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Adaptive optics is an established technique to measure and compensate for optical aberrations. One
of its key components is the wavefront sensor (WFS), which is typically a Shack-Hartmann sensor (SH)
capturing an image related to the aberrated wavefront. We propose an efficient implementation of the
SH-WFS centroids extraction algorithm, tailored for edge computing. In the edge-computing paradigm,
the data is elaborated close to the source (i.e., at-the-edge) through low-power embedded architectures,
in which CPU computing elements are combined with heterogeneous accelerators (e.g., GPUs, FPGAs).
Since the control loop latency must be minimized to compensate for the wavefront aberration temporal
dynamics, we propose an optimized algorithm that takes advantage of the unified CPU/GPU memory of
recent low-power embedded architectures. Experimental results show that the centroids extraction latency
obtained over spot images up to 700× 700 pixels wide is smaller than 2ms. Therefore, our approach meets
the temporal requirements of small to medium-sized AO systems, which are equipped with deformable
mirrors having tens of actuators. © 2020 Optical Society of America
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1. INTRODUCTION

Light beams emanated from an object are distorted by pertur-
bations presented in the optical path between the object and
the observer. Such perturbations affect the phase of each beam,
leading to an aberrated wavefront which, in turn, deteriorates
the image quality of the observed object [1].

Adaptive Optics (AO) is a widely known technique which
objective is to obtain diffraction-limited images of the observed
object. An AO system is composed of one or more WaveFront
Sensors (WFS), one or more Deformable Mirrors (DM) and a
controller. By the phase conjugation principle, the controller
shapes the DM into the conjugated wavefront measured by the
WFS, compensating for the aberrations. Extensive literature in
a wide range of fields including astronomy [2], ophthalmology
[3], microscopy [4], communication [5] and high power laser [6]
has demonstrated the practical value of AO for improving the
image quality despite optical and/or atmospheric aberrations.

The most common WFS is the Shack-Hartmann WFS (SH-
WFS), which measures the wavefront local gradients by spatially
sampling the incoming beam with a lenslet array, with each
lenslet focusing the local subaperture into a CCD or CMOS
camera pixel array. Several algorithms deal with the centroid
extraction from the spots image, the choice of which depends

on the dynamic range of the centroids (e.g., spots overlapping
neighboring reference spots), image quality (e.g., faint, non-
uniformly distributed spots) and software complexity [7–9].

Since the AO control loop frequency should be at least one
order of magnitude higher than the cutoff frequency of the wave-
front aberrations dynamics, WFS measurement latency must be
minimized by either sacrificing wavefront spatial resolution (e.g.,
smaller beam aperture leads to shorter exposure time because of
the higher photon flux and fewer pixels to be transferred), or by
choosing a fine-tuned extraction algorithm to be implemented
into a suitable architecture. Under normal conditions, each sub-
aperture is completely independent of the others. Hence, it
is natural to tackle the SH-WFS centroid extraction problem
exploiting the throughput-oriented Single-Instruction Multiple-
Data (SIMD) paradigm, so that the centroids can be computed
in parallel using the same set of instructions.

Graphic Processing Units (GPU) and Field-Programmable-
Gate-Array (FPGA) architectures are examples of architectures
well suited to SIMD computation. However, while FPGA excels
in raw performance compared to GPU, the latter offers program-
ming flexibility also found in Central Processing Units (CPU)
latency-oriented architectures. In fact, most of the GPU devel-
opment tools are extensions of those used for programming
CPU code. Therefore, both GPU and CPU solutions offer eas-
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ier debugging solutions than FPGA and faster deployment for
experimental testing.

Wavefronts related to the aberrated eye pupil can be re-
constructed from SH-WFS images using a desktop-class GPU,
achieving lower latency when compared to its CPU implemen-
tation [10]. The wavefront can also be estimated from SH-WFS
images by means of a GPU-accelerated neural network, with de-
tection accuracy near that of traditional methods when properly
trained [11]. The big amount of data coming from the SH-WFS
arrays in the Extremely Large Telescope (ELT) class can be tack-
led by GPU clusters to accelerate the gradients extraction [12, 13].
Aside from the real-time computation, introductory work on
the tomographic reconstruction of the atmospheric turbulence
through neural networks on GPU has also been done [14] and
several GPU-accelerated optics simulation frameworks have
been developed [15–17]. Some AO-related algorithms imple-
mented on GPU are demonstrated to perform even better than
their FPGA counterparts [18].

