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We investigate the similarities between two of the most challenging and complex systems
in Nature: the network of neuronal cells in the human brain, and the cosmic network of
galaxies. We explore the structural, morphological, network properties and the memory
capacity of these two fascinating systems, with a quantitative approach. In order to have an
homogeneous analysis of both systems, our procedure does not consider the true neural
connectivity but an approximation of it, based on simple proximity. The tantalizing degree
of similarity that our analysis exposes seems to suggest that the self-organization of both
complex systems is likely being shaped by similar principles of network dynamics, despite
the radically different scales and processes at play.
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INTRODUCTION

Central to our vision of Nature are two fascinating systems: the network of neurons in the human
brain and the cosmic web of galaxies.

The human brain is a complex temporally and spatially multiscale structure in which cellular,
molecular and neuronal phenomena coexist. It can bemodeled as a hierarchical network (i.e., “the human
connectome” [1]), in which neurons cluster into circuits, columns, and different interconnected
functional areas. The structure of the neuronal network allows the linking between different areas,
all devoted to process specific spatiotemporal activities over their neurons, forming the physical and
biological basis of cognition [e.g., Ref. 2]. Some of major challenges of contemporary neuroscience are to
disentangle the structure of the connectome (e.g., the complete map of the neural connections in a brain),
to understand how this structure can produce complex cognitive functions, and to define the role of glial
cells and of the microenvironment in the interneuronal physiology.

The Universe, according to the large collection of telescope data gathered over many decades,
seems to be reasonably well described by a “consensus” physical model called the ΛCDM model
(Lambda Cold Dark Matter), which accounts for gravity from ordinary and dark matter (i.e., very
weakly interacting particles), for the expanding space-time described by General Relativity, and for
the anti-gravitational energy associated to the empty space, called the “dark energy”. Such model
presently gives the best picture of how cosmic structures have emerged from the expanding
background and have formed the cosmic web [e.g., Refs. 3 and 4]. The most important building
blocks of the cosmic web are self-gravitating dark matter dominated halos, in which ordinary matter
has collapsed to form galaxies (and all stars within them). The initial distribution of matter density
fluctuations was early amplified by the action of gravity, and has developed into larger groups or
clusters of galaxies, filaments, matter sheets, and voids, in a large-scale web in all directions in space.
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Among the main challenges that cosmology still faces, are the
physical nature of dark energy, the composition of dark matter
(or the realm of alternative scenarios for it), the apparent tension
between different measurements of the expansion rate of the
Universe, the exact sequence of processes responsible for the
variety of galaxy morphology and their co-evolution with
supermassive black holes [e.g., Ref. 5, for a recent review].

Although the relevant physical interactions in the above two
systems are completely different, their observation through
microscopic and telescopic techniques have captured a
tantalizing similar morphology, to the point that it has often
been noted that the cosmic web and the web of neurons look alike
[e.g., Refs. 6 and 7].

In this work, we apply methods from cosmology, neuroscience,
and network analysis to explore this thought-provoking question
quantitatively for the first time, to our knowledge.

MATERIALS AND METHODS

Immunohistochemistry and Microscopy
We analyzed several independent samples of cerebral and of
cerebellar human cortex were formalin-fixed and paraffin-
embedded [8], sampling slices of depth 4 μm, with magnification
factors of 4×, 10× and 40×. Neurofilaments were labeled using the
Neurofilament (2F11) Mouse Monoclonal Antibody (Ventana/
CellMarque/Roche). Samples were automatically processed by
Ventana BenchMark Ultra Immunostainers. A Nikon eclipse 50i
microscope was then used to visualize the samples. Magnifications
larger than 40× was avoided in order to obtain a better optical depth
resolution, as well as to minimize the non-linear response of the
optic microscopy.

Cosmological Simulations
Weused synthetic samples of the cosmic web from a high-resolution
(24003 cells and dark matter particles) simulation of a cubic
1003 Mpc3 cosmic volume (1 Mpc " 3.085 · 1024 cm), performed
with the grid code ENZO [9] as detailed in Ref. 10. The simulation
produces a realistic distribution of dark matter, ordinary matter, and
magnetic fields at the present epoch. In order to mimic the “slicing”
procedure of brain tissues, we produced 12 different thin slices (with
thickness 25 Mpc) from the simulated volume, by extracting four
slices in perpendicular directions with respect to each of the
independent axes of the simulation. We give public access to our
cosmic web images, as well as to the brain samples and to the images
of other natural networks discussed below at this URL https://
cosmosimfrazza.myfreesites.net/cosmic-web-and-brain-network-
datasets.

