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Abstract—The subgraph isomorphism problem is a computa-
tional task that applies to a wide range of today’s applications,
ranging from the understanding of biological networks to the
analysis of social networks. Even though different implementa-
tions for CPUs have been proposed to improve the efficiency
of such a graph search algorithm, they have shown to be
bounded by the intrinsic sequential nature of the algorithm.
More recently, graphics processing units (GPUs) have become
widespread platforms that provide massive parallelism at low
cost. Nevertheless, parallelizing any efficient and optimized
sequential algorithm for subgraph isomorphism on many-core
architectures is a very challenging task. This article presents
GRASS, a parallel implementation of the subgraph isomorphism
algorithm for GPUs. Different strategies are implemented in
GRASS to deal with the space complexity of the graph searching
algorithm, the potential workload imbalance, and the thread
divergence involved by the non-homogeneity of actual graphs.
The paper presents the results obtained on several graphs of
different sizes and characteristics to understand the efficiency of
the proposed approach.

Index Terms—Subgraph isomorphism, Graph search, Parallel
computing, GPU, CUDA.

I. INTRODUCTION

Graphs are simple and powerful data structures to represent
data objects and relations among them. They find a wide
range of applications from Bioinformatics to Social Science.
In Bioinformatics, biological networks are modelled through
graphs where vertices are proteins and edges are the known
or predicted protein interactions [1], [2]. In Pharmacology,
2D/3D representation of drugs are modelled through graphs
where vertices are atoms and edges are the distances among
them in the molecule [3], [4]. In Social Science, the Facebook
network is represented by a graph that collects individuals or
events on vertices and friendship relationships or individual
preferences on edges [5].

Subgraph isomorphism (SubGI) is one of the most common
algorithms applied to extrapolate and analyse information from
graphs. Given a query graph Q and a target graph G, a SubGI
algorithm searches occurrences of Q in G. Such a searching
algorithm allows one to find, for example, motifs in biological
networks [6], druggable parts of proteins [7], circuits in social
and biological graphs [8], [9].

Even though several sequential and optimized solutions have
been proposed in literature [10], [11], [12], [13], [14], [15]
to deal with the complexity of the SubGI problem (which
is known to be NP-complete [16]), the searching time still
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remains a big issue when dealing with realistically large graphs
[17], [18], [19], [20]. In this perspective, the spreading of
massively parallel architectures such as the general purpose
graphic processing units (GPUs) may significantly reduce
the run time of such a computational intensive algorithm by
exploiting parallel execution. Several parallel implementations
of other graph algorithms for GPUs, such as, breadth-first
search (BFS) [21], [22], single-source shortest path (SSSP)
[23], all-pairs shortest path (APSP) [24], have confirmed the
potentiality of many-core architectures in speeding up the
execution times. On the other hand, GPUs have also shown
significant limitations when the algorithm implementations
are inherently sequential, do not expose sufficient amount
of fine-grained parallelism and memory access patterns with
high locality, and do not allow the GPU cores to be fully
utilized through thread convergence [25], [26], [27]. In this
context, the serialized nature of the depth-first search (DFS),
which is the core primitive of the SubGI algorithm in the
sequential implementations, makes parallelization for many-
core architectures a very challenging task. Thread divergence,
workload imbalance, and poorly coalesced memory accesses
are representative issues that arise when dealing with parallel
search on graphs [28]. In addition, the memory footprint,
which increases exponentially with the graph size, is a further
hard constraint that may limit GPU implementations to work
only on very small graphs [29]. These limitations highly
influence current approaches to SubGI developed on GPU,
which can deal with billion nodes target graphs but are limited
to query graphs in the order of 10 nodes [30].

This paper presents GRASS, a parallel implementation of
the SubGI algorithm for GPUs. GRASS overcomes the above
limitations in two steps. First, it implements a pre-processing
phase, in which heuristics are applied to sensibly reduce the
search space. This leads GRASS to support even large graphs
(i.e., of sizes around ten millions nodes and one hundred
million edges) also when run on low-end GPU devices. Then,
it combines DFS and BFS visiting strategies through two dif-
ferent kernels, to better exploit the massive thread parallelism
and to optimize the workload balancing during the visit of non-
homogeneous topologies of actual graphs. GRASS is available
for download at http://profs.scienze.univr.it/bombieri/GRASS.

