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Abstract

The problem of establishing the number of perfect matchings necessary
to cover the edge-set of a cubic bridgeless graph is strictly related to
a famous conjecture of Berge and Fulkerson. In this paper we prove
that deciding whether this number is at most 4 for a given cubic
bridgeless graph is NP-complete. We also construct an infinite family
F of snarks (cyclically 4-edge-connected cubic graphs of girth at least
five and chromatic index four) whose edge-set cannot be covered by 4
perfect matchings. Only two such graphs were known.

It turns out that the family F also has interesting properties with
respect to the shortest cycle cover problem. The shortest cycle cover
of any cubic bridgeless graph with m edges has length at least 4

3m,
and we show that this inequality is strict for graphs of F . We also
construct the first known snark with no cycle cover of length less than
4
3m+ 2.
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1 Introduction

Throughout this paper, a graph G always means a simple connected finite
graph (without loops and parallel edges). A perfect matching of G is a 1-
regular spanning subgraph of G. In this context, a cover of G is a set of
perfect matchings of G such that each edge of G belongs to at least one
of the perfect matchings. Following the terminology introduced in [3], the
excessive index of G, denoted by χ′

e(G), is the least integer k such that the
edge-set of G can be covered by k perfect matchings.

A famous conjecture of Berge and Fulkerson [7] states that the edge-set
of every cubic bridgeless graph can be covered by 6 perfect matchings, such
that each edge is covered precisely twice. The second author recently proved
that this conjecture is equivalent to another conjecture of Berge stating that
every cubic bridgeless graph has excessive index at most five [14].

Note that a cubic bridgeless graph has excessive index 3 if and only if
it is 3-edge-colorable, and deciding the latter is NP-complete. Hägglund [8,
Problem 3] asked if it is possible to give a characterization of all cubic graphs
with excessive index 5. In Section 2, we prove that the structure of cubic
bridgeless graphs with excessive index at least five is far from trivial. More
precisely, we show that deciding whether a cubic bridgeless graph has exces-
sive index at most four (resp. equal to four) is NP-complete.

The gadgets used in the proof of NP-completeness have many 2-edge-cuts,
so our first result does not say much about 3-edge-connected cubic graphs. A
snark is a non 3-edge-colorable cubic graph with girth (length of a shortest
cycle) at least five that is cyclically 4-edge connected. A question raised
by Fouquet and Vanherpe [6] is whether the Petersen graph is the unique
snark with excessive index at least five. This question was answered by the
negative by Hägglund using a computer program [8]. He proved that the
smallest snark distinct from the Petersen graph having excessive index at
least five is a graph H̊ on 34 vertices (see Figure 7). In Section 3 we show
that the graph found by Hägglund is a special member of an infinite family
F of snarks with excessive index precisely five.

In Section 4, we study shortest cycle covers of the graphs from our family
F . A cycle cover of a graph G is a covering of the edge-set of G by cycles
(connected subgraphs with all degrees even), such that each edge is in at
least one cycle. The length of a cycle cover is the sum of the number of edges
in each cycle. The Shortest Cycle Cover Conjecture of Alon and Tarsi [1]
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states that every bridgeless graph G has a cycle cover of length at most
7
5
|E(G)|. This conjecture implies a famous conjecture due to Seymour [15]

and Szekeres [17], the Cycle Double Cover Conjecture, which asserts that
every bridgeless graph has a cycle cover such that every edge is covered pre-
cisely twice (see [12]). It turns out that the Cycle Double Cover Conjecture
also has interesting connections with the excessive index of snarks. Indeed,
it was proved independently by Steffen [16] and Hou, Lai, and Zhang [10]
that it is enough to prove the Cycle Double Cover conjecture for snarks with
excessive index at least five.