RESULTS

Absolute Numbers, Internal Proportions,
and Composition
We first quote data available from the literature, which allow us a
first sketchy comparison of the absolute sizes of both systems. The
radius of the observable Universe is RU ∼ 13.9 Gpc [11]. The

extrapolation of recent observations posits that a total of
Ng ∼ 2.6 · 1012 galaxies may be present in within the sphere of
the observable Universe [12], with up to ∼ 5 · 1010 galaxies with
masses equal or larger to the one of the Milky Way. The largest
clusters of galaxies total a mass exceeding 1015 solar masses (1
solar mass " 1.989 · 1033 g). Long filaments of ordinary and dark
matter, with extension of several tens of Megaparsecs, connect
clusters and groups of galaxies and are separated by mostly empty
space [e.g., Ref. 4].

According to recent estimates, the adult human brain contains
Nneu ≈ 8.6 ± 0.8 · 1010 neurons in total, and almost an equal
number of non-neuronal cells. Only ∼ 20 − 25% of all
neurons are located in the cortical gray matter (representing
∼ 80% percent of brain mass), while the cerebellum has about
∼ 6.9 · 1010 neurons ( ∼ 80% of brain neurons) [13, 14].
It can be noticed that the two systems are organized in well

defined networks, with ∼ 1010 − 1011 nodes interconnected
through filaments (if we consider as nodes all galaxies with
masses comparable or larger to that of the Milky Way, see
above), whose typical extent is only a tiny fraction (≤ 10− 3) of
their host system size. Also, galaxies and neurons have a typical
scale radius, which is only a very small fraction of the typical
length of filaments they are connected to. Moreover, available
data suggest that the flow of information and energy in the two
networks is mostly confined to ≤ 25% of the mass/energy content
of each system.

In the case of the Universe we refer to the present-day
composition, based on Planck Collaboration et al. [15], as the
relative energy distribution is a function of time in the ΛCDM
cosmological model; for the human brain, we referred to the
published researches about human brain composition [e.g., Refs.
16 and 17].

In summary: 1) the brain is composed by water (77 − 78%),
lipids (10 − 12%), proteins (8%), carbohydrates (1%), soluble
organic substances (2%), salt (1%); 2) the Universe is made for
a 73 ∼ % by Dark Energy (a scalar energy field of the empty
space), for a 22.5% by DarkMatter, for 4.4% by ordinary baryonic
matter and for less than ≤ 0.1% by photons and neutrinos.

Strikingly, in both cases ∼ 75% of the mass/energy
distribution is made of an apparently passive material, that
permeates both systems and has an only indirect role in their
internal structure: water in the case of the brain, and dark energy
in cosmology, which to a large extent does not affect the internal
dynamics of cosmic structures [e.g., Ref. 18].

Morphological Comparison
Small samples of the human cerebral and cerebellar cortex were
harvested during corticectomy to approach subcortical tumors
(Section 2.1). The neuronal cells have been then stained with
clone 2F11 monoclonal antibody against neurofilaments, which
are neuron-specific intermediate filaments in the cytoplasm of
neurons that provide structural support to the neuronal
cytoskeleton, along with microtubules and microfilaments. It
has been shown that the number, spacing, and areal density of
neurofilaments in neurons are measures with a strong
dependency on axon caliber [e.g., Refs. 19–21]. Although also
microtubules density depends on axon caliber, it has been shown
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that microtubules often form small clusters in the vicinity of
membranous organelles [22]. For this reason we consider
neurofilaments might be more homogeneously arranged in the
neuron, and likely to be a better target to visualize the spatial
distribution of neurons in the slices. For the cosmic web, we
analyzed each one of the 12 thin slices from the simulated volume
(Section 2.2), to assess the effect of cosmic variance. Such 2-
dimensional approach mimics what is done with brain samples,
and due to the large degree of isotropy of the cosmic web on such
large scales this approach can also be used to readily translate our
statistics into the 3-dimensional case.

