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Abstract. In this paper we establish an attainability result for the minimum
time function of a control problem in the space of probability measures endowed
with Wasserstein distance. The dynamics is provided by a suitable controlled

continuity equation, where we impose a nonlocal nonholonomic constraint on
the driving vector field, which is assumed to be a Borel selection of a given
set-valued map. This model can be used to describe at a macroscopic level a

so-called multiagent system made of several possible interacting agents.

1. Introduction. We consider a finite-dimensional multiagent system, i.e., a sys-
tem in Rd where the number of agents is so large that only a macroscopic description
is available. As usual in this framework, in order to describe the behaviour of the
system at a certain time t, we introduce a Borel positive measure µt on Rd whose

meaning is the following: given a Borel set A ⊆ Rd the quantity
µt(A)

µt(Rd)
represents

the fraction of the total number of agents that are present in A at the time t. We
will assume that the system is isolated, thus the total number of agents remains
constant in time. Hence, by normalizing the measure µt, we can always assume
µt(Rd) = 1, i.e., µt is a probability measure for all t.

The macroscopic evolution of the system is thus given by a curve t 7→ µt in
the space of probability measures. Due to the mass-preserving character of the
evolution, we can assume that such an evolution is governed by the continuity
equation

∂tµt + div(vtµt) = 0,

to be satisfied in a distributional sense, where vt is a suitable time-depending Borel
vector field describing the macroscopic mass flux during the evolution.
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It can be easily proved, see e.g. [14], that for a.e. t and µt-a.e. x ∈ Rd the vector
field vt(x) can be constructed as a weigthed average of the velocities of the agents
passing through the point x at time t, where the weights are given by the fraction
of the mass carried by each agent w.r.t. the total amount of mass flowing through x
at time t. In particular, possibly nonlocal nonholonomic constraints on the agents’
motion will reflect into constraints for the possible choices of vt.

In this paper we consider a situation where each agent is constrained to follow
the trajectories of a differential inclusion with a nonlocal dependence on the over-
all configuration of the agents. This fact models the possible nonlocal interaction
among the agents. Examples of such interactions are quite commmon in the models
of pedestrian dynamics, flocks of animals and social dynamics in general.

Due to the potential applications, the literature on control of multi-agent sys-
tems is growing quite fast in the recent years. Among the most recent contribu-
tions, we mention [8], where the authors investigate a controllability problem for a
leader-follower model in a finite-dimensional setting and their aim is to achieve an
alignment consensus for a mass of indistinguishable agents when the action of an
external policy maker is sparse, i.e. concentrated on few individuals. In [23] it is
provided a mean-field formulation of the same model through Gamma-convergence
techniques.

The relevance of such kind of results is enhanced when dealing with problems
involving a considerable number of individuals, in order to circumvent the bounds
coming from the curse of dimensionality: indeed, the mean-field limit can be used
as a realistic approximation when the number of agents is huge. Results in this
direction are provided for example by [22] or the preprint paper [12], where the
authors study a Gamma-convergence result for an optimal control problem of a
N -particles system subject to a nonlocal dynamics when N → +∞.

Controllability conditions in the space of probability measures are also analyzed
in the preprints [17], [18]. In particular, the aim of the authors is to provide sufficient
conditions in order to steer an initial configuration of agents into a desired final one,
by acting through a control term on the vector field, under the constraint that the
action can be implemented only in a certain fixed space region.

Also the extension of classical viability theory to multi-agent systems is attract-
ing an increasing interest in the community. Similarly to the finite-dimensional
framework, a subset K of probability measures is said to be viable for a controlled
dynamics if it is possible to keep the evolution confined inside K by acting with an
admissible control when starting with a initial state in K. We refer to [5] for first
results in this direction based on a geometric approach (tangent cones to K) and to
the preprint [15] for a viscous-type approach to the problem.

It is worth pointing out that a key feature of all these studies, and many others
available in the literature, is the combined use of tools, concepts, and techniques
from optimal transport theory, measure theory, and from optimal control theory.

In this paper, we deal with a time-optimal control problem. More precisely, given
a target set of desired final configurations, we are interested in the minimum time
needed to steer the agents to it starting from an initial distribution, and respecting
the nonholonomic constraints. In particular, in our measure-theoretic setting, the
target set is given in duality with the space C0

b (Rd) of continuous and bounded
functions as follows. Given a family of observables Φ ⊆ C0

b (Rd), the target set is



defined as (see Definition 4.2)

S̃Φ
p :=

{
µ ∈ Pp(Rd) :

∫
Rd
ϕ(x) dµ(x) ≤ 0 for all ϕ ∈ Φ

}
,

where (Pp(Rd),Wp), with p ≥ 1, is the p-Wasserstein space of probability measures
endowed with the metric Wp (see Definition 2.4). Section 4 is entirely devoted to the
analysis of topological properties of this class of generalized target sets. In Section
3, we study the set of admissible trajectories ApI(µ) defined on a time interval I ⊂ R
and starting from a given initial datum µ ∈ Pp(Rd), i.e., those absolutely continuous
curves in Pp(Rd) whose driving velocity field satisfies the nonlocal nonholonomic
constraint given by a set-valued map F : Pp(Rd)× Rd ⇒ Rd

∂tµt + div(vtµt) = 0, vt(x) ∈ F (µt, x) for a.e. t ∈ I and µt-a.e. x ∈ Rd.

This equation represents the controlled dynamics of the system. The results ob-
tained, expecially Theorem 3.6 providing Filippov-Gronwall type estimates, are then
used in Section 5 where we study the main object of the paper, i.e., the minimum
time function defined as

T̃p(µ) := inf{T ≥ 0 : there exists µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ) s.t. µT ∈ S̃Φ
p }.

More precisely, we first prove the existence of optimal trajectories, lower semicon-
tinuity of the minimum time function and a Dynamic Programming Principle as in
the classical case.

In the case without interactions, by passing to the limit in the Dynamic Program-
ming Principle, in [13] the authors proved that the minimum time function solves
in a suitable viscosity sense an Hamilton-Jacobi-Bellman equation in the spaces of
measures provided that it is continuous (not just l.s.c.), and further development
on this theory have been recently done in [30, 26]. We refer the reader to [2, 24, 25]
for an introduction to Hamilton-Jacobi equations in Wasserstein spaces.

The aim of this paper is to provide a sufficient condition for the continuity of the
minimum time function in this framework, i.e., sufficient conditions granting Small
Time Local Attainability (STLA) in the sense of [27]. Indeed, assuming STLA, in
Proposition 9 we get the continuity of the minimum time function thanks to the
Filippov estimate proved in Theorem 3.6 and the Dynamic Programming Princi-
ple. Sufficient conditions for STLA are finally provided in the main Theorem 5.5,
assuming geometric properties of the generalized target set S̃Φ

p together with a sort
of gradient-descent behavior of the associated family of observables Φ when inte-
grated along admissible trajectories (see Definition 5.4). This condition represents
a weakening of the well-known Petrov’s condition in the classical framework.

The paper is structured as follows: in Section 2 we fix the notation and review
some basic results about measure theory, optimal transport and set-valued analysis,
in Section 3 we prove some basic properties of the admissible trajectories in the space
of measures, in Section 4 we discuss some geometric properties of the target sets. In
Section 5 we state our main result concerning the continuity of the minimum time
function, and finally in Section 6 we compare our sufficient condition for STLA with
the finite-dimensional one of [27].



2. Preliminaries and notation. In this section we review some concepts from
measure theory, optimal transport and set-valued analysis. Our main references for
this part are [3], [4], and [32].

We will use the following notation.

B(x, r) the open ball of center x ∈ X and radius r of a normed space X,
i.e., B(x, r) := {y ∈ X : ‖y − x‖X < r};

K the closure of a subset K of a topological space X;
dK(·) the distance function from a subset K of a metric space (X, d),

i.e. dK(x) := inf{d(x, y) : y ∈ K};
C0
b (X;Y ) the set of continuous bounded function from a Banach space X to Y ,

endowed with ‖f‖∞ = sup
x∈X
‖f(x)‖Y (if Y = R, Y will be omitted);

C0
c (X;Y ) the set of compactly supported functions of C0

b (X;Y ),
with the topology induced by C0

b (X;Y );

ΓI the set of continuous curves from a real interval I to Rd;
ΓT the set of continuous curves from [0, T ] to Rd;
AC([0, T ]) the set of absolutely continuous curves from [0, T ] to Rd;
et the evaluation operator et : Rd × ΓI → Rd

defined by et(x, γ) = γ(t) for all t ∈ I;
P(X) the set of Borel probability measures on a Banach space X,

endowed with the weak∗ topology induced by C0
b (X);

M(Rd;Rd) the set of vector-valued Borel measures on Rd with values in Rd,
endowed with the weak∗ topology induced by C0

c (Rd;Rd);
|ν| the total variation of a measure ν ∈M(Rd;Rd);
� the absolutely continuity relation between measures defined on the same

σ-algebra;
mp(µ) the p-moment of a probability measure µ ∈ P(X);
r]µ the push-forward of the measure µ by the Borel map r;
µ⊗ ηx the product measure of µ ∈ P(X) with the Borel family of measures

{ηx}x∈X ;
pri the i-th projection map pri(x1, . . . , xN ) = xi;
Π(µ, ν) the set of admissible transport plans from µ to ν;
Πo(µ, ν) the set of optimal transport plans from µ to ν;
Wp(µ, ν) the p-Wasserstein distance between µ and ν;
Pp(X) the subset of the elements P(X) with finite p-moment,

endowed with the p-Wasserstein distance;

Ld the Lebesgue measure on Rd;
ν

µ
the Radon-Nikodym derivative of the measure ν w.r.t. the measure µ;

Lip(f) the Lipschitz constant of a function f .
ApI(µ) the set of admissible trajectories defined in (1).
ΥF (µ,θ) the set defined in Definition 3.4.
KF the quantity defined in Hypothesis 3.3 by KF := max

v∈F (δ0,0)
{|v|}.

In this section we give some preliminaries and fix the notation. Our main refer-
ence for this part is [3].

Definition 2.1 (Space of probability measures). Given Banach spaces X,Y , we
denote by P(X) the set of Borel probability measures on X endowed with the
weak∗ topology induced by the duality with the Banach space C0

b (X) of the real-
valued continuous bounded functions on X with the uniform convergence norm. For



any p ≥ 1, the p-moment of µ ∈ P(X) is defined by mp(µ) =

∫
X

‖x‖pX dµ(x), and

we set Pp(X) = {µ ∈ P(X) : mp(µ) < +∞}. For any Borel map r : X → Y and
µ ∈ P(X), we define the push forward measure r]µ ∈ P(Y ) by setting r]µ(B) =
µ(r−1(B)) for any Borel set B of Y .

Definition 2.2 (Total variation). Let X,Y be Banach spaces, and denote by
M(X;Y ) the set of Y -valued Borel measures defined on X. The total variation
measure of ν ∈M(X;Y ) is defined for every Borel set B ⊆ X as

|ν|(B) := sup
{Bi}i∈N

{∑
‖ν(Bi)‖Y

}
where the sup ranges on the set of countable collections {Bi}i∈N of pairwise disjoint

Borel sets such that
⋃
i∈N

Bi = B.

For the following result see [3, Theorem 5.3.1].

Theorem 2.3 (Disintegration). Given a measure µ ∈ P(X) and a Borel map r :
X → X, there exists a family of probability measures {µx}x∈X ⊆ P(X), uniquely
defined for r]µ-a.e. x ∈ X, such that µx(X \ r−1(x)) = 0 for r]µ-a.e. x ∈ X, and
for any Borel map ϕ : X→ [0,+∞] we have∫

X
ϕ(z) dµ(z) =

∫
X

[∫
r−1(x)

ϕ(z) dµx(z)

]
d(r]µ)(x).

We will write µ = (r]µ)⊗ µx. If X = X × Y and r−1(x) ⊆ {x} × Y for all x ∈ X,
we can identify each measure µx ∈ P(X × Y ) with a measure on Y .

Definition 2.4 (Transport plans and Wasserstein distance). Let X be a complete
separable Banach space, µ1, µ2 ∈ P(X). We define the set of admissible transport
plans between µ1 and µ2 by setting

Π(µ1, µ2) = {π ∈ P(X ×X) : pri]π = µi, i = 1, 2},
where for i = 1, 2, we defined pri : Rd × Rd → Rd by pri(x1, x2) = xi. The inverse
π−1 of a transport plan π ∈ Π(µ, ν) is defined by π−1 = i]π ∈ Π(ν, µ), where
i(x, y) = (y, x) for all x, y ∈ X. The p-Wasserstein distance between µ1 and µ2 is

W p
p (µ1, µ2) = inf

π∈Π(µ1,µ2)

∫
X×X

|x1 − x2|p dπ(x1, x2).

If µ1, µ2 ∈ Pp(X) then the above infimum is actually a minimum, and we define

Πp
o(µ1, µ2) =

{
π ∈ Π(µ1, µ2) : W p

p (µ1, µ2) =

∫
X×X

|x1 − x2|p dπ(x1, x2)

}
.

The space Pp(X) endowed with the Wp-Wasserstein distance is a complete separable
metric space, moreover for all µ ∈ Pp(X) there exists a sequence {µN}N∈N ⊆ co{δx :
x ∈ suppµ} such that Wp(µ

N , µ)→ 0 as N → +∞.

Remark 1. Recalling formula (5.2.12) in [3], we have

Wp(δ0, µ) = m1/p
p (µ) =

(∫
Rd
|x|p dµ(x)

)1/p

for all µ ∈ Pp(Rd). In particular, if t 7→ µt is Wp-continuous, then t 7→ m
1/p
p (µt) is

continuous.



Definition 2.5 (Set-valued maps). Let X,Y be sets. A set-valued map F from X
to Y is a map associating to each x ∈ X a (possible empty) subset F (x) of Y . We
will write F : X ⇒ Y to denote a set-valued map from X to Y . The graph of a
set-valued map F is

graphF := {(x, y) ∈ X × Y : y ∈ F (x)} ⊆ X × Y,
while the domain of F is domF := {x ∈ X : F (x) 6= ∅} ⊆ X. A selection of F is
a map f : domF → Y such that f(x) ∈ F (x) for all x ∈ domF . When X,Y are
topological spaces, we say that

• F has closed images if F (x) is closed in Y for every x ∈ X,
• F has closed graph if graphF is closed in X × Y ,
• F is compact valued (or that it has compact images) if F (x) is compact for

every x ∈ X,
• F is upper semicontinuous at x ∈ X if for every open set V ⊆ Y such that
V ⊇ F (x) there exists an open neighborhood U ⊆ X of x such that F (z) ⊆ V
for all z ∈ U .