However, little attention has been given to the implementa-
tion of the SH-WFS algorithms for edge computing [19], which
is an effective solution for small- to medium-size telescopes [2].
Many solutions for edge computing combine a hardware accel-
erator to the input sensor. Examples are FPGAs embedded with
camera sensors (i.e., the smart-cameras) [20], which can process
the wavefront with minimal latency [21, 22]. Nonetheless, het-
erogeneous architectures in which CPU processing elements are
combined with GPU accelerators are the preferred alternative to
FPGA-based smart cameras when dealing with hard to imple-
ment visual computing algorithms [23–25]. In addition, recent
heterogeneous low-power architectures (e.g., NVIDIA Jetson
TX2 and Nano) allow to reduce the memory transfer overhead
by implementing a unified CPU/GPU memory. They are getting
pervasive for edge-computing thanks to their compact foot-print,
power and energy-efficiency, and competitive High-Performance
Computing (HPC) capabilities [26].

In this paper we propose a SH-WFS centroids extraction
algorithm that is tailored for edge computing on low-power
CPU/GPU devices with unified memory. We show that the time
needed to complete the centroid extraction from the image ac-
quisition is small enough to satisfy the AO closed-loop latency
constraint. Our contribute is the implementation of such an
algorithm that:

• Can efficiently run on portable, low-power, energy-efficient
devices, enabling at-the-edge AO control.

• Is flexible with respect to the WFS hardware configuration;

• Guarantees lower latency than the on-board CPU counter-
parts;

The paper is organized as follow. Section 2 briefly recalls how a
Shack-Hartmann sensor works, whereas Section 3 introduces the
moment-based centroid extraction algorithm. Section 4 explains
the parallel implementation of the centroid extraction algorithm,
whose experimental results are shown in Section 5. In Section 6
some conclusions are drawn together with a future work plan.

2. SH-WFS OPERATION PRINCIPLE

The SH-WFS is a sensor that measures the wavefront distorsions
by computing its local gradients. Fig. 1 shows the optical princi-
ple that allows the SH-WFS to spatially and temporally sample
the incoming wavefront. The l-th lenslet of the lenslet array
focuses the local wavefront into a light spot on the pixel array of

the capture device. Assuming a point-like light source (e.g., a
distant star), the centroid position cl ∈ R2 of the spot is related to
the spatial displacement of the incoming aberrated wavefront
with respect to the flat wavefront (no aberrations).

Fig. 1. Operation principle of the Shack-Hartmann WFS.

Let ρ ∈ R be the diameter of the telescope circular aperture.
The grid-shaped lenslet array L inscribes the wavefront of the
incoming light beam, with the number of lenslets in each row
given by

wL =

⌊
ρ

dL

⌋
, (1)

where dL ∈ R is the size of each lenslet as shown in Fig. 1. The
lower bracket bzc is the floor rounding operator that returns the
greatest integer smaller than or equal to z ∈ R.

The lenslets focal length f ∈ R determines the size of the
pixel region in which the l-th spot is focused into. A large focal
length favors centroids sensitivity, whereas a small focal length
increases the centroids dynamic range. Spots might be imaged
anywhere in the pixel array, resulting in arbitrarily large and
overlapping pixel regions. However, if f is sufficiently small in
relation to the expected incoming wavefront spatial variance,
then the pixel regions are disjoint. This is a valid assumption
when measuring the wavefront compensated by an AO control
system.

Each pixel region is a square since the lenslet is arranged in a
grid. The number of pixels contained in a row of a pixel region
is

d =
dL
dP

, (2)

where dP ∈ R is the pixel width (assuming no dead zone among
regions).

Let p = (xp, yp) be a pixel position, with xp, yp ∈ N being
the Cartesian coordinates of the pixel in the pixel array. Each
lenslet l focuses the spot into the pixels in the l-th pixel region

Pl = {p | bxlc ≤ xp < bxl + dc , bylc ≤ yp < byl + dc}, (3)

where (xl , yl) ∈ R2 is the pixel coordinate of the bottom-left
corner of the pixel region. The mapping from the lenslet array
into the pixel array is calibrated by identifying the pixel position
(x0, y0) located at the bottom-left pixel of the bottom-left lenslet
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in the lenslet grid 1. Then, the bottom-left pixel coordinate of the
l-th pixel region is calculated as

(xl , yl) =

(⌊
x0 + d

⌊
l

wL

⌋⌋
, by0 + d (l mod wL)c

)
. (4)

Merging all pixel regions yields to the pixel Region of Interest
(RoI) P, which is a square region having width 2

wP = dwL, (5)

as illustrated in Fig. 2.