The best known upper bound on the length of a cycle cover of a bridgeless
graph G, 5

3
|E(G)|, was obtained by Alon and Tarsi [1] and Bermond, Jackson,

and Jaeger [2]. For cubic bridgeless graphs there is a trivial lower bound of
4
3
|E(G)|, which is tight for 3-edge-colorable cubic graphs. Jackson [11] proved

an upper bound of 64
39
|E(G)|, and Fan [5] improved it to 44

27
|E(G)|. The best

known upper bound in the cubic case, 34
21
|E(G)|, was obtained by Kaiser,

Král’, Lidický, Nejedlý, and Šámal [13] in 2010.
Brinkmann, Goedgebeur, Hägglund, and Markström [4] proved using a

computer program that the only snarks G on m edges and at most 36 vertices
having no cycle cover of length 4

3
m are the Petersen graph and the 34-vertex

graph H̊ mentioned above. Moreover, these two graphs have a cycle cover of
length 4

3
m + 1. They also conjectured that every snark G has a cycle cover

of size at most (4
3
+ o(1))|E(G)|.

In Section 4, we show that all the graphs G in our infinite family F have
shortest cycle cover of length more than 4

3
|E(G)|. We also find the first

known snark with no cycle cover of length less than 4
3
|E(G)|+ 2 (it has 106

vertices).

Notation Let X, Y be subsets of the vertex-set of G. We denote by ∂X
the set of edges with precisely one end-vertex in X and by ∂(X, Y ) the set of
edges with one end-vertex in X and the other in Y . If X, Y form a partition
of the vertex-set of G, the set ∂(X, Y ) is called an edge-cut, or a k-edge-cut
if k is the cardinality of ∂(X,Y ). It is well-known that for any k-edge-cut
∂(X, Y ) and any perfect matching M of a cubic graph G, the numbers |X|,
|Y |, k, and |M ∩ ∂(X, Y )| have the same parity. This will be used implicitly
several times in the remaining of the paper.
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2 NP-completeness

We denote by T the Tietze graph, that is the graph obtained from the Pe-
tersen graph by replacing one vertex by a triangle (see Figure 1).

Figure 1: Four perfect matchings covering the edge-set of the Tietze graph.

It is not difficult to check that the Petersen graph has excessive index
5 (see also [6]), while the Tietze graph has excessive index 4 (see Figure 1
for a cover consisting of four perfect matchings). The next lemma describes
how four perfect matchings covering the edge-set of T intersect the unique
triangle of T .

Lemma 1. For any cover M of T with |M| = 4, each edge of the unique
triangle of T is in precisely one perfect matching of M.

Proof. By parity, each perfect matching of M contains one or three edges
incident to the unique triangle of T . If a perfect matching of M contains the
three edges incident to T , then each of the three other perfect matchings of
M must contain a distinct edge of T , hence the lemma holds. On the other
hand, suppose for the sake of contradiction that each perfect matching of
M contains precisely one edge incident to the triangle. Then by contracting
the triangle we obtain four perfect matchings covering the Petersen graph, a
contradiction.

Before we prove the main result of this section, we need to describe an
operation on cubic graphs. Given two cubic graphs G and H and two edges
xy in G and uv in H, the gluing1 of (G, x, y) and (H, u, v) is the graph
obtained from G and H by removing edges xy and uv, and connecting x and
u by an edge, and y and v by an edge. Note that if G and H are cubic and
bridgeless, the resulting graph is also cubic and bridgeless.

1This operation is sometimes called the 2-cut-connection.
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When the order of each pair (x, y) and (u, v) is not important, we simply
say that we glue the edge uv of H on the edge xy of G. We obtain either the
gluing of (G, x, y) and (H, u, v) or the gluing of (G, y, x) and (H, u, v), but
which one does not matter.

We now study the complexity of bounding the excessive index of a cubic
bridgeless graph. A cubic bridgeless graph has excessive index three if and
only if it is 3-edge-colorable, and determining the latter is a well-known NP-
complete problem (see [9]). We now prove that determining whether the
excessive index is at most 4 (or equal to 4) is also hard.

Theorem 2. Determining whether a cubic bridgeless graph G satisfies χ′
e(G) ≤

4 (resp. χ′
e(G) = 4) is an NP-complete problem.

Proof. The proof proceeds by reduction to the 3-edge-colorability of
cubic bridgeless graphs, which is NP-complete [9]. Our problem is certainly
in NP, since a cover ofG consisting of four perfect matchings gives a certificate
that can be checked in polynomial time.