• F is lower semicontinuous at x ∈ X if for every open set V ⊆ Y such that
V ∩ F (x) 6= ∅ there exists an open neighborhood U ⊆ X of x such that
F (z) ∩ V 6= ∅ for all z ∈ U .

• F is continuous at x ∈ X if it is both lower and upper semicontinuous at x.
• F will be called continuous (resp. lower semicontinuous, upper semicontinu-

ous) if it is continuous (resp. lower semicontinuous, upper semicontinuous) at
every x ∈ X.

When Y is a vector space, F is convex valued (or it has convex images) if F (x)
is convex for every x ∈ X. When X,Y are measurable spaces, we say that F
is measurable if graphF is measurable in X × Y endowed with the product of σ-
algebrae on X and Y . When (X, d) is a metric space and Y is a normed space, given
L > 0 we say that F is Lipschitz continuous with constant L if for all x1, x2 ∈ X

F (x2) ⊆ F (x1) + L · d(x1, x2)BY (0, 1),

where the sum and the product of sets are in the Minkowski sense: A+B = {a+ b :
a ∈ A, b ∈ B} and λA = {λa : a ∈ A} for every A,B ⊆ Y , λ ∈ R.

3. Admissible trajectories. Given a collection µ = {µh}h∈I ⊆ P(X) of Borel
measures on the measure space X indexed by a parameter h ∈ I, by a slight abuse
of notation we will denote by µ both the set µ = {µh}h∈I ⊆ P(X) and the function
h 7→ µh. In each occurrence, the context will clarify what we are referring to.

Definition 3.1 (Admissible trajectories). Let I = [a, b] be a compact real interval,
µ = {µt}t∈I ⊆ Pp(Rd), ν = {νt}t∈I ⊆ M(Rd;Rd), F : Pp(Rd) × Rd ⇒ Rd be a
set-valued map.

We say that µ is an admissible trajectory driven by ν defined on I with underlying
dynamics F if

• |νt| � µt for a.e. t ∈ I;

• vt(x) :=
νt
µt

(x) ∈ F (µt, x) for a.e. t ∈ I and µt-a.e. x ∈ Rd;

• ∂tµt + div νt = 0 in the sense of distributions on [0, T ]× Rd, equivalently

d

dt

∫
Rd
ϕ(x) dµt(x) =

∫
Rd
〈∇ϕ(x), vt(x)〉 dµt(x),

for a.e. t ∈ [0, T ] and all ϕ ∈ C1
c (Rd).



Define ApI : Pp(Rd) ⇒ C0([0, T ];Pp(Rd)) by

ApI(µ) :=

{
µ = {µt}t∈I :

µ is an admissible trajectory
with µa = µ

}
. (1)

When I and p are clear by the context, we will omit them.

Definition 3.2 (Concatenation, restriction, extension). Let Ii = [ai, bi], µ
(i) =

{µ(i)
t }t∈Ii ∈ A

p
Ii

(µ
(i)
ai ), i = 1, 2, be satisfying µ

(1)
b1

= µ
(2)
a2 . We define I3 = [a1, b1 +

b2 − a2] and µ(3) = {µ(3)
t }t∈I3 by setting µ

(3)
t = µ

(1)
t for t ∈ I1 and µ

(3)
t = µ

(2)
t+a2−b1

for t ∈ I3 \ I1. The curve µ(3) will be called the concatenation of µ(1) and µ(2) and

will be denoted by µ(3) = µ(1)�µ(2). By [16, Lemma 4.4], we have µ(3) ∈ ApI3(µ
(1)
a1 ).

Let I = [a, b], J = [a′, b′] with J ⊆ I, and µ = {µt}t∈I ∈ ApI(µa). The restriction
µ|J = {µ̂t}t∈J of µ to J is defined by taking µ̂t = µt for all t ∈ J and we have

µ|J ∈ A
p
J(µa′).

Let µ(i) ∈ ApIi(µ
(i)), i = 1, 2. We say that µ(2) is an extension of µ(1) if I2 ⊇ I1

and µ
(2)
|I1 = µ(1).

Throughout the paper, we will assume the following

Hypothesis 3.3. The set-valued map F : Pp(Rd)×Rd → Rd has nonempty, convex
and compact images, moreover it is Lipschitz continuous with constant L > 0 with
respect to the metric

dPp(Rd)×Rd((µ1, x1), (µ2, x2)) = Wp(µ1, µ2) + |x1 − x2|

on Pp(Rd)× Rd. We set KF := max
v∈F (δ0,0)

{|v|}.

Definition 3.4 (Definition of ΥF ). Assume Hypothesis 3.3 for F . Let θ = {θt}t∈[0,T ]

be aWp-continuous curve in Pp(Rd), µ ∈ Pp(Rd). Denote by ΥF (µ,θ) the set of µ =
{µt}t∈[0,T ] ⊆ Pp(Rd) satisfying the following property: there exists η ∈ P(Rd×ΓT )
such that

• µt = et]η for all t ∈ [0, T ], µ0 = µ;
• for η-a.e. (x, γ) ∈ Rd×ΓT and a.e. t ∈ [0, T ] it holds γ ∈ AC([0, T ]), γ(0) = x,
γ̇(t) ∈ F (θt, γ(t)) .

We set Mθ := sup
τ∈[0,T ]

m1/p
p (θτ ) and

Ξ(µ,θ) := {η ∈ P(Rd × ΓT ) : {et]η}t∈[0,T ] ∈ ΥF (µ,θ)}.

On the set X := Pp(Rd)× C0([0, T ];Pp(Rd)) we define the metric

dX

((
µ(1),θ(1)

)
,
(
µ(2),θ(2)

))
= Wp

(
µ(1), µ(2)

)
+ sup
t∈[0,T ]

Wp

(
θ

(1)
t , θ

(2)
t

)
,

where θ(i) = {θ(i)
t }t∈[0,T ], i = 1, 2.

Finally, we define the set-valued map Sθ : Rd ⇒ ΓT by setting for all y ∈ Rd

Sθ(y) :={ξ ∈ AC([0, T ]) : ξ̇ ∈ F (θt, ξ(t)) for a.e. t ∈ [0, T ], ξ(0) = y}.

Since t 7→ F (θt, x) is continuous for all x ∈ Rd and x 7→ F (θt, x) is Lipschitz
continuous by Hypothesis 3.3, with constant L for all t ∈ [0, T ], the set-valued map
Sθ(·) is Lipschitz continuous by [4, Corollary 10.4.2].



Lemma 3.5 (Estimates on the moments). Assume Hypothesis 3.3 for F . Let θ =
{θt}t∈[0,T ] be a Wp-continuous curve in Pp(Rd), µ ∈ Pp(Rd). Let Ξ(µ,θ), ΥF (µ,θ)
and Mθ be as in Definition 3.4, and let η ∈ Ξ(µ,θ) and µ = {µt}t∈[0,T ] ∈ ΥF (µ,θ)
such that µt = et]η for all t ∈ [0, T ]. Then for all t, s ∈ [0, T ]

m1/p
p (µt) ≤eLT

(
m1/p
p (µ) +KFT + LTMθ

)
,

Wp(µt, µs) ≤
(
KF + LMθ + LeLT

(
m1/p
p (µ) +KFT + LTMθ

))
· |t− s|,∫

Rd×ΓT

‖γ̇‖pL∞([0,1]) dη(x, γ) ≤
[
KF + L

(
eLT

(
m1/p
p (µ) +KFT + LTMθ

)
+Mθ

)]p
.

Proof. Set µ = {µt}t∈[0,T ] ∈ ΥF (µ,θ). For η-a.e. (x, γ) ∈ Rd × ΓT and a.e.
t ∈ [0, T ] we have

γ̇(t) ∈ F (θt, γ(t)) ⊆ F (δ0, 0) + L(|γ(t)|+ m1/p
p (θt))B(0, 1)

Thus for all s, t ∈ [0, T ] and a.e. τ ∈ [0, T ]

|γ̇(τ)| ≤KF + L(|γ(τ)|+ m1/p
p (θτ )) ≤ KF + LMθ + L|γ(τ)|,

|γ(t)| − |γ(0)| ≤
∫ t

0

|γ̇(τ)| dτ ≤ (KF + LMθ)T + L

∫ t

0

|γ(τ)| dτ,

|γ(t)− γ(s)| ≤
∣∣∣∣∫ t

s

|γ̇(τ)| dτ
∣∣∣∣ ≤ (KF + LMθ)|t− s|+ L

∣∣∣∣∫ t

s

|γ(τ)| dτ
∣∣∣∣ .

By Grönwall lemma, this implies for all 0 ≤ s ≤ t ∈ [0, T ]

|γ(t)| ≤eLt (|γ(0)|+ (KF + LMθ)T ) ,

‖γ̇‖L∞([0,1]) ≤KF + L
(
Mθ + eLT (|γ(0)|+ (KF + LMθ)T )

)
, (2)

|γ(t)− γ(s)| ≤
(
KF + LMθ + LeLT (|γ(0)|+ (KF + LMθ)T )

)
· |t− s|,

recalling that γ̇(s) ∈ F (µs, γ(s)) for a.e. s.
We conclude by taking the Lpη norm of the above inequalities and using the

triangular inequality.

Proposition 1 (Upper semicontinuity of the solution map). Set X := Pp(Rd) ×
C0([0, T ];Pp(Rd)).

The set-valued map ΥF : X ⇒ C0([0, T ];Pp(Rd)), defined in Definition 3.4, is
upper semicontinuous with compact nonempty images.

Proof. We prove first that ΥF (µ,θ) 6= ∅ for all (µ,θ) ∈ X. Consider now the set-
valued map Sθ(·) defined as in Definition 3.4. Since it is Lipschitz continuous, it
has a Borel selection. Thus let h0 : Rd → AC([0, T ]) be a Borel map such that
h0(x) ∈ Sθ(x) for every x ∈ Rd. Define η = µ⊗ δh0(x), µt = et]η, µ = {µt}t∈[0,T ].
Then, by construction, we have µ ∈ ΥF (µ,θ).

Let now
{(
µ(n),θ(n)

)}
n∈N
⊆ X be a sequence dX -converging to (µ,θ) ∈ X, and

{µ(n)}n∈N ⊆ C0([0, T ];Pp(Rd)), {η(n)}n∈N ⊆ P(Rd × ΓT ) be such that

• θ(n) = {θ(n)
t }t∈[0,T ], θ = {θt}t∈[0,T ];

• µ(n) ∈ ΥF (µ(n),θ(n)) and η(n) ∈ Ξ(µ(n),θ(n)) for all n ∈ N;

• µ(n) = {µ(n)
t }t∈[0,T ] with µ

(n)
t = et]η

(n) for all t ∈ [0, T ] and n ∈ N,



where Ξ(·, ·) is defined as in Definition 3.4. We prove that the sequence {µ(n)}n∈N
has always cluster points, and all the cluster points are contained in ΥF (µ,θ).
This will imply in particular that ΥF (·) has compact images (by taking constant

sequences (µ(n),θ(n)) ≡ (µ,θ)).

For n sufficiently large, we have m
1/p
p (µ(n)) ≤ m

1/p
p (µ) + 1 and Mθ(n) ≤Mθ + 1,

recalling the definition of the convergence in X and the definition for Mθ given in
Definition 3.4. Thus, by applying the estimates of Lemma 3.5, we have

m1/p
p (µ

(n)
t ) ≤ eLT

(
m1/p
p (µ) + 1 +KFT + LTMθ + LT

)
,

Wp(µ
(n)
t , µ(n)

s ) ≤

≤
(
KF + LMθ + L+ LeLT

(
m1/p
p (µ) + 1 +KFT + LTMθ + LT

))
· |t− s|,∫

Rd×ΓT

‖γ̇‖pL∞([0,1]) dη
(n)(x, γ) ≤

≤
[
KF + L

(
eLT

(
m1/p
p (µ) + 1 +KFT + LTMθ + LT

)
+Mθ + 1

)]p
.

In particular

• {µ(n)}n∈N is equicontinuous;

• for all t ∈ [0, T ], we have that {µ(n)
t }n∈N is relatively compact in Pp(Rd), since

it has p-moment uniformly bounded.

Thus {µ(n)}n∈N is relatively compact in C0([0, T ];Pp(Rd)) by Ascoli-Arzelà the-
orem. Up to passing to a subsequence, we may assume that there exists µ =
{µt}t∈[0,T ] ∈ C0([0, T ];Pp(Rd)) such that

lim
n→+∞

sup
t∈[0,T ]

Wp(µt, µ
(n)
t ) = 0.

We notice also that the functional Ψ : Rd × ΓT → R ∪ {+∞}

Ψ(x, γ) :=


(|x|+ |γ(0)|+ ‖γ̇‖L∞)p, if γ ∈ Lip([0, T ];Rd),

+∞, otherwise,

has compact sublevels in Rd × ΓT by Ascoli-Arzelà theorem. Since

sup
n∈N

∫
Rd×ΓT

Ψ(x, γ) dη(n)(x, γ) ≤

≤ 2p−1 sup
n∈N

[
2mp(µ

(n)) +

∫
Rd×ΓT

‖γ̇‖pL∞([0,1]) dη
(n)(x, γ)

]
< +∞,

we have that {η(n)}n∈N is tight in P(Rd×ΓT ). Thus, up to passing to a subsequence,
we may assume also that there exists η ∈ P(Rd×ΓT ) such that η(n) ⇀ η narrowly.
By the continuity of et : Rd × ΓT → Rd, we have µt = et]η. By [3, Proposition
5.1.8], for η-a.e. (x, γ) ∈ Rd × ΓT there exists a sequence {(xn, γn)}n∈N such that

xn = γn(0), γn ∈ AC([0, T ]), γ̇n(t) ∈ F (θ
(n)
t , γn(t)) for a.e. t ∈ [0, T ] and for all

n ∈ N with xn → x, ‖γn − γ‖∞ → 0 as n→ +∞.

By (2) and recalling that Mθ(n) ≤ Mθ + 1 and |xn| ≤ |x| + 1 for n sufficiently
large, we have n ∈ N,

‖γ̇n‖L∞([0,1]) ≤ KF + L
(
Mθ + 1 + eLT (|x|+ 1 + (KF + LMθ + L)T )

)
.



