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1. Introduction

In the present paper we shall provide rigorous small noise expansion results for
the Lévy perturbed Vasicek model. Our analysis is based on [3], in the setting
proposed in [9, Sec.6.2]. Let us underline that during recent years a wide
range of small noise expansion techniques have been developed, particularly
with respect to the so called Loval Volatility Models (LVMs), see, e.g., [4, 8, 11,
13]. LVMs are commonly used to analyse options markets where the underlying
volatility strongly depends on the level of the underlying itself, therefore LVMs
are also widely accepted as tools to model interest-rate derivatives as is the case
for the Vasicek model. The paper is organized as follows: in Sect. 2 the we
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present the approach developed in [3] is presented and then applied, in Sect.
3, to provide order corrections to both the Vasicek model and its zero coupon
bond price.

2. The Asymptotic Expansion

2.1. The General Setting

Let us consider the following stochastic differential equation (SDE), indexed by
a parameter ǫ > 0

{

dXǫ
t = µǫ (Xǫ

t ) dt+ σǫ (Xǫ
t ) dLt,

Xǫ (0) = xǫ0 ∈ R, t ∈ [0,∞) ,
(1)

where Lt, t ∈ [0,∞), is a Lévy noise of jump diffusion type and µǫ : Rd → R,
σǫ : Rd → Rd×d are Borel measurable functions for any ǫ ≥ 0. In order to
guarantee existence and uniqueness of strong solutions of (1) we assume µǫ and
σǫ to be locally Lipschitz and with sublinear growth at infinity, see, e.g., [10].
We note that, if the Lévy process Lt has a jump component, then Xǫ

t in eq. (1)
has to be understood as Xǫ

t− := lims↑tX
ǫ
s , see, e.g., [12] for details. In what

follows we denote by stlimn→∞Xn := X, the limit in probability, namely,

lim
n→∞

P (|Xn −X| > δ) = 0 .

Let us state the following

Hypothesis 2.1. Let us assume that:

(i) µǫ, σǫ ∈ Ck+1(R) in the space variable, for any fixed value ǫ > 0 and for
all k ∈ N+

(ii) the maps ǫ 7→ αǫ(x), where α = µ, σ, are of CM(I) in ǫ, for some M ∈ N,
for every fixed x ∈ R and I := [0, ǫ0], ǫ0 = ǫ0 (µ

ǫ, σǫ) > 0.

It has been shown in [1, 3] that under hypothesis 2.1 on µǫ and σǫ, a
solution Xǫ

t of equation (1) can be represented as a power series with respect
to the parameter ǫ, namely

Xǫ
t = X0

t + ǫX1
t + ǫ2X2

t + · · ·+ ǫNXN
t +RN (t, ǫ) , (2)

whereXi : [0,∞) → R, i = 0, . . . , N , are continuous functions, while |RN (t, ǫ)| ≤
CN (t)ǫN+1, ∀N ∈ N and ǫ ≥ 0, for some CN (t) independent of ǫ, but in gen-
eral dependent of randomness, through X0

t ,X
1
t , . . . ,X

N
t . The functions Xi

t are
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determined recursively as solutions of random differential equations in terms of
the X

j
t , j ≤ i− 1, ∀i ∈ {1, . . . , N}. If we assume that x = x(ǫ), with ǫ 7→ x(ǫ)

in CN+1, 0 ≤ ǫ < ǫ0, 0 < ǫ0 < 1 and x(0) = x0 independent from ǫ, then the
following Taylor type expansion result holds

Proposition 2.2. Let assume x(ǫ) can be written as a power series

x(ǫ) =

N
∑

j=0

ǫjxj +Rx
N (ǫ), N ∈ N0, xj ∈ R, j = 0, 1, . . . , N , (3)

and let fǫ ∈ Ck+1, k ∈ N+, be of the following form

fǫ(x) =

K
∑

j=0

fj(x)ǫ
j +R

f
K(ǫ, x) , (4)

then we have fǫ(x(ǫ)) =
∑K+M

k=0 ǫk [fǫ(x(ǫ))]k + RK+M(ǫ) , with |RK+M(ǫ)| ≤
CK+MǫK+M+1, for some constant CK+M ≥ 0, independent of ǫ, 0 ≤ ǫ ≤ ǫ0,
and coefficients [fǫ(x(ǫ))]k defined by

[fǫ(x(ǫ))]0 = f0(x0);

[fǫ(x(ǫ))]1 = Df0(x0)x1 + f1(x0);

[fǫ(x(ǫ))]2 = Df0(x0)x2 +
1

2
D2f0(x0)x

2
1 +Df1(x0)x1 + f2(x0);

[fǫ(x(ǫ))]3 = Df0(x0)x3 +
1

6
D3f0(x0)x

3
1 +Df1(x0)x2

+Df2(x0)x1 +D2f1(x0)x
2
1 + f3(x0).

The general case reads as

[fǫ(x(ǫ))]k = Df0(x0)xk +
1

k!
Dkf0(x0)x

k
1 + fk(x0)

+B
f
k (x0, x1, . . . , xk−1) ,

(5)

where B
f
k is a real function depending on (x0, x1, . . . , xk−1) only.