Figure 1 gives an overview of the details of structures observed
at various scales (from 4×, 10× and 40×magnifications in the case
of brain tissues, and on corresponding steps in zoom in the case of
the cosmic web) in our dataset. Especially on large scales, the
various samples do not show any spectacular degree of similarity.
In particular, the predominant role of the large overdensities
marked by clusters of galaxies is evident in the cosmic web
sample, while the finer structure of neurofilaments in the
brain samples produces richer small-scale patterns. At the
highest magnification achieved in our brain slices, however,

the refined network of neuronal bodies and of filaments start
presenting some similarity with the cosmic web on ≤ 20Mpc
scales. When focusing on histological slices, some variability can
be noticed that depends on different neuronal subtypes in brain
and cerebellar cortex. In the first slice, small neurons in the
granular layer are shown, along with the transition to the gangliar
layer with some Purkinje cells at the bottom of the picture.
Conversely, the second slice depicts large pyramidal cells
interspersed with small neuronal cells of the brain gray matter
(granular cells).

We will use in this work statistical tools to 1) compare the
distribution of structure across the entire continuum range of
spatial scales of our samples, also compared to other natural
complex systems (Section 3.3); 2) measure the properties of
connectivity between nodes in the network, estimating the
tendency to form highly clustered configurations (see
Section 3.4).

Spectral Analysis
We used here a statistics commonly used in cosmology: the
density power spectrum, P(k), which directly measures the

FIGURE 1 | Maps of normalized density contrast, δρ for examples of slices of the cerebellum (top row), of the brain cortex (middle row) and of the dark matter
distribution of the cosmic web (lower row), for various levels of magnification. The spectral and network analysis presented in this work will mostly focus on 40× samples
as in the right panels.
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contributions of different spatial frequencies, k " 2πL/l (where l is
the spatial scale and L is the maximum scale of each system), to
the density contrast, defined as δρ " ρ/ρ − 1, where ρ is the
density and ρ is the average density of each sample. We measured
P(k) for our 2-dimensional samples, by decomposing δρ into
a series of discrete spatial frequencies, δ( k→): 〈δ( k→)δ(k′→)〉 "
2π3P(k)δ2D( k

→ + k′
→), where δ2D is the 2-dimensional Dirac delta

function.
In the case of the cosmological simulation, 〈ρ〉 is uniquely

constrained by the initial conditions of the simulation, while in
the sample of the cortex and cerebellum we define it based on the
average measured within the sample itself. While accurately
knowing the local density contrast is trivial in the simulation,
it shall be noticed that a precise mapping of the recorded pixel
intensity to a projected matter density is far from trivial in
microscope observation, due to the non-linear response of the
microscopic imaging process. As noted in Section 2.1, our choice
of using very thin tissue samples and a magnification not higher
than ×40 is indeed motivated by the goal of minimizing the non-
linear response of the optic microscopy, by keeping the optical
depth small compared to the aperture of the image. For this
reason, δρ in our brain samples strictly is a measure of the contrast
of optical absorptions along the line of sight, which we assume to
be a proxy for the density contrast for the sake of comparing with
cosmological samples. We applied standard Fast Fourier
Transform with periodic boundary conditions to compute the
power spectra of cosmic web samples (as the domains are truly
periodic), while in the case of the brain samples we used a
standard zero-padding technique to embed the observed
samples into a 2 × 2 larger and empty area, and applied
apodisation at the interfaces between the empty area and the
data, in order to minimize spurious edge effects, as commonly
done in simulations [e.g., Ref. 23].

The resulting power spectra are shown in Figure 2. It shall be
stressed that power spectra are free to be slid horizontally in the
plot, in the sense that the reference scale L related to k " 1 is
decided a-posteriori. In the following, after a preliminary

comparison of spectra we adjusted the horizontal scale so that
k " 1 corresponds to L " 1.6 mm in brain samples, and to L "
100Mpc in the cosmic web. This corresponds to a scaling ratio of
1.875 · 1027 between the two systems. The amplitude of spectra in
the vertical direction, instead, is self-normalized to the total
variance of δρ within each sample. As a consequence, the brain
samples are differently normalized at k " 1, since when a lower
magnification is used and larger spatial scales are sampled, ≤ 1.6
mm scales contribute proportionally less to the variance of δρ