The main contributions of the paper are the following: (i)
it presents a parallel implementation of the SubGI algorithm
for GPU; (ii) it shows how a filtering-based strategy (e.g.,
[12]) can be adopted to deal with the space complexity of the
problem. In particular, the paper shows which isomorphism
conditions can be checked (preliminary and sequentially on
the CPU) to filter the solution space and to allow adopting
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1: INPUT:Q(VQ, EQ), G(VG, EG)
2: n = |VQ|
3: C = {(vi1 , . . . , vin ), vik ∈ |VG|, vik 6= vij , ∀1 ≤ k, j ≤ n}

//Generate all lists of n distinct vertices of G
4: for s=1 to |C| do
5: Ms = ((u1, vs1 ), . . . , (un, vsn )), ui ∈ |VQ|, 1 ≤ i ≤ n //Build

mappings by associating to each vertex in Q a vertex in the list
6: for all (ui, uj) ∈ |EQ| do
7: vsi =Ms(ui)
8: vsj = Ms(uj) // Ms is subgraph isomorphism if for all edges

in Q, the mapped edges in G satisfy the isomorphim condition in
Definition 1

9: if (vsi , vsj ) /∈ EG OR (vsi , vsj ) does not satisfy the isomorphism
conditions then

10: break
11: end if
12: end for
13: return Ms is a SubGI of Q in G
14: end for

Fig. 1. A SubGI algorithm

GPU devices, and which isomorphism condition is worth to
be parallelized on the GPU; (iii) since SubGI relies on DFS,
which is inherently sequential and not suitable for parallel
execution on GPUs, the paper shows how to combine DFS and
BFS to perform a limited-depth BFS search; (iv) it presents a
performance analysis on several graphs of different sizes and
characteristics, both biological and synthetic, to understand the
correlation between performance and graph characteristics as
well as advantages and limitations of the proposed approach.

II. BACKGROUND AND RELATED WORK

Given a graph G = (V,E), where V is the set of vertices
and E ⊆ (V × V ) is the set of edges, the properties of
the modelled objects and their relationships are associated to
vertices and edges, respectively, through labels. Given the set
of labels A, the functions labV : V → A and labE : E → A
assign labels to vertices and edges. If (u, u′) ∈ E, u′ is called a
neighbor of u. Searching a query graph Q in a target graph G,
|Q| ≤ |G|, implies finding an injective function (i.e., subgraph
isomorphism) M : VQ → VG, which maps each vertex of Q
into a unique vertex of G such that the following conditions
hold:

Definition 1 (Isomorphism conditions). If (u, u′) is an edge
in Q, u has label lab(u), u′ has lab(u′), then the mapped pair
of vertices (M(u),M(u′)) is an edge in G and has labV (u) =
labV (M(u)), labV (u′) = labV (M(u′)), and labE(u, u

′) =
labE(M(u),M(u′)).

An algorithm implementing SubGI between Q and G
searches all possible mappings between the vertices of the two
graphs and checks whether any generated mapping satisfies the
conditions (see Figure 1). When this happens, such a mapping
is a SubGI of Q in G (which is called occurrence or match).

The solution space of all possible mappings is represented
by the search space tree. The tree has a dummy root and
each other node represents a mapping between a vertex u of
the query Q and a vertex v of the target graph G (i.e., each
node of the tree represents two vertices, the first of Q and

the second of G)1. Figure 2 includes an example of search
space tree, which will be discussed in detail in the following
sections. Any path from the root to a leaf node may represent
a match between Q and G. In particular, in a path if all the
nodes between the root and the leaf satisfy the conditions, the
path represents a match. If a node (not leaf) and its ancestors
satisfy the conditions, the path from the root to such a node
represents a partial match. The search space tree allows all
possible mappings to be represented in a compact way. Two
different match paths may share the same partial match path
(e.g., the path from root to node < 2|2 > is the common
partial match for the two match instances in Figure 2).

The algorithm visits, in depth-first way, all the paths of the
search space tree, starting from the root down to the leaves.
For each path, at each node, if the conditions are not satisfied
the algorithm prunes the underling branches and backtracks
on the parent nodes.