Now, let G be a cubic bridgeless graph, and let n be its number of vertices.
Let G′ be the graph obtained from G by replacing each vertex by a triangle.
Note that G′ is a cubic bridgeless graph with 3n vertices and n (vertex-
disjoint) triangles. The 3n edges of G′ contained in the n triangles are called
the new edges, while the other are called the original edges. Let uv be an
edge of the unique triangle of the Tietze graph T , and let H be the graph
obtained from G′ and 3n copies of T indexed by the 3n new edges of G′, by
gluing each new edge e of G on the edge uv of the copy Te of T . Note that H
is a cubic bridgeless graph with 39n vertices. We first remark that if H can
be covered by k perfect matchings, then T can also be covered by k perfect
matchings since for any copy Te, any perfect matching of H contains 0 or 2
edges connecting Te to G (and thus corresponds to a perfect matching of T ).
It follows that H is not 3-edge-colorable.

We now prove that G is 3-edge-colorable if and only if χ′
e(H) = 4 (which

is equivalent to χ′
e(H) ≤ 4 by the previous remark).

Suppose first thatG is 3-edge-colorable, and consider three perfect match-
ings M1,M2,M3 covering the edges of G. Each perfect matching Mi, i ∈
{1, 2, 3}, can be naturally extended to a perfect matching M ′

i of G
′ such that

{M ′
1,M

′
2,M

′
3} covers the edges of G′. These three perfect matchings can be

combined with the three leftmost perfect matchings of Figure 1, for each
copy Te glued with G′, to obtain three perfect matchings of H covering all
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the edges of H except three in each copy of T . We add a fourth perfect
matching of H, obtained by combining the perfect matching of G′ consisting
of the original edges of G, with the rightmost perfect matching of Figure 1
in each copy of T . Since all the edges of H are covered by these four perfect
matchings of H, we have χ′

e(H) ≤ 4, and since H is not 3-edge-colorable,
χ′
e(H) = 4.
Suppose now that χ′

e(H) = 4, and let M1,M2,M3,M4 be perfect match-
ings covering H. By Lemma 1, these perfect matchings correspond to four
perfect matchings M ′

1,M
′
2,M

′
3,M

′
4 of G′ covering the edges of G′, and such

that each new edge of G′ is covered once. Since every vertex of G′ is incident
to two new edges and one original edge, it follows that each original edge is
covered twice. For all i ∈ {1, 2, 3}, color the original edges with color i if they
are covered by M ′

4 and M ′
i , or by M ′

j and M ′
k with {j, k} = {1, 2, 3} \ {i}.

Assume that some original edge xy is covered both by M ′
4 and M ′

1. Then
the two new edges incident to x are covered by M ′

2 and M ′
3, respectively,

and the last edge of the new triangle containing x is covered by one of M ′
4

and M ′
1. It follows that neither of the two edges incident to this triangle and

distinct from xy is covered by M ′
4 and M ′

1, or by M ′
2 and M ′

3. By symmetry,
it follows that each color class corresponds to a perfect matching of G, and
so G is 3-edge-colorable.

3 An infinite family of snarks with excessive

index 5

Recall that a snark is a cubic graph that is cyclically 4-edge-connected, has
girth at least five, and is not 3-edge-colorable. In this section we show how
to construct a snark G with excessive index at least 5 from three snarks
G0, G1, G2 each having excessive index at least 5. Taking G0 = G1 = G2 to
be the Petersen graph, we obtain the graph H̊ found by Hägglund using a
computer program [8], and for which no combinatorial proof showing that
its excessive index is 5 has been known up to now. Our proof holds for any
graph obtained using this construction, thus we exhibit an infinite family of
snarks with excessive index 5. This answers the question of Fouquet and
Vanherpe [6] about the existence of snarks distinct from the Petersen graph
having excessive index 5 in a very strong sense.
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The windmill construction2 For i ∈ {0, 1, 2}, consider a snark Gi with
an edge xiyi. Let x0

i and x1
i (resp. y0i and y1i ) be the neighbors of xi (resp.

yi) in Gi. For i ∈ {0, 1, 2}, let Hi be the graph obtained from Gi by removing
vertices xi and yi. We construct a new graph G from the disjoint union of
H0, H1, H2 and a new vertex u as follows. For i ∈ {0, 1, 2}, we introduce a
set Ai = {ai, bi, ci} of vertices such that ai is adjacent to x0

i+1 and y0i−1, bi is
adjacent to x1

i+1 and y1i−1, and ci is adjacent to ai, bi and u (here and in the
following all indices i are taken modulo 3).