within the entire sample. In the first panel, we compare the
spectra of a random cosmic web slice with random brain slices
obtained with different magnifications. The comparison
strikingly shows (in line with what suggested on Figure 1)
that a remarkable similarity with spectra is obtained when
comparing ≤ 1 mm scales in brain samples to ≤ 100 Mpc
scales of the cosmic web. Most of the neuronal cells observed
in our cerebellar samples are granule cells, with somata having a
∼ 5 μm diameter, while their dendrites have dendrites with a
typical ∼ 13 μm length. The axon length (although variable
depending on the cortical areas) is on average in the range of
several millimeters [e.g., Ref. 24]. Considering that the slices used
for microscopic inspection most often are not parallel to the axis
of axons, it is likely that fragments of these fibers around ∼ 1 −
2 mm in length are visible in the slices. Therefore, the excess
power of neural power spectra in this spatial regime reflects the
abundance of structures with this typical size distribution.

On the other hand, the fluctuations measured on ≥ 1 − 2 mm
scales in brain samples present a steeper spectral shape than in
cosmic web spectra. For this reason, in the remainder of the
analysis we focused on datasets of 40× brain samples for a close
comparison with cosmic web slices. In the second panel, we show
P(k) both for the dark matter and gas distribution of all slices,
which are almost identical on large scales (≥ Mpc) and more
diffuse on smaller scales due to smoothing effect of gas pressure.
As for the cosmic web spectra, we show the envelope containing
all spectra of all 40× samples with shaded areas. We find a large
agreement across nearly ∼ 2 decades in spatial scales. The

FIGURE 2 | Left: power spectra of density fluctuations in all samples (in the case of brain samples, spectra from slices of different size and magnification factors are
shown). Right: power spectra of density fluctuations (in the case of brain tissues, only the 40× slices are used here), with shaded areas enclosing the entire distribution of
spectra for all samples (12 slices for cosmic web samples and four for the brain samples). Comparison power spectra from other samples natural systems are shownwith
gray lines.
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similarity between the cerebellum on 0.01 − 1.6 mm scales and
the dark matter distribution of the cosmic web on 1 − 102 Mpc
scales is remarkable. On smaller scales, the cortex sample displays
significant more power than the cerebellum, owing to the
distribution of small neurons in the granular layer described
above, while the baryon distribution of the cosmic web has less
power, due to the (well-known) effect of gas pressure in
smoothing out the fluctuations of baryon gas density on small
enough scale for hydrodynamical effects to be relevant. In all
cases we measure broken power laws, unlike what is expected for
(simpler) fractal distributions [e.g., Ref. 25]. This is in line with
several works, which have shown that at small scales, r ≤ 20Mpc
the galaxy correlation function scales as ∝ r−1 (where r is the
spatial scale in the 2-point correlation function) while on larger
scales the density only weakly (logarithmically) depends on the
system size [e.g., Refs. 26 and 27].

Lastly, we produced control power spectra for other randomly
drawn samples of natural networks (sky clouds, tree branches,
water turbulence, and magneto-hydrodynamic turbulence - all
available at https://cosmosimfrazza.myfreesites.net/cosmic-web-
and-brain-network-datasets), with the goal of double checking
that our method is not biased to produce similarity between
truly different physical systems. As shown by the gray lines in
the right panel of Figure 2, such systems display a more regular
power-law spectral behavior, clearly at variance with what found
in the main networks analyzed in this work - even if in the latter
case we did not perform a full analysis across the entire
dynamical range of such systems, looking for the emergence
of possible spectral features as in the case of the brain and the
cosmic samples.

However, power spectra are blind to phase correlations in the
continuous field, hence two morphologically different
distributions can still produce similar spectra [28]. In the
following section we will thus also rely on non-spectral
methods to compare the different samples.

Network Analysis
Network science have proliferated into various physical
disciplines, including neuroscience [e.g., Ref. 29–32] as well as
cosmology [e.g., Refs. 33 and 34]. Complex network analysis can
partially soften the problem of not having perfectly consistent
density estimators across our samples, in the sense that defining
the nodes of the various networks is less sensitive to the exact
mapping details of the images. We focus here on two simple
network parameters commonly used in graph theory and
network analysis [e.g., Refs. 35 and 36]. The first is the degree
centrality, Cd , which measures the degree of connectivity of a
network within the localized area (determined by a maximum
linking length, llink):

Cd(j) " kj
n − 1

(1)

where kj is the number of (undirected) connections to/from each
j-node and n is the total number of nodes in the entire network.
The second parameter is the clustering coefficient, C, which
quantifies the existence of structure within the local vicinity of
nodes, compared to a network of random points (i.e., the ratio of

connected triangles of nodes to all possible triples in a given
connected cluster). It is measured as

C(j) " 2yj
kj(kj − 1), (2)

in which yj is the number of links between neighboring nodes of
the j-node.

