variables in
both tables.

Let us show the above procedure to reorder an example
row of T1 in Figure 1 and compute its index kp in T p1 . In
this case, the desired order is obtained with P1 = ⟨3,1⟩ and
P2 = ⟨3,2⟩4, i.e, swap X3 = x1 with X1 = x3, then swap
X3 = x3 with X2 = x2. Initially, d3 = d1 = 2, D3 = 1 and
D1 = 6. Then, applying Proposition 1 to the row ⟨1,2,0⟩ with
index k = 11 results in (2a) = (2e) = 0 (since there are no
variables before x1 and after x3), (2b) = 6 ⋅ 2/2 ⋅ 0 = 0, (2c) =
2/2 (10 mod 6 − 10 mod 2) = 4 and (2d) = 1 ⋅ 1 = 1, hence
f(10,1,3) = 5, meaning that a11 would have index 5 after P1.
To calculate its final position, we apply P2 = ⟨3,2⟩. At this
point D3 = 1, D2 = d3 = 2 and d2 = 3, hence (2c) = (2e) = 0
(since there are no variables before x3 and between x3 and x2).
On the other hand, (2a) = 5−5 mod 6 = 0, (2b) = 2 ⋅ 3/2 ⋅1 = 3
and (2d) = 1 ⋅ 2 = 2, thus φp5 = a11, as can be verified in T p1 .

Algorithm 3 provides a method to rearrange any couple
of potential tables Ti and Tj such that the variables of
their separator are moved to the most significant positions,
according to Section III-A. In the next section, the impact
of this preprocessing phase on the overall performance of the
algorithm will be analysed in detail, by showing how it is more
efficient than the naive approach previously mentioned.

3We assume that, for every pair ⟨ai, bi⟩, ai > bi.
4Notice that swapping x3 and x2 is not mandatory since neither of them

belongs to the separator, but it has been included in our example to better
explain the algorithm.

3) Computational Complexity:

Proposition 2: Algorithm 3 has a time complexity of
O (∣φ∣∣P ∣) ≤ O(∣φ∣∣S∣/2) < O (3∣φ∣∣X ∣).

Proof: The external loop (line 1) requires ∣φ∣ iterations,
while the inner loop (line 3) requires ∣P ∣ iterations, which is
equal to ∣S∣/2 assuming the worst case of reordering all the
variables in S. Since lines 4-6 can be computed in O (1),
the resulting time complexity of Algorithm 3 is O (∣φ∣∣P ∣) ≤
O(∣φ∣∣S∣/2).

In our experimental evaluation, we performed the variable
ordering with an average of ∣P ∣ = 3 swaps, resulting in
an improvement of an order of magnitude w.r.t. the naive
approach, which, in contrast, requires tens of operations for
each row. It is important to note that this preprocessing phase is
done once for all, while compiling the BN in the corresponding
JT. In fact, the acquisition of new evidence does not change the
structure of the network itself, hence we can avoid to reorder
each potential table at each belief propagation by storing and
updating the couple of corresponding reordered tables for
each separator. Even if Algorithm 3 does not reorder φ in-
place, the additional space required to store φp is amortised
by discarding the original table, since it is not needed in any
subsequent phase of the algorithm. Furthermore, each iteration
of the external loop of Algorithm 3 is independent and can be
computed in parallel: hence, the worst-case time complexity
of the parallel version of Algorithm 3 is O(∣φ∣∣P ∣/t), where t is
the number of threads.

With respect to memory requirements, given a junction tree
J = (V,E), our algorithm needs to store a couple of potential
tables for each separator, but since threads can index input rows
on-the-fly, mapping tables can be avoided: thus, our memory
requirements are O(2 ⋅ ∣E∣). On the other hand, the approach
proposed by [9] maintains one potential table for each clique,
but it needs two mapping tables for each separator table: hence,
the counterpart algorithm requires O(V + 2 ⋅ ∣E∣) tables.

B. GPGPU Kernel Implementation

In our approach to belief propagation on GPGPUs, each
block of threads is responsible for one element of the separator
table, which is associated to a corresponding group of rows in
potential tables.