In particular, by Ascoli-Arzelà Theorem, we have that γ is Lipschitz continuous.
For a.e. t, τ ∈ [0, T ] we have also

F (θ
(n)
τ , γn(τ)) ⊆ F (θt, γ(t))+

+ L
(
Wp(θ

(n)
τ , θτ ) +Wp(θτ , θt) + |γn(τ)− γ(τ)|+ |γ(t)− γ(τ)|

)
B(0, 1)

⊆F (θt, γ(t)) + L

(
sup

τ∈[0,T ]
Wp(θ

(n)
τ , θτ ) +Wp(θτ , θt) + ‖γn − γ‖∞ + Lip(γ) · |t− τ |

)
B(0, 1)

For every ε > 0 there is nε ∈ N such that if n > nε we have for a.e. t, τ ∈ [0, T ]

γ̇n(τ) ∈ F (θt, γ(t)) + L(ε+Wp(θτ , θt) + Lip(γ)|t− τ |)B(0, 1).

In particular, let t ∈ [0, T ] be a differentiability point of γn. We have for all z ∈ Rd,
s ∈ [0, T ], s 6= t, and n > nε

〈γn(s)− γn(t)

s− t , z〉 =
1

s− t

∫ s

t

〈z, γ̇n(τ)〉 dτ

≤ sup
v∈F (θt,γ(t))

〈z, v〉+ Lε|z|+ L|z|Lip(γ)
1

s− t

∫ s

t

|t− τ | dτ + L|z| 1

s− t

∫ t

s

Wp(θτ , θt) dτ

By letting n→ +∞ and s→ t we conclude that γ̇(t) ∈ F (θt, γ(t)) since F (θt, γ(t))
is closed and convex. Hence µ ∈ ΥF (µ,θ), which completes the proof.

Proposition 2 (Superposition Principle). Assume Hypothesis 3.3 for F , and let
T > 0. Then µ = {µt}t∈[0,T ] is an admissible trajectory if and only if µ ∈
ΥF (µ0,µ), with ΥF (·, ·) defined in Definition 3.4.

Proof.
1. Sufficience. Assume that µ = {µt}t∈[0,T ] ∈ ΥF (µ0,µ). Let Ξ(·, ·) be as in

Definition 3.4. Then there exists η ∈ Ξ(µ0,µ) such that µt = et]η. Set

N :=
{

(t, x, γ) ∈ [0, T ]× Rd × ΓT : @γ̇(t) or γ̇(t) /∈ F (µt, γ(t)) or γ(0) 6= x
}
.

Since L1 ⊗ η (N ) = 0, for η-a.e. (x, γ) ∈ Rd × ΓT and a.e. t ∈ [0, T ] we have
that γ̇(t) exists and belongs to F (µt, γ(t)), and γ(0) = x. Given ϕ ∈ C1

c (Rd),
we have∣∣∣∣∫
Rd
ϕ(x) dµt(x)−

∫
Rd
ϕ(x) dµs(x)

∣∣∣∣ ≤ ‖∇ϕ‖∞ ∫
Rd×ΓT

|γ(t)− γ(s)| dη(x, γ).

According to (2), this implies that

t 7→
∫
Rd
ϕ(x) dµt(x)

is Lipschitz continuous. Hence its distributional derivative is in L∞ and coin-
cides with the pointwise derivative almost everywhere. Thus, in the sense of
distributions in ]0, T [, we obtain for all ϕ ∈ C1

c (Rd)

d

dt

∫
Rd
ϕ(x) dµt(x) =

d

dt

∫
Rd×ΓT

ϕ(γ(t)) dη(x, γ) =

∫
Rd×ΓT

〈∇ϕ(γ(t)), γ̇(t)〉 dη(x, γ)

=

∫
Rd
〈∇ϕ(y),

∫
e−1
t (y)

γ̇(t) dηt,y(x, γ)〉 dµt(y),

where we disintegrated η w.r.t. et obtaining η = µt ⊗ ηt,y and used the fact
that ‖∇ϕ‖∞ is bounded, and that the map γ 7→ ‖γ̇‖L∞ is in L1

η due to the



uniform bound on the moments. By Jensen’s inequality, we have

dF (µt,y)

(∫
e−1
t (y)

γ̇(t) dηt,y(x, γ)

)
≤
∫
e−1
t (y)

dF (µt,y) (γ̇(t)) dηt,y(x, γ) = 0,

and so for µt-a.e. y ∈ Rd and a.e. t ∈ [0, T ] we have

vt(y) :=

∫
e−1
t (y)

γ̇(t) dηt,y(x, γ) ∈ F (µt, y),

hence µ = {µt}t∈[0,T ] is an admissible trajectory driven by ν = {νt}t∈[0,T ]

with νt = vtµt for a.e. t ∈ [0, T ].

2. Necessity. Assume that µ = {µt}t∈[0,T ] is an admissible trajectory driven by

ν = {νt}t∈[0,T ]. Set vt(x) =
νt
µt

(x) ∈ F (µt, x) for µt-a.e. x ∈ Rd and a.e.

t ∈ [0, T ]. Filippov’s Theorem (see e.g. [4, Theorem 8.2.10]) implies that
there exists a Borel selection ξ(·) of F (δ0, 0), such that

|vt(x)− ξ(x)| = dF (δ0,0)(vt(x))

for all x ∈ Rd, and so we have(∫ T

0

∫
Rd
|vt(x)|p dµt(x) dt

)1/p

≤
∫ T

0

(∫
Rd
|vt(x)− ξ(x)|p dµt(x)

)1/p

dt+

+

∫ T

0

(∫
Rd
|ξ(x)|p dµt(x)

)1/p

dt

=

∫ T

0

(∫
Rd
dpF (δ0,0)(vt(x)) dµt(x)

)1/p

dt+ TKF

≤2p−1L

∫ T

0

[
Wp(δ0, µt) + m1/p

p (µt)
]
dt+ TKF

≤2pL

∫ T

0

m1/p
p (µt) dt+ TKF < +∞.

By [3, Theorem 8.2.1], there exists η ∈ P(Rd × ΓT ) such that µt = et]η for
all t ∈ [0, T ] and η is concentrated on (x, γ) ∈ Rd × ΓT with γ ∈ AC([0, T ]),
γ̇(t) = vt(γ(t)) ∈ F (µt, γ(t)) for a.e. t ∈ [0, T ] and γ(0) = x. Thus µ ∈
ΥF (µ0,µ).

Remark 2. Notice that by Definition of ΥF in Definition 3.4, Proposition 2 gives
in fact a Superposition Principle along the line of [3, Theorem 8.2.1] adapted to
nonlocal differential inclusions. Indeed, under the given assumptions, it states that
µ = {µt}t∈[0,T ] is an admissible trajectory if and only if there exists η ∈ P(Rd×ΓT )
such that

• µt = et]η for all t ∈ [0, T ], µt=0 = µ0;
• for η-a.e. (x, γ) ∈ Rd×ΓT and a.e. t ∈ [0, T ] it holds γ ∈ AC([0, T ]), γ(0) = x,
γ̇(t) ∈ F (µt, γ(t)) .

In this case, we say that µ is represented by η.



Corollary 1 (Existence of admissible trajectories). Assume Hypothesis 3.3 for F
and let T > 0. The set-valued map A : Pp(Rd) ⇒ C0([0, T ];Pp(Rd)) is upper
semicontinuous with nonempty compact images.

Proof. Let µ ∈ Pp(Rd). Given R > 0, define

C(R) :=
{
µ = {µt}t∈[0,T ] ⊆ Pp(Rd) : µ0 = µ, and for all t, s ∈ [0, T ] m1/p

p (µt) ≤ R,

Wp(µt, µs) ≤
(
KF + LR+ LeLT

(
m1/p
p (µ) +KFT + LTR

))
· |t− s|

}
.

Recalling that the concatenation of solutions of the continuity equation is again a
solution of the continuity equation driven by the time concatenation of the vector
fields (see [16, Lemma 4.4]), in order to prove that A(µ) 6= ∅ it is not restrictive to
assume LT < 1/2. In particular, we have 1− eLTLT > 0. Define

R :=
eLT (m

1/p
p (µ) +KFT )

1− eLTLT
≥ m1/p

p (µ).

Notice that C(R) 6= ∅, since it contains the constant curve µt ≡ µ for all t ∈
[0, T ], it is convex, and it is compact in C0([0, T ];Pp(Rd)) by Ascoli-Arzelà theorem.
Moreover, defining ΥF (·, ·) as in Definition 3.4, we have ΥF (µ, C(R)) ⊆ C(R) by
Lemma 3.5 and the choice of R. By Kakutani-Ky Fan Theorem (see e.g. [19,
Theorem 1]) we have that there exists µ ∈ C(R) such that µ ∈ ΥF (µ,µ), i.e.,
by Proposition 2, µ is an admissible trajectory starting from µ. All the other
properties of A(·) trivially follows from the fact that ΥF (·) is upper semicontinuous
with nonempty compact images.

Remark 3. An alternative proof of existence of admissible trajectories, i.e. A(µ) 6=
∅, can be found for example in [31, Theorem 6.1] where the author provides sufficient
conditions in order to ensure existence (and uniqueness) of solutions of a continuity
equation for some given non-local vector field.

Theorem 3.6 (Filippov-type estimate for the set of admissible trajectories). As-
sume Hypothesis 3.3 for F . Let T > 0, µ(A), µ(B) ∈ Pp(Rd) be given. Let µ(A) =

{µ(A)
t }t∈[0,T ] be an admissible trajectory satisfying µ

(A)
0 = µ(A).

Then there exists an admissible trajectory µ(B) = {µ(B)
t }t∈[0,T ] satisfying µ

(B)
0 =

µ(B) such that

Wp(µ
(A)
t , µ

(B)
t ) ≤ 2

p−1
p eL(2+LeLT )T ·Wp(µ

(A), µ(B)) for all t ∈ [0, T ].

In particular, the set-valued map A : Pp(Rd) ⇒ C0([0, T ];Pp(Rd)) is Lipschitz
continuous.

Proof. Let π ∈ Πp
o(µ

(A), µ(B)) be an optimal transport plan between µ(A) and
µ(B) for the p-Wasserstein distance. By disintegrating π w.r.t. pr1 : Rd×Rd → Rd,
defined by pr1(x, y) = x, we have a Borel collection of measures {πx}x∈Rd ⊆ P(Rd×
Rd), uniquely defined for µ(A)-a.e. x ∈ Rd, such that π = µ(A) ⊗ πx.

According to Proposition 2, there exists η(A) ∈ P(Rd×ΓT ) concentrated on pairs
(x, γ) ∈ Rd × ΓT with γ ∈ AC([0, T ]), γ̇(t) ∈ F (et]η

(A), γ(t)) for a.e. t ∈ [0, T ] and

γ(0) = x such that µ
(A)
t = et]η

(A).



Let θ ∈ C0([0, T ];Pp(Rd)), and define the set-valued map Sθ(·) as in Definition

3.4. Define the set-valued map Rθ : Rd × suppη(A) ⇒ ΓT by

Rθ(y, x, γ) :=

{
ξ ∈ Sθ(y) :

|γ(t)− ξ(t)| ≤ eLT |γ(0)− ξ(0)|+ L(eLT + 1)
∫ t
0 Wp(µ

(A)
τ , θτ ) dτ

for all t ∈ [0, T ]

}
.

Notice that this map has closed domain, closed graph, and compact values since
Rθ(y, x, γ) ⊆ Sθ(y), thus it is upper semicontinuous, hence Borel measurable.

We prove that it has nonempty images. Given a point (y, x, γ) ∈ Rd× suppη(A),
there are sequences {xn}n∈N converging to x and {γn}n∈N ⊆ AC([0, T ]) uniformly

converging to γ such that xn = γn(0) and γ̇n(t) ∈ F (µ
(A)
t , γn(t)) for a.e. t ∈ [0, T ].

According to Filippov’s theorem (see [4, Theorem 10.4.1]), for every n ∈ N there
exists ξn ∈ Sθ(y) such that

|γn(t)− ξn(t)| ≤eLT |γn(0)− ξn(0)|+ (LeLT + 1)

∫ t

0

dF (θt,γn(τ))(γ̇n(τ)) dτ

≤eLT |γn(0)− ξn(0)|+ L(LeLT + 1)

∫ t

0

Wp(θt, µ
(A)
t ) dτ,

recalling the Lipschitz continuity of F (·) and the choice of γn. By compactness
of Sθ(y), up to passing to a subsequence, we may assume that {ξn}n∈N uniformly
converges to ξ ∈ Sθ(y) and, by construction, we have ξ ∈ Rθ(y, x, γ), hence Rθ(·) is
Borel measurable with closed domain and nonempty images, thus it admits a Borel
selection hθ : Rd × suppη(A) → ΓT . We extend hθ(·) to a Borel map defined on
the whole of Rd × Rd × ΓT → ΓT by setting hθ(y, x, γ) = γ if (x, γ) /∈ suppη(A).

Define ηθ ∈ P(Rd × ΓT ) by∫
Rd×ΓT

ϕ(y, ξ) dηθ(y, ξ) =

∫
Rd×ΓT

[∫
Rd×Rd

ϕ(x, hθ(y, x, γ)) dπx(x, y)

]
dη(A)(x, γ),

and set µθ = {µθt }t∈[0,T ] where µθt = et]η
θ for all t ∈ [0, T ].

We have, by construction,

suppηθ ⊆
{

(y, ξ) ∈ Rd × ΓT : ξ ∈ Sθ(y)
}
.

Notice that∫
Rd
ϕ(x) dµθ0(x) =

∫
Rd×ΓT

∫
Rd×Rd

ϕ (hθ(y, x, γ)(0)) dπx(x, y) dη(A)(x, γ)

=

∫
Rd

∫
Rd×Rd

ϕ (y) dπx(x, y) dµ(A)(x)

=

∫
Rd×Rd

ϕ (y) dπ(x, y) =

∫
Rd×Rd

ϕ (y) dµ(B)(y).

Thus µθ ∈ ΥF (µ(B),θ), where ΥF (·, ·) is as in Definition 3.4.

We have

Wp(µ
(A)
t , µθt ) ≤

(∫
Rd×ΓT

∫
Rd×Rd

|γ(t)− hθ(y, x, γ)(t)|p dπx(x, y) dη(A)(x, γ)

)1/p

≤
(∫

Rd×ΓT

∫
Rd×Rd

[
eLT |x− y|+ L(LeLT + 1)

∫ t

0
Wp(µ

(A)
τ , θτ ) dτ

]p
dπx(x, y) dη(A)(x, γ)

)1/p

≤ 2
p−1
p

[
eLTWp(µ(A), µ(B)) + L(LeLT + 1)

∫ t

0
Wp(µ

(A)
τ , θτ ) dτ

]
.