Fig. 2. SH-WFS spot image. The pixel regions PL are adjacent
each-other, and together form the pixel RoI P.

Comparing the measured centroid position cl with its reference
centroid, i.e. the centroid measured when the wavefront is flat,
yields to the incoming wavefront phase gradients (slopes) from
which the wavefront phase can be reconstructed by zonal or
modal techniques [1]. The centroids can be extracted from the
WFS spot image by a moment-based method [7], which is used
to calculate the Center of Gravity (CoG) of each spot on the pixel
array.

3. MOMENT-BASED CENTROID EXTRACTION

Let I(p) ∈ R be the measured intensity value at a RoI pixel
p ∈ P. The image moments for the l-th spot image are defined
as

mij
l = ∑

p∈Pl

xi
pyj

p I(p) (6)

where i, j ∈N are the moments order over the Cartesian direc-
tions. The l-th centroid position cl is the CoG of the l-th spot
calculated using the image moments as

cl =

(
m10

l
m00

l
,

m01
l

m00
l

)
. (7)

According to the pixel region defined in Eq. (3), all the cen-
troids cl of the spot image can be extracted by implementing the
Alg. 1 [27].

The lower bound of the computational cost for the centroids
extraction algorithm is given by the analysis of the two nested

1Throughout the paper, 1-dimension lenslet and pixel arrays are indexed as
row-major arrays starting from 0.

2The pixel RoI width wP ∈ N is expressed in pixel units, whereas the lenslet
RoI width wL ∈N is expressed in lenslet units.

Algorithm 1. Lenslet-wise Centroids Extraction

1: for all l ∈ L do
2: m00

l , m10
l , m01

l ← 0
3: for all p ∈ Pl do
4: m00

l ← m00
l + I(p)

5: m10
l ← m10

l + xp I(p)
6: m01

l ← m01
l + yp I(p)

7: cl ←
(

m10
l

m00
l

, m01
l

m00
l

)

for-loops. Since the pixel regions Pl covering the lenslet array L
are adjacent, disjoint and completely contained in the pixel RoI
P, the inner loop iterates over each pixel p ∈ P. The pixel RoI P
is square and hence its size is bdwLc2. A total of 5 operations are
computed for each pixel p to update the moments. The outer
loop iterates over each lenslet l ∈ L, where the lenslet grid L is a
square of size w2

L. Each centroid cl requires 2 instructions to be
calculated from the moments as shown in Eq. (7).

Therefore, the lower bound complexity depends on the
lenslet grid width wL and the pixel region width d:

Ω(wL, d) = 2w2
L + 5 bdwLc2 . (8)

Since the moment partials of Eq. (6) (i.e. the addends of the
sum) are mutually independent, they can be computed concur-
rently at once and then summed up to yield the lenslet moment.

Since the CoG method to extract the centroids is sensi-
tive to the WFS Signal-to-Noise Ratio (SNR), standard image-
processing techniques could be implemented to enhance the
SNR such as (i) thresholding pixels’ intensities below the noise
level, (ii) correcting the gamma function of the intensity by ap-
plying a power-law transformation, and (iii) excluding pixels
near the lenslet edges (i.e. windowing) [28].

4. CUDA IMPLEMENTATION

CUDA and OpenCL are the two dominant frameworks for paral-
lel programming. They offer the same capabilities, e.g., exploit-
ing unified memory, albeit with different hardware terminology
and code syntax. OpenCL is open-source and compatible with a
wide range of GPU and multi-core CPU architectures, whereas
CUDA is proprietary and only compatible with NVIDIA ar-
chitectures. On the other hand, since the CUDA framework is
specific to NVIDIA architectures, it guarantees tighter implemen-
tation than OpenCL and deeper development tools integration.