The windmill construction is depicted in Figure 2.

x0y0

y1x2

y2 x1 G1G2

G0

c1

u

a2

c2

H2 H1

H0

a1

b2

c0

b1

b0

a0

Figure 2: The windmill construction of G (right) from G0, G1, and G2.

Lemma 3. If G0, G1, G2 are snarks, any graph G obtained from G0, G1, G2

by the windmill construction is cubic, cyclically 4-edge-connected, and has
girth at least 5.

Proof. It is trivial to check that G is cubic, bridgeless, and has girth at least
five (we do not introduce cycles of length three or four, and the distance
between any two vertices of any Hi is at least as large in G as in Gi). Note
that for any i ∈ {0, 1, 2}, the graph G \ (V (Hi) ∪ V (Hi+1) ∪ Ai−1) is a
subdivision of Gi−1. It follows that for any cyclic k-edge-cut in G, we can
find a non-trivial edge-cut of cardinality at most k in some Gi. If k ≤ 3 this
non-trivial edge-cut is cyclic. Since all Gi’s are cyclically 4-edge-connected,
G is also cyclically 4-edge-connected.

Before we prove that G has excessive index at least five, we need a couple
of definitions. By a slight abuse of notation, we denote the set of edges of

2This construction should not be confused with windmill graphs, graphs obtained from
disjoint cliques by adding a universal vertex.
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G with exactly one end-vertex in V (Hi) by ∂Hi (instead of ∂(V (Hi))). In
what follows it will be useful to consider how each perfect matching M of
G intersects ∂Hi. Since |∂Hi| = 4, by parity we have that |M ∩ ∂Hi| is
even. Observe that |M ∩ ∂Hi| 6= 4, since otherwise u would be adjacent to
both ci−1 and ci+1 in M . If |M ∩ ∂Hi| = 0, we say that M is of type 0 on
Hi. If |M ∩ ∂Hi| = 2 we consider two cases: we say that M is of type 1
on Hi if |M ∩ ∂(Hi, Ai−1)| = |M ∩ ∂(Hi, Ai+1)| = 1, while M is of type 2
on Hi otherwise (in this case one of the two sets of edges M ∩ ∂(Hi, Ai−1),
M∩∂(Hi, Ai+1) has cardinality 2 and the other is empty). A perfect matching
M of G of type 2 onH0, type 1 onH1 and type 0 onH2 is depicted in Figure 3
(left).

c1

u

a2

c2

H2 H1

H0

a1

b2

c0

b1

b0

a0

c1

u

a2

c2

H2 H1

H0

a1

b2

c0

b1

b0

a0

Figure 3: The two kinds of perfect matching of G (up to symmetry).

Observe first that each perfect matching of type 0 on Hi corresponds
to a perfect matching of Gi containing xiyi, while each perfect matching of
type 1 on Hi corresponds to a perfect matching of Gi avoiding xiyi. This
observation has the following immediate consequence:

Lemma 4. Assume that for some i and k, G can be covered by k perfect
matchings, each of type 0 or 1 (and not all of type 1) on Hi. Then Gi can
be covered by k perfect matchings.

Note that a perfect matching M of G contains two edges of ∂(Hi−1 ∪
Hi+1, Ai) if uci is an edge ofM , andM contains one edge of ∂(Hi−1∪Hi+1, Ai)
otherwise. It follows that up to symmetry (including a possible permutation
of the Hi’s), there are only two kinds of perfect matchings of G: perfect
matching of types 0, 1, and 2 (see Figure 3, left), and perfect matching of
types 0, 1, and 1 (see Figure 3, right). In particular, we have the following
property:
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Observation 5. Every perfect matching of G is of type 2 on at most one
Hi, type 0 on exactly one Hi, and type 1 on at least one Hi.

We are now ready to prove our main theorem.

Theorem 6. Let G0, G1, G2 be snarks such that χ′
e(Gi) ≥ 5 for i ∈ {0, 1, 2}.