Thus, since Wp(µ
(A)
t , µθt ) ≥Wp(δ0, µ

θ
t )−Wp(µ

(A)
t , δ0) = m

1/p
p (µθt )−m

1/p
p (µ

(A)
t ), we

have

m
1/p
p (µθt )

≤ m
1/p
p (µ

(A)
t ) + 2

p−1
p

[
eLTWp(µ(A), µ(B)) + LD

∫ t

0
m

1/p
p (µ

(A)
τ ) dτ + LD

∫ t

0
m

1/p
p (θτ ) dτ

]
≤ (1 + LTD) sup

t∈[0,T ]
m

1/p
p (µ

(A)
t ) + 2

p−1
p

[
eLTWp(µ(A), µ(B)) + LD

∫ t

0
m

1/p
p (θτ ) dτ

]
,

where we denoted with D = LeLT + 1. As in the proof of Corollary 1, without loss

of generality we can assume that 0 ≤ 2
p−1
p LDT < 1. The general case will follow by

concatenating finitely many pieces of admissible curves defined on time-subintervals
of sufficiently small length. We take R > 0 sufficiently large such that

R ≥
(1 + LTD) sup

t∈[0,T ]

m1/p
p (µ

(A)
t ) + 2

p−1
p eLTWp(µ

(A), µ(B))

1− 2
p−1
p LDT

≥ m1/p
p (µ(B)),

and such that m
1/p
p (θt) ≤ R for all t ∈ [0, T ] and also m

1/p
p (µθt ) ≤ R for all t ∈ [0, T ].

Define a sequence {µ(n) = {µ(n)
t }t∈[0,T ]}n∈N ⊆ C0([0, T ];Pp(Rd)) by setting µ(0)

to be the constant µ(B) and µ(n) to be equal to µθ with θ = µ(n−1). Notice

that µ
(n)
0 = µ(B) for all n ∈ N. According to Lemma 3.5, the family {µ(n)}n∈N

is relatively compact, thus up to passing to a subsequence, we may assume that it
converges to µ∞ ∈ C0([0, T ];Pp(Rd)). Since µ(n) ∈ ΥF (µ(B),µ(n−1)), by recalling

the u.s.c. of ΥF (·, ·) proved in Proposition 1, we obtain that µ∞ ∈ ΥF (µ(B),µ∞),
i.e., µ∞ is an admissible trajectory, starting from µ(B). Finally, by passing to the
limit in

Wp(µ
(A)
t , µ

(n)
t ) ≤2

p−1
p

[
eLTWp(µ

(A), µ(B)) + LD

∫ t

0

Wp(µ
(A)
τ , µ(n−1)

τ ) dτ

]
,

we have

Wp(µ
(A)
t , µ∞t ) ≤2

p−1
p

[
eLTWp(µ

(A), µ(B)) + LD

∫ t

0

Wp(µ
(A)
τ , µ∞τ ) dτ

]
,

and, by Grönwall’s Lemma,

Wp(µ
(A)
t , µ∞t ) ≤2

p−1
p eD̂TWp(µ

(A), µ(B)),

as desired, where D̂ = L(2 +LeLT ). The proof is concluded by setting µ(B) = µ∞.
The last assertion trivially follows.

Lemma 3.7 (Initial velocity set). Assume Hypothesis 3.3 for F and let Ξ(·, ·) be
as in Definition 3.4. Let µ ∈ Pp(Rd).

1. Given any Borel selection vµ : Rd → Rd of F (µ, ·), there exists η ∈ P(Rd×ΓT )
such that, set µt = et]η for t ∈ [0, T ], we have µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ),

η ∈ Ξ(µ,µ) and∣∣∣∣γ(t)− γ(0)

t
− vµ(x)

∣∣∣∣ ≤ LeLt [1

t

∫ t

0

Wp(µτ , µ) dτ +
t

2
|vµ(x)|

]
for η-a.e. (x, γ) ∈ Rd × ΓT .



2. Given any admissible trajectory µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ), there exists η ∈
Ξ(µ,µ) such that µt = et]η and for η-a.e. (x, γ) ∈ Rd × ΓT we have

lim
t→0+

∫
Rd×ΓT

dpF (µ,x)

(
γ(t)− γ(0)

t

)
dη(x, γ) = 0.

Proof.
1. Without loss of generality, we may assume LT ≤ 1/2, the general case will be

obtained concatenating µ with any other admissible trajectory starting from µT .
Let v0 : Rd → Rd be any Borel selection of F (µ, ·). Define γx : [0, T ] → Rd by
γx(t) = x+ v0(x) · t, and observe that x 7→ γx is a Borel map. Let θ = {θt}t∈[0,T ] ∈
C0([0, T ];Pp(Rd)) such that θ0 = µ, and notice that

dF (θt,γx(t))(γ̇x(t)) ≤ L [Wp(θt, µ) + t|v0(x)|] .

Thus, by Filippov’s Theorem (see [4, Theorem 10.4.1]) the set-valued map Rθ :
Rd ⇒ ΓT defined as

Rθ(x) :=

{
ξ ∈ Sθ(x) :

|γx(t)− ξ(t)| ≤ LeLt
∫ t

0
[Wp(θτ , µ) + τ |v0(x)|] dτ

for all t ∈ [0, T ]

}
has nonempty images for every x ∈ Rd. Notice that this set-valued map has closed
images and it is Borel measurable by [4, Theorem 8.2.9], thus it admits a Borel
selection hθ : Rd → ΓT . Set ηθ = µ⊗ δhθ(x) and µθ = {µθt }t∈[0,T ], µ

θ
t = et]η

θ. By

construction we have µθ ∈ ΥF (µ,θ), moreover for all x ∈ Rd we have

m1/p
p (µθt ) =

(∫
Rd
|hθ(x)(t)|p dµ(x)

)1/p

≤
(∫

Rd
|hθ(x)(t)− γx(t)|p dµ(x)

)1/p

+

(∫
Rd
|γx(t)|p dµ(x)

)1/p

≤LeLt
[∫

Rd

∣∣∣∣∫ t

0

(Wp(θτ , µ) + τ |v0(x)|) dτ
∣∣∣∣p dµ

]1/p

+ m1/p
p (µ) + t‖v0‖Lpµ

≤LeLt
∫ t

0

Wp(θτ , µ) dτ + m1/p
p (µ) + (LTeLt + t)‖v0‖Lpµ

≤LeLt
∫ t

0

m1/p
p (θτ ) dτ + (1 + LeLtt)m1/p

p (µ) + (LTeLt + t)‖v0‖Lpµ .

Furthermore,∣∣∣∣hθ(x)(t)− hθ(0)

t
− v0(x)

∣∣∣∣ =

∣∣∣∣hθ(x)(t)− γx(t)

t

∣∣∣∣ ≤ LeLt 1

t

∫ t

0

[Wp(θτ , µ) + τ |v0(x)|] dτ.

Choose

R ≥
(1 + LTeLT )m

1/p
p (µ) + (LTeLT + T )‖v0‖Lpµ

1− LTeLT
≥ m1/p

p (µ),

and notice that if m
1/p
p (θt) ≤ R for all t ∈ [0, T ], then m

1/p
p (µθt ) ≤ R for all

t ∈ [0, T ]. Define sequences {µ(n) = {µ(n)
t }t∈[0,T ]}n∈N ⊆ C0([0, T ];Pp(Rd)) and

{η(n)}n∈N ⊆ P(Rd × ΓT ) by setting µ(0) to be the constant µ, µ(n) and η(n) to
be equal to µθ and ηθ, respectively, with θ = µ(n−1) for all n ∈ N. According
to Lemma 3.5, the families {µ(n)}n∈N and {η(n)}n∈N are relatively compact, thus
up to passing to a subsequence, we may assume that the sequences converge to



µ∞ = {µ∞t }t∈[0,T ] ∈ C0([0, T ];Pp(Rd)) and to η∞ ∈ P(Rd × ΓT ), with µ∞t =

et]η
∞ for all t ∈ [0, T ]. Since µ(n) ∈ ΥF (µ,µ(n−1)) (ΥF (·, ·) defined in Definition

3.4), by recalling the u.s.c. of ΥF (·, ·) proved in Proposition 1, we obtain that
µ∞ ∈ ΥF (µ,µ∞), i.e., µ∞ is an admissible trajectory, starting from µ. Recall
that for η∞-a.e. (x, γ) there exists a sequence {(xn, ξn)}n∈N ⊆ Rd×ΓT converging
to (x, γ) such that (xn, ξn) ∈ suppη(n). Thus, without loss of generality, we may
assume for all t ∈ [0, T ]∣∣∣∣ξn(t)− ξn(0)

t
− v0(x)

∣∣∣∣ ≤ LeLt 1t
∫ t

0

[
Wp(µ

(n−1)
τ , µ) + τ |v0(x)|

]
dτ,

and, by passing to the limit,∣∣∣∣γ(t)− γ(0)

t
− v0(x)

∣∣∣∣ ≤ LeLt 1t
∫ t

0

[Wp(µ
∞
τ , µ) + τ |v0(x)|] dτ.

2. Recall the Superposition Principle in Proposition 2 and the definitions of ΥF

and Ξ in Definition 3.4. Then, from the assumption it follows that there exists
η ∈ Ξ(µ,µ) such that µt = et]η for all t ∈ [0, T ]. By Jensen’s inequality, for η-a.e.
(x, γ) ∈ Rd × ΓT , we have

dF (µ,x)

(
γ(t)− γ(0)

t

)
=dF (µ,x)

(
1

t

∫ t

0

γ̇(s) ds

)
≤ 1

t

∫ t

0

dF (µ,x) (γ̇(s)) ds

≤L
t

∫ t

0

(Wp(µs, µ) + |γ(s)− x|) ds

≤L
t

∫ t

0

(
Wp(µs, µ) + ‖γ̇‖L∞η s

)
ds.

We conclude by taking the Lpη-norm and using Lemma 3.5.

4. Generalized targets. In this section, we provide the generalized notion of
target set in the space of probability measures, thus extending in a natural way
the classical concept of target set in Rd. A naive physical interpretation of the
generalized target can be given as follows: to describe the state of the system, an
observer chooses to measure some quantities φ. The results of the measurements
are the averages of the quantities φ with respect to the measure µt, representing
the state of the system at time t. Our aim is to steer the system to states where
the result of such measurements is below a fixed threshold (that, without loss of
generality, we assume to be 0). The following result provides a characterization of
the class of such generalized target.

Lemma 4.1. Let S̃ ⊆ P(Rd) be nonempty. Then, S̃ is w∗-closed and convex if and

only if there exists a family Φ ⊆ C0
b (Rd) such that S̃ can be written as follows

S̃ =

{
µ ∈ P(Rd) :

∫
Rd
ϕ(x) dµ(x) ≤ 0 for all ϕ ∈ Φ

}
. (3)

Proof. We first prove the necessity, so let S̃ be as in (3) for some fixed Φ ⊆ C0
b (Rd).

Then, the convexity of S̃ comes by linearity of the integral w.r.t. the measure, while
the closure in w∗ topology follows immediately since Φ is a family of test functions
for w∗-convergence.



We pass to the proof of the sufficiency. Recalling formula (5.1.7) in [3, Remark

5.1.2], we have that µ̄ ∈ S̃ if and only if for all ψ ∈ C0
b (Rd) it holds∫

Rd
ψ(x) dµ̄(x) ≤ sup

µ∈S̃

∫
Rd
ψ(x) dµ(x).

Given ψ ∈ C0
b (Rd), set

Cψ := sup
µ∈S̃

∫
Rd
ψ(x) dµ(x) ≤ +∞.

Then we have that µ̄ ∈ S̃ if and only if for all ψ ∈ C0
b (Rd) such that Cψ < +∞ it

holds ∫
Rd

[ψ(x)− Cψ] dµ̄(x) ≤ 0.

Then, to get (3) it sufficies to take

Φ :=
{
ϕ := ψ − Cψ : ψ ∈ C0

b (Rd) and Cψ < +∞
}
.

Definition 4.2 (Generalized targets). Let S̃ ⊆ P(Rd) be nonempty w∗-closed and

convex, Φ ⊆ C0
b (Rd). We say that S̃ is a generalized target generated by Φ, and

write S̃ = S̃Φ if

S̃ :=

{
µ ∈ P(Rd) :

∫
Rd
ϕ(x) dµ(x) ≤ 0 for all ϕ ∈ Φ

}
. (4)

Given p ≥ 1 we set S̃Φ
p = S̃Φ ∩Pp(Rd), and we define the generalized distance from

S̃Φ
p to be the 1-Lipschitz continuous map given by d̃S̃Φ

p
(·) := inf

µ∈S̃Φ
p

Wp(·, µ).

Remark 4.
• In Definition 4.2 we can equivalently assume that Φ is a set of continuous

bounded functions, or bounded Lipschitz functions, or even just l.s.c. func-
tions bounded from below. Moreover, without loss of generality, we can always
assume that Φ is convex. Indeed, assume that Ψ is a set of l.s.c. functions
bounded from below. For all ψ ∈ Ψ and k ∈ N \ {0} we define a Lipschitz

continuous bounded map ϕψk : Rd → R by setting

ϕψk (x) := min

{
inf
y∈Rd

{ψ(y) + k|x− y|} , k
}
.

We recall that {ϕψk }k∈N is an increasing sequence of bounded Lipschitz func-
tions bounded from below and pointwise converging to ψ. Hence, by Monotone
Convergence Theorem, we have

sup
ψ∈Ψ

∫
Rd
ψ(x) dµ(x) = sup

ψ∈Ψ

∫
Rd

sup
k∈N

ϕψk (x) dµ(x) = sup
k∈N

sup
ψ∈Ψ

∫
Rd
ϕψk (x) dµ(x)

= sup
ϕ∈Φ

∫
Rd
ϕ(x) dµ(x),

where Φ = {ϕψk : k ∈ N \ {0}, ψ ∈ Ψ}. Replacing Φ with its convex hull does
not change anything due to the linearity of the integral operator.



• Since convergence in Wp(·, ·) implies w∗-convergence, if S̃Φ is a generalized

target, then S̃Φ
p is closed and convex in Pp(Rd) endowed with the p-Wasserstein

metric Wp(·, ·).
• We notice that if there exists x̄ ∈ Rd such that ϕ(x̄) ≤ 0 for all ϕ ∈ Φ then

the set S̃ given by (4) is nonempty, since δx̄ ∈ S̃.