We rely on the CUDA parallel framework to fully exploit the
Jetson architecture [29]. In the CUDA programming language,
a device (GPU) utilizes its threads and memory to execute kernels
(i.e., functions) called by the host (CPU). Threads are organized
in blocks, and blocks are contained in a grid. The scheduler maps
blocks into multiple streaming multiprocessors. Each thread in
a block is mapped to a core. Up to 32 threads (i.e., one warp
of threads) can be scheduled to concurrently execute the same
instructions (i.e. SIMD).

Each thread can efficiently access register, local or shared mem-
ory. While the first two are limited to the thread scope, the latter
is available to all threads in a block and, hence, can be used
for efficient communication among threads. The register mem-
ory is faster than local memory, but it is also the least available.
Register, local and shared memories are device-side resources
meant to store temporary results. The host must access the de-
vice slower global memory to store the dataset to be processed
by the kernel and read the results.
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A. Data Levels
Since the spot image is stored into memory as a row-major linear
array, the pixel expressed in Cartesian coordinate p = (xp, yp) is
mapped into the array index

φ = xp + wPyp. (9)

By accessing contiguous elements along the rows, neighboring
data chunks are cached in fast memory leading to smaller trans-
fer latency time. To leverage the memory cache, the spot image
is partitioned into data levels.

The topmost level represents the entire spot image in which
the pixels RoI P, i.e., the lenslet grid, is immersed. The lenslet
grid is divided into rows that are spanned by lenslet groups. Each
lenslet group l̄ has the same power-of-two size, up to 16 lenslets
wide, to satisfy the condition for the reduction operation on
its elements. Multiple lenslet groups are concatenated to cover
all lenslets in a row. Eventual lenslets remaining in the last
lenslet group are padded with zeros. A lenslet l is partitioned
in a power-of-two number of stacked row groups. The size of
each row group φl

r̄ is given by the rounded up ratio between
the number of pixel rows in a lenslet and the number of row
groups to be assigned for a lenslet. The remaining rows of the
last row group are outside the lenslet and hence are ignored
from the computation. Each row φl,r̄

r in a row group is composed
of pixels. Pixels in a row are covered by pixel groups, with each
pixel group φl,r̄,r

p̄ containing 4 pixels φ
l,r̄,r,p̄
p to optimize memory

transfer. Since pixel groups are aligned to the beginning of the
spot image array, leading and trailing pixel groups may contain
pixels outside the scope of the actual lenslet. The intensities of
such pixels are read as zero so that they do not contribute to the
final result.

Let the pixel partial be the set of partial moments m00, m10 and
m01 calculated at the pixel position φ

l,r̄,r,p̄
p :

µ
l,r̄,r,p̄
p = {m00(φ

l,r̄,r,p̄
p ); m10(φ

l,r̄,r,p̄
p ); m01(φ

l,r̄,r,p̄
p )}. (10)

The sum between two pixel partials µ
l,r̄,r,p̄
i + µ

l,r̄,r,p̄
j is the set de-

fined as the piece-wise sum of their respective partial moments.
Summing together all the pixel partials associated to a pixel
group yields to the pixel group partials µl,r̄,r

p̄ . The row partial µl,r̄
r

of a row group is obtained by adding the pixel group partials
calculated on its underlying pixel groups. The row group partial
µl

r̄ of a lenslet is given by summing up all the row partials in a
row group. Finally, the lenslet moment µl of the lenslet grid is the
sum of the row group partials contained in the l-th lenslet.

Fig. 3 describes how a single pixel p of the spot image is
indexed through the data levels. The lenslet grid is 7 lenslets
wide and the lenslet size is 10 × 10 pixels. With the lenslet
groups size fixed to 4 lenslets, it takes 2 lenslet groups to cover
a row of lenslets, with one remaining lenslet. The 5-th lenslet
group accesses lenslets 18, 19 and 20, zero padding the others.
Each lenslet is partitioned into 2 row groups and hence each row
group spans 5 rows, with no rows left out. The lenslet pitch is
10 pixels and can be covered by up to 4 pixel groups, depending
on the memory alignment. In the figure, the 4-th pixel row only
needs 2 pixel groups. The remaining pixel intensities of the 2-nd
pixel group are read as zeros (and no further pixel groups are
to be drawn). The selected pixel p is indexed as φ20,1,4,2

1 and
produces the partial pixel moment µ20,1,4,2

1 . Adding together the
partial moments from the bottom to the top of the data hierarchy
levels yields to the lenslet moment µ20.

