
Efficient load balancing techniques for graph
traversal applications on GPUs

Federico Busato and Nicola Bombieri

Dept. Computer Science - University of Verona
name.surname@univr.it

Abstract. Efficiently implementing a load balancing technique in graph
traversal applications for GPUs is a critical task. It is a key feature of
GPU applications as it can sensibly impact on the overall application
performance. Different strategies have been proposed to deal with such
an issue. Nevertheless, the efficiency of each of them strongly depends on
the graph characteristics and no one is the best solution for any graph.
This paper presents three different balancing techniques and how they
have been implemented to fully exploit the GPU architecture. It also pro-
poses a set of support strategies that can be modularly applied to the
main balancing techniques to better address the graph characteristics.
The paper presents an analysis and a comparison of the three techniques
and support strategies with the best solutions at the state of the art
over a large dataset of representative graphs. The analysis allows stati-
cally identifying, given graph characteristics and for each of the proposed
techniques, the best combination of supports, and that such a solution
is more efficient than the techniques at the state of the art.

1 Introduction
Graph traversal refers to the process of visiting (i.e., checking or updating) ver-
tices in a graph and is a core feature in many graph algorithms (e.g., BFS, SSSP,
STCON). The high variability of graph characteristics over multiple dimensions
such as, size, diameter, and degree distribution, makes the parallel implementa-
tion of graph traversal for GPUs a very challenging task.

Load balancing is a key aspect to face when implementing parallel graph
traversal algorithms as it can strongly affect the performance of the overall ap-
plication. Different solutions have been proposed to efficiently deal with such
an issue during graph traversal on GPUs [9–11, 17, 18, 21]. Although they pro-
vide good results for specific graph characteristics, no one of them is flexible
enough to be considered the most efficient for any input dataset. This makes
each of these solutions, and in turn the higher level algorithm in which they are
included, not efficient in several circumstances (in some cases, less efficient than
the sequential implementation [16]).

This paper presents three different load balancing techniques for graph traver-
sal applications on GPUs and, in particular, the key details of their architecture-
oriented implementations. The paper also presents a set of features, which we
call support strategies, which can be statically selected and modularly applied to
the main balancing techniques to better address the graph characteristics.

The paper presents the results obtained by applying the different techniques
to implement a common graph traversal algorithm (i.e., BFS) and how they im-
pact on the overall performance. The analysis, which has been conducted on a
large set of representative real-world and synthetic graphs, allows understanding
the correlation between graph characteristics and load balancing configurations.
The paper also shows how the performance of existing and widespread BFS im-
plementations (Gunrock [21], B40C [18], and BFS-4K [3]) have been improved
by substituting the original load balancing strategy with those presented in this
paper, with and without the support strategies. The results show that the pro-
posed solutions allow the BFS implementations to reach throughput up to 11,800
MTEPS on single GPU device, with speedups from 1x to 12.7x w.r.t. the original
implementations.

The paper is organized as follows. Section 2 presents the background and
related work. Section 3 presents the key details of the proposed balacing tech-
niques and support strategies. Section 4 presents the experimental results, while
Section 5 is devoted to the concluding remarks.

2 Background and related work
Different solutions for GPUs have been proposed in the last decade to improve
load balancing aspects and accelerate graph traversal applications. They can be
organized in three classes depending on the high-level strategy adopted to map
GPU threads to graph vertices/edges.

