Efficient Simulation and Parametrization of
Stochastic Petr1 Nets in SystemC: A Case study
from Systems Biology

Abstract—Stochastic Petri nets (SPN) are a form of Petri net
where the transitions fire after a probabilistic and randomly
determined delay. They are adopted in a wide range of appli-
cations thanks to their capability of incorporating randomness
in the models and taking into account possible fluctuations and
environmental noise. In Systems Biology, they are becoming a
reference formalism to model metabolic networks, in which the
noise due to molecule interactions in the environment plays a
crucial role. Some frameworks have been proposed to implement
and dynamically simulate SPN. Nevertheless, they do not allow
for automatic model parametrization, which is a crucial task
to identify the network configurations that lead the model to
satisfy temporal properties of the model. This paper presents a
framework that synthesizes the SPN models into SystemC code.
The framework allows the user to formally define the network
properties to be observed and to automatically extrapolate,
thorough Assertion-based Verification (ABV), the parameter
configurations that lead the network to satisfy such properties.
We applied the framework to implement and simulate a complex
biological network, i.e., the purine metabolism, with the aim of
reproducing the metabolomics data obtained in-vitro from naive
lymphocytes and autoreactive T cells implicated in the induction
of experimental autoimmune disorders.

Index Terms—Stochastic Petri Net, Metabolic Networks, Elec-
tronic Design Automation, T cells, Autoimmunity.

I. INTRODUCTION

In Systems Biology, model development and analysis is
recognized as a key requirement for integrating in-vitro and
in-vivo experimental data. In-silico simulation of a biological
model allows one to test different experimental conditions,
helping in the discovery of the dynamics that regulate the
system. Although qualitative characterizations of such com-
plex mechanisms are, at least partially, available, a fully-
parametrized quantitative description is often missing. Indeed,
the large number of independent variables, the lack of quan-
titative information and the relationships strongly depending
on qualitative events, make mathematical models difficult or
even prohibitive to obtain and analyse [1].

In this context, Petri nets (PN) are an effective formalism
to model biological networks as they provide an intuitive
graphical representation, well-founded mathematical proper-
ties for qualitative analysis, and extensions to perform dynamic
simulation [2]. Some approaches and software applications
based on continuous timed Petri Nets have been applied
to model and simulate biological systems through a semi-
quantitative paradigm [3], [4]. Thanks to their mathematical
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properties, PN have been applied to model place invariants
and transition invariants to validate complex processes such
as apoptosis [5] and to understand the processes at the basis
of the iron homeostasis [6].

Stochastic Petri nets (SPN) are a form of PN that allows the
model to support randomness, which is fundamental to take
into account possible fluctuations and noise due to molecules
interacting in the environment [7]. For example, SPN have
been succefully applied to obtain new insights in the develop-
ment of hepatic granuloma throughout the course of infection
[8], and to model signal transduction pathways in the process
of angiogenesis [9].

Software applications have been developed to simulate SPN
models of biological systems. The best known are Snoopy
[10] and Monalisa [11]. They allow simulating complex
biochemical systems including metabolic pathways, signal
transduction pathways, and gene expression networks. Nev-
ertheless, a recurrent issue of these software applications
is related to the concept of parameterization. Very often,
due to the lack of quantitative information, it is necessary
to explore the solution space of the parameters to identify
which network configurations lead the model to satisfy certain
biological properties. This process requires the manual tuning
of unknown parameters to obtain model behaviours matching
the biological knowledge. Since the solution space to explore
grows exponentially with the network size, such a manual
parametrization task becomes prohibitive when applied to
realistically large networks.

In this paper we propose a framework that applies lan-
guages, techniques, and tools well established in the field of



electronic design automation (EDA) to model and simulate
metabolic networks. Since biological systems and electron-
ics systems share several characteristics like concurrency,
reactivity, abstraction levels as well as issues like reverse
engineering and design space exploration [12], we show how
the proposed EDA-based framework can introduce automation
and flexibility to model, to simulate, and to help the analysis
of metabolic networks. Figure 1 shows an overview of the
framework. Starting from the SPN model of a metabolic net-
work, the framework generates SystemC code that implements
the network dynamics. The user defines network properties
through a formal specification language (i.e., PSL), which
are synthesized and integrated into the network code. The
framework then applies Assertion-based Verification (ABV)
combined to an automatic parameter generation based on a
genetic algorithm to extrapolate the parameter configurations
that satisfy the defined network properties.

We applied the framework to model and simulate the purine
metabolism and to reproduce the metabolomics data obtained
from naive lymphocytes and autoreactive T cells implicated
in the induction of experimental autoimmune disorders. We
show that the framework automatically extrapolates system
parametrizations that reproduce the experimental results and
that allow simulating the model under different conditions.