The main issue to face when implementing the SubGI
algorithm is the solution space (i.e., the size of the search
space tree). In literature, several strategies have been proposed
in the last decades to reduce the number of the tree paths [31],
[14], [15], [32], [12], [13]. A large class of them run a pre-
processing phase to build, for each vertex u of the query, a
set of matchable vertices {v} (called domain) of the target
[13], [15], [33]. Vertices of the target must have the same or
compatible labels of the query vertex. Moreover, topological
conditions must hold such as the number of edges incident
to u (called degree) must be less or equal to the number of
vertices incident to v. For directed graphs this step verifies the
above conditions for coming-out (out-degree) and going-in (in-
degree) edges of the vertices. Other solutions force the solution
space reduction by applying forehead rules to check whether
the current match does not imply topological violations in the
subsequent matches [13], [14], [15].

GPU-based methodologies have been developed for graph
motif discovery. This problem highly relates with the SubGI,
since motifs are extracted by searching for subgraph isomor-
phism. However, such a massive graph ming may better exploit
parallel solutions as each run requires either the search of
multiple patterns or the search of one single pattern in a
dataset of targets. The two existing GPU approaches [29], [34]
are based on the famous mining algorithm gSpan [35]. The
first approach [29] has been tested on a dataset of very small
target graphs (up to 40 vertices) but it showed a maximum
speed-up of 80x. The second solution [34] scans for multiple
patterns concurrently and can reach up to 15x speed-up for
target graphs with around 20 vertices, while up to 3x speed-
up for target graphs with 100k vertices.

In the context of 1-to-1 SubGI search, that is th class of
algorithm our proposed approach belongs to, the authors in
[36] show how one of the three main steps of the algorithm
proposed in [10] (i.e., the join phase) can be efficiently par-
allelized on GPUs. They show that such a parallelization can
lead to one order of magnitude of performance improvement
w.r.t. STWig [10]. AS for the original implementation made

1In this work, we use the term node for the solution space tree and the
term vertex for graphs.
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for cluster-based memory cloud, the GPU approach uses a
divide and conquer paradigm by splitting the query graph
into sub-structures, called wings, that partially overlap each
other. Wings are searched separately in parallel and the results
are joined after the parallel search. Wings are 1-neighborhood
substructures that do not require particular techniques to be
matched on GPU, while the authors developed an innovative
GPU joint algorithm based on hash tables. The new technique
allows reaching speed-ups up to 16.7x on SubGI instances for
target and query graphs having up to 128k and 10 vertices,
respectively, when adopting standard GPU devices (' 10GB
DRAM memory). A more refined approach, but still based
on the STWig methodology, was proposed in [30]. The new
GPU methodology, called GpSM, takes the edges as the basic
units of the problem and adopts a pruning technique [37],
that ignores low-connected vertices, to reduce the number of
intermediate results. The approach dynamically explores the
search space to improve the workload balancing. It showed a
speed-up up to 5x compared to TurboISO on target graphs with
100k vertices and 24 vertices patterns. The authors showed that
it can search on graphs with 2 billion vertices but with limited
pattern sizes, up to 13 vertices. GpSM scales from 100k to 2
billions vertices (target graphs) with a factor of 14x.

Divide and conquer approaches have also been proposed
for the specific problem of the graph isomorphism. In [38],
explicit join operations are avoided and the algorithm com-
pletely relies on the graph traversal by adopting a warp-centric
programming model to balance the workload among threads
in warps. Such a GPU implementation reaches a speed-up up
to 2.6x on instances having target and pattern graphs up to 4k
and 24 vertices, respectively. A similar approach was proposed
in [39] and tested on synthetic target graphs having up to
20k vertices. Nevertheless, no further details are given and
the implementation is not available.

The approach proposed in this paper and implemented
in GRASS overcomes the above limitations by splitting the
verification of the isomorphism conditions in two steps. First,
in a pre-processing phase, it builds a reduced search space
tree by applying heuristics, as explained in Section III. Then,
it combines DFS and BFS visiting strategies on the search
tree to verify, in parallel, the isomorphism conditions along
the paths of the reduced search tree, as explained in Section
IV.

III. REDUCING THE SEARCH SPACE

GRASS generates the reduced search space tree by identi-
fying, in advance, the nodes of the tree that cannot satisfy
the isomorphism conditions. A path containing at least one
of those nodes cannot lead to isomorphism occurrences (i.e.,
matches) and, thus, it can be pruned. All remaining nodes are
called candidate to isomorphism occurrences. The result of
this first step is a reduced search space tree in which all nodes
are candidates to represent partial matches (if not leaves) or
matches (if leaves).