Vertex-based mapping. Harish et al. [9] presented the first balancing so-
lutions for BFS and SSSP applications, which target vertex parallelism to in-
spect every vertex in a graph at each frontier iteration [5]. Hong et al. [10] im-
proved the previous approach by exploiting SIMD features of GPU architectures
targeting irregular workloads for different graph applications (BFS, SSSP, and
STCON). Jia et al. [11] evaluated and compared load balancing for vertex and
edge parallelism to accelerate graph traversal in the context of centrality met-
rics (betweenness, graph, stress, and closeness). McLaughlin et al. [17] focused
on the same techniques to accelerate betweenness centrality (BC) computation.
All these balancing approaches do not require to maintain additional data struc-
tures, they involve very simple implementations but, on the other hand, they
perform quadratic work. This makes the parallel implementations asymptoti-
cally slower than the sequential implementations. More recent research focused
on efficient algorithms for linear-work graph traversal. Luo et al. [16] presented
the first work-efficient BFS implementation based on single thread vertex-based
mapping. Busato et al. proposed an advanced technique for BFS [3] and SSSP [4],
which exploits tunable thread group size for vertex-based mapping and dynamic
parallelism to process high-degree vertices.

Differently from all the approaches of this class, our first solution implements
an optimized vertex-based mapping for linear-work graph traversal which relies
on warp shuffle instructions and fully exploits coalesced memory accesses.

Scan-based mapping. Merrill et al. [18] presented a high-performance solu-
tion (B40C) which relies on a scan-based thread mapping for low-degree vertices
and two additional techniques to handle mid-degree vertices at warp and block-
level. Wang et al. [21] presented an optimized and flexible GPU graph library
(Gunrock) that provides a high-level abstraction to reduce the developing effort

Scan-based with PTX
prefix-sum

Vertex-based with
warp shuffle

Load balancing
techniques

Support
strategies

Warp-based
gathering

Block-based
gathering

Supplementary
queues

Combination allowed

Device-wide
binary search

and unordered
prefix-sum

fig. 1: Overview of the load balancing techniques and support strategies.

of graph primitive programming (Pagerank, SSSP, BC, etc.). The Gunrock li-
brary relies on the same thread mapping strategy adopted in B40C.
Differently from these approaches, our second solution includes an efficient scan-
based technique that fully exploits the GPU shared memory and implements a
low-latency PTX prefix-sum.

Binary search mapping. Bisson et al. [2] presented a BFS solution for dis-
tributed multi-node GPU platforms, which exploits a binary search algorithm
to achieve perfect load balancing among all device threads. Khorasani et al. [12]
presented a warp-based binary search strategy for BFS, SSSP, and PageRank.
Davidson et al. [6] described and evaluated a merge-path search strategy1 [8]
at different thread hierarchy levels (i.e., warp, block, and device) in the con-
text of SSSP. Gunrock also implements a device-wide merge-path search as an
alternative load balancing technique.

Our third solution rely on a deeply revisited device-wide binary search map-
ping, which exploits three different and significant optimizations.

Differently from all the approaches in literature, we propose a set of strategies
that can be modularly combined to support and improve any of the balancing
technique.

3 Load balancing techniques and support strategies
Figure 1 shows an overview of the main load balancing techniques considered and
optimized in this work and the corresponding support strategies. The three main
techniques (i.e., vertex-based mapping with warp shuffle, scan-based mapping with
PTX prefix-sum, and mapping based on device-wide binary search and unordered
prefix-sum) can be implemented in a mutual exclusive way in any graph traversal
application to partition the workload and to map work items to the GPU threads.
The support strategies can be applied singularly or combined to the selected load
balancing technique.

3.1 The vertex-based mapping with warp shuffle
The vertex-based technique partitions the workload by directly mapping groups
of threads to the edges of each frontier vertex. The left-most side of Figure
2 shows an example of the standard approach, in which the 8 threads of a
thread group access to the vertex V1 identifier in parallel and, then, each thread
calculates the corresponding edge to be processed. Then, in sequence, the whole
thread group moves to the other frontier vertices. The thread group size is set
1 Merge-path search can be represented as a 2D binary search.