The last condition of Remark 4 is indeed not necessary to have the nontriviality
of S̃.

Example 4.3. For every y ∈ R, ε > 0, define

ϕεy(x) =

{
−(x+ y)2 + ε, if |x+ y| ≤ 1,

−1 + ε, if |x+ y| ≥ 1.

and set Φε := {ϕεy : y ∈ R}. Clearly, we have that ϕεy attains its maximum at
x = −y and the value of the maximum is ε > 0. Thus the sufficient condition of the

last assertion in Remark 4 is violated. For 0 < ε ≤ 1

12
sufficiently small we have∫ 1/2

−1/2

ϕεy(x) dx ≤
∫ 1/2

−1/2

ϕε0(x) dx = ε− 1

12
≤ 0,

thus the measure χ[−1/2,1/2]L1 ∈ S̃.

Indeed, by the translation invariance of the problem, we have that µa := χ[a,a+1]L1 ∈ S̃
for all a ∈ R, in particular, we have that S̃ is not tight, hence not w∗-compact, since
for any K ⊆ R it is possible to find a ∈ R such that µa(R \K) = 1.

Lemma 4.4 (Compactness). Let S̃ be a nonempty generalized target generated by
the family Φ ⊆ C0(Rd). If there exists φ̄ ∈ Φ, A,C > 0 and p ≥ 1 such that

φ̄(x) ≥ A|x|p − C, then S̃Φ = S̃Φ
p is compact in the w∗-topology and in the Wp-

topology.

Proof. Trivially we have that S̃Φ
p ⊆ S̃Φ for any p ≥ 1. Conversely, given µ ∈ S̃Φ,

we have

A ·mp(µ)− C ≤
∫
Rd
φ̄(x) dµ ≤ 0,

hence µ ∈ S̃Φ
p and all the measures in S̃Φ

p = S̃Φ have p-moments uniformly bounded

by C/A. This means that the w∗-topology and Wp-topology coincide on S̃Φ = S̃Φ
p ,

which turns out to be tight, according to [3, Remark 5.1.5], and w∗-closed, hence
w∗-compact and Wp-compact.

We mention the following example, which may be relevant for the applications.

Example 4.5. Given a nonempty and closed set S ⊆ Rd and α ≥ 0, a natural
choice for Φ can be for example Φα = {dS(·) − α}. If α = 0 we have that S̃Φ0 =
{µ ∈ P(Rd) : µ(Rd \ S) = 0}. More generally, for all r > 0 let Br(S) := {z ∈ Rd :

dS(z) ≤ r}. Then, if µ ∈ S̃Φα ,

rµ(Rd \Br(S)) =

∫
Rd\Br(S)

r dµ ≤
∫
Rd\Br(S)

dS(x) dµ(x) ≤ α,

thus, in particular, we must have µ(Rd \Br(S)) ≤ min
{

1,
α

r

}
for all r > 0, which,

if α is sufficiently small can be interpreted as a relaxed version of the case α = 0.



Given a generalized target S̃ ⊆ P(Rd), a natural question is wheter it is possible
to localize it, i.e., to describe it as the set of all the measures supported a certain
(closed) subset of Rd. Equivalently, we want to find a nonempty closed set S ⊆ Rd,
such that, set Φ = {dS(·)}, we have S̃ = S̃Φ. To this aim, we give the following
definition.

Definition 4.6 (Classical counterpart of generalized target). Let S̃ ⊆ P(Rd) be a
generalized target. Given a set S ⊆ Rd, we say that S is a classical counterpart of
the generalized target S̃ if

S̃ = {µ ∈ P(Rd) : suppµ ⊆ S}.
An analogous definition is given for the classical counterpart of S̃ ∩ Pp(Rd), p ≥ 1
by taking intersection of the right hand side with Pp(Rd).

Remark 5.
• From the very definition of classical counterpart, if S̃ admits S and S′ as

classical counterparts, then S = S′.
• In general a classical counterpart may not exists: in R, take Φ = {φ} where

φ : R → R, φ(y) := |y| − 1. Defined µ0 :=
1

2
(δ0 + δ2), we have µ0 ∈ S̃Φ

p for

every p ≥ 1. If a classical counterpart S of S̃Φ would exists, by definition it
should contain the support of µ0, i.e. 0, 2 ∈ S. However, δ2 /∈ S̃Φ even if
supp(δ2) ⊆ S. So neither S̃Φ nor S̃Φ

p admit a classical counterpart.

• If S is the classical counterpart of S̃Φ (or S̃Φ
p ), there exists a representation of

S̃Φ as S̃Φ̂, where Φ̂ = {φ̂} and φ̂(x) ≥ 0 for every x ∈ Rd where the inequality

is strict at every x /∈ S. In particular we can take Φ̂ = {arctan ◦dS} (resp.

Φ̂ = {dS}), i.e., we can replace Φ with the set {arctan ◦dS} (resp. {dS}).

Our aim is now to characterize the generalized target possessing a classical coun-
terpart.

Proposition 3 (Existence, uniqueness and properties of the classical counterpart).

Let S̃ ⊆ P(Rd) be a generalized target, S ⊆ Rd.

1. if S̃ admits S as classical counterpart then S is closed;
2. S̃ admits S as classical counterpart if and only if∫

Rd

[
ϕ(x)− sup

y∈S
ϕ(y)

]
dµ(x) ≤ 0,

for all ϕ ∈ C0
b (Rd) and µ ∈ S̃;

3. if S̃ admits S as classical counterpart, then S̃p admits S as classical counter-
part for all p ≥ 1.

4. If S̃ = S̃Φ (resp. S̃ ∩ Pp(Rd) = S̃Φ
p ), for a suitable Φ ⊆ C0

b (Rd), admits a
classical counterpart S, then

S =
⋂
φ∈Φ

{x ∈ Rd : φ(x) ≤ 0}.

Proof.
1. Assume that S̃ admits S as a classical counterpart and S̃ = S̃Φ for a suitable

Φ ∈ C0
b (Rd). In particular, we have δx ∈ S̃ for all x ∈ S, i.e. φ(x) ≤ 0 for

all x ∈ S. Let {xn}n∈N be a sequence in S converging to x ∈ Rd. Then for
all ϕ ∈ Φ we have ϕ(xn) ≤ 0 for all n ∈ N, which implies ϕ(x) ≤ 0, and so



δx ∈ S̃. Since S is a classical counterpart of S̃ and suppδx = {x}, we have
that thus x ∈ S, so S is closed.

2. S̃ admits S as classical counterpart if and only if S̃ = co{δx : x ∈ S}, where
the closure is the weak∗ closure in P(Rd). Indeed, every measure supported
in S is w∗-limit of convex combinations of Dirac deltas concentrated in points
of S, and conversely all such deltas belong to S̃ by definition of classical
counterpart, and S̃ is convex and w∗-closed. Recalling formula (5.1.7) in [3,

Remark 5.1.2], we have that µ ∈ S̃ if and only if∫
Rd
ϕ(x) dµ(x) ≤ sup

y∈S
ϕ(y),

for all ϕ ∈ C0
b , as desired.

3. It is sufficient to use the same argument as in (2) but taking the intersection
with Pp(Rd) and the closure w.r.t. Wp distance.

4. Trivially, if there exist x̄ ∈ Rd and ϕ ∈ Φ such that ϕ(x̄) > 0, then δx̄ /∈ S̃, thus

x̄ does not belong to the classical counterpart of S̃. Conversely, if ϕ(x̄) ≤ 0

for all ϕ ∈ Φ, then δx̄ ∈ S̃, and so x̄ ∈ S by definition of classical counterpart.

A useful sufficient condition can be expressed as follows.

Corollary 2. Assume that for every φ ∈ Φ we have either φ(x) ≥ 0 or φ(x) ≤ 0

for all x ∈ Rd. Then S̃Φ (and so S̃Φ
p ) admits classical counterpart.

Proof. Denote by

S =
⋂
φ∈Φ

{x ∈ Rd : φ(x) ≤ 0}.

If for all φ ∈ Φ and x ∈ Rd we had φ(x) ≤ 0, then we would trivially have S = Rd
and S̃Φ = P(Rd) as desired since δx ∈ S̃Φ for all x ∈ Rd, thus concluding with the
thesis.

Otherwise, let µ ∈ S̃Φ and suppose by contradiction that µ(Rd \ S) > 0. Thus
there exists y ∈ Rd \ S of density 1 w.r.t. µ. In particular, there exists a neigh-
borhood Ay of y contained in Rd \ S such that µ(Ay) > 0. If for all ϕ ∈ Φ we had
ϕ(y) ≤ 0, we would have y ∈ S, contradicting the fact that y /∈ S. So, according

to the assumptions, there exists φ̂ ∈ Φ such that φ̂(x) ≥ 0 for all x ∈ Rd and such

that φ̂(y) > 0. Thus we have

sup
φ∈Φ

∫
Rd
φ(x) dµ(x) ≥

∫
Rd
φ̂(x) dµ(x) ≥

∫
Ay

φ̂(x) dµ(x) > 0,

hence µ /∈ S̃Φ, leading to a contradiction. Thus S̃Φ ⊆ {µ ∈ P(Rd) : suppµ ⊆ S}.
Since the converse inclusion is always true, equality holds.

Remark 6. The condition of Corollary 2 is not necessary in general. In R,
take Φ = {φ1, φ2, φ3} where φi : R → R, i = 1, 2, 3 are defined to be φ1(x) =
min{max{x, 0}, 1}, φ2(x) = min{max{−x,−1}, 0}, φ3(x) = min{max{x,−1}, 1}.
Then both S̃Φ

p and S̃Φ admits S as their classical counterpart, with S =] −∞, 0],
but φ3 changes its sign.

We are now ready to state some comparison results between the generalized
distance and the classical one.



Proposition 4 (Comparison with classical distance). Let p ≥ 1, µ0 ∈ Pp(Rd),
Φ ⊆ C0

b (Rd;R) be such that S̃Φ
p 6= ∅, and define

S :=
⋂
φ∈Φ

{x ∈ Rd : φ(x) ≤ 0}. (5)

Then d̃S̃Φ
p

(µ0) ≤ ‖dS‖Lpµ0
, and equality holds if and only if the generalized target S̃Φ

p

admits classical counterpart. In this last case, the classical counterpart of S̃Φ
p is S,

moreover d̃p
S̃Φ
p

: Pp(Rd)→ [0,+∞[ is convex.

Proof. If S = ∅ we have dS(x) ≡ +∞ at all x ∈ Rd so the statement is trivially
true, thus suppose S 6= ∅. Since S is closed and nonempty, [4, Corollary 8.2.13]
implies the existence of a Borel map g : Rd → S such that |x− g(x)| = dS(x). We
have

m1/p
p (g]µ0) = ‖g‖Lpµ0

≤ ‖IdRd − g‖Lpµ0
+ ‖IdRd‖Lpµ0

≤ ‖dS‖Lp + m1/p
p (µ0) < +∞,

moreover, for all φ ∈ Φ, we have∫
Rd
φ(x) dg]µ0(x) =

∫
Rd
φ(g(y)) dµ0(y) ≤ 0,

since g(y) ∈ S for all y ∈ Rd and so φ ◦ g(y) ≤ 0 for all y ∈ Rd. Therefore,

g]µ0 ∈ S̃Φ
p , and so

d̃p
S̃Φ

(µ0) ≤W p
p (µ0, g]µ0) ≤ ‖IdRd − g‖

p
Lpµ0

= ‖dS‖pLpµ0

.

Assume now that S̃Φ
p admits classical counterpart. As noticed in Proposition 3, S

must be the classical counterpart of S̃Φ
p . For every ν0 ∈ S̃Φ

p we have thus supp ν0 ⊆ S
and hence |x − y| ≥ dS(x) for all π ∈ Π(µ0, ν0) and π-a.e. (x, y) ∈ Rd × Rd. This
leads to ∫∫

Rd×Rd
|x− y|p dπ(x, y) ≥

∫
Rd
dpS(x) dµ0(x).

By taking the infimum on π ∈ Π(µ0, ν0) and then on ν0 ∈ S̃Φ
p , we obtain d̃S̃Φ

p
(µ0) ≥

‖dS‖Lpµ0
, thus equality holds.

Without the assumption of existence of a classical counterpart for S̃Φ
p , the in-

equality d̃S̃Φ
p

(µ0) ≤ ‖dS‖Lpµ0
is strict. Indeed, since S̃Φ

p does not admit S as a

classical counterpart, there exist a measure µ ∈ S̃Φ
p and n ∈ N such that

µ

({
z ∈ Rd : dS(z) >

1

n

})
> 0,

and so there exists a Borel set A ⊆ Rd and ε > 0 such that dpS(z) ≥ ε for µ-a.e.
z ∈ A, µ(A) > 0. This implies

0 = d̃p
S̃Φ
p

(µ) < εµ(A) ≤
∫
A

dpS(z) dµ(z) ≤
∫
Rd
dpS(x) dµ(x).

Finally, the last statement is trivial, and it follows from the fact that

d̃p
S̃Φ
p

(µ) =

∫
Rd
dpS(x) dµ,

is linear in µ.



Without the p-th power, the generalized distance in the case of the Proposition
4 above may fail to be convex.

Example 4.7. Let p > 1. In R2, consider P = (0, 0), Q1 = (1, 0), Q2 =
(
0, 21/p

)
.

Set S = {P}, Φ = {dS(·)}, hence S̃Φ
p := {δP }, and define νλ = λδQ1

+ (1 − λ)δQ2
,

λ ∈ [0, 1]. By Proposition 4, we have

d̃p
S̃Φ
p

(νλ) = W p
p (δP , νλ) = λ+ 2(1− λ) = 2− λ,

whence d̃S̃Φ
p

(νλ) = p
√

2− λ, which is not convex.

In the metric space Pp(Rd) endowed with the Wp-distance, another concept of
convexity can be given, related more to the metric structure rather than to the
linear one inherited by the set of all Borel signed measures.

Given any product spaceXN (N ≥ 1), in the following we denote with pri : XN →
X the projection on the i–th component, i.e., pri(x1, . . . , xN ) = xi.

Definition 4.8 (Geodesics). Given a curve µ = {µt}t∈[0,1] ⊆ Pp(Rd), we say that
it is a (constant speed) geodesic if for all 0 ≤ s ≤ t ≤ 1 we have

Wp(µs, µt) = (t− s)Wp(µ0, µ1).