Fig. 2. Generation of the search space tree given the query Q and the graph
G, with the proposed isomorphism conditions for search space reduction.
The static sequence of vertices µ is the order with which query vertices are
matched.

The candidate conditions are defined as follows2:

Definition 2 (Candidate conditions). Given ui a vertex of Q
and M(ui) its mapped vertex in G, (ui,M(ui)) is a candidate
node of the search tree if:

1) Neither ui nor M(ui) are already mapped in the current
path.

2) Label compatibility. The mapped vertices are compati-
ble, i.e., lab(ui) = lab(M(ui)).

3) Degree compatibility. The number of edges connected
to M(ui) in VG is greater than or equal to the number
of edges connected to ui in VQ. That is |{(v′,M(ui)) ∈
EG}| ≥ |{(w, ui) ∈ EQ}|and|{(M(ui), v

′) ∈ EG}| ≥
|{(ui, w) ∈ EQ}|.

4) Neighbor degree compatibility. Given u′i the neighbor of
ui with the maximum degree and M(ui), ∃v′ s.t. v′ is a
neighbor of M(ui) that satisfies the degree compatibility
with u′i.

Figure 2 shows an example of search space tree generated
starting from a query graph Q and a target graph G. The tree
is reduced from the nodes (and the corresponding underlying
branches) that do not satisfy the candidate conditions.

GRASS verifies the candidate conditions at the search tree
generation time. Starting from the root, the search space tree
is enriched with one node at a time. A new node is inserted
if the node satisfies the conditions. If not, such a node and
the corresponding underling branches are pruned. This allows
the reduced space tree to be built incrementally and, as a
consequence, the maximum peak of required resident memory
to be drastically minimized.

2For the sake of clarity and without loss of generality, in the following
definitions, we consider Q and G as connected graphs, we ignore edge labels,
and we consider directed graphs (i.e., (u, u′) ∈ E does not imply (u′, u) ∈
E). However, the proposed approach also applies to undirected connected
graphs.



4

In particular, GRASS verifies the candidate condition i
only if condition i − 1 does not fail. The conditions are
checked for all vertices of the query Q over all vertices of
the target G, by generating a result matrix of |VQ| × |VG|
size (CandidateTree[][]). The preprocessing phase reduces
the search space from

|VQ|∑
i=1

|VG|!
(|VG|−i)! =

|VQ|∑
j=1

∏j
i=1 |VG| − i+ 1

to

|VQ|∑
j=1

∏j
i=1 |Ci| − i+ 1

where Ci is the set of candidates of ui, and it holds that
|Ci| � |VG|.

In addition, GRASS applies the heuristic proposed in [12]
to choose the order in which the query vertices are considered
during the space tree generation. Such an order affects both
the solution space size and the performance of the following
step of isomorphism checking [15], [40], [12].

The order is defined by considering the degree of the query
vertices and their connections with vertices already in the
order. In this way, GRASS imposes a large number of subgraph
matching conditions to be checked at the top nodes of the
search tree.

Given a query graph Q(VQ, EQ), let n = |VQ|, the ordered
sequence of query vertices µ=(u0, u1, . . . , un) of VQ is gener-
ated by choosing at each step i, the vertex ui ∈ VQ such that
it maximizes the number of edges in the query that connects
ui with vertices in µ.

The chosen order is static for all the branches, in contrast
to other sequential approaches in which the ordering may
differ over different branches [15], [40]. A static ordering has
been preferred since it requires less allocated memory than
the dynamic one [12]. On the other hand, the advantages of
the dynamic ordering, which are considerable in the sequential
solutions, are compensated in the following parallel step.

The overall complexity of the reduced tree generation phase
is O(|VQ| × |VG| × δ), where δ is the maximum degree of
the graph (since condition 2.4 takes O(δ) to verify. It is
negligible w.r.t. the overall searching time. GRASS runs this
check sequentially on the CPU.

IV. THE PARALLEL SEARCH ALGORITHM

In the second step, GRASS implements a visit of the reduced
search space tree (hereafter called tree) and checks, for each
node of the tree, whether the following constraint holds:

Definition 3 (Topology constraint). Given ui a vertex of
Q and M(ui) its mapped vertex in G, (ui,M(ui)) satisfies
the topology constraint if ∀ui, uj ∈ VQ (ui, uj) ∈ EQ ⇒
(M(ui),M(uj)) ∈ EG. If edges are labeled the compatibility
of the edge labels is also verified.