V1 V2 V3 …

t1	 t3	t2	 t4	 t5	 t6	 t7	 t8	
V1 V3 V4 …V5 V6 V7 V8

t1	 t3	t2	 t4	 t5	 t6	 t8	t7	

t3	t2	 t4	 t5	 t6	 t8	t7	

t1	 t1 broadcast	(warp	shuffle)

t2	

t3	 t4	 t5	 t6	 t8	t7	t1	

t2 broadcast	(warp	shuffle)

(a) Standard (b)	With	warp	shuffle

V2

Frontier

Thread	Group

1 2 3 …

Thread	Group

1

2

2

...

fig. 2: Vertex-based mapping.

depending on the average degree of the graphs (smaller warp sizes for graphs
with lower average degrees). Nevertheless, in case of large thread group sizes, it
may lead to many non-coalesced memory accesses during the frontier loading (8
accesses in the example), which in turn cause a strong loss of performance.

We propose an optimized version of such a vertex-based technique that com-
bines warp shuffle instructions to the direct thread-to-edge mapping. The right-
most side of Figure 2 shows the strategy main idea. Each thread accesses to
a different frontier vertex and broadcasts the vertex identifier to the threads
through warp shuffle. This increases memory coalescing at the cost of a min-
imum overhead involved by the warp-shuffle instructions. As an example, the
memory accesses for the frontier loading in Figure 2(b) are reduced to 1 coa-
lesced access.

3.2 The scan-based mapping with PTX prefix-sum
The scan-based load balancing technique is an alternative of the vertex-based
mapping. Instead of directly mapping threads to edges, each thread organizes
the own edge offsets in shared memory through scan operations. The proposed
solution implements such scan operations at warp-level through an optimized
prefix-sum2. Since such a procedure involves a large number of condition state-
ments, which cause thread divergence, the proposed solution combines intrinsic
warp shuffle instructions and PTX instructions [20] to implement branch pred-
ication (i.e., <if(predicate) instruction> C statements are replaced with
<@predicate instruction> PTX instructions.

The proposed solution, thanks to the prefix sum result, allows exploiting the
whole shared memory during the frontier propagation phase. It also adopts a
warp-synchronous paradigm [19] to avoid any explicit synchronization.

A further optimization consists of a rewriting of loop iterations to exploit
instruction-level parallelism (ILP). This is possible since the size of the shared
memory is known at compile-time and each warp thread visits the same number
of edges (except for the last iteration). The loops have been reorganized and
unrolled to eliminate branches and iteration dependencies.
2 Given an input sequence a1, a2, . . . , an the prefix-sum procedure computes the output

as a1, (a1 + a2), . . . , (a1 + . . . + an).

Algorithm 1 Optimized warp-level binary search
Input: Sequence of values represented by the variable val

of each thread; value to search: searched
Output: lower bound of searched

1: low = 0;
2: #pragma unroll
3: for (i = 1; i ≤ log2(WarpSize); i++) do
4: pos = low + (WarpSize � i); //�: compile time evaluated
5: if (searched ≥ shfl(val, pos)) then
6: low = pos;
7: end
8: return low;

3.3 Device-wide binary search with unordered prefix-sum
The third load balancing technique relies on the binary search primitive to map
the workload to the GPU threads. In the standard implementation, it provides
the best load balancing in case of very irregular workloads (i.e., graphs with high
standard deviation). Nevertheless, it involves a significant computation overhead,
which makes the technique itself not suitable in case of regular workloads.

We propose an optimized version of the binary search that minimizes such
an overhead and that fully exploits the GPU shared memory. The algorithm
consists of three main steps:

(1) It computes the prefix-sum of the out-degrees of the frontier vertices. It
executes an optimized binary search to equally partition the workload over
the thread hierarchy, i.e., at warp, block, and device-wide level.

(2) It stores and reorganizes the edge offsets in shared memory.
(3) It processes the shared memory elements in parallel.

The implementation strategy of the first step and, in particular, of the bi-
nary search over the thread hierarchy, is the key of the proposed technique per-
formance. Algorithm 1 shows the pseudo-code of the proposed binary search at
warp-level. The algorithm implements a variant of the standard procedure called
uniform binary search [13], which relies on a lookup table. In our case, such a
lookup table is implicit since the size of our input is a power of two. Thanks to the
organization of the frontier information into shared memory, the binary search
allows the following operations on the edge offsets to be performed through co-
alesced memory accesses. As for the scan-based technique, we implemented this
technique by adopting the warp-synchronous paradigm to avoid barriers among
warps of the same block.