Such high-level organisation of the computation allows
us to carry out the entire reduction and scattering stages
within a single thread block, hence avoiding any costly inter-
block synchronisation structure. On one hand, the performance
of our algorithm clearly benefits from the lack of interde-
pendence among different blocks, which would reduce the
overall computation parallelism. On the other hand, since the
size of thread blocks has an intrinsic limit imposed by the
hardware architecture (i.e., 2048 threads in Kepler5 GPGPUs),
the proposed organisation may serialise part of the workload
if the number of rows to manage exceeds such limit. Nev-
ertheless, such an issue is not problematic in our test cases,
since the above mentioned case rarely verifies. In fact, in our
experimental evaluation, each block has to reduce an average
of 14 elements,6 hence allowing a full parallelisation.

5White paper available at http://bit.ly/NtZYOi.
6Such quantity is the average, over all networks, of the ratio between the

average potential table size and the average separator table size, reported in
Table I.

Global Memory Shared Memory

⋮ ⋮

⋮ ⋮

thread1

thread
2

thr
ead

3

th
re
ad
n

thread
i

Fig. 4: Uncoalesced Memory Accesses

Global Memory Shared Memory
thread1

←ÐÐÐÐÐÐÐÐÐ→

thread2
←ÐÐÐÐÐÐÐÐÐ→

thread3
←ÐÐÐÐÐÐÐÐÐ→

⋮ ⋮

threadi
←ÐÐÐÐÐÐÐÐÐ→

⋮ ⋮

threadn
←ÐÐÐÐÐÐÐÐÐ→

Fig. 5: Coalesced Memory Accesses

t1

t1

t1

t2

t2

t2

t3

t3

t3

t4

t4

t4

R

Reduction
in registers

t1

t1

t1

t1

t3

Barrier

Reduction
in shared
memory

Warp
reduction

t5

t5

t5

t6

t6

t6

t7

t7

t7

t8

t8

t8

t2

t2

t2

t2

Fig. 6: Block Reduce Raking Algorithm

Moreover, if the serialisation is on a small scale (i.e., each
thread has to reduce and scatter few rows), the effect on the
overall performance is negligible. This is due to the fact that
the task is computed extremely efficiently in thread-private
memory space using registers. The following sections explain
the actual implementation of the above mentioned concepts
in detail, by covering our approach to memory transfers and
computations.

1) Global ⇆ Shared Memory Transfers: Memory hierarchy
in GPGPUs follows a widely adopted design in modern hard-
ware architectures, in which very fast but small-size memories
(i.e., registers, cache and shared memory), intended to assist
high-performance computations, are stacked above a slower
but larger memory (i.e., global memory), suitable to hold large
amounts of rarely accessed data. In particular, shared memory
resides on each SM and can deliver 32 bits per two clock
cycles. To increase performance, it is mandatory to exploit such
a low latency memory to store information that needs to be
used very often. On the other hand, accessing global memory
is particularly costly (400 - 800 clock cycles), and should be
reduced as much as possible to achieve a good compute-to-
memory ratio.

A common programming pattern suggests to split input
data into tiles that fit into shared memory (i.e., 48 Kilobytes
of information) and to complete all the computational tasks
using only such data. This allows to minimise global memory
accesses for each kernel execution. Coalesced accesses are the
optimal way to carry out such data transfers, which is closely
related to the principle of spatial locality of information.

More precisely, memory coalescing refers to combining
multiple transfers between global and shared memory into a
single transaction, so that every successive 128 bytes (i.e., 32
single precision words) can be accessed by a warp (i.e., 32
consecutive threads) in a single transaction. In general, sparse
or misaligned data organisation may result in uncoalesced
loads (Figure 4), serialising memory accesses and reducing
the performance, while consecutive and properly aligned data
chunks enable full memory coalescing (Figure 5).

Thanks to the previously explained preprocessing phase,
the portion of input data needed by each thread block is read
from global memory with fully coalesced memory accesses,
since such data is already organised in consecutive addresses.
The transfers are further optimised using vectorised7 memory
accesses provided by CUDA architectures to increase band-
width, reduce instruction count and improve latency.