Fig. 3. Diagram of the data hierarchy levels as seen from the
CUDA extraction algorithm. On the right: partials obtained
by reducing the current level data. With the exception of the
lenslet moment, numerical indexes are relative to the level.

B. Optimized GPU Data Transfer through Coalesced Memory
Accesses

In most architectures, the global memory and the CPU mem-
ory are physically decoupled. This means that data has to be
transferred between memories, with each transfer increasing the
temporal overhead over the execution time. To overcome such
overheads, latency-hiding techniques can be exploited. How-
ever, the kernel execution time must be comparable to the trans-
fer time to take advantage of those techniques. Since host and
device on a Jetson architecture physically share the same global
memory, allocated memory can be addressed both by host and
device by pinning it (page-locked mapped memory, also called
Zero-Copy), hence avoiding any transfer overhead.

Remark 1 Page-locked memory on the Jetson TX2 GPU is not cached
when accessed by the CPU. As a consequence, host-side memory read-
ing is not optimized. However, the CPU accesses the memory only
to write the intensity values acquired from the sensor and read back
the computed commands to be sent to the actuators. Therefore, there
is no performance penalty using page-locked memory instead of other
addressing options.

Up to 128 Bytes of data in global memory can be accessed
in one transaction. To fully exploit the cache, threads in a
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warp should ideally access consecutive single precision words
(4 Bytes) starting from a 128 Bytes-aligned address to realize a
coalesced memory transfer. Since the spot image is encoded into
a row-major 8-bit array with stride divisible by 4, each thread of
a warp reads adjacent words of 4 Bytes, hence accessing 4 pixels
(a full pixel group) at once.

The highest bandwidth throughput is achieved when a warp
reads 32 pixel groups, i.e. 128 Bytes. To maximize caching per-
formance, the warp operates on the contiguous rows of a lenslet
group instead of a single lenslet row. This way, a warp services
multiple lenslets. The lenslet pitch d determines the maximum
number of pixel groups needed to cover a single lenslet row.
Since pixel groups are read from contiguous memory, their mem-
ory alignment must be accounted for. The worst case scenario is
that the first pixel of the row addresses the last memory location
of a packet, hence loading the full packet while only requiring
1 pixel out of 4. Similarly, the logical address of the last pixel
of the row can point to the first memory location of the packet,
again ignoring the remaining 3 pixels. The maximum number
of packets is therefore calculated by considering those extra 6
offset pixels:

npackets =

⌊
d + 3 + 3

4

⌋
. (11)

The number of packets determines the optimal lenslet group
size:

dL̄ = exp2

⌊
log2

⌊
32

npackets

⌋⌋
. (12)

Since the lenslet groups are consecutively stacked to cover a row
of lenslets of the lenslet grid starting from the leftmost lenslet,
the lenslets of the last rightmost lenslet group outside the lenslet
grid are ignored.

C. Data Reduction
Parallel data reduction summarizes (by using a commutative bi-
nary operator) all the homogeneous data of a dataset by exploit-
ing communication and synchronization functions among con-
current execution units (i.e. CUDA threads). Given 2n elements
in a dataset mapped to a pool of 2n execution units, n ∈N, the
elements of each disjoint pair of execution units in the pool are
reduced concurrently into intermediate results, which are half
the size of the original dataset. This process is iterated over such
intermediate results, with each iteration halving their size. The
reduction result is the intermediate result at the last iteration,
reached when there are no pairs left. Since operations are done
concurrently in a logarithmic-tree fashion, the computational cost
to reduce 2n elements is O(n). If the number of elements is not
power-of-two, then the dataset is padded with elements which
value is neutral with respect to the binary operator considered.

In the CUDA programming model, the parallel reduction
can be efficiently implemented at warp level through shuffle
primitives, which are low-level CUDA communication and syn-
chronization functions [30]. The shuffle instructions let threads
access the registers of other threads scheduled in the same warp,
despite registers being local to the threads. By exploiting such
primitives, the parallel reduction operates over registers, which
are the fastest type of memory in the CUDA architecture.

Since a warp consists of 32 concurrent threads, the dataset
to be reduced must be 32 elements large to achieve the peak
efficiency. However, several smaller datasets can be operated at
once by combining them into a 32-elements dataset. To do so,

the datasets must have the same power-of-two size, eventually
padding remainder elements with neutral elements. Then, they
are concatenated into the full dataset that must be also padded
with neutral elements if its size is not power-of-two.