Then any graph G obtained from G0, G1, G2 by the windmill construction is
a snark with χ′

e(G) ≥ 5.

Proof. The graph G is cubic, cyclically 4-edge-connected, and has girth at
least 5, as proved in Lemma 3. We now prove that G has excessive index at
least five (which implies that G is not 3-edge-colorable, and thus a snark).
For the sake of contradiction, let M = {M1,M2,M3,M4} be a cover of G,
where M1 might be identical to M2 (in which case G is 3-edge-colorable).

By Observation 5, each perfect matching Mi is of type 0 on one Hj, so
we can assume without loss of generality that M1 and M2 are of type 0 on
H0. By Lemma 4, at least one of M3,M4 is of type 2 on H0, since otherwise
G0 would have excessive index at most four. If M3,M4 do not have the same
type on H0, then some edge of ∂H0 is not covered, so it follows that both
M3,M4 are of type 2 on H0. More precisely, we can assume by symmetry
that |∂(H0, A1) ∩M3| = 2 and |∂(H0, A2) ∩M4| = 2, i.e. uc1 belongs to M3

and uc2 belongs to M4. This implies that M3 is of type 1 on H1 and of type
0 on H2, while M4 is of type 0 on H1 and of type 1 on H2.

Since the edge uc0 is not covered by M3∪M4, we can assume without loss
of generality that M1 contains uc0. This implies that M1 is of type 1 on both
H1 and H2. Combining this with the conclusion of the previous paragraph,
it follows by Lemma 4 that M2 is of type 2 on H1 and H2, which contradicts
Observation 5.

Let F be the family of all graphs inductively defined as being either the
Petersen graph, or a graph obtained from three graphs G0, G1, G2 of F by
the windmill construction. Theorem 6 shows that F is an infinite family of
snarks with excessive index at least 5.

We now prove that every graph from F has excessive index precisely five.
We will indeed prove the stronger statement that every graph of F satisfies
the Berge-Fulkerson conjecture, i.e. has six perfect matchings covering each
edge precisely twice. Such a cover of a cubic bridgeless graph G, called a
Berge-Fulkerson cover, can be equivalently defined as a coloring C of the
edges of G with subsets of size two of {1, 2, 3, 4, 5, 6} such that for each
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triple of edges e1, e2, e3 sharing a vertex, the sets C(ei) are pairwise disjoint
(equivalently, C(e1) ∪ C(e2) ∪ C(e3) = {1, 2, 3, 4, 5, 6}).

Lemma 7. If G0, G1, G2 are cubic bridgeless graphs with a Berge-Fulkerson
cover, then any graph G obtained from G0, G1, G2 by the windmill construc-
tion has a Berge-Fulkerson cover.

Proof. Consider a Berge-Fulkerson cover C of G0, and let e1, e2, e3, e4 be the
four edges sharing a vertex with the edge x0y0, such that e1, e2 are incident
to x0 and e3, e4 are incident to y0. Let {α, β} = C(e1) and {γ, δ} = C(e2).
Then at least one of γ, δ, say γ, is such that C(e3) and C(e4) are distinct
from {α, γ}. It follows that, after renaming the colors of C, we can assume
without loss of generality that i ∈ C(ei) for all 1 ≤ i ≤ 4, while x0y0 is
colored {5, 6}.

G1G2

G0

H2 H1

H0

4α1

56

5β2 6α3

4β5

2α5

34 12
1α6

3β6

6β1

4α1

3α2

1β3

5α4

3β62α5

56

5β2 6α3

6β1

4β5

34

12

1β3

2β4 2β4

1α6

5α4

3α2

Figure 4: The extension of Berge-Fulkerson covers of G0, G1, G2 to G. Colors
are denoted by ij instead of {i, j}.