The binary search at block level is similarly implemented to guarantee load
balancing among threads of the same block.

The device-wide binary search guarantees equal workload among all threads
of the GPU device. Given the prefix-sum of the out-degrees and the edge offsets
of the frontier vertices, such a search consists of three main phases:

(A) A first kernel computes the binary search over the whole workload to uni-
formly partition the frontier edges among the grid blocks. Figure 3(a) shows
an example, where pi are the prefix-sum elements and ci are the equally
sized chunks of elements. The size of a workload chunk (i.e., the number of
edges per chunk) is equal to the available shared memory per block.

p1	

BINARY	SEARCH	

p2	 p3	 p4	 …	

Prefix-sum	of	out-degrees	

c1	 c2	 …	

Workload	chunk	offsets	
(Global	Mem.)	

	(a)	
Edge	fron?er	(Global	Mem.)	

s1	 s2	 s3	 s4	 …	 Start	offsets	of	
fron?er	ver?ces	

p1	 p2	 p3	 p4	 …	

Prefix-sum	of	
out-degrees	

e1	 e2	 e3	 e4	 …	e5	 e6	 e7	 e8	

c1	 c2	 …	

BINARY	SEARCH	
Workload	

chunk	offsets	

(b)	

e1	 e2	 e3	 e4	 …	e5	 e6	 e7	 e8	
Status	lookup	and	update	

Edge	Fron?er		(Global	Mem.)	

s'1	 s'2	 s'3	 …	

p'1	 p'2	 p'3	 …	

Online	unordered	
prefix-sum	

(c)	
Start	offsets	of	
fron?er	ver?ces	

Prefix-sum	of	
out-degrees	

warp3	 warp1	
d1	 d2	 d3	 d4	 d5	

Online	unordered	
prefix-sum	

0	 0	 3	 d1+d2+d3	

…	

Queue	posi?on	
(Prefix-sum	on	the	number	

of	warp	elements)	

Prefix-sum	on	
out-degrees	

Out-degree	of	
unvisited	ver?ces	

(d)	

(Global		
Mem.)	

(Global		
Mem.)	

fig. 3: Overview of the device-wide binary search.

(B) A second kernel applies a block-level load partition by following the steps of
the binary search. Each block identifies the corresponding workload chunk
by using the offsets calculated by the first kernel. This step generates the
neighbour frontier starting from the edge offsets (Figure 3(b)).

(C) A third kernel generates all the information necessary to build the new fron-
tier (Figure 3(c)). The kernel procedure executes the status lookup and up-
date of the frontier elements, it removes previously visited vertices, and it
computes an online unordered prefix-sum. In this particular case, the online
procedure computes the prefix-sum of the out-degrees and of the number of
warp elements at the same time. This allows avoiding double memory ac-
cesses to compute the prefix-sum offline through a specialized kernel proce-
dure, which must load and store the degrees of the frontier vertices. The two
informations are merged into a single value through the 64-bit atomicAdd
instruction. We implemented a second optimization to discard vertices with
out-degree equal to zero (for directed graphs) and equal to one (for undi-
rected graphs) since they never contribute to the new frontier generation.
Such an optimization is particularly useful in case of power-law graphs since
they present a high number of leaf vertices (up to 20% in some instances).