The full dataset is processed via the XOR scheme (butterfly
accessing pattern [30]) to reduce the sub-datasets concurrently.
Each thread participating in the shuffle stores the sum of its
value with the one of the thread addressed by the bitwise XOR
between the caller thread index and the mask value. The reduc-
tion can then be performed on all datasets without cross-talking
by specifying the mask value at each iteration of the algorithm.
Assuming 2m datasets (i.e. the lenslet group size), the reduction
algorithm returns the results after log2(32)−m + 1 iterations.

Fig. 4 shows how the pixels of the spot image are reduced to
lenslet moments µl . As described in Subsection B, a warp covers
the adjacent pixel rows of the lenslets contained in the lenslet
group l̄, one row per lenslet. Each thread in the warp sequen-
tially reduces the pixel partials µ

l,r̄,r,p̄
p into the pixel group partial

µl,r̄,r
p̄ . Then, the warp performs a parallel shuffle reduction over

the dataset built on the pixel group partials, yielding to the row
partials µl,r̄

r .
Row partials within a row group φl

r̄ are operated one after
the other by a single warp. To increase occupancy, multiple
warps can be associated to a lenslet group, one for each row
group. To do so, threads in a block are partitioned into warps by
using cooperative groups, a CUDA implementation feature that
lets warps to be synchronized independently. All row group
partials µl

r̄ are then stored in shared memory and reduced in
parallel into lenslet partials µl .

In the example in Fig. 4, the lenslet moments of the lenslets 0
and 1, which are inside the same lenslet group, are extracted at
the same time. Since the lenslet pitch is d = 10, the maximum
number of packets for each row is npackets = 4 and the optimal
lenslet group size is dL̄ = 2 according to Eq. (12) (assuming
8 threads per warp for the sake of space). The pixel groups
memory location needed for the 2 lenslet rows, p̄0 to p̄5, are
loaded from the global memory into each thread. The memory
location from p̄0 to p̄3 contains the pixel groups φ0,0,r

0 to φ0,0,r
3 ,

whereas the location from p̄3 to p̄5 contains the pixel groups
φ1,0,r

0 to φ1,0,r
2 . Since pixel groups are contiguous, p̄3 is used by

both lenslets and is therefore cached. Each thread demuxes and
sums the pixels into group partials. The last pixel group partial
does not make part of the currently considered lenslets and is
therefore imposed to zero. The shuffle reduction yields to the
row partials of both lenslets, which are then added to the other
row partials (the accumulators are denoted by σ0

0 and σ1
0 ). The

sum of all row partials gives the 0-th row group partials of both
lenslets and is stored into shared memory. Since the lenslet is
partitioned into 2 row groups, the number of threads scheduled
for a block is set to 16 so that two cooperative groups of 8 threads
can be formed. Hence, the 0-th and 1-st row group partials are
calculated concurrently. Reducing the row group partials stored
in shared memory yields to the two lenslet moments.

D. Kernel Algorithm
Alg. 2 illustrates the steps of each concurrent thread to extract
the centroids of a spot image. Lines 6-11 calculate the pixel
group partials. To obtain the row partial, the butterfly shuffle
reduction is carried out in Line 12. It is worth remarking that
also rows from other lenslets in the lenslet group are reduced at
the same time. The rows in the row group are scanned in Lines
3-13, accumulating the row partials into the row group partial at
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Fig. 4. Diagram of the data reduction. In this example, since
the pixel region width (i.e. lenslet pitch) is d = 10, it is re-
quired to read 6 pixel groups from global memory (p̄0 to p̄5) in
order to cover the two lenslet rows. The rows are partitioned
into 2 row groups of 5 rows each which are processed indepen-
dently. Each thread reduces the pixel group into a partial mo-
ment. Assuming 8 threads per warp, the pixel groups partials
of 2 lenslet rows are reduced at once using the shuffle reduc-
tion. The resulting row partial moments are accumulated into
the row group partial moments. When all row groups are pro-
cessed, their results are reduced in shared memory yielding to
the 2 lenslet moments and then copied into global memory.

each iteration. The shared reduction over the row group partials
performed in Line 16 yields to the lenslet moments.