By symmetry, it follows that G0, G1, G2 have a Berge-Fulkerson cover
as depicted in Figure 4 (left), where for every (i, j) ∈ {(1, 2), (3, 4), (5, 6)},
{αi, αj} = {βi, βj} = {i, j}. These covers can be extended into a Berge-
Fulkerson cover ofG, as described in Figure 4 (right). In order not to overload
the figure, we have omitted the colors of the edges aici and bici, 0 ≤ i ≤
2. It can be checked that taking C(a0c0) = {β1, α4}, C(b0c0) = {β2, α3},
C(a1c1) = {β4, α6}, C(b1c1) = {β3, α5}, C(a2c2) = {α2, β5}, and C(b2c2) =
{α1, β6} defines a Berge-Fulkerson cover of G.

Theorem 6 and Lemma 7 have the following immediate corollary:
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Corollary 8. The family F is an infinite family of snarks having excessive
index precisely five.

4 Shortest cycle cover

The length of a shortest cycle cover of a bridgeless graph G is denoted by
scc(G). Note that for any cubic graph G, scc(G) ≥ 4

3
|E(G)|. The purpose

of this section is to show that for any graph G in the family F constructed
in the previous section, scc(G) > 4

3
|E(G)|. Given some integer k, a k-parity

subgraph of a cubic graph G is a spanning subgraph of G in which all vertices
have degree one, except k vertices that have degree 3. We first observe the
following:

Observation 9. For any cubic graph G and any cycle cover C of G, C has
length 4

3
|E(G)| if and only if the set of edges covered twice by C is a perfect

matching of G; and C has length 4
3
|E(G)| + 1 if and only if the set of edges

covered twice by C is a 1-parity subgraph of G.

Proof. For each vertex v of G, let dC(v) be the sum of the degree of v in each
of the cycles of C. Since C is a cycle cover and G is cubic, for each vertex v,
dC(v) ≥ 3 and dC(v) is an even integer. In particular dC(v) ≥ 4. It follows
that C has length 4

3
|E(G)| if and only if for each vertex v, dC(v) = 4. This

is equivalent to the fact that two edges incident to v are covered once by C,
and the third edge is covered twice by C. Hence, C has length 4

3
|E(G)| if and

only if the set of edges covered twice by C is a perfect matching of G.
Similarly, C has length 4

3
|E(G)|+1 if and only if there is a vertex u with

dC(u) = 6 and for each vertex v 6= u, dC(v) = 4. Note that as above, if
dC(v) = 4, then two edges incident to v are covered once by C, and the third
edge is covered twice by C. In particular, no edge of G is covered more than
twice by C. Since dC(u) = 6, the only possibility is that each of the three
edges incident to u is covered twice by C. Equivalently, the set of edges
covered twice by C is a 1-parity subgraph of G.

Let G0, G1, G2 be snarks and let G be a snark obtained from G0, G1, G2

by the windmill construction. Recall that the type of a perfect matching of
G on Hi was defined in the previous section. We define the type of a 1-parity
subgraph P of G on Hi similarly: If |P ∩∂Hi| = j with j ∈ {0, 4}, we say that
P is of type j on Hi (as it was observed in the previous section, type 4 cannot
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occur when P is a perfect matching). If |P ∩∂Hi| = 2 we consider two cases:
we say that P is of type 1 on Hi if |P ∩ ∂(Hi, Ai−1)| = |P ∩ ∂(Hi, Ai+1)| = 1,
while P is of type 2 on Hi otherwise (in this case one of the two sets of edges
P ∩ ∂(Hi, Ai−1), P ∩ ∂(Hi, Ai+1) has cardinality 2 and the other is empty).

Let C be a cycle cover of G. For any edge e, we denote by C(e) the
set of cycles of C containing the edge e. In the next two lemmas, we fix
i, j ∈ {0, 1, 2} with i 6= j, and call ej and fj the edges connecting Hi to aj
and bj respectively.

Lemma 10. Assume G has a cycle cover C of length 4
3
|E(G)|. Let M be

the perfect matching of G consisting of the edges covered twice by C. If there
are distinct cycles x, y ∈ C, such that either (i) M is of type 0 on Hi and
{C(ej), C(fj)} = {{x}, {y}}, or (ii) M is of type 1 on Hi and {C(ej), C(fj)} =
{{x}, {x, y}}, then Gi has a cycle cover Ci of length 4

3
|E(Gi)|.