If a node of the tree satisfies the candidate conditions 1, 2,
3 (of Definition 2) and the topology constraint (of Definition
3), then the node satisfies the isomorphism conditions. The
candidate condition 4 of Definition 2 is a filtering test that

often obviates the need for the substantial work to verify the
topology constraint.

Since all nodes in the tree satisfy, for construction, the
candidate conditions of Definition 2, the second step of the
proposed implementation aims at searching any leaf of the
tree satisfying the topology constraint. Verifying the topology
constraint of all nodes of a path, for all paths of the tree is
the bottleneck of the SubGI algorithm. GRASS implements
such a verification in parallel in two phases: flooding and
hypersearch.

A. The flooding phase
Starting from the root, GRASS calculates the maximum

depth of the tree (called flooding level) whereby a complete
and parallel BFS visit can be accomplished in one GPU kernel
invocation and by assigning one path (from the root to a node
at the flooding level) to a GPU thread. Each thread checks the
topology constraint of the nodes along the assigned path and
prunes the unsatisfying nodes (and the corresponding under-
ling branches). The parallel visit and constraint check run in
backtracking, i.e., starting from the nodes at the flooding level
up to the root. This allows the set of paths to be automatically
partitioned, by assigning one node at the flooding level to a
thread.

The flooding level is calculated by considering the
architectural limitations of the GPU device (i.e., maximum
number of parallel running threads) and the maximum
number of candidates at each tree level. Since GRASS
implements a static order of query vertices, each level in
the tree is associated to a query vertex (see Section III).
This allows the maximum number of candidates at each tree
level (Candidate_number[level]) to be calculated in
the pre-processing phase. Given the maximum number of
parallel threads of the GPU architecture (Max_threads),
the flooding level is calculated as follows:

1: Flooding level = Starting level //= Level 1;
2: Candidate counter = 1;
3: while Candidate counter ≤ Max threads do
4: Candidate counter *= Candidate number[Flooding level];
5: Flooding level++;
6: end while

The candidate counter increases monotonically during the
tree construction. Figure 3 shows an example, in which
Max threads = 10 (the actual value is generally around tens
of thousands). The candidate number information is reported
in the rightmost side. The resulting flooding level is level three.

Given the flooding level, x, the threads check the topology
constraint of the nodes along the own path in parallel and with
no need of any synchronization. Then, they store the results
(true if all nodes satisfy the constraint, false otherwise) in
a bitset array. Each resulting true corresponds to a partial
match, that is, an isomorphism occurrence of the first x nodes
of the query sequence µ in graph G. A thread ends the assigned
job as soon as it finds an unsatisfying node on the path or if
it concludes the path visit.

The flooding phase allows the visit to rapidly step down
into the tree and to find enough partial matches as starting
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Fig. 3. Example of flooding phase on a (reduced) tree, given Maxthread = 10

points for the hypersearch phase. A large number of partial
matches is relevant for having workload balancing in the
most expensive phase of the whole visit (i.e., the hypersearch
phase), as explained in the following section. The flooding
phase provides the best results on high degree graphs, where
the difference of the parallelism degree between two levels is
meaningful. In addition, the higher the degree of G, the closer
the flooding level to the root, the shorter the checked paths,
and the more reduced the effect of workload imbalance in the
early stage of the visit.

B. The hypersearch phase

The hypersearch phase consists of a parallel visit of the sub-
trees whose roots are the nodes classified as partial matches
in the flooding phase. Each of these nodes is assigned to a
GPU thread block, which takes charge of the complete visit
and topology check of the underlying sub-tree.

Figure 4 shows the main idea. Block 1, Block 2, and
Block 3 run in parallel the DFS visits of the sub-trees
having the assigned partial match nodes as root. The DFS
visit consists of iterative BFS visits, where each BFS visit is
performed in parallel by the block threads.