While sophisticated methods to identify nodes and filaments
in the simulated cosmic network [e.g., Ref. 4] or in the neuronal
network [e.g., Ref. 37] have been proposed, here we explore a
simpler approach with the advantage of being readily applicable
to both networks. The method is inspired by standard “halo
finding” procedures in cosmology to identify the self-gravitating
halos in the cosmic web [38]. In detail: 1) we marke the highest
intensity peaks in all maps (i.e., pixels in the top 10% of the
intensity distribution of each map); 2) we compute the enclosed
average intensity of pixels within circles of increasing radius, until
a low threshold value, Δ, is matched. The radius of the circle
reaching the Δ value defines the radius of each node in the
network (rΔ); 3) all pixels at a distance ≤ rΔ are assumed to
belong to that node. In the case of the cosmic web we tailored the
procedure so that Δ " 330ρ, while in the case of the brain networks
we tailored the values of Δ so that the radius of nodes in the
networks reasonably matches the size suggested by visual
inspection.

We then built the adjacent matrix of nodes, Mij, i.e., a matrix
with rows/columns equal to the number of detected nodes, with
value Mij " 1 if the nodes are separated by a distance ≤ llink, or
Mij " 0 otherwise. The choice of llink is arbitrary, but a full scan of
network parameters as a function of llink is beyond the goals of
this first exploratory work. We thus focused on one specific
choice for the linking length, motivated by the recent analysis
of observed galaxies by de Regt et al. [33], who suggested llink "
1.2Mpc as the reference “linking length” for matter halos in the
cosmic web (i.e., ∼ L/100 in Figure 2). Based on the similarity of
power spectra after opportunely renormalizing the spatial scales
presented in Section 3.3, we thus consistently rescaled the linking
length in 40× brain samples to llink " 16 μm. Figure 3 gives close
up view of the nodes and networks reconstructed for three slices
of our dataset.

This method selects from N ∼ 3800 − 4700 nodes in our
cosmic web slices, with an average number of 〈k〉 ∼ 3.8 − 4.1
connections per node. For the cerebellum slices we measured
〈k〉 ∼ 1.9 − 3.7, while for the cortex we measured 〈k〉 ∼ 4.6 − 5.4
for the N ∼ 1800 − 2000 identified nodes. On the other hand, the
estimated average number of nodes for the simulated cosmic web
is ∼ 40% smaller of the results reported from real galaxy surveys
by de Regt et al. [33], which is understood because of the much
smaller thickness of our model slices (a factor ∼ 4 thinner in
comoving depth compared to observations).

Both statistics clearly show that the brain and cosmic web
networks are very different from Erdös–Rényi random networks
of the same size, which would instead predict for the two
parameters Crandom ≈ 〈k〉/N (≤ 2 · 10− 3 in our case) and
Cd,random ≈ Crandom(1 − Crandom)/N (≤ 10− 7 − 10− 6 in our case),
in the limit of large N [e.g., Ref. 39]. We can see that instead all
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measured distributions of C measure a few different peaks in the
C ∼ 0.1 − 0.4 range, clearly indicating that all networks are highly
correlated, i.e., their links tend to be highly clustered together. In
the case of the cosmic web, similar sparse peaks were measured in
real data by de Regt et al. [33], and are ascribed to galaxies in
moderate (C ∼ 0.1) or rich (C ∼ 0.3) environments, like filaments
or large clusters of galaxies. Only the residual part of the
distributions, with C ≤ 10− 2, marks instead regions of the
network in which the connectivity is close to random (e.g.,
nodes in void regions). The networks also have values of
degree centrality clearly much larger (by three to four orders
of magnitude) than corresponding random networks. In the
cosmic network, the distributions of Cd are approximately
Poissonian and in line with the galaxy network studied by Ref.
33, even if the peaks of the distribution are at lower values than
the brain samples. The latter is compatible with the enhanced
presence of small neurons in the granular layer, already discussed
above, which leads to the presence of more closely packed clusters
of nodes.