Proof. In both cases we obtain a cycle cover of Gi such that the set of edges
covered twice is a perfect matching of Gi (see Figure 5, where cycles of Gi are
represented by dashed or dotted lines for more clarity). By Observation 9
this cycle cover has length 4

3
|E(Gi)|. Note that in case (ii) (see Figure 5,

right), x and z might be the same cycle.

Hi

y

xx

y

Hi

zy

z

x

x

zGi Gi

y

xy

xx

xy

y y xy zy

Figure 5: Constructing cycle covers of Gi from cycle covers of G.

Given a cycle cover C of G of length 4
3
|E(G)| + 1, the unique vertex of

degree 3 in the 1-parity subgraph of G associated to C will be denoted by tC
(or simply t if the cycle cover is implicit). The same proof as above, applied
this time to 1-parity subgraphs, gives the following slightly different lemma.
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Lemma 11. Assume G has a cycle cover C of length 4
3
|E(G)| + 1. Let P

be the 1-parity subgraph of G consisting of the edges covered twice by C. If
there are distinct cycles x, y ∈ C, such that either (i) P is of type 0 on Hi and
{C(ej), C(fj)} = {{x}, {y}}, or (ii) P is of type 1 on Hi and {C(ej), C(fj)} =
{{x}, {x, y}}, then Gi has a cycle cover Ci of length at most 4

3
|E(Gi)| + 1.

Moreover, if tC does not lie in Hi or its neighborhood in G, then Ci has length
at most 4

3
|E(Gi)|.

b2

a2 e2

f2

H0 H1

c2

f ′

2

e′
2

Figure 6: Notation in the proof of Theorem 12.

We now use Lemma 10 to prove the main result of this section.

Theorem 12. Let G0, G1, G2 be snarks such that scc(Gi) > 4
3
|E(Gi)| for

i ∈ {0, 1, 2}. Then any graph G obtained from G0, G1, G2 by the windmill
construction is a snark with scc(G) > 4

3
|E(G)|.

Proof. Assume that G has a cycle cover C of length 4
3
|E(G)|, and letM be the

perfect matching consisting of the edges covered twice by C. By Observation
5, we can assume that M is of type 0 on H0 and type 1 on H1. Let e2, f2
be the edges connecting H1 to a2, b2 and let e′2, f

′
2 be the edges connecting

H0 to a2, b2 (see Figure 6). By symmetry we can assume that e2 and b2c2
are in M . Let x, y ∈ C be the two cycles covering e2. Then one of them,
say x, also covers b2c2, and therefore covers either f2 or f

′
2. If x covers f ′

2 we
obtain a contradiction with Lemma 10, case (i), and if x covers f2 we obtain
a contradiction with Lemma 10, case (ii).

Recall that beside the Petersen graph, only one snark G with scc(G) >
4
3
|E(G)| was known [4] (and the proof of it was computer-assisted). Theo-

rem 12 has the following immediate corollary:

Corollary 13. The family F is an infinite family of snarks such that for
any G ∈ F , scc(G) > 4

3
|E(G)|.
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Figure 7: The graph H̊ in Lemma 14. The bold edge e will be used in the
proof of Theorem 15.

We now prove that in a cycle cover C of the graph H̊ of Figure 7 of length
4
3
|E(H̊)| + 1, some vertices cannot play the role of tC (the only vertex of

degree 3 in the 1-parity subgraph of H̊ associated to C).

Lemma 14. Let G0, G1, G2 be three copies of the Petersen graph. Then the
graph H̊ obtained from G0, G1, G2 by the windmill construction is a snark
such that:

1. scc(H̊) = 4
3
|E(H̊)|+ 1

2. For every cycle cover C of H̊ of minimum length, the vertex tC cannot
be one of the vertices ci (see Figure 7).

Proof. The first part of the lemma was proved in [4]. Assume now that the
second part fails for some cycle cover C of length 4

3
|E(H̊)|+ 1, and let P be

the 1-parity subgraph associated to C. By symmetry, we suppose tC = c0.
It implies that all three edges incident to c0 are in P . As a consequence,
each edge ei, 1 ≤ i ≤ 4, is covered only once by C (see Figure 7). It follows
also that one edge incident to c1 and distinct from c1u is covered twice, and
by parity this implies that e5 and e6 are covered once. By a symmetric
argument, e7 and e8 are covered once, therefore P is of type 0 on H1 and H2.
The edges incident to c0 are covered by three different cycles, so at least one
of the pairs e1, e2 and e3, e4 is such that the two edges in the pair are not
covered by the same cycle of C. This contradicts Lemma 11, case (i), since
the Petersen graph has no cycle cover of length 20.