The basic implementation of the device-wide binary search sets the workload
chunk size proportional to the available shared memory per block. It is suitable
for large frontiers, but it involves inactive threads in case of small frontiers. We
implemented such a technique with a third optimization, which allows dynami-
cally configuring the workload chunk size as follows:

V1 V3 V4 …V5 V6 V7 V8

t1	 t3	t2	

V2

Rt1

Thread	Group

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0Rt2

0 0 0 0 0 0 0 1Rt3

1.	Evaluation	of	the	
vertex out	degree:

1	if >	threshold
0	if <=	threshold

1 0 1

1 0 1Rt2

1 0 1Rt3

2.	ballot instruction
(common	 result on	

all registers)

Rt1

1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0Rt2

1 0 1 0 0 0 0 0Rt3

Rt1
3.	Bitwise AND

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1Rt2

0 0 0 0 0 0 1 0Rt3

Rt1

4.	popc instruction

Frontier in	global	memory

V1 … … …… … … …V3

Filtered frontier in	shared mem
(shared by	warps)

fig. 4: The 4-instructions binary prefix-sum

min


⌈

sum of out-degrees
#resident threads

⌉
· block size

shared mem per block

The device-wide binary search is an atomic strategy. Because of its radically
embedded structure, it cannot be combined with any support techniques.

3.4 Load balancing support strategies
The first support strategy is warp-based gathering, which aims at identifying
heavy frontier vertices (i.e., vertices with out degree greater than a threshold)
and, instead of mapping them to threads by following the main load balancing
technique, it maps each of them to a whole warp of threads. It relies on a low
latency binary prefix-sum, which is implemented by four hardware-implemented
instructions (see Figure 4). Each warp thread saves the predicate result about the
vertex out degree (1 if degree > threshold, 0 otherwise) in the own register. Each
register value (boolean 0 or 1) is then saved on the register bit corresponding to
the thread id, in each thread register with a ballot instruction. After this step,
all the registers of the same warp threads contain the same 32 bit value. It then
computes the bitwise and between the register value and the thread id lower
mask (e.g., the lower mask of thread 3 is 111). Such a lower mask is efficiently
obtained by reading a special register via a single PTX instruction. Finally, each
thread counts the number of true values of the non-masked bits with the popc
instruction and updates the corresponding register.

The result is a filtered prefix sum that gives information about all vertices
of the frontier that must be processed by whole warps of threads (V1 and V3 in
the example of Figure 4) instead of using the adopted basic mapping technique.
The filtered prefix sum is stored in shared memory and, thus, it is shared by
whole warps of threads, thus minimizing memory accesses. The vertices in the
filtered prefix sum are processed by warps and, then, the remaining vertices of
the original frontier are processed with the basic mapping approach (scan-based
or vertex-based mapping).

1

10

100

1.000

10.000

100.000

1.000.000

1 4 16 64 256 1024 4096 16384 65536 262144N
u

m
b

e
r

o
f

ve
rt

ic
e

s
(l

o
g 1

0
sc

al
e

)

Out-degree (log2 scale)

B1 B2 B3 BMAX

Histogram bins

fig. 5: Example of supplementary queues applied to the kron g500-logn21 graph.

The threshold corresponds to the warp size (32 for the NVIDIA GPU devices
adopted in this work) to fully exploit the parallelism at warp level.

The second support strategy is block-based gathering, which is similar to the
warp-based one (with a threshold set to the thread block size), but with a sub-
stantial difference in the prefix-sum implementation. The block-level gathering
relies on an unordered binary prefix-sum, which does not guarantee a strict order-
ing of the output while maintaining monotonic increasing values in the resulting
sequence3. The parallel implementation of such an algorithm at block-level can
take advantage of loose ordering to accelerate the computation. The unordered
prefix-sum applies the same procedure of ordered variant at warp level but relies
on atomic operations among different warps. In particular, each warp atomically
updates a single value in shared memory for block-wide computation with the
total sum of its values and getting back the previously stored value. Thanks to
the hardware-implemented atomic operations in modern GPU architectures (i.e.,
from NVIDIA Maxwell on) the unordered binary prefix-sum allows achieving
performance better than the conventional ordered scan-then-fan algorithm [22].

The third support strategy is supplementary queues, which is applied in
graphs with maximum degree greater than half of the available device threads
(e.g., 16,384 on the GeForce 980 GTX).