Proof. See, e.g. [1].

The following theorem establish our main expansion result with respect to
the solutions to the SDE in eq. (1)
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Theorem 2.3. Let us assume that the coefficients αǫ, α = µ, σ, of the
stochastic differential equation (1) are in CKα(I) as function of ǫ, ǫ ∈ [0, ǫ0],
and in CMα(R) as function of x. Let us also assume that αǫ are such that there
exists a solution Xǫ

t in the probabilistic strong, resp. weak sense of (1). Let us
also assume that the recursive system of random differential equations

dX
j
t = [µǫ (Xǫ

t )]j dt+ [σǫ (Xǫ
t )]j dLt, j = 0, 1, . . . , N, t ≥ 0 ,

has a unique solution.

Then there exists a decreasing sequence {ǫn}n∈N, ǫn ∈ (0, ǫ0], with ǫ0 > 0

as in hyp. 2.1 (ii), and ǫn
n→+∞
−→ 0, such that Xǫn

t has an asymptotic expansion
in powers of ǫn, up to order N , in the following sense

Xǫn
t = X0

t + ǫnX
1
t + · · ·+ ǫNn XN

t +RN (ǫn, t) ,

with

st-limǫn↓0

sups∈[0,t] |RN (ǫn, s)|

ǫN+1
n

≤ CN+1 ,

for some deterministic CN > 0.

Remark 2.4. It can be seen that in general the k−th equation for Xk
t in

Th. 2.3 is a nonhomogeneous linear equation in Xk
t , but with random coeffi-

cients depending onX0
t , . . . ,X

k−1
t and with a random inhomogeneity depending

on Xk
t . Thus it has the general form

dXk
t = fk

(

X0
t , . . . ,X

k−1
t

)

Xk
t dt+ gk

(

X0
t , . . . ,X

k−1
t

)

dt

+ g̃k
(

X0
t

)

dLt + hk

(

X0
t , . . . ,X

k−1
t

)

Xk
t dLt

(6)

for some function fk, gk, g̃h and hk.

Example 2.1. Let µǫ = ax + ǫbx and σǫ = σ0x + ǫσ1x with a, b, σ0 and
σ1 some real constants. Applying Proposition 2.2 we get

X
0
t = x0 +

∫ t

0

aX
0
sds+

∫ t

0

σ0X
0
sdLs ,

X
1
t =

∫ t

0

aX
1
sds+

∫ t

0

bX
0
sds+

∫ t

0

σ1X
0
sdLt +

∫ t

0

σ0X
1
sdLt ,

X
k
t =

∫ t

0

aX
k
s ds+

∫ t

0

bX
k−1
s ds+

∫ t

0

σ1X
k−1
s dLs +

∫ t

0

σ0X
k
t dLt, k ≥ 2 .

(7)

In particular, if we consider the special case of µǫ(x) = ax+ b independent
of ǫ, σǫ(x) = cx + ǫd̃x, for some constants a, b, c and d̃, and where the Lévy
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process is taken to be a standard Brownian motion, Lt = Wt, then by eq. (5) we
have that Xk

t satisfies a linear equation with constant coefficients for any k ∈ N,
thus applying standard results, see, e.g., [6, 9], an explicit solution for Xk

t can
be retrieved. Moreover, if Lt = Wt is a Brownian motion and we consider a
set of K coupled linear stochastic equations with random coefficients, we have
that the k − th equation is of the form

{

dXk
t =

[

Ak(t)Xk
t + fk(t)

]

dt+
[

Bk(t)Xk
t + g(t)

]

dWt,

Xk
0 = xk0 ∈ R, t ≥ 0

(8)

where for any k with all the functions Ak, Bk, fk and g are assumed to be
Lipschitz and with linear growth. A solution of equation (8) is given by

X
k
t =

K
∑

k=0

Φk(t)

[
∫ t

0

Φ−1
k (s)

(

f
k(s)−B

k(s)gk(s)
)

ds+

∫ t

0

Φ−1
k (s)gk(s)dWs

]

(9)

where Φt is the fundamental K × K matrix solution of the corresponding
homogeneous equation, i.e. it is the solution of the problem

{

dΦk(t) = Ak(t)Φk(t)dt+Bk(t)Φk(t)dWt,

Φk(0) = I
. (10)

Remark 2.5. In the trivial case of K = 1 then Φ reduces to a scalar and
we have

Φ(t) = exp

{
∫ t

0

(

A(s)−
1

2
B2(s)

)

ds+

∫ t

0
B(s)dWs

}

.

In the more general case where Lt is a Lévy process composed by a Brownian
motion plus a jump component, i.e.

{

dΦ(t) = A(t)Φ(t)dt+B(t)Φ(t)dWt +
∫

R0

Φ(t)xÑ(dt, dx) = Φ(t)dXt,

Φ(0) = I, t ≥ 0
. (11)

where Ñ(dt, dx) is a Poisson compensated measure to be understood in the

following sense. We have Ñ(t, A) := N(t, A)− tν(A) for all A ∈ B(R, 0), 0 6∈ Ā,
N being a Poisson random measure on R+ × R0 and ν(A) = E(N(1, A), while
R0 := R \ {0} and

∫

R0
(|x|2 ∧ 1)ν(dx) < ∞. Then we have that a solution to eq.