Remark 2 Algorithm 2 does not implement the image-processing
techniques described in Section 3 for enhancing the SNR ratio. How-
ever, since such techniques operate on each pixel individually, they
can be introduced by transforming the intensities right after reading
them from memory, keeping the same level of concurrency. The added
computational cost is therefore negligible. Alternatively, per-pixel pro-
cessing can be implemented by a look-up table intensity transformation

Algorithm 2. CUDA Centroids Extraction

1: Pixel group φl,r̄,r
p̄ ← index inferred from thread context

2: Row group partial µl
r̄ ← 0.

3: for all Rows φl,r̄
r ∈ row group φl

r̄ do
4: Pixel group φl,r̄,r

p̄ ← global memory

5: Pixel group partial µl,r̄,r
p̄ ← 0

6: for all Pixels φ
l,r̄,r,p̄
p ∈ pixel group φl,r̄,r

p̄ do

7: if Pixel φ
l,r̄,r,p̄
p outside l then

8: Pixel partial µ
l,r̄,r,p̄
p ← 0

9: else
10: Pixel partial µ

l,r̄,r,p̄
p ← moments calculated from

intensity value I(φl,r̄,r,p̄
p )

11: Pixel group partial µl,r̄,r
p̄ ← µl,r̄,r

p̄ + µ
l,r̄,r,p̄
p

12: Row partial µl,r̄
r ← butterfly shuffle sum reduction over

pixel group partials µl,r̄,r
p̄

13: Row group moment accumulator σl
r̄ ← σl

r̄ + µl,r̄
r

14: if Pixel group index p̄ 6= 0 then return
15: Row group moment accumulator σl

r̄ → shared memory µl
r̄

16: Lenslet moments µl ← shared memory sum reduction over
row group partials µl

r̄
17: if Row group index r̄ 6= 0 then return

18: Centroid cl ←
(

m10
l

m00
l

, m01
l

m00
l

)
19: Centroid cl , lenslet moments µl → global memory

(e.g., fine-tuning the camera intensity mapping).

5. EXPERIMENTS

In these experiments the centroids extraction is performed on
images stored in memory. This choice is motivated by the fact
that the exposure and transfer of the image are performed before
processing, and hence they have no impact on the execution
time of the centroids extraction implementation.

The moment-based centroids extraction routine assumes that
the captured image contains one intensity spot per lenslet, as
shown in Fig. 2. However, since all pixels must be accessed and
processed (with no additional data-dependent conditions), the
information contained in the spot image does not impact the
execution time. A pool of 8-bit white images (I = 255 for all
pixels) is fed to both the proposed implementation of Alg. 2 and
the sequential implementation of Alg. 1 to test the correctness of
our approach. However, the spot image used in the benchmark
experiments are synthesized as 8-bit images with each pixel hav-
ing random intensity (I ∈ [0, 255]) to prevent memory caching
optimizations.

The target platform is the NVIDIA Jetson TX2, which inte-
grates a 256-cores Pascal GPU, a dual-core NVIDIA Denver 2
CPU and a quad-core ARM Cortex-A57 CPU. The test-bench
runs on the stock Linux distribution that comes with the NVIDIA
Jetpack 4.2.1 firmware. The GPU frequency is locked at 1.3 GHz
and each CPU core frequency is locked at 2 GHz.

A test run measures the time elapsed from the issue of the
extraction command to the transfer of all extracted centroids,
averaged over 50 executions on the same spot image.

Different WFS optical aperture diameters ρ, lenslet sizes dL
and pixel sizes dP are taken into account with the pixel region
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Table 1. Execution times of CPU and GPU (tCPU , tGPU) and
relative speed-up for the configurations of RoI width wP and
pixel region width d, along with the number of extracted cen-
troids w2

L.
wP[px] d[px] w2

L tCPU [µs] tGPU [µs] Speed-up
100 3.8 676 54 104 0.5192
100 11 81 44 59 0.7458
100 20 25 10 57 0.1754
100 29 9 1 57 0.0175
200 3.8 2704 308 151 2.0397
200 11 324 186 57 3.2632
200 20 100 158 57 2.7719
200 29 36 102 57 1.7895
500 3.8 17161 2095 615 3.4065
500 11 2025 1268 208 6.0962
500 20 625 1220 165 7.3939
500 29 289 1106 107 10.3364
700 3.8 33856 4194 1090 3.8477
700 11 3969 2475 331 7.4773
700 20 1225 2405 265 9.0755
700 29 576 2228 162 13.7531