A thread block performs a parallel BFS visit over the first
levels of the sub-tree. Similarly to the flooding step, a manager
thread calculates how many levels of the sub-tree can be
completely covered by the block threads (i.e., the sub-tree level
in which all nodes can be assigned to the own block thread).
The target level is calculated by considering the block size
(number of threads per block) and the maximum number of
candidates per level. In the example, considering six threads
per block, and the candidate number on the rightside, Block 1
performs a BFS visit (in backtracking) from the nodes at level
five to the assigned root at level three. Block 1 carries on
the visit by iterating a second BFS visit, by starting from the
candidate nodes found at the previous BFS step. Block 2 ends
after one BFS visit, since all the visited paths result in being
unsatisfying solutions. Block 3 performs three sequential BFS
visits. After the first BFS between level three and level five,

it performs the second BFS visit between level five and level
seven. Finally, it backtracks to level five to start the third and
last BFS visit.

When a thread block concludes the sub-tree visit (either
by providing isomorphism occurrences or by prematurely
terminating for unsatisfying conditions of all nodes), the thread
block takes charge of a new partial match.

The partial matches returned by the flooding phase are
generally more than the number of thread blocks. This allows
all the possible thread blocks to be run in parallel and, thus,
to fully exploit the GPU thread parallelism. In addition, the
dynamic assignment of partial match nodes to blocks and the
independence among blocks allow the workload of the visit to
be controlled.

V. EXPERIMENTAL RESULTS

GRASS has been tested on three datasets of graphs, each
one with different topological characteristics and size. Two
datasets are biological graphs widely used as benchmarks
[12], [33]. The first represents microbial protein interaction
networks [41], where interactions among proteins have been
inferred from functional genomic data evidences via the SRINI
algorithm [42]. Microbial networks were uniformly labeled
with distinct amount of labels, ranging from 1 to 64. The
second is a set of protein contact maps, where edges among
atoms represent physical and chemical bounds retrieved from
the PDB database [43]. Microbial networks range from 1k
to 4k vertices and are relatively large sparse graphs, with an
average degree of 24. In contrast, contact maps have up to
800 vertices but are more dense, with and average degree of
50. In addition, a set of synthetic graphs were generated. A
fixed number of vertices (from 100k to 10 millions) and the
average degree (from 4 to 50) has been provided as input to
the model, then edges have been assigned to vertices with a
uniform distributed probability. The generated topologies were
randomly labeled with several amounts of distinct labels. For
real datasets, we used the original query set provided in [33],
and we randomly extracted substructures from the synthetic
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Fig. 4. Example of hypersearch with thread block size = 6.

topologies after the labeling phase. THe tested SubGI instances
are composed on a query and the target graph from which the
query has been extracted.

None of the GPU implementations for SubGI presented as
related work is available (no public repository exists, no code
released by the authors, or code not maintained anymore). The
STWig solution presented in [36] is 2 orders of magnitude
slower than the best (and more recent) sequential approaches
(TurboISO and RI), as shown in [44] and [33]. Thus, we
evaluated the performance of GRASS w.r.t. the sequential
algorithms TurboISO and RI. The tests were run on a Intel
Core i7-5960X 64bit hardware with 16 3GHz CPUs and 64Gb
of host RAM and running a Ubuntu 16.04 LTS operating
system, equipped with an NVIDIA GeForce GTX 980 Ti
GPU card with 6Gb of RAM and running with the CUDA
8.0 toolkit. All the compared algorithms are implemented in
C++.

Figure 5 shows the number of instances of the PPI dataset
finished within a 10 minutes timeout of the three implementa-
tions. As expected, the lower the number of labels, the higher
the computational requirement of the SubGI. This is due to
the fact that the query nodes matches to an higher number of
target elements. The number of finished instances generally
tends to decrease together with the number of target labels. The
GRASS performance are not affected by such a discriminant,
except for unlabeled graphs (number of labels equal to 1), and
it outperforms the other two tools with every label number.
Another discriminant parameter for SubGI expensiveness is
the query size, here reported in terms of number of vertices.
Contrary to what can be expected, larger queries are not more
difficult to be solved, since the number of matches usually
decreases (not linearly) with the size of the structure [33].
4-vertices queries produce a huge amount of matches that
infer the algorithm performance. By combining the two charts,

GRASS is able to solve any SubGI instance within the 10-
minutes timeout except for unlabeled queries having 4 nodes,
as opposite to the two serial solvers that reached the timeout in
several circumstances. Regarding the contact map benchmarks,
the number of finished instances for GRASS and RI was stably
closed to 100%, while it was about 80% for TurboIso. Similar
observations made for the PPI dataset can be done also for
this case.