It aims at organizing the high degree vertices (vertices with out degree >
thresholdSQ) of the frontier in different bins. Each bin holds vertices with sizes of
the same (approximate) power of two (see the example of Figure 5). In particular,
the i-th bin holds vertices with out-degree in the range [2(b+i), 2(b+i+1)], where
2b identifies the base size, and b can be tuned by the user. Such a classification
allows running a single kernel for the different bins, properly configured for the
bin characteristics. In our tests, the total number of grid threads has been set
equal to the lower bound of the bin (2(b+i)) times the number of bin elements.
This is motivated by the fact that the worst case involves at most two memory
accesses among elements in consecutive queues. Finally, the bound value of the
last bin is limited to the maximum number of resident device threads, since no
more parallelism is possible for greater values.

3 A possible output of the unordered prefix-sum is a3, (a3+a5), (a3+a5+a1), . . . , (a1+
. . . + an).

Graph Category U/D V (M) E (M) Avg. degree Std. deviation Gini coeff. Max degree Avg. eccentricity

asia osm Road Network U 12.0 25.4 2.1 0.5 0.08 9 36,626.7
europe osm Road Network U 50.9 108.1 2.1 0.5 0.09 13 19,738.2
USA-road-d.USA Road Network U 23.9 58.3 2.4 0.9 0.21 9 6,418.6
hugebubbles-00020 Num. simulation U 21.2 63.6 3.0 0.0 0.00 3 6,205.9
rgg n 2 23 s0 Random Geometric U 8.4 127.0 15.1 3.9 0.14 40 1,715.7
delaunay n24 Structural U 16.8 100.7 6.0 1.3 0.12 26 1,588.3
channel-500x100x100 Num. simulation U 4.8 85.4 17.8 1.0 0.01 18 381.6
ldoor Structural U 1.0 47.5 49.9 11.9 0.13 78 161.4
nlpkkt160 Num. simulation U 8.3 237.9 28.5 2.7 0.02 29 145.2
audikw 1 Structural U 0.9 78.6 83.3 42.4 0.23 346 61.8
circuit5M Circuit simulation D 5.6 59.5 10.7 772.6 0.52 1,290,501 58.0
FullChip Circuit simulation D 3.0 26.6 8.9 23.1 0.35 2,312,481 38.3
cage15 DNA electrophoresis D 5.2 99.2 19.2 5.7 0.17 47 37.3
indochina-2004 Social Network D 7.4 194.1 26.2 215.8 0.74 6,985 31.0
soc-LiveJournal1 Social Network D 4.8 69.0 14.2 36.1 0.72 20,293 14.3
soc-pokec-relationships Social Network U 1.6 61.2 37.5 59.5 0.62 20,518 10.2
er-fact1.5-scale23 Erdös-Rényi U 8.4 200.6 23.9 4.9 0.12 53 7.8
hollywood-2009 Social Network U 1.1 115.0 100.9 271.9 0.73 11,469 7.6
kron g500-logn21 Kronecker U 2.1 182.1 86.8 680.1 0.92 213,906 5.1

Table 1: Graph dataset.

thresholdSQ = total device threads
2 guarantees that at least half threads of

the device are active when this technique is applied and, as confirmed by the
experimental results, it avoids underutilization of threads and useless overhead.

4 Experimental Results
We conducted the analysis and the performance evaluation on a dataset of 19
graphs, which includes both real-world and synthetic graphs from different appli-
cation domains. Table 1 presents the graphs and their characteristics in terms of
structure (directed/undirected), number of vertices (V, in millions), edges (E, in
millions), average degree, standard deviation, Gini coefficient, maximum degree,
and average eccentricity (or BFS depth).

The graphs have been selected to be representative of a wide range of char-
acteristics, including size, diameter, degree distribution (from regular to power-
law). The graphs have been selected from the University of Florida Sparse Matrix
Collection [7], the 10th DIMACS Challenge [1], and the SNAP dataset [15].