In this case, we will also say that the curve µ is a geodesic connecting µ0 and µ1.

Theorem 4.9 (Characterization of geodesics). Let µ0, µ1 ∈ Pp(Rd) and let π ∈
Πp
o(µ0, µ1) be an optimal transport plan between µ0 and µ1, i.e.

W p
p (µ0, µ1) =

∫∫
Rd×Rd

|x1 − x2|p dπ(x1, x2) .

Then the curve µ = {µt}t∈[0,1] defined by

µt :=
(
(1− t) pr1 + tpr2

)
]π ∈ Pp(Rd), (6)

is a (constant speed) geodesic connecting µ0 and µ1.
Conversely, any (constant speed) geodesic µ = {µt}t∈[0,1] connecting µ0 and µ1

admits the representation (6) for a suitable plan π ∈ Πp
o(µ0, µ1).

Proof. See [3, Theorem 7.2.2].

Definition 4.10 (Geodesically and strongly geodesically convex sets). A subset
A ⊆ Pp(Rd) is said to be

1. geodesically convex if for every pair of measures µ0, µ1 in A, there exists a
geodesic connecting µ0 and µ1 which is contained in A.

2. strongly geodesically convex if for every pair of measures µ0, µ1 in A and for
every admissible transport plan π ∈ Π(µ0, µ1), the curve t 7→ µt defined by (6)
is contained in A.

The interest in this alternative concept of convexity comes from the fact that,
in many problems, functionals defined on probability measures are convex along
geodesics (a notion related to geodesically convex sets) and not convex with respect
to the linear structure in the usual sense. We refer to [3, Section 9.1] for further
details.

Remark 7. Notice that, even if the notations do not highlight this fact, the notions
of geodesic and geodesical convexity depend on the exponent p which has been fixed.



Proposition 5 (Strong geodesic convexity of S̃Φ
p ). Let p ≥ 1, Φ as in Definition

4.2 and assume that all the elements of Φ are also convex. Then the generalized
target S̃Φ

p is strongly geodesically convex.

Proof. Let µ0, µ1 ∈ S̃Φ
p and let π ∈ Π(µ0, µ1) be an admissible transport plan

between µ0 and µ1. Consider the corresponding curve µ = {µt}t∈[0,1] defined
by (6), and fix t ∈ [0, 1]. We have for every φ(·) ∈ Φ∫

Rd
φ(x) dµt(x) ≤

≤ (1− t)
∫∫

Rd×Rd
φ
(
pr1(ξ, η)

)
dπ(ξ, η) + t

∫∫
Rd×Rd

φ
(
pr2(ξ, η)

)
dπ(ξ, η)

= (1− t)
∫
Rd
φ(x) dµ0(x) + t

∫
Rd
φ(y) dµ1(y) ≤ 0 ,

since pri]π are the marginal measures of π, which belong to S̃Φ
p . The conclusion

follows from the arbitrariness of φ(·) ∈ Φ.

Remark 8. In particular, considering also the first item in Remark 4, the above
result holds for Φ := {dS(·) − α} when S is nonempty, closed and convex, and
α ∈ [0, 1]. In this case, since in the above proof we use only the convexity property
of dS(·), the statement holds also if we equip Rd with a different norm than the
Euclidean one.

We conclude this section by investigating the semiconcavity properties of the
generalized distance along geodesics. The case p = 2 is particularly easy thanks to
the geometric structure of the metric space P2(Rd).

Proposition 6 (Semiconcavity of d̃ 2
S̃Φ

2

). Let S̃Φ
2 be a generalized target in P2(Rd).

Then the square of the generalized distance satisfies the following global semicon-
cavity inequality: for every µ0, µ1 ∈ P2(Rd) and every t ∈ [0, 1]

d̃ 2
S̃Φ

2
(µt) ≥ (1− t) d̃ 2

S̃Φ
2

(µ0) + t d̃ 2
S̃Φ

2
(µ1)− t(1− t)W 2

2 (µ0, µ1),

where µ = {µt}t∈[0,1] is any constant speed geodesic for W2 joining µ0 and µ1.

Proof. Owing to [3, Theorem 7.3.2], we have that for any measure σ ∈ P2(Rd) the
function µ 7→W 2

2 (µ, σ) is semiconcave along geodesics, with semiconcavity constant
independent by σ, i.e. it satisfies for every t ∈ [0, 1]

W 2
2 (µt, σ) + t(1− t)W 2

2 (µ0, µ1) ≥ (1− t)W 2
2 (µ0, σ) + tW 2

2 (µ1, σ).

The conclusion follows by passing to the infimum on σ ∈ S̃Φ
2 .

In the case p 6= 2 we need additional requirements on Φ.

Proposition 7 (Semiconcavity of d̃ p
S̃Φ
p

). Let p ≥ 1, and S̃Φ
p be a generalized target.

Assume that S̃Φ
p admits a classical counterpart S ⊆ Rd. Let K ⊆ Rd \S be compact

and convex. Then the p-th power of the generalized distance d̃S̃Φ
p

(·) satisfies the

following local semiconcavity inequality: there exists a constant C = C(p,K) > 0
such that for every µ0, µ1 ∈ Pp(K) we have

d̃ p
S̃Φ
p

(µt) ≥ (1− t) d̃ p
S̃Φ
p

(µ0) + t d̃ p
S̃Φ
p

(µ1)− Ct(1− t)Wmin{p,2}
p (µ0, µ1), (7)

where µ = {µt}t∈[0,1] is any constant speed geodesic for Wp joining µ0 and µ1.



Proof. In this proof to make clearer the notation we will omit the superscript Φ,
since Φ is fixed. Under the above assumptions, and recalling Proposition 4, we have
d̃S̃p(µ0) = ‖dS‖Lpµ0

.

Given x0, x1 ∈ K and t ∈ [0, 1] we set

xt := (1− t)x0 + tx1, dt := (1− t)dS(x0) + tdS(x1).

According to [7, Proposition 2.2.2], there exists c = c(K) > 0 such that dS satisfies
the following inequality for all x0, x1 ∈ K:

dS(xt) ≥ dt − ct(1− t)|x0 − x1|2,

By using [7, Proposition 2.1.12 (i)], we obtain that

dpS(xt) ≥ (1− t) dpS(x0) + t dpS(x1)− C ′t(1− t)|x0 − x1|min{p,2}, (8)

with C ′ = C ′(p,K).

For any Borel sets A,B ⊆ Rd and π ∈ Π(µ0, µ1), we now have supp(π) ⊆ K×K.
Therefore, we choose a transport plan π ∈ Πp

o(µ0, µ1) realizing the p-Wasserstein
distance between µ0 and µ1, so that the representation in formula (6) holds, and
we integrate the estimate (8) to find that∫
Rd
dpS(x) dµt =

∫∫
Rd×Rd

dpS(xt) dπ ≥ (1− t)
∫
Rd
dpS(x) dµ0 + t

∫
Rd
dpS(x) dµ1

− C ′ t (1− t)
∫∫

Rd×Rd
|x0 − x1|min{p,2} dπ,

where µ = {µt}t∈[0,1] ⊆ Pp(Rd) is the constant speed geodesic corresponding to π.
But according to Proposition 4, there holds

d̃ p
S̃p

(µt) =

∫
Rd
dpS(x) dµt(x), and d̃ p

S̃p
(µi) =

∫
Rd
dpS(x) dµi(x), i = 0, 1,

and applying Jensen’s inequality to the concave map ξ 7→ ξγ/p on R+, with γ =
min{p, 2}, we obtain that

∫∫
Rd×Rd

|x0 − x1|min{p,2} dπ ≤



∫∫
Rd×Rd

|x0 − x1|p dπ, for 1 ≤ p < 2,

(∫∫
Rd×Rd

|x0 − x1|p dπ
)2/p

, for p ≥ 2.

We thus conclude that

d̃ p
S̃p

(µt) ≥ (1− t) d̃ p
S̃p

(µ0) + t d̃ p
S̃p

(µ1)− C ′ t (1− t)Wmin{p,2}
p (µ0, µ1),

and the proof is completed.

Remark 9. Notice that inequality (7) implies that, for p ≥ 2 and under the assump-

tion of Proposition 7, the functional −d̃ p
S̃p

(·) : Pp(K) → ] −∞, 0] is λ-geodesically

convex, in the sense of [3, Definition 9.1.1], with λ = −2C.



5. The generalized minimum time function.

Definition 5.1 (Generalized minimum time function). Given a generalized target

S̃p = S̃Φ
p defined in Definition 4.2, we define the generalized minimum time function

T̃p : Pp(Rd)→ [0,+∞] by

T̃p(µ) := inf{T ≥ 0 : there exists µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ) s.t. µT ∈ S̃p},

where we set inf ∅ = +∞ by convention. We say that µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ) is

time optimal from µ if T̃p(µ) ≤ T < +∞ and µT̃p(µ) ∈ S̃p.

Proposition 8 (Properties of T̃p). Assume Hypothesis 3.3 for F . Then

1. for any µ ∈ Pp(Rd) with T̃p(µ) < +∞ there exists a time optimal admissible
trajectory from µ;

2. the function T̃p(·) is lower semicontinuous;
3. the following Dynamic Programming Principle holds

T̃p(µ) = inf{t+ T̃p(µt) : µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ), T > 0}. (9)

In particular, t 7→ t+T̃p(µt) is nondecreasing along every admissible trajectory
µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ), and it is constant if and only if µ = {µt}t∈[0,T ] ∈
Ap[0,T ](µ) is the restriction to [0, T ] ∩ [0, T̃p(µ)] of an optimal trajectory.

Proof.
1. Fix µ ∈ Pp(Rd) with T̃p(µ) < +∞. For any n ∈ N\{0} there exists Tn > 0 and

µ(n) = {µ(n)
t }t∈[0,Tn] ∈ Ap[0,Tn](µ) such that µ

(n)
Tn
∈ S̃p and Tn ≤ T̃p(µ) + 1/n.

We can extend each µ(n) to an admissible curve defined on T̃p(µ)+1 (possibly

concatenating it with an element of A[Tn,T̃p(µ)+1](µ
(n)
Tn

), which is nonempty for

all n ∈ N\{0}). Thus, without loss of generality, we may assume that we have

a sequence µ̂(n) = {µ̂(n)
t }t∈[0,T ] ∈ Ap[0,T ](µ) of admissible trajectories, which

are all defined in [0, T ] with T = T̃p(µ) + 1, and satisfying µ̂
(n)
Tn
∈ S̃p where

Tn ≤ T̃p(µ) + 1/n. Recalling the compactness of Ap[0,T ](µ) (see Corollary 1),

up to passing to a subsequence, the sequence of curves {µ̂(n)}n∈N uniformly
converges to µ̂∞ = {µ̂∞t }t∈[0,T ] and, moreover, we have Tn → `. In particular,

µ̂
(n)
Tn
→ µ̂∞` which, by the closedness of S̃p, implies µ̂∞` ∈ S̃p, and so T̃p(µ) ≤ `.

But passing to the limit in Tn ≤ T̃p(µ)+1/n yields the reverse inequality, thus

` = T̃p(µ), hence µ̂∞ is optimal.

2. Let {µ(n)}n∈N ⊆ Pp(Rd) be a Wp-converging sequence satisfying µ(n) → µ∞

and
lim inf
n→+∞

T̃p(µ
(n)) =: ` ∈ R. If ` = +∞ there is nothing to prove, so let us

assume ` < +∞. As before, up to concatenation and restriction and by
taking n sufficiently large, this implies that there exists a sequence {µ(n)}n∈N
such that µ(n) = {µ(n)

t }t∈[0,`+1] ∈ A[0,`+1](µ
(n)) and µ

(n)

T̃p(µ(n))
∈ S̃p for all

n ∈ N.
By Theorem 3.6, there exists a sequence {µ̂(n) = {µ̂(n)

t }t∈[0,`+1]}n∈N ⊆
A[0,`+1](µ

∞) such that

Wp(µ̂
(n)
t , µ

(n)
t ) ≤ D ·Wp(µ

(n), µ∞),



for all t ∈ [0, ` + 1], where D := 2
p−1
p eL(2+LeL(`+1))(`+1). Recalling the com-

pactness of Ap[0,`+1](µ
∞) (see Corollary 1), up to a passing to a subsequence,

the sequence of curves {µ̂(n)}n∈N uniformly converges to µ̂∞ = {µ̂∞t }t∈[0,`+1],
in particular, we have that

Wp

(
µ

(n)

T̃p(µ(n))
, µ̂∞`

)
≤Wp

(
µ

(n)

T̃p(µ(n))
, µ̂

(n)

T̃p(µ(n))

)
+Wp

(
µ̂

(n)

T̃p(µ(n))
, µ̂∞
T̃p(µ(n))

)
+

+Wp

(
µ̂∞
T̃p(µ(n))

, µ̂∞`

)
≤D ·Wp

(
µ(n), µ∞

)
+ sup
t∈[0,`+1]

Wp

(
µ̂

(n)
t , µ̂∞t

)
+

+Wp

(
µ̂∞
T̃p(µ(n))

, µ̂∞`

)
.

By taking the limit for n→ +∞, we have that Wp

(
µ

(n)

T̃p(µ(n))
, µ̂∞`

)
→ 0, hence,

by the closedness of S̃p, we obtain µ̂∞` ∈ S̃p, and so T̃p(µ
∞) ≤ `.