The speed-ups were calculated only for SubGI instances
with a running time grater than 1 second for the competitor
(RI or TurboIso). Figure 6 shows the speed-up obtained by
running the three approaches over the real dataset and by
grouping them by the number of distinct target labels. No
RI run exceeded 1 second on PPI targets with 64 labels,
thus the corresponding speed-up is not shown. Clearly 32 and
64 distinct labels reduce the complexity of SUbGI instances.
GRASS provides the best speed-ups on unlabeled targets (1
label) and graphs with 24 labels. Speed-ups grouped by
number of query vertices are shown in Figure 7. The minimum
speed-ups were observed with 4-labels targets (2.4x vs RI) and
16-vertices queries (2.47x vs RI) on PPIs, 21-labels targets
(2.8x vs TurboIso) and 64-vertices queries (3.09x vs RI) for
contact maps. On the PPI dataset, the overall average speed-up
of GRASS was 8.97x over RI and 32.1x over TurboIso. For
the contact maps, the overall average speed-up of GRASS was
59x over RI and 61.2x over TurboIso. For what concerns the
synthetic dataset, the overall average speed-up of GRASS was
2.5x over RI and 55.7x over TurboIso.

For what concerns the synthetic dataset (see Figure 8), the
experiments were run with a 10 minutes timeout for 100k
and 1m vertices target graphs, and a 30 minutes timeout was
used for the target graphs with 10m vertices. This choice was
due to the fact that GRASS increases the time for reading the
target graph, and converting it into the data structures that are
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Fig. 5. Percentage of solved SubGI instances, within a 10 minutes timeout,
by the three compared tools over the PPI dataset. Results are grouped by
number of target labels and by number of query vertices, respectively on the
left and right charts.

Fig. 6. Average speed-up of GRASS w.r.t. RI and TurboIso over the two real
datasets (PPIs on the left side and contact maps on the right side). Averages
are computed by grouping total running times of SubIG instances by number
of target labels.

loaded into the GPU memory, from less than 1 second for
100k-vertices graph up to 10 minutes in 10 millions vertices
targets. The limitation of GRASS for reading and converting
graphs can be easily bypassed if input data is provided already
in the form that GRASS uses for its computation. For this
reason, the speed-up over the synthetic dataset were calculated
by taking into account the effecting matching time, excluding
reading and preparing phases. The matching time also includes
loading and copy back of the data from the host machine to
the GPU device.

The speed-up measurement has to be correlated with the
number of finished instances, that GRASS maximizes in every
situation w.r.t. the sequential algorithms. Such a calculation of
the speed-up, by taking into account only the instances that the
two compared solutions both finished within the timeout, is at
the expense of the fastest algorithm, namely GRASS. A clear
example is given by the decreasing speed-up of GRASS over
TurboIso on the increasing size of the queries, in the synthetic
dataset. In this case, the speed-up drops from 70x to 20x, but
the percentage of finished instances of TurboIso drops from
95% to 23%.

VI. CONCLUSIONS

This paper presented GRASS, a parallel implementation of
the SubGI algorithm for GPUs. GRASS implements a pre-
processing phase, in which heuristics are applied to sensibly
reduce the search space and, as a consequence, to support large
graphs also when run on low-end GPU devices. It combines
the DFS and BFS visiting strategiesc through two different
kernels, to better exploit the massive thread parallelism and

Fig. 7. Average speed-up of GRASS w.r.t. RI and TurboIso over the two real
datasets (PPIs on the left side and contact maps on the right side). Averages
are computed by grouping total running times of SubIG instances by number
of query vertices.

Fig. 8. Performances of GRASS RI and TurboIso over the synthetic dataset.
On the left column, results are grouped by number of target vertices, and on
the rights column results are grouped by number of query vertices. Charts
on the top side show the number of finished SubGI instances by the three
approaches. Middle-side and bottom-side charts show speed-up of GRASS
over Ri and TurboIso, respectively.

to optimize the workload balancing during the visit of non-
homogeneous topologies of actual graphs. The paper presented
the experimental results obtained by comparing the proposed
approach with sequential implementations on real and syn-
thetic datasets of different sizes and characteristics. The results
have been also analyzed to understand the efficiency and the
limitations of the proposed approach and how they are related
to the characteristics of the involved graphs.
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