We ran the experiments on a NVIDIA GeForce GTX 980 device with CUDA
Toolkit 7.5, AMD Phenom II X6 1055T 3GHz host processor, Ubuntu 14.04
O.S., and clang 3.6.2 host compiler with the -O3 flag. We ran all tests 100 times
from random sources to obtain the average execution time tavg. The traversal
throughput is computed as E/tavg for all tools and is expressed in MTEPS
(million traversed edges per second).

To evaluate the efficiency of the proposed techniques, we measured how the
performance of the best and most representative BFS implementations for GPUs
at state of the art (Gunrock [21], BFS-4K [3], and B40C [18]) have been improved
by substituting the original load balancing implementations with those presented
in this paper. Figure 6 shows the results.

0

1,000

2,000

3,000

4,000

5,000

6,000

M
TE
PS

Gunrock (Device-wide Binary Search) Device-wide Binary Search UPS

0

2,000

4,000

6,000

8,000

10,000

M
TE
PS

BFS-4K (Vertex-based) Vertex-based Warp-Shuffle Vertex-based Warp-Shuffle+Supports

WG

WG

WG
BG

WG
BG
SQ

WG
BG
SQ

WG

WG
BG

WG
BG
SQ

WG
BG
SQ

WG

WG
BG
SQ

WG
BG
SQ

0

2,000

4,000

6,000

8,000

10,000

12,000

M
TE
PS

B40C (Scan-based+WG+BG) Scan-based PTX Prefix-sum Scan-based PTX Prefix-sum+Supports

WG

WG WG
BG

WG
BG

WG
BG

WG

WG
BG

WG
BG

WG
BG

WG

WG
BG

WG
BG

fig. 6: Performance comparison: Gunrock (upper-side), BFS-4K (middle-side),
B40C (bottom-side). WG= warp-based gathering, BG= block-based gath-
ering, SQ= supplementary queues.

The upper side plot compares the performance of the original Gunrock, whose
load balancing is set on a device-wide binary search, with the corresponding
version in which we implemented the proposed device-wide binary search with
unordered prefix-sum (UPS). As explained in Section 3.3, it was not possible to
apply any support strategy due to the radically embedded structure of this load

Load balancing support Rules

Warp-based gathering max. degree > Warp size,
Block-based gathering max. degree > Block size,
Supplementary queues max. degree > Half device threads

Table 2: Configuration table.

balancing technique. However, the results show that applying only the proposed
balancing technique allowed us to improve the BFS performance in all graphs,
with speedups from 1x to 12.7x.

Figure 6 - middle-side - compares the results of BFS-4K, which in the original
version implements a direct vertex-based mapping strategy, with the correspond-
ing version with warp-shuffle. First with no support strategies applied, and then
with the supports applied in graphs satisfying the characteristics reported in Ta-
ble 2. We observed that the performance of the proposed optimized technique are
substantially higher than the standard implementation in most cases. In graphs
with very irregular degree distribution, the original BFS-4K is better as it takes
advantage of additional load balancing techniques, such as dynamic parallelism,
to alleviate the workload unbalancing. However, the proposed strategy properly
combined with the load balancing support strategies selectively enabled depend-
ing on the graph characteristics (reported on the top of the bar), provides the
best results in all graphs (from 1x to 4.2x, and 0.9x in a single case).

Finally, the bottom-side plot compares the results of the original B40C imple-
mentation, which relies on a scan-based mapping strategy, with the correspond-
ing version based on PTX prefix-sum, without and with the proposed supports.
It is important to note that the original tool also implements a support (which is
always enabled) comparable to the warp- and block-level gathering proposed in
this work. The results show that, thanks to the highly optimized prefix-sum and
the instruction-level parallelism technique, the proposed load balancing tech-
nique (with no supports) provides performance almost always better and up
to two times faster than the original B40C implementation. The throughput
is further improved by enabling the proposed support techniques (right-most
bar of the plot), thus providing speedups from 1x to 9.7x. Such supporting
techniques significantly contribute to the graph traversal performance thanks
to their new algorithms based on binary prefix-sum, which, differently from the
standard version implemented in B40C, it allows avoiding sequential iterations
over high-degree vertices.