3. Let µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ) and µ̂(t) ∈ Ap
[0,T̃p(µt)]

(µt) such that µ̂(t)

is optimal for µt (such an optimal trajectory exists by item (1)). For any

t ∈ [0, T ], the concatenation µ|[0,t] � µ̂(t) ∈ Ap
[0,t+T̃p(µt)]

(µ), and so T̃p(µ) ≤
t + T̃p(µt) for every t ∈ [0, T ], µ = {µt}t∈[0,T ] ∈ Ap[0,T ](µ), t > 0, giving the

first inequality in (9). In particular, for 0 ≤ t ≤ s ≤ T , we have

T̃p(µ) ≤ t+ T̃p(µt) ≤ t+ (s− t) + T̃p(µs) = s+ T̃p(µs),

since the restriction of µ to [t, T ] is an admissible trajectory from µt. Thus

t 7→ t + T̃p(µt) is nondecreasing along all the admissible trajectories. If µ

is an optimal trajectory, by taking s = T̃p(µ) we have T̃p(µs) = 0 and so

T̃p(µ) = t + T̃p(µt) for all t ∈ [0, T̃p(µ)], which gives equality in (9). Finally,

assume that t 7→ t + T̃p(µt) is constant along an admissible trajectory µ ∈
Ap[0,T ](µ). By (9) we have that T̃p(µ) = t + T̃p(µt) for all t ∈ [0, T ]. If

T ≥ T̃p(µ), this implies that µ is optimal, since by taking t = T̃p(µ) we

obtain T̃p(µT̃p(µ)) = 0 and so µT̃p(µ) ∈ S̃p. If T < T̃p(µ) we concatenate µ

with an optimal trajectory µ̂ = {µ̂s}s∈[0,T̃p(µT )] ∈ A[0,T̃p(µT )](µT ) for µT . Set

µ � µ̂ = {µ̃s}s∈[0,T+T̃p(µT )]. In particular, we have T̃p(µT ) = s + T̃p(µ̂s) for

all s ∈ [0, T̃p(µT )], thus T̃p(µ) = τ + T̃p(µ̃τ ) for all τ ∈ [0, T̃p(µ)]. By taking

τ = T̃p(µ) we obtain T̃p(µT̃p(µ)) = 0 and so µT̃p(µ) ∈ S̃p thus the concatenation

µ� µ̂ is an optimal trajectory, whose restriction to [0, T ] is µ.

The following definition of Small-Time Local Attainability (STLA) has been in-
troduced in [27] for finite-dimensional control systems, but can be easily generalized
in our framework.

Definition 5.2 (STLA for Wasserstein spaces). We say that the system with gen-

eralized target S̃p satisfies the STLA property if

Property (STLA): for any ε > 0 and µ̂ ∈ S̃p there exists δ > 0 such that

T̃p(µ) ≤ ε for any µ ∈ Pp(Rd) satisfying Wp(µ, µ̂) ≤ δ.

The link between STLA and continuity of the generalized minimum time is pro-
vided by the following result.



Proposition 9 (STLA and continuity of T̃p). Let S̃p be a generalized target. As-

sume Hypothesis 3.3 for F , and that (STLA) holds for the system. Then T̃p :
Pp(Rd)→ [0,+∞] is continuous at every point where it is finite.

Proof. Recalling the l.s.c. of T̃p(·), given µ ∈ Pp(Rd) with T̃p(µ) = +∞, we have

lim
n→+∞

T̃p(µ
(n)) = +∞ for every sequence {µ(n)}n∈N converging to µ in Wp.

Therefore, we assume T := T̃p(µ) < +∞. Since T̃p(·) is l.s.c., it is enough to

prove that for all {µ̄(n)}n ⊆ Pp(Rd) such that Wp(µ̄
(n), µ) → 0 as n → +∞, we

have
lim sup
n→+∞

T̃p(µ̄
(n)) ≤ T.

Fix an optimal trajectory µ∞ := {µ∞t }t∈[0,T ] starting from µ∞|t=0 = µ. Let {µ(n)}n∈N
be a sequence converging to µ in Wp and such that lim

n→+∞
T̃p(µ

(n)) exists. By The-

orem 3.6, there exists a sequence of admissible trajectories {µ(n)}n∈N such that

• µ(n) = {µ(n)
t }t∈[0,T ], µ

(n)
0 = µ(n) for all n ∈ N and

• d̃S̃p(µ
(n)
T ) ≤Wp(µ

(n)
T , µ∞T ) ≤ D ·Wp(µ

(n), µ), recalling that µ∞T ∈ S̃p,

where D := 2
p−1
p eL(2+LeLT )T . In particular, by (STLA), given ε > 0 there exists

nε ∈ N such that for all n > nε we have T̃p(µ
(n)
T ) ≤ ε. By Dynamic Programming

principle, we have

T̃p(µ
(n)) ≤ T + T̃p(µ

(n)
T ) ≤ T + ε,

By letting n→ +∞ and ε→ 0, we have

lim
n→+∞

T̃p(µ
(n)) ≤ T.

We conclude by the arbitrariness of the sequence {µ(n)}n∈N.

Definition 5.3. Given Φ ⊂ C0
b (Rd), φ ∈ Φ and µ ∈ P(Rd) we define

Lφ(µ) :=

∫
Rd
φ(x) dµ(x), σΦ(µ) := sup

φ∈Φ
Lφ(µ).

Our aim is to provide a sufficient condition for (STLA), following the line of [28]

and [29] for finite-dimensional systems. We recall that the l.s.c. of T̃p(·) was already
showed in [13, Theorem 4] in a simplified setting, while a stronger sufficient condition
was provided in [11, Theorem 4.1] to prove the Lipschitz continuity regularity. The

continuity of T̃p(·) was a crucial assumption also in [13, Theorem 8] to prove that
it solves an Hamilton-Jacobi-Bellman equation in Wasserstein space.

The following definition establishes a quantitative estimate of the maximal in-
finitesimal decreasing of the functions φ ∈ Φ defining the generalized target, along
the admissible trajectories of the system.

Definition 5.4. We say that the generalized target S̃Φ
p is (r,Q)-attainable if there

exist continuous maps

r : [0,+∞[→
[
0,min

{
1,

1

2L

}]
, Q :

[
0,min

{
1,

1

2L

}]
× [0,+∞[→ R

such that

1. r(q) = 0 if and only if q = 0;
2. Q(r(q), q) < 0 for all q ∈]0,+∞[;



3. the function q 7→ r(q)

|Q(r(q), q)|
is decreasing and integrable on [0,+∞[.

4. for any µ ∈ Pp(Rd) \ S̃Φ
p there exists µ = {µt}t∈[0,r(σΦ(µ))] ∈ Ap[0,r(σΦ(µ))](µ)

such that

inf
t∈[0,r(σΦ(µ))]

{σΦ(µt)− σΦ(µ)} ≤ 2Q(r(σΦ(µ)), σΦ(µ)).

Remark 10. Roughly speaking, (r,Q)-attainability expresses a relation between
the variation of the distance (or a related positive function vanishing only on the
target) along a particular admissible trajectory in a time interval, and the size of
the time interval itself. The integrability condition asks that the approaching speed,
which can be seen as the quotient between the variation of the distance and the time
needed to realize it, is sufficiently high to ensure that the target will be reached in
finite time. Finite-dimensional examples of similar constructions can be found e.g.
in [28], while an example in this setting with no interactions can be found in [11].

With the notations of Definitions 5.3, 5.4 we state the following results of this
section.

Proposition 10. Assume Hypothesis 3.3 for F and that the generalized target S̃Φ
p

is (r,Q)-attainable. Then

T (µ) :=

∫ σΦ(µ)

0

r(q) dq

|Q(r(q), q)|
≥ T̃p(µ).

Proof. Define sequences {µ(i)}i∈N ⊆ P(Rd), {σi}i∈N, {ti}i∈N ⊆ [0, 1] as follows. Set
µ(0) = µ. Suppose to have defined µ(i), then define σi = σΦ(µ(i)). We notice that,

by assumption, if µ(i) /∈ S̃Φ
p we have σi > 0, and so Q(r(σi), σi) < 0.

By property (4) in Definition 5.4, if µ(i) /∈ S̃Φ
p there exists µ(i) = {µ(i)

t }t∈[0,r(σi)] ∈
Ap[0,r(σi)](µ

(i)) such that

inf
t∈[0,r(σi)]

{σΦ(µ
(i)
t )− σi} ≤ 2Q(r(σi), σi).

Thus, for any ε > 0 there exists tεi ∈ [0, r(σi)] such that

σΦ(µ
(i)
tεi

)− σi ≤ 2Q(r(σi), σi) + ε.

Notice that, if we choose ε sufficiently small, in particular 0 < ε < −2Q(r(σi), σi),

then tεi 6= 0. We thus fix ε̂(i) = −Q(r(σi), σi) and set ti = t
ε̂(i)
i > 0 and µ(i+1) = µ

(i)
ti .

While, if µ(i) ∈ S̃Φ
p , then we set ti = 0 and µ(i+1) = µ

(i)
ti = µ(i).

Thus, together with property (1) in Definition 5.4, this implies that µ(i) /∈ S̃Φ
p if

and only if σi, ti > 0.
Notice that σi ≥ 0 for all i ∈ N, moreover, if σi = 0 then σm = tm = 0 for all

m ≥ i.

For every i ∈ N such that σi 6= 0 we have

σi+1 − σi ≤ 2Q(r(σi), σi) + ε̂(i) = Q(r(σi), σi) < 0, (10)

by property (2) in Definition 5.4. Thus the sequence {σi}i∈N is decreasing and
bounded from below, and so it has a limit σ∞ ≥ 0. If σi = 0 for some i ∈ N
then σ∞ = 0. If σi 6= 0 for all i ∈ N, by passing to the limit in (10) we get
Q(r(σ∞), σ∞) = 0, by continuity of Q(·, ·) and r(·), which implies σ∞ = 0.



We have

T (µ) ≥
∑
i∈N
σi 6=0

r(σi)(σi − σi+1)

|Q(r(σi), σi)|
≥
∑
i∈N

ti.

To conclude the proof, we consider two cases

• assume that σi 6= 0 for all i ∈ N. Then for any i ∈ N there exists an admissible

trajectory µ(∞) = {µ(∞)
t }[0,T ] starting from µ and coinciding with µ(i) on

[ti−1, ti]. In particular, µ
(∞)∑
ti
∈ S̃Φ

p since σ∞ = 0, and so T (µ) ≥ T̃p(µ).

• let ı̂ the minimum of the set {i ∈ N : ti = 0}. Then there exists an admissi-

ble trajectory µ̂(ı̂) = {µ̂(ı̂)
t }[0,T ] starting from µ and coinciding with µ(i) on

[ti−1, ti], for all i ≥ 1. In particular, µ̂
(ı̂)∑ı̂−1
i=1 ti

∈ S̃Φ
p , and so

T (µ) ≥
∞∑
i=1

ti =

ı̂−1∑
i=1

ti ≥ T̃p(µ).

Thus in both cases we have T (µ) ≥ T̃p(µ), which concludes the proof.

Theorem 5.5 (Sufficient condition for (STLA)). Assume Hypothesis 3.3 for F

and that the generalized target S̃Φ
p is (r,Q)-attainable. Assume that there exists

C > 0 and an open set U ⊆ Pp(Rd) such that U ⊇ S̃Φ
p and σΦ(µ) ≤ C for all

µ ∈ U . Then (STLA) holds.

Proof. Fix ε > 0. Since max{σΦ(µ), 0} ≤ C in a neighborhood of S̃Φ
p , we have

that the convex function µ 7→ max{σΦ(µ), 0} is continuous in a neighborhood of S̃Φ
p

and vanishes exactly on S̃Φ
p . Thus for any ε > 0 there exists ρ, δ > 0 such that if

dS̃Φ
p

(µ) ≤ δ we have σΦ(µ) ≤ ρ and

ε >

∫ ρ

0

r(q) dq

|Q(r(q), q)|
≥ T̃Φ

p (µ),

recalling that by the integrability assumption in item (3) in Definition 5.4, the map

ρ 7→
∫ ρ

0

r(q) dq

|Q(r(q), q)|
is continuous.

In conclusion, in order to check the (r,Q)-attainability of a set from the data of
the problem, the following result may serve the purpose.

Corollary 3. Given α ≥ 0, an interval I ⊆ R, γ ∈ AC(I;Rd) and v : Rd → Rd,
we define

∆v
α,γ(t) :=

∣∣∣∣γ(t)− γ(0)

t1+α
− v(γ(0))

∣∣∣∣ .
Let D ⊆ P2(Rd) and assume that there exist constants Cφ ≥ 0, α, β,K > 0 such
that, by defining for any µ ∈ D

tµ := min

{
1,

1

2L
, σ

1/β
Φ (µ)

}
and Iµ := [0, tµ],

we have

a.) Φ := {φ}, where φ is semiconcave with constant Cφ;



b.) for all µ ∈ D\ S̃Φ
2 there exist functions vµ, ξµ ∈ L2

µ(Rd;Rd), η ∈ P(Rd×ΓIµ),
and constants C2,µ, C3,µ, C4,µ > 0 satisfying
• 0 ≤ α < β − 1;
• µ = {et]η}t∈Iµ ∈ AIµ(µ), with etµ]η ∈ D;

• ξµ(x) ∈ ∂Pφ(x) for µ-a.e. x ∈ Rd;

•
∫
Rd
〈ξµ(x), vµ(x)〉 dµ(x) ≤ −C2,µ < 0;

•

(∫
Rd×ΓIµ

|∆vµ
α,γ(tµ)|2 dη(x, γ)

)1/2

≤ C3,µtµ;

• ‖vµ‖L2
µ
≤ C4,µ;

•
(
−C2,µ + C3,µ‖ξµ‖L2

µ
tµ + 2Cφ(C2

3,µt
2
µ + C2

4,µ)tα+1
µ

)
≤ −2K · tµ.

Then (STLA) holds in D and for all µ ∈ D we have

T̃
Φ
2 (µ) ≤



βσ

β−α−1
β

Φ (µ)

K(β − α− 1)
, if σΦ(µ) ≤ min{1, (2L)−β}

β (2L)−β+α+1

K(β − α− 1)
+

1

K
(2L)α+1 (σΦ(µ)− (2L)−β), if σΦ(µ) ≥ (2L)−β = min{1, (2L)−β}

β

K(β − α− 1)
+

1

K
(σΦ(µ)− 1), if σΦ(µ) ≥ 1 = min{1, (2L)−β}.

Proof. Indeed, for η-a.e. (x, γ) ∈ Rd × ΓIµ we have

φ(γ(tµ))− φ(γ(0)) ≤〈ξµ(γ(0)), γ(tµ)− γ(0)〉+ Cφ|γ(tµ)− γ(0)|2

≤tα+1
µ 〈ξµ(γ(0)), vµ(γ(0))〉+ tα+1

µ |ξµ(γ(0))|∆vµ
α,γ(tµ)+

+ Cφt
2(α+1)
µ

(
∆vµ
α,γ(tµ) + |vµ(γ(0))|

)2
.

Integrating w.r.t. η and using Hölder’s inequality yields

σΦ(µtµ )−σΦ(µ) ≤

≤− C2,µt
α+1
µ +

∫
Rd×ΓIµ

|ξµ(x)| · tα+1
µ ∆

vµ
α,γ(tµ) dη(x, γ) + 2Cφ(C2

3,µt
2
µ + C2

4,µ)t
2(α+1)
µ

≤− C2,µt
α+1
µ + tα+2

µ ‖ξµ‖L2
µ
· C3,µ + 2Cφ(C2

3,µt
2
µ + C2

4,µ)t
2(α+1)
µ

≤tα+1
µ

(
−C2,µ + C3,µ‖ξµ‖L2

µ
tµ + 2Cφ(C2

3,µt
2
µ + C2

4,µ)tα+1
µ

)
≤− 2K · tα+1

µ · tµ = −2K tα+2
µ .