14
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Figure 8: A snark G with scc(G) ≥ 4
3
|E(G)|+ 2.

We now use Lemma 14 to exhibit the first known snark G satisfying
scc(G) > 4

3
|E(G)|+ 1.

Theorem 15. Any cycle cover of the graph G depicted in Figure 8 has length
at least 4

3
|E(G)|+ 2.

Proof. The graph G is obtained from three copies G0, G1, G2 of the graph
H̊ of Figure 7 by the windmill construction, where each Hi is obtained from
Gi by removing the endpoints of the edge e (see Figure 7). By Theorem 12,
scc(G) > 4

3
|E(G)|. Assume for the sake of contradiction that G has a cycle

cover C of length 4
3
|E(G)|+1, and let P be the 1-parity subgraph associated

to C and t = tC be the only vertex of degree three in P .
We claim that if P is of type 0 or 1 on Hi, then t lies in Hi. For the

sake of contradiction, assume that P is of type 0 or 1 on Hi, while t lies
outside of Hi (note that t might be adjacent to some vertex of Hi). Then
P induces a perfect matching of Gi. The graph Gi itself was obtained from
three copies G′

0, G
′
1, G

′
2 of the Petersen graph by the windmill construction.

By Observation 5, P is of type 0 on some G′
i, and type 1 on some G′

j.
Therefore we can assume, following the notation of Figure 7, that e, e1 ∈ P
and e2, e3, e4 6∈ P . Since the Petersen graph has no cycle cover of length 20,
we can assume by Lemma 10, case (i), that e3 and e4 belong to the same

15



cycle of C, and by Lemma 10, case (ii), that the cycle containing e2 does not
contain e1. It can be checked that this is a contradiction.

Now, if t lies inside some Hi, remark that P satisfies the conclusion of
Observation 5 (since the proof of this observation only considers the inter-
section of P and the edges outside the Hi’s). In particular, P is of type
0 on some Hj, and type 1 on some Hk. This contradicts the claim of the
previous paragraph. Similarly, if t is outside of the Hi’s, but distinct from
u (see Figure 8), it can be checked that P is of type 1 on some Hi, which
again contradicts the previous paragraph. It follows that t coincides with u
and P is of type 2 or 4 on each Hi. This implies that P is of type 2 on each
Hi, so either the two edges f1,f2 or the two edges f3,f4 belong to P . Then
P induces a 1-parity subgraph of G1 (in the first case) or G2 (in the second
case), such that the unique vertex of degree three of this 1-parity subgraph
coincides with a vertex cj of Gi, contradicting Lemma 14.

5 Open problems

Hägglund proposed the following two problems (Problems 3 and 4 in [8]):

1. Is it possible to give a simple characterization of cubic graphs G with
χ′
e(G) = 5?

2. Are there any cyclically 5-edge-connected snarks G with excessive index
at least five distinct from the Petersen graph?

While the former problem has a negative answer by Theorem 2 of the present
paper (unless P = NP ), the latter one is still open, since each element of the
infinite family F contains cyclic 4-edge-cuts. The edge-connectivity also plays
an important role in the proof of Theorem 2, in particular the gadgets we
use have many 2-edge-cuts. Hence we leave open the problem of establishing
whether it is possible to give a simple characterization of 3-edge-connected
or cyclically 4-edge-connected cubic graphs with excessive index 5.

In Section 4, we have shown interesting properties of F with respect to
cycle covers. In particular, Theorem 15 proves the existence of a snark G ∈ F
with no cycle cover of length less than 4

3
|E(G)|+2. We believe that there exist

snarks in F for which the constant 2 can be replaced by an arbitrarily large
number. On the other hand, recall that Brinkmann, Goedgebeur, Hägglund,
and Markström [4] conjectured that every snark G has a cycle cover of size
at most (4

3
+ o(1))|E(G)|.
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