7Vectorised memory instructions compile to single LD.E.128 and
ST.E.128 hardware instructions to transfer chunks of 128 bits at a time.

2) Reduction: Once the input data has been transferred
to the shared memory, the kernel starts the reduction phase
that, in our approach, is implemented with the NVIDIA
CUB library8 by means of a block reduce raking algorithm.
The algorithm consists of three steps: i) an initial sequential
reduction in registers (if each thread contributes to more than
one input), in which warps other than the first one place their
partial reductions into shared memory, ii) a second sequential
reduction in shared memory, in which threads within the first
warp accumulate data by ranking across segments of shared
partial reductions, and iii) a final reduction within the raking
warp based on the Kogge-Stone algorithm [12] produces the
final output.

Figure 6 shows an example reduction of 32 input values
performed by a block of 8 threads {t1, . . . , t8}, in which each
thread operation is pictured as a circle and each input value is
represented with a solid arrow, while the dotted ones represent
partial results propagated among threads.

In our implementation, the definition of parameter R is
managed by the aforementioned library, in order to achieve
a good balance between parallelisation degree and commu-
nication among threads. This scheme is particularly efficient,
since it involves a single synchronisation barrier after the first
phase and it incurs zero bank conflicts9 for primitive data
types. On newer CUDA architectures (i.e., CUDA Kepler),
such implementation exploits shuffle instructions, which are
a new set of primitives provided by the CUDA programming
language. Shuffle instructions enable threads within the same
warp to exchange data through direct register accesses, hence
avoiding shared memory accesses and improving the compu-
tational throughput of the algorithm.

In particular, such scheme is collectively performed by
the block of threads associated to a particular element of the
separator table, in order to compute its updated value as the
sum of the corresponding rows of the first potential tables,
i.e., the ones with a matching variable assignment. Once the
reduction of the entire chunk has been completed, the first
thread computes the value of Rij assigned to the considered
block, which serves as input for the subsequent scattering
phase of belief propagation.

3) Scattering: The final stage of belief propagation consists
of the scattering operation, which performs the actual update
of T p2 by means of Rij computed in the above mentioned
phase. The implementation of such operation benefits from the

8Available at http://nvlabs.github.io/cub.
9If multiple memory accesses map to the same memory bank, the accesses

are serialised and split into as many separate conflict-free requests as neces-
sary, thus decreasing the effective bandwidth.

Kernels

Transfers H→D1 H→D2 H→D3 D→H1 D→H2 D→H3

K1 K2 K3

Fig. 7: Asynchronous Data Transfers

Device → Host

Kernels

Host → Device H→D1 H→D2 H→D3

D→H1 D→H2 D→H3

K1 K2 K3

Fig. 8: Full Pipeline

H→D1 H→D2 H→D3 H→D4

D→H1 D→H2 D→H3 D→H4

K1 K2 K3 K4

maxs

Fig. 9: Limited Number of Streams

proposed memory layout, since it is realised with maximum
parallelism and computational throughput. Each row of T p2 is
assigned to one thread, which multiplies its current value for
Rij , computed in the reduction phase. Once the kernel has been
executed by all blocks, the propagation of belief has completed
the inclusion of new evidence in T p2 , which can be finally
transferred back to the CPU memory.

Since memory transactions can be very costly and have a
negative impact on the overall performance of the algorithm, a
significant optimisation effort should be devoted to reduce such
effect. In this work, we exploit pipelining between GPGPU
computation and data transfers between host and device, as
described in the following sections.

C. Host ⇆ Device Data Transfers

The memory layout presented in Section III-A allows po-
tential tables to be split into several data segments and threads
to be identified to independently operate in each segment. This
leads to a twofold improvement: on one hand, we can devise
a pipelined flow of smaller copy-and-compute operations, by
amortising the cost of CPU-GPGPU data transfers on the
overall algorithm performance. On the other hand, we can
process tables that do not fit into global memory, by breaking
them into more manageable data structures. This allows our
approach to perform BP even on networks that are intractable
for the approaches in literature.