(11)

Choose

r(q) := min

{
1,

1

2L
, q1/β

}
, Q(t, q) := −K · tα+1 · r(q).

In particular, we have r(q) = 0 if and only if q = 0, Q(r(q), q) < 0 if q 6= 0,

r(q)

|Q(r(q), q)|
=

1

K min
{

1, 1
(2L)α+1 , q

α+1
β

} =
1

K
max

{
1, (2L)α+1, q−

α+1
β

}
,

which is a decreasing integrable function of q. Furthermore, we notice that by
definition tµ = r(σΦ(µ)) and Q(r(σΦ(µ)), σΦ(µ)) = −K tα+2

µ . Thus, from (11) we
get

σΦ(µr(σΦ(µ)))− σΦ(µ) ≤ 2Q(r(σΦ(µ)), σΦ(µ)),



and so we showed that S̃Φ
2 is (r,Q)-attainable. The result now follows from Theorem

5.5 and Proposition 10.

6. A brief comparison with classical attainability. As reported in p. 352 [10]
and at the beginning of Sec. 6.1 in [9], we recall that if (Ω,B,P) is a sufficiently
“rich” probability space, i.e., Ω is a complete separable metric space, B is the
Borel σ-algebra on Ω, and P is an atomless Borel probability measure, given any
µ1, µ2 ∈ Pp(Rd) there exist X1, X2 ∈ LpP(Ω) such that µi = Xi]P, i = 1, 2, and
Wp(µ1, µ2) = ‖X1 − X2‖LpP . For instance, we can take Ω = [0, 1] endowed with

the restriction of the Lebesgue measure to [0, 1]. This allows to use the well-known
differential structure on LpP(Ω) (the case p = 2 is the most common, in particular
in the context of mean field games) in order to formulate the problem and possible
derive finer properties of regularity for the solutions, by relying for instance on the
theory of viscosity solution in infinite-dimensional Banach spaces. For instance, in
this setting (more oriented to a stochastic process interpretation) the representation
of Remark 2 can be expressed as follows.

Corollary 4 (Stochastic SP). Let (Ω,F ,P) be a reference probability space, where
Ω is a Polish space and P ∈ P(Ω) an atomless measure. Then, µ = {µt}t∈[0,T ] ⊆
P2(Rd) is an admissible trajectory if and only if there exists a stochastic process
X = X(·) with

Ω 3 ω 7→ X(·) := X(·, ω) ∈ AC(0, T ) ∩ C([0, T ];Rd)

such that

• µt = Xt]P for all t ∈ [0, T ];

• Ẋ(t) ∈ F (µt, X(t)) for a.e. t ∈ [0, T ].

Proof. The proof is a consequence of Proposition 2, it sufficies to give the relation
between the measure η of Proposition 2 and the stochastic process X. By e.g.
Lemma 5.29 in [10], there exists a Borel map V : Ω→ Rd × ΓT such that η = V]P.
We can thus conclude by setting Xt := et ◦ V for all t ∈ [0, T ], indeed we have
µt = et]η = Xt]P.

Here we will not follow this approach, since it is not in the purposes of the
present paper to enter into this theory. However we actually implemented this
more stochastic approach in a similar context in the preprint [15]. Indeed, there
our interest is the study of a viability problem in the probability measure space
(P2(Rd),W2) by means of a suitable lifted Hamiltonian in L2(Ω). For completeness,
we mention that a theory of well-posedness for Hamilton-Jacobi equations in metric
spaces has been introduced and developed for instance by [1, 2, 20, 21, 24, 25].

In this section, we provide viscosity results related to our study with the pur-
pose to compare the concept of (r,Q)-attainability given in Definition 5.4 with the
classical one provided by [27] in the finite dimensional framework. For this sake, we
first study an Hamilton-Jacobi-Bellman equation associated with our time-optimal
control problem in a suitable viscosity sense. In particular, we prove that the min-
imum time function is a viscosity supersolution of an HJB equation similarly to
what occurs in the finite dimensional case.

Definition 6.1 (Superdifferential). Let 1 < p < +∞, U : Pp(Rd)→ R, µ ∈ Pp(Rd)
and let p′ be the conjugate exponent of p. We say that q ∈ Lp′(Rd) belongs to the



viscosity superdifferential of U at µ, and we write q ∈ D+U(µ), if for all ν ∈ Pp(Rd)
and all π ∈ Π(µ, ν) we have

U(ν) ≤ U(µ) +

∫
Rd×Rd

〈q(x), y − x〉 dπ(x, y) + o

([∫
Rd×Rd

|x− y|p dπ(x, y)

]1/p
)
.

Similarly, the set of viscosity subdifferentials of U at µ is defined by D−U(µ) =
−D+(−U)(µ).

Definition 6.2 (Viscosity solution). Let 1 < p < +∞, and U : Pp(Rd) → R. Let

H(µ, q) be defined for any µ ∈ Pp(Rd) and q ∈ Lp′µ (Rd). We say that

• U is a viscosity subsolution of H(µ,DU(µ)) = 0 if U is u.s.c. and H(µ, qµ) ≤ 0
for all qµ ∈ D+U(µ) and µ ∈ Pp(Rd);
• U is a viscosity supersolution of H(µ,DU(µ)) = 0 if U is l.s.c. and H(µ, pµ) ≥

0 for all pµ ∈ D−U(µ) and µ ∈ Pp(Rd);
• U is a viscosity solution of H(µ,DU(µ)) = 0 if it is both a super and a

subsolution.

In the following, we prove that the minimum time function is a viscosity solution
of an Hamilton-Jacobi-Bellman equation with the Hamiltonian H defined as follows

H(µ, q(·)) := −1− inf
v∈Lpµ

v(x)∈F (µ,x)

〈q(·), v(·)〉Lp′ ,Lp (12)

for µ ∈ Pp(Rd), q(·) ∈ Lp
′

µ (Rd) where p′ is the conjugate exponent of 1 < p < +∞.

Proposition 11. Let 1 < p < +∞ and S̃p be a generalized target. Assume Hypoth-
esis 3.3 for F , and that (STLA) holds for the system. Then the minimum time

function T̃p is a viscosity solution of the HJB equation H(µ,DT̃p(µ)) = 0, with
Hamiltonian H defined in (12).

Proof. By (STLA) assumption and Proposition 9, we get the continuity of T̃p.
Let µ ∈ Pp(Rd). Given a function vµ ∈ Lp(µ) with vµ(x) ∈ F (µ, x) for µ-a.e.

x, there exists an admissible trajectory µ = {µt}t∈[0,T ] represented by η satisfying
Lemma 3.7(1). According to the Dynamic Programming Principle (Proposition

8(3)), for all q ∈ D+T̃p(µ) and for all πt ∈ Π(µ, µt)

0 ≤ T̃p(µt)− T̃p(µ) + t

t

≤1 +
1

t

∫∫
Rd×Rd

〈q(x), y − x〉dπt(x, y) +
1

t
o

([∫∫
Rd×Rd

|x− y|p dπt(x, y)

]1/p
)

≤1 +

∫∫
Rd×ΓT

〈q(x),
γ(t)− γ(0)

t
〉dη(x, γ) +

1

t
o

([∫∫
Rd×ΓT

|γ(t)− γ(0)|p dη(x, γ)

]1/p
)

where we chose πt = (et, e0)]η in the last line. By letting t → 0+, Lemma 3.7(1)
yields

0 ≤1 +

∫
Rd
〈q(x), vµ(x)〉 dµ(x).

By taking the infimum on vµ ∈ Lp(µ) s.t. vµ(x) ∈ F (µ, x) for µ-a.e. x ∈ Rd, we

have for all π
(ε)
t ∈ Π(µ, µt)

H(µ, q(µ)) ≤ 0,



thus T̃p(·) is a viscosity subsolution of H(µ,DT̃p(µ)) = 0.

On the other hand, from the Dynamic Programming Principle, for any ε > 0 we

also get the existence of an admissible trajectory µ(ε) = {µ(ε)
t }t∈[0,T ], represented

by η(ε) satisfying Lemma 3.7(2), such that for all p ∈ D−T̃p(µ) and for all π
(ε)
t ∈

Π(µ, µ
(ε)
t )

ε ≥
T̃p(µ

(ε)
t )− T̃p(µ) + t

t

≥1 +
1

t

∫
Rd
〈p(x), y − x〉dπ(ε)

t (x, y) +
1

t
o

([∫∫
Rd×Rd

|x− y|p dπ(ε)
t (x, y)

]1/p
)

≥1 +

∫
Rd×ΓT

〈p(x),
γ(t)− γ(0)

t
〉dη(ε)(x, γ) +

1

t
o

([∫∫
Rd×Rd

|γ(t)− γ(0)|p dη(ε)(x, γ)

]1/p
)

where we chose π
(ε)
t = (et, e0)]η(ε) in the last line. Consider the disintegration of

η(ε) with respect to the evaluation operator at time t = 0, i.e. η(ε) = µ⊗ η(ε)
x . By

Filippov’s measurable selection Theorem (see [4, Theorem 8.2.10, Corollary 8.2.13])
there exists wt ∈ Lpµ(Rd) such that wt(x) ∈ F (µ, x) for µ-a.e. x ∈ Rd and∫

Rd

∣∣∣∣∣wt(x)−
∫
e−1
0 (x)

γ(t)− γ(0)

t
dη

(ε)
x

∣∣∣∣∣
p

dµ(x) =

∫
Rd
dp
F (µ,x)

(∫
e−1
0 (x)

γ(t)− γ(0)

t
dη

(ε)
x

)
dµ(x)

≤
∫
Rd×ΓT

dp
F (µ,x)

(
γ(t)− γ(0)

t

)
dη(ε)(x, γ),

where we used Jensen’s inequality in the last step. The last term vanishes as t→ 0+

by Lemma 3.7(2), and therefore for t sufficiently small

ε ≥1− ε‖p‖
Lp
′
µ

+

∫
Rd
〈p(x), wt(x)〉dµ(x) +

1

t
o
(
t · (ε+ ‖wt‖Lpµ)

)
≥−H(µ, p(·))− ε‖p‖

Lp
′
µ

+
1

t
o
(
t · (ε+ ‖wt‖Lpµ)

)
Recalling that for µ-a.e. x ∈ Rd we have

wt(x) ∈ F (µ, x) ⊆ F (δ0, 0) + Lip(F )(Wp(µ, δ0) + |x|),

we have that ‖wt‖Lpµ is bounded uniformly w.r.t. t, ε, and so by letting t→ 0+ and

ε→ 0+ we get

H(µ, p(·)) ≥ 0.

Thus T̃p(·) is also a viscosity supersolution of H(µ,DT̃p(µ)) = 0.

Remark 11. It seems natural that the combined use of (STLA) condition, of
Grönwall estimate (see Theorem 3.6) together with a semiconcavity assumption for
the distance to the target can be used to derive a semiconcavity estimate for the
generalized minimum time function, pretty much as in the finite-dimensional case
(see e.g. [6]). This topic will be subject of future investigation.

To conclude, we want to perform a comparison between the concept of (r,Q)-
attainability of Definition 5.4 and the results obtained in [27].

Proposition 12. Let 1 < p < +∞. Assume Hypothesis 3.3 for F and that the
generalized target S̃Φ

p is (r,Q)-attainable, with Q = Q(t, s) differentiable and such



that ∂tQ(0, ·) < 0. Then σΦ(·), defined in Definition 5.3, is a viscosity supersolution
of 1 +H(µ,DσΦ(µ)) = 0, in particular

inf
v∈Lpµ

v(x)∈F (µ,x)

〈p(x), vµ(x)〉 < 0, (13)

for all p(·) ∈ D−σΦ(µ), µ ∈ Pp(R2) \ S̃Φ
p .

Proof. Let µ ∈ Pp(Rd) \ S̃Φ
p and µ ∈ Ap[0,t](µ) be an admissible trajectory repre-

sented by η according to Proposition 2 and Remark 2, with 0 < t < r(σΦ(q)). We
notice that, for all p(·) ∈ D−σΦ(µ) we have

σΦ(µt)− σΦ(µ) ≥
∫
Rd×Γ[0,t]

〈p(x), γ(t)− γ(0)〉 dη(x, γ) + o
(
‖et − e0‖Lpη

)
.

In particular, according to (r,Q)-attainability condition, for every ε > 0 and 0 <
t ≤ ε we can find µ(ε) ∈ Ap[0,t](µ) represented by η(ε) such that

2Q(t, σΦ(µ))

t
+ε ≥ 1

t

∫∫
Rd×Γ[0,t]

〈p(x), γ(t)−γ(0)〉 dη(ε)(x, γ)+
1

t
o

(
‖et − e0‖Lp

η(ε)

)
,

where we used the previous estimate and divided by t > 0. Recalling the hypothesis
on Q and that without loss of generality we can consider Q(0, ·) = 0, then by letting
t→ 0+ and ε→ 0+ we obtain

0 > 2∂tQ(0, σΦ(µ)) ≥ −1−H(µ, p(·)).

Here, we used the same arguments used in Proposition 11 when proving that T̃p is
a viscosity supersolution of an HJB equation with Hamiltonian H defined in (12).

We remind that in order to be a supersolution, the continuity of T̃p is not needed,
and the l.s.c. is provided by Proposition 8.

So, we got that σΦ(·) is a viscosity supersolution of 1 +H(µ,DσΦ(µ)) = 0, thus
the conclusion noting that the expression above can be equivalently written as

inf
v∈Lpµ

v(x)∈F (µ,x)

〈p(x), vµ(x)〉 ≤ 2∂tQ(0, σΦ(µ)) < 0.

Remark 12. Notice that the expression obtained above in (13) represents a natural
counterpart of formula (27) in [27] (and subsequent extensions, see Corollary 3.5 and
Remark 3.3 of [27]). Here, the Lipschitz continuity requested in [27] is replaced by an
integrability assumption of the derivative ∂tQ. Therefore, under these hypothesis,
(r,Q)-attainability can be seen as a sampled form of the assumption in [27], indeed in
our framework the decreasing condition (27) is checked along admissible trajectories
only at time steps of size given by r(·).
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