5 Conclusions
This paper presented three load balancing techniques for graph traversal appli-
cations on GPUs and the most important details of their architecture-oriented
implementations. The paper presented a set support strategies that can be stat-
ically selected and modularly applied to the main balancing techniques to better
address the different graph characteristics. Experimental results have been pre-
sented to show how the performance of existing and widespread BFS implemen-
tations have been improved by substituting the original load balancing strategy
with those presented in this paper, with and without the support strategies.

References

1. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph partitioning and
graph clustering, 10th DIMACS implementation challenge workshop. Contempo-
rary Mathematics 588 (2013)

2. Bisson, M., Bernaschi, M., Mastrostefano, E.: Parallel distributed breadth first
search on the Kepler architecture. IEEE Transactions on Parallel and Distributed
Systems 27(7), 2091–2102 (2015)

3. Busato, F., Bombieri, N.: BFS-4K: an efficient implementation of BFS for kepler
GPU architectures. IEEE Transactions on Parallel and Distributed Systems 26(7),
1826–1838 (2015)

4. Busato, F., Bombieri, N.: An Efficient Implementation of the Bellman-Ford Algo-
rithm for Kepler GPU Architectures. IEEE Transactions on Parallel Distributed
Systems 27(8), 2222–2233 (2016)

5. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT
press (2009)

6. Davidson, A., Baxter, S., Garland, M., Owens, J.D.: Work-efficient parallel GPU
methods for single-source shortest paths. In: Proc. of IEEE IPDPS. pp. 349–359
(2014)

7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software 38(1), 1 (2011)

8. Green, O., McColl, R., Bader, D.A.: GPU merge path: a GPU merging algorithm.
In: Proc. of ACM SC. pp. 331–340 (2012)

9. Harish, P., Narayanan, P.: Accelerating large graph algorithms on the GPU using
CUDA. In: Proc. of IEEE HiPC. pp. 197–208 (2007)

10. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: Proc. of ACM PPoPP. pp. 267–276 (2011)

11. Jia, Y., Lu, V., Hoberock, J., Garland, M., Hart, J.C.: Edge v. node parallelism
for graph centrality metrics. GPU Computing Gems 2, 15–30 (2011)

12. Khorasani, F., Rowe, B., Gupta, R., Bhuyan, L.N.: Eliminating intra-warp load
imbalance in irregular nested patterns via collaborative task engagement. In: Proc.
of IEEE Parallel and Distributed Processing Symposium. pp. 524–533 (2016)

13. Knuth, D.E.: The art of computer programming, vol. 3. Pearson Education (1997)
14. Kunegis, J., Preusse, J.: Fairness on the web: Alternatives to the power law. In:

Proc. of ACM WebSci. pp. 175–184 (2012)
15. Leskovec, J., et al.: Stanford network analysis project (2010), http://snap.

stanford.edu
16. Luo, L., Wong, M., Hwu, W.m.: An effective GPU implementation of breadth-first

search. In: Proc. of ACM/IEEE DAC. pp. 52–55 (2010)
17. McLaughlin, A., Bader, D.A.: Scalable and high performance betweenness central-

ity on the gpu. In: Proceedings of the IEEE International Conference for High
performance computing, networking, storage and analysis. pp. 572–583 (2014)

18. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In: Proc.
of ACM PPoPP. pp. 117–128 (2012)

19. NVidia Corporation: Kepler Tuning Guide (2014),
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html

20. NVidia Corporation: Parallel Thread Execution ISA (2014),
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

21. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: A
high-performance graph processing library on the GPU. In: Proc. ACM PPoPP.
pp. 265–266 (2016)

22. Wilt, N.: The cuda handbook: A comprehensive guide to gpu programming. Pear-
son Education (2013)

http://snap.stanford.edu
http://snap.stanford.edu

	Efficient load balancing techniques for graph traversal applications on GPUs