1) Pipelining: The standard pattern of GPGPU computa-
tion requires the whole input dataset to be transferred to the
device global memory before starting the kernel execution.
The results are then copied back to the host memory. Such
synchronous approach can be improved if the kernel can start
on a partial set of input data, while the copy process is still
running.

Figure 7 shows the proposed pipelined model of com-
putation, in which belief propagation on GPGPU has been
split into four stages (marked by different colours). Each
computation kernel Ki executes as soon as the corresponding
input data subset has been transferred by means of H→Di.
This solution applies to GPGPU architectures that feature only
one copy engine (i.e., data between host and device can be
transferred through a single channel only). Data segments for
table processing are necessarily serialised, thus allowing over-
lapping between one kernel execution and one data transfer
only. In our experimental results, we found that, in average,
this approach achieves a performance improvement of 50%
w.r.t. synchronous data transfers. Most recent and advanced
GPGPUs (e.g., NVIDIA Kepler on Tesla devices) feature an
additional copy engine, which enables a further degree of
parallelism between data transfers and computation.

On these architectures, this approach exploits the supple-
mentary channel to overlap input and output data transfers
(see Figure 8). Such a fully pipelined model of computation
achieves, in average, a performance improvement of 75% w.r.t.
synchronous data transfers.

2) Large Tables Processing: The proposed technique can
be applied to execute BP on BN whose potential tables do
not fit into global memory. Tables are split into small data
structures, by limiting the maximum number of host-device
data transfers that can run concurrently on the GPGPU. More
specifically, maxs is defined as the maximum number of ker-
nels whose total amount of input and output data can be stored
into global memory. Figure 9 shows an example, in which
maxs = 2. Each kernel Ki is enqueued in stream imodmaxs.
Transaction H→D3 cannot be scheduled in parallel with D→H2

(unlike the example of Figure 8), as it would violate the
above mentioned memory constraint. Thus, one time slot is
skipped in order to complete the copy D→H1 and to free
an adequate amount of memory before starting H→D3. The
serialisation of these two operations is a direct consequence
of their execution in the same stream (i.e., stream 1). As a
consequence, even though the hardware constraints limit the
size of data to be transferred and processed, the proposed
approach allows oversized tables to be processed in multiple
steps, improving scalability.

IV. EXPERIMENTAL RESULTS

Having described and analysed our GPGPU approach to
belief propagation, we now present the empirical evaluation.
In what follows, we first discuss the methodology we use for
comparison and then present the results obtained on the same
dataset used in [9].

A. Evaluation Methodology

The main goal of our empirical evaluation is to compare
our algorithm with the one proposed by [9]. Our approach
has been tested on the same Bayesian Networks,10 which are
related to various scenarios, with heterogeneous structures and
variable domains.

Table I, taken from [9], details some features of the
networks by showing the number of junction tree nodes
resulting from their compilation and the minimum, maximum
and average size of the potential and separator tables. In
addition, we also consider the Munin1 dataset. Table II reports
the time required to preprocess all potential tables, as well as
the sum of all data transfers and the runtime needed by all
kernels to complete. The values are expressed in milliseconds.
For a significant comparison, the claimed speedups do not
take into account the time required for data transfers, but
it consider only the runtime of kernel routines. Following
[9], the compilation of these networks into the corresponding
junction trees has been done offline, before the execution of
the belief propagation algorithm. Since this phase must be
done only once and can be avoided when any new evidence is
received and propagated, it has not been considered. For the
same reason, our preprocessing phase is not considered in the
speedups, but it has been reported for completeness.

10All data is available at http://bndg.cs.aau.dk/html/bayesian networks.html.