1000 3.8 69169 8922 2307 3.8674
1000 11 8100 5158 631 8.1743
1000 20 2500 4266 481 8.8690
1000 29 1156 3210 317 10.1262

width d and pixels RoI width wP parameters (as shown in Fig.
2). The RoI ranges from 100× 100 to 1000× 1000 pixels, while
the pixel region resolution ranges from 3× 3 to 28× 28 pixels.
The result of each test run is presented in Tab. 1, where the CPU
and GPU execution time tCPU , tGPU for a given combination of
d and wP are compared to calculate the speed-up:

Speed-up =
tCPU
tGPU

. (13)

For every configuration except for the 100× 100 RoI size, the
GPU implementation results in a speed-up over the CPU im-
plementation from 2 up to 13. Figs. 5, 6, 7, 8 and 9 show the
execution time for all parameters combinations. The algorithm
execution time takes less than 1 ms for pixel region widths d
larger than 5 pixels. Small pixel regions mean that more lenslets
fit the same RoI and this leads to a large number of centroids,
increasing the execution time. In the case of small RoI size (Fig.
5) the overhead latency when issuing a CUDA kernel launch
(experimentally measured to be 50µs on average with an empty
kernel) completely dominates the GPU execution time. The rela-
tively high execution time variance for the CPU implementation
is due to the underlying OS task scheduler behavior.

6. CONCLUSION

The NVIDIA Jetson platform is a CPU/GPU hybrid platform
which, while compact and power-efficient, is powerful enough
to justify its use in edge-computing and HPC. Due to its unified
memory architecture, the latency introduced by copying data
is avoided. Hence, images are processed as soon as they are
transferred from the camera. The Jetson platform is positioned as
an alternative to FPGA-based smart cameras, with the advantage
of being easier to program and more flexible.

In small-scale AO systems, the SH-WFS is usually imple-
mented on CPU or FPGA architectures. However, despite being
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Fig. 5. Execution times of the centroid extraction for a 100× 100
RoI of the spot image.
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Fig. 6. Execution times of the centroid extraction for a 200× 200
RoI of the spot image.

5 10 15 20 25
Lenslet Pitch (px)

100

101

102

103

104

E
xe

cu
tio

n 
T

im
e 

(
s)

CPU
GPU

Fig. 7. Execution times of the centroid extraction for a 500× 500
RoI of the spot image.
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Fig. 8. Execution times of the centroid extraction for a 700× 700
RoI of the spot image.
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Fig. 9. Execution times of the centroid extraction for a 1000×
1000 RoI of the spot image.

low-latency, CPU solutions are not portable and FPGA designs
lead to long development time. The experimental results carried
on the Jetson CPU/GPU platform show that the time required
for the centroid extraction is less than 1 ms given a pixel re-
gion width larger than 5 pixels, and hence compatible with the
AO closed-loop latency constraint. Our approach suggests that
an embedded GPU architecture is a valid alternative to FPGA-
based SH-WFS solutions. The parallel capabilities of the device
can be leveraged to develop advanced wavefront reconstruction
schemes, e.g., extended source and high dynamics sensing.

As future work, it is worth highlighting that the full AO con-
trol loop can be implemented into the Jetson, leveraging on its
GPU computational power to produce the commands for the
deformable mirror of small to medium-size AO systems. Since
deformable mirrors in such systems have tens to a few hundreds
actuators, the resolution of the Shack-Hartmann grid needed
to image the deformable mirror into the measured wavefront
ranges from hundreds to thousands lenslets. Depending on
the AO setup requirements, the proposed centroids extraction
algorithm can be adapted to extract the same number of cen-
troids from a small image with small lenslet pitch (e.g. low light

condition) or a larger image with larger pitch (i.e. to improve
detection accuracy). Taking into account the transfer delay of
a USB3 camera and the actuators interface, the wavefront-to-
command latency of a standard Proportional-Integral array (e.g.,
one PI regulator per wavefront mode) can be quantifiable to be
smaller than 2ms. More effective control techniques like modal
control and Predictive/Optimal Control can take advantage of
the GPU parallelism to be computationally feasible. Further-
more, the spatio-temporal dynamics of atmospheric aberrations
can be learned and predicted by on-board machine learning
algorithms, routinely updating the controller parameters.
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