The paper is organized as follows. Section II presents the
background on SPN. Section III presents the framework, while
Section IV presents the experimental results. Section V is
devoted to the concluding remarks.

II. BACKGROUND ON STOCHASTIC PETRI NETS

SPN is a class of Petri nets in which at every transition
k of the network state is associated a delay 7, which is
determined by a random variable. Formally, a SPN is a five-
tuple SPN = {P,T,F, My, A} where P is the set of the
places, T the set of transitions, ' C (P x T) U (T x P)
is the set of relations between places and transitions, My is
the initial configuration of the net (marking), and A is the
set of exponentially distributed firing rates \; associated with
the transitions. The firing rates are defined trough propensity
functions (hazard) aj, that have the pre-places of the transition
k as domain, and it gives the probability that a reaction will
occur in the next infinitesimal time interval.

To simulate biochemical systems, specific types of propen-
sity functions are used, such as mass-action propensity func-
tions and Michelis-Menten propensity functions. A well-
established method to perform a simulation of a SPN is the
Gillespie’s algorithm, called Stochastic Simulation Algorithm
(SSA). This method is a Monte Carlo procedure that calculates
a possible trajectory of the system simulating one chemical
reaction at each step, and that chooses the firing time 7.
Gillespie proposed two equivalent variants of his algorithm:
The Direct Method (DM) [13], and the First Reaction Method
(FRM) [14]. Several algorithms have been proposed to im-
prove the efficiency of these algorithms [15]-[17]. In general,
DM is more efficient in terms of computational time and
space while FRM is well suited for a concurrent and parallel
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Fig. 2. Example of PN model: the purine pathway case study.

implementation [18]. Our methodology is based on the FRM
variant.

III. METHODOLOGY

Fig. 1 shows an overview of the simulation and parametriza-
tion framework. It relies on three main phases:

1) The modeling of SPN through extended finite state
machines (EFSM) as explained in Section III-A.

2) The synthesis of EFSM into a SystemC with the support
for stochastic simulation, as explained in Section III-B.

3) The automatic parametrization of the network through
a genetic-based input generation guided by dynamic
assertion-based verification, as explained in Section
1I-C.

A. Modeling PN through EFSM

The proposed methodology considers a PN model of the
system under analysis as a starting point. Figure 2 shows the
PN model of the purine pathway, which is the case study from
Systems Biology considered as running example in this paper.
Figure 3 shows an overview of the different possible reactions
in metabolic networks, which represent the basic blocks of
the PN models. The figure reports the PN models and the
corresponding representations in Systems Biology Graphical
Notation (SBGN-PD), which is the standard representation in
the Systems Biology community. For the sake of clarity, we
refer to the simplest reaction (top of Figure 3) in the follows.

To perform the event-driven simulation of the SPN, we
represent each SPN node model through Extended Finite
State Machines (EFSMs) [19]. This allows us to modularly
synthesized the whole SPN model into executable SystemC
code. Figure 4 shows such a representation. Each reaction
involves the consumption precess c¢; of the reactant M;,
and the production process p; of the reaction result Mj.
We thus represent the production and consumption processes
through two concurrent EFSMs, each one based on a two-state
machine.

Starting the consumption process from the Ready state of
the preplace M;, which represents the possibility to start the
reaction, the model moves to the In consumption state by
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Fig. 3. Basic blocks (reactions) of a metabolic network in PN and
the corresponding representation in SBGN-PD.
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updating the place M; with the current reactant concentration.
This is necessary to start the production activity of the concur-
rent process p;. The machine waits in the In consumption
state until the reaction delay time expires and decreases the
reactant concentration m; of a given reaction constant mY,.
If the reactant concentration modifies during such a waiting
time (event(m;_updated) triggers), the new concentration is
sent to p; in order to re-evaluate the reaction delay time. This
allows us to handle the multiple and concurrent evolutions
of the SPN nodes and the corresponding effect on the rest
of the network. As an example, if the reactant concentration
decreases under the a minimum threshold during simulation
due, for instance, to a parallel reaction process of the reactant
that completes sooner (e.g., see the fourth block from the
irreversible reactions of Fig. 3), the current reaction suspends
(i.e., the machine goes back to the Ready state) without
decreasing the M; concentration.

The production process p; moves from the Ready state to
the In production state as soon as it receives an updated
reactant concentration, and it saves the current simulation time
t (which is updated by the SystemC simulation kernel at
each simulation step) as the starting reaction time (T'r_start)-
When the reaction delay time (7p) expires, the reaction is
completed and the M, concentration is increased by the
reaction constant m%. In the In production state, the
model allows the delay counting to be updated, either for a
change of the reactant concentration and for the stochastic
nature of the implemented simulation model (see Section
II-B). The production process may become infeasible if the
reactant concentration decreases under a threshold. This leads
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Fig. 4. The EFSM representation of the reaction processes R between M;
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p; to stop the process, to not increase the reaction result (i.e.,
M; concentration) and to stop any M, consumption process.