TABLE I: Bayesian Networks

Mildew Diabetes Barley Munin1 Munin2 Munin3 Munin4 Water

of JT nodes 28 337 36 162 860 904 872 20
Max CPT size 4372480 190080 7257600 38400000 504000 156800 784000 995328
Min CPT size 336 495 216 4 4 4 4 9
Avg CPT size 341651 32443 512044 516887 5653 3443 16444 173297
Max SPT size 71680 11880 907200 2400000 72000 22400 112000 147456
Min SPT size 72 16 7 2 2 2 2 3
Avg SPT size 9273 1845 39318 44058 713 553 2099 26065

TABLE II: Experimental Results

Mildew Diabetes Barley Munin1 Munin2 Munin3 Munin4 Water

Preprocessing 40 112 444 4518 50 99 268 10
Transfers 12 57 110 1521 16 39 45 15

CPU Runtime 355 420 974 7490 210 137 473 120
GPU Runtime 3 12 29 216 8 14 29 11
GPU Speedup 118.33× 35.00× 33.59× 34.67× 26.25× 9.79× 16.31× 10.91×
SVR Runtime 17.84 33.98 45.96 - 43.73 35.18 67.14 9.47
SVR Speedup 19.90× 12.36× 21.19× - 4.80× 3.89× 7.04× 12.67×

All our experiments have been executed on a machine
with a 3.40GHz processor, 16 GB of memory and a NVIDIA
GTX 780 (with one copy engine). Our results are compared
to those obtained by applying the best approach (i.e., the SVR
regression model) published in [9].

B. Experimental Results

In our tests, our algorithm outperforms the counterpart in
the majority of the above mentioned scenarios, while achieving
comparable performance in the Water network.

Our approach achieves speedups at least 59% higher than
the alternative method in the Barley dataset, reaching peaks of
+594% in this improvement. In fact, the GPGPU belief prop-
agation on the Mildew network runs 118.33× faster than the
serial implementation. Since our approach supports pipelined
memory transactions, the computation time is amortised and
carried out while such data transfers are still being completed,
as Figure 7 shows. Notice that our algorithm allows a further
improvement (Figure 8), to be achieved employing a profes-
sional GPGPU with two copy engines.

V. CONCLUSIONS

In this paper we considered belief propagation in Bayesian
Networks. We proposed an efficient and scalable highly-
parallel approach that is able to harness the computational
power of modern GPGPUs by means of an appropriate data
organisation in memory. The proposed approach applies also
to Bayesian Networks whose potential tables do not fit into
the global memory of the GPGPU, and it enables pipelined
data transfers between host and device, thus further improving
performance. The experimental results show that our approach
outperforms the one proposed by [9], which is the most recent
work in this field, by obtaining speedups ranging from 59%
to +594%.

Future work will look at extending our approach to work
on other hard optimisation problems, such as Constraint Sat-
isfaction and Constraint Optimisation Problems [13], where
similar message-passing techniques can be used.

REFERENCES

[1] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to expert
systems,” in Readings in Uncertain Reasoning, 1990, pp. 415–448.

[2] S. L. Lauritzen, “The em algorithm for graphical association models
with missing data,” in CSDA, 1995, pp. 191–201.

[3] B. Bidyuk and R. Dechter, “Cutset sampling for bayesian networks,” in
JAIR, 2007, pp. 1–48.

[4] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, 1988.

[5] A. V. Kozlov and J. P. Singh, “A parallel lauritzen-spiegelhalter algo-
rithm for probabilistic inference,” in Supercomputing, 1994, pp. 320–
329.

[6] V. K. Namasivayam and V. K. Prasanna, “Scalable parallel implemen-
tation of exact inference in bayesian networks,” in ICPADS, 2006, pp.
143–150.

[7] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. D. Owens,
“Efficient computation of sum-products on gpus through software-
managed cache,” in ICS, 2008, pp. 309–318.

[8] H. Jeon, Y. Xia, and V. K. Prasanna, “Parallel exact inference on a
cpu-gpgpu heterogenous system,” in ICPP, 2010, pp. 61–70.

[9] L. Zheng and O. Mengshoel, “Optimizing parallel belief propagation in
junction trees using regression,” in SIGKDD, 2013, pp. 757–765.

[10] NVIDIA, NVIDIA CUDA C Programming Guide, July
2013. [Online]. Available: http://docs.nvidia.com/cuda/pdf/CUDA
C Programming Guide.pdf

[11] W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithms,” in
Commun. ACM, 1986, pp. 1170–1183.

[12] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” in Computers, IEEE
Transactions on, 1973, pp. 786–793.

[13] R. Dechter, Constraint Processing. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2003.