We point out that in this study we analyzed only a fraction of
the cortex, and not the whole Central Nervous System, whose
architecture is obviously different. Actually, while proximity
can accurately describe the cosmic web, neural webs are based

on connections and therefore our analysis is not sensitive to
long-range connectivity. But indeed long-range connectivity is
known to be a crucial feature of neural webs. We defer the
application of more complex network statistics [e.g., Ref. 40])
to future work.

DISCUSSION

We have presented a detailed comparison between the neuronal
network and the cosmic web, two of the most fascinating and
complex networks in Nature, with the goal of assessing the level of
similarity between these two physical systems in an objective way.

We have also applied homogeneous statistical approaches
to real lab samples of both the brain and the cerebellar cortex
(Section 2.1), and to slices of the simulated distribution of
dark matter and ordinary in the cosmic web (Section 2.2), and
quantified their morphological and network properties using
spectral analysis (Section 3.3) as well as network parameters
from graph theory (Section 3.4). Within the range of
simplifying assumptions we used to define both networks
(e.g., based on the proximity of nodes identified from the
continuous matter distribution rendered by different imaging

FIGURE 3 | Top panels: zoomed details of the reconstructed connections between nodes for three example of networks in our sample (blue lines,
superimposed to the density contrast maps). Bottom panels: distributions of clustering coefficient and of degree centrality for all slices (the error bars give the scatter
within each investigated sample of slices). The reconstructed connections do not take into account the long-range neural connections, and the clusters shown are
purely spatial.
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techniques) our findings hint at the fact that similar network
configurations can emerge from the interaction of entirely
different physical processes, resulting in similar levels of
complexity and self-organization, despite the dramatic
disparity in spatial scales (i.e., ∼ 1027) of these two systems.

We are aware that this approach has several limitations. First,
our comparison focused on density of matter. The selection of
neurofilaments to outline the neuronal network was based on
the fact that they are quite evenly expressed in the cytoplasmic
compartment of the neurons. Our results should be further
validated with different markers, as microfilaments or
microtubules. Second, we assumed that the highest stain
density is located at the level of neuronal Soma, which is an
approximation, leading to a non-standard definition of nodes.
Further studies are required to validate our results with
functional neural network data and without losing
anatomical-visual definition. Third, our study has been based
on histological slices, which can obviously show only a tiny
portion of the brain network itself. Moreover, while the cosmic
web uses proximity to define its network, neural webs are based
on connections that can be significantly long-range spatially,
and which could not be properly assessed through our analysis
due to technical limitation of the method. For the above
limitations, we could not present a systematic and complete
connectivity analysis of networks, as we focused on simple
proximity and not on long-range connectivity. A key
Frontier of this line of comparative research is the possibility
of measuring the memory capacity of both networks, a task
presently made challenging by the radically different
approaches presently available to measure to monitor the
flow of information within them. An interesting factoid well
illustrates that possible similarities also exist in this respect. The
total memory capacity of the human brain has been recently
estimated using section electron microscopy to reconstruct the
3D distribution of dendritic spines and of their synapses, and
finding 26 distinct synaptic strengths, which accounts to an
average of ∼ 4.7 bits of information per neuronal cell [41].
Extrapolated to the total average number of nodes in the
neuronal network, this yields ≈ 2 · 1016 bits, i.e., ∼ 2.5
Petabytes as the memory capacity of the human brain. For
the cosmic web, a radically different idea based on Information
Theory can been used to quantify how much information is
encoded by the 3-dimensional structure of the cosmic web [42,
43]. Through the computation of the “statistical complexity”
that characterizes the dynamical evolution of simulated
universes, it has been argued that ∼ 3.5 · 1016 bits (i.e., ≈ 4.3
Petabytes of memory) are necessary to store the information of
cosmic structure within the entire observable Universe
( ≈ 13.8 Gpc). Such close agreement may appear as a mere
coincidence, considering that, given ambiguities in defining
both networks, particularly the cosmic web, these numbers
are known only approximately.

Together with the rest of the analysis presented in this work,
such similarities are meant to motivate the development of

more powerful and discriminating algorithms to pinpoint
analogies and differences of these fascinating systems,
almost at the conceivable extremes of spatial scales in the
Universe.
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