B. Stochastic Discrete Event-based Simulation of Petri Nets
through SystemC

In a stochastic simulation of a metabolic network, each
reaction I? between a metabolite (M) and the reactant (M)
fires:

1) if the reactant (M;) satisfies a concentration constraint
(m; > m?), where m; is the reactant concentration (i.e.,
number of tokens of the PN node) and m) is a reaction
coefficient (i.e., a constant), and

2) after a specific time delay 7, which is defined as
follows:
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where randy, € (randy,...,rand,) is a random number from
the uniform distribution U (0, 1). ag(m;) = ¢;m; is the mass-
action propensity function where c; is the reaction rate and
m; 1s the number of tokens of the reactant M,;. We consider
a lower-bound value of each reaction delay (i.e., 1), which is
associated to the minimum delay in the discrete simulation.

According to the FRM model (see Section II), the stochastic
simulation of the system evolves along discrete steps, where
each next time step corresponds to the expiration time of the
immediately next reaction. In particular, considering ¢; as the
current simulation time of the system:

tiy1 =t; +7R,, st. TR, = min(Try, .., TRy, )

At each simulation step, all the reaction delays are updated,
and the updating considers the elapsed time and a random
component. Figure 6 shows a summarizing overview of such
a stochastic simulation paradigm. It is important to note that
the updating phase at each simulation step of all the reaction
delays 7g, Vi, which include a random component (randy), is
the necessary condition to perform the stochastic simulation
of the PN model. The simulation ends after a given number
(N) of simulation steps.

Figure 5 shows how the two concurrent processes imple-
menting each reaction are organized in the SystemC imple-

mentation. Each node of the SPN (i.e., place) consists of
two processes, i.e., the production process from the upstream
reaction and the consumption process for the downstream
reaction.

C. Parameter estimation through dynamic Assertion-based
verification (ABV)

Functional verification based on assertions represents one
of the main applied and investigated techniques that combines
simulation-based (i.e., dynamic) and formal (i.e., static) verifi-
cation [21]-[23]. Assertions are formal descriptions that allow
system designers to detect functional errors in the model and
in the model evolution over time. They are also combined
to techniques of automatic input pattern generation [24] that
extrapolate system configurations to prove the satisfiability
or unsatisfiability of the system properties. The proposed
methodology applies simulation-based ABV, by which asser-
tions are defined in a formal language (i.e., PSL [25]), they
are automatically synthesized into checkers', and plugged to
the SystemC model representing the network [27]. In our
context, checkers aim at monitoring the concentration of the
metabolites and to give a score (i.e., fitness) to an input
generation module, which implements a genetic algorithm to
generate good configurations of the kinetic parameters.

The module generates a configuration of parameters and
runs a dynamic simulation of the network for such a set of
input values for a given simulation time. Then, the module
generates a new different configuration for a new simulation. A
proper fitness function evaluates the goodness of each potential
solution estimated through simulation. The run ends when
the module finds the parameter configuration that allows the
system properties to be satisfied. The definition of the fitness
function depends on the property to be checked and it is
formulated as the distance between state vectors representing
the simulation trend s;(t) in comparison to a defined reference
trend r;(t) (i.e., the target behaviour of the system).

The ABV checks the simulation trend s;(¢) and, even-
tually, it stops the simulation to provide a score compared
to r;(t). Given the state vectors S = [s1,S2,...,5,] and
R =[ry,rs,...,r,| representing, respectively, the simulation
and the reference trend the score is defined as follows:

score.(t) = d(S, R)

where d is a distance function (e.g., Euclidean distance)
bewteen the state vectors. The formulation of state vectors is
general and allows us to model biological behaviours such as
the stability in concentration and the change of concentrations
between time points.

Figure 7 shows some examples of the state dynamics of
a metabolite to be observed and for which assertions can
be defined. In particular, the first assertion checks whether
the concentration stability of a given metabolite over time,
by considering a user-defined tolerance (4o). The second,

IThe framework relies on the IBM FoCs synthesizer [26] for the automatic
synthesis of assertions.
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more complex, assertion checks the periodic oscillations of
the metabolite concentration by considering user-defined tol-
erances (+o, +4). For both the examples, if the value of
the state variable m;, during simulation, remains in the green
zone, the assertion is satisfied. Otherwise, the assertion fails
and the system raises an error signal. We defined assertion
templates, which have to be filled out by the user by indicating
the metabolite to be monitored and the constants (target
concentrations and tolerances).

The proposed framework applies ABV for parameter esti-
mation phase, which aims at identifying the parameter settings
that lead the network to satisfy the properties formalized by the
assertions. This verification is delegated to the ABV, which is
responsible for property checking during simulation. For each
simulation of the model, the input stimuli generator receives
a score (See Figure 1) from ABYV and it applies this value to
perform an evolutionary step of the genetic algorithm used to
generate new configurations.

IV. RESULTS AND DISCUSSION

We applied the proposed framework to understand how
the dynamics of the purine pathway (see Figure 2) changes
between normal and autoreactive conditions.

We started from metabolomics data obtained in-vitro and we
converted the relative concentrations into number of tokens
for each metabolite. With the term concentration we refer
to the number of tokens of a metabolite. We simulated our
model by generating reaction delays in the range [1 — 1000]
of all network reactions, which keep stable the concentrations

Number of tokens (log2)

Metabolite

Guanine

Adenosine
GMP
Guanosine

Inosine

XMP

AMP
Hypoxanthine
Xanthine

Deoxyinosine
IMP

Adenine

75000 100000

50000
Simulation time

0 25000

Fig. 8. Example of parameterization of the purine pathway in PLP-
specific condition that lead the metabolites to stability within a
simulation time of 10° clock cycles.

of each metabolite (i.e., steady state) except dAMP, dGMP
and urate. We assumed that the pathway is considered at
steady state if the concentration of each element does not
differ by more than +50% from the initial concentration and
it is maintained stable throughout a simulation time of 10°
simulation cycles. We formally specified this property through
PSL assertions.

In our model, the inhibition mechanisms are represented
through the inhibition arcs, which is an extension of the clas-
sical Petri nets to represent the inhibition of a molecule when
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its concentration exceeds a certain threshold. We assumed
that a metabolite can inhibit a reaction when it grows up by
30% from its initial concentration. The genetic algorithm used
by the automatic input generator has been configured with
a population size of 250 individuals, a mutation probability
of 0.05 and a crossover probability of 0.1. We defined the
reference trend of the system as follows:

ri(t) =m;,Vt > 0,i=1,2,....,n

where m; is the starting concentration of a metabolite and ¢ is
the simulation time. The state vector of the simulation trend is
defined as S = [¢1, ¢a, . . ., ¢y], Where ¢; are the set of angular
coefficients of the linear functions s;(t), linking the starting
and the ending concentrations of the metabolites. The state
vector of the reference trend was defined as R = [0,0,...,0].
The fitness function was defined as the inverse of the Euclidean
distance between the simulation and the reference trends.
The selection method used to pick an individual from the
population is rank-based, meaning that the reproduction is
always done by taking individuals with better fitness.

We obtained 10 parameter configurations of the purine path-
way for each condition. Fig. 8 shows the plot of the metabolite
concentration obtained with one of such configurations. For
each parameter configuration, the network simulation required
around 7 seconds to simulate 1 million time instants (Sim-
ulation time in Fig. 7. The complete parametrization phase
required from 1 to 12 minutes for each network version. All the

simulations were run on a machine equipped with an Intel(R)
Xeon(R) CPU E5-2650 v4 clocked at 2200 Mhz and 16 GBs
RAM, and the Ubuntu 16.04 operating system.

In general, our simulations led to interesting differences in
the regulation of the purine pathway, suggesting that most of
chemical reactions are highly favored in PLP-specific cells
versus naive lymphocytes as shown in Fig. 9(a). In fact,
all metabolic reactions, with the exception of the reactions
from Guanine to Xanthine (Guani:Xa) and from Adenosine to
Inosine (Adeno:Ino), are speeded up in PLP-specific condition,
having a lower average delay time generated by our framework
(see Fig. 9(a)). Further, the reaction from Deoxyadenosine to
Deoxyinosine (DeoxA:DeoxI) had comparable delay times be-
tween naive and PLP-specific condition. Overall, the observed
speed-up in the PLP-specific condition resulted in a greater
production of the fundamental elements of the pathway dAMP,
dGMP and urate (Fig. 9(b)). Notably, the increased urate,
dGMP and dAMP production in PLP-specific network reflects
our metabolomics data and a well-known metabolic feature of
proliferating lymphocytes [28], validating the potentiality of
our methodology in simulating metabolic processes.

V. CONCLUSION

This paper presented a framework based on languages,
techniques, and tools well established in the field of EDA
to simulate and automatically parametrize the SPN model
of metabolic networks. In particular, we applied the frame-
work to study the purine metabolism pathway starting from
metabolomics data obtained from naive lymphocytes and au-
toreactive T cells implicated in the induction of experimental
autoimmune disorders. Thanks to the automatic parametriza-
tion of the model, we were able to reproduce the experimental
results obtained in-vitro and to simulate the system under
different conditions. This was not possible by using the tools
at the state of the art, which require the manual insertion of
the reaction parameters to simulate the network evolution.
From a biological point of view, the obtained simulation
results suggest that the entire purine pathway is speeded-up
in PLP-specific cells versus naive lymphocytes, according to
our experimental data and literature.
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