(11) is explicitly given by

Φ(t) = exp

{∫ t

0

(

A(s)−
1

2
B

2(s)

)

ds+

∫ t

0

B(s)dWs

}

∏

0<s≤t

(1 + ∆Xs) e
−∆Xs

where ∆ηJ(s) := Xs −Xs− being the jump at time s ∈ (0, t). This object is
called Doóleans-Dade exponential (or stochastic exponential) and it is denoted
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by Φ(t) = E(Xt). The Doóleans-Dade exponential has a wide use in finance
since it is the natural extension to the Lévy case of the standard geometric
Brownian motion, see, e.g., [6, 9] for a more extensive treatment on fundamental
solution of homogeneous equation and [5] for more details on the Doóleans-Dade

exponential.

3. Application to Financial Mathematics

3.1. Approximation of an Option Price

The Vasicek model (together with the CIR model) is one of the most used
short rate modes. It assumes that the interest rate under the the risk neutral
measure Q evolves according to a mean reverting Ornstein-Uhlenbeck process
with constant coefficients, see, e.g. [7] for details. In particular the interest rate
rt is the solution of the following linear stochastic equation

{

drt = κ [θ − rt] dt+ σdWt,

r0 = r0,
(12)

with κ, θ, σ and r0 some positive constants. The price of a pure discounted
bond, better known as zero-coupon bond (ZCB), in the Vasicek model can be
explicitly computed, see, e.g. [7] as

ZCB(t;T ) = Et

[

e−
∫ T

t
rsds

]

= A(t;T )e−B(t;T )rt , (13)

A(t;T ) := exp

{(

θ −
σ2

2κ2

)

(B(t;T )− T + t)−
σ2

4κ
B(t;T )2

}

,

B(t;T ) :=
1

κ

(

1− e−κ(T−t)
)

.

The price of an option with payoff Φ(rT ) written on the interest rate rt is given
by

ZBO(t;T ) = Et

[

e−
∫ T

t
rsdsΦ (rT )

]

.

In the particular case of an European call/put option, as the one introduced
in the previous BS model, the formula can be explicitly computed, see, e.g. [7]
Sec. 3.2.1.
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From Theorem 2.3 we deduce that Φ(rǫt) has an asymptotic expansion in
powers of ǫ of the form

Φ(rǫt) =

H
∑

k=0

ǫk [Φ(rǫt)]k +RH(ǫ, t) , (14)

with
sup
s∈[0,t]

|RH(ǫ, s)| ≤ CH+1(t)ǫ
H+1 ,

and the coefficients can be computed from the expansions coefficients of rǫt , as
discussed in section 2, where also the Taylor coefficients of Φ are treated.

3.1.1. The Vasicek Model: A First Order Correction

Applying the results in Sec. 2, let us then consider the following perturbed
Vasicek model

{

drǫt = κ [θ − rǫt ] dt+ (σ0 + ǫσ1f(r
ǫ
t)) dWt,

rǫ0 = r0,
, (15)

with σ0 and σ1 some positive constants, f a smooth real valued function, 0 ≤
ǫ ≤ ǫ0.

Let us now consider the particular case f(r) = eαr, for some α ∈ R, then
we get the following proposition.

Proposition 3.1. For the particular case where f(r) = eαr, for some
α ∈ R0, we have that rǫt can be written a power series, namely

rǫt = r0t + ǫr1t +R1(ǫ, t) ,

where the expansion coefficients read as

r
0
t = r0e

−κt + θ
(

1− e
−κt

)

+ σ0

∫ t

0

e
κ(t−s)

dWs, with law N (µt, Qt) ,

r
1
t =

σ1

ασ0

(

e
αr0

t − e
αr0

)

+

∫ t

0

C
1
αe

−κ(t−s)
e
αr0

sds+

∫ t

0

C
2
αe

−κ(t−s)
r
0
se

αr0
s ,

(16)

with

µt = r0e
−κt + θ

(

1− e−κt
)

, Qt =
σ2
0

2κ

(

1− e−2κt
)

,

Cα
1 = −

σ1

ασ0

(

κ+ κθα+
1

2
α2σ2

0

)

, Cα
2 =

σ1

ασ0
κα .
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Proof. Applying Th. 2.3 we have that expanding eq. (15) up to the first
order we get

r0t = r0 +

∫ t

0
κ
[

θ − r0s
]

ds +

∫ t

0
σ0dWs ,

r1t = −

∫ t

0
κr1sds+

∫ t

0
σ1e

αr0sdWs ,

(17)

An application of Itô’s lemma to g(s, r) = eκtr0t gives us that

r0t = r0e
−κt + θ

(

1− e−κt
)

+ σ0

∫ t

0
eκ(t−s)Ws, with lawN (µt, Qt) .

Computing r1t , in the same manner, we have that applying Itô’s lemma to
g(s, r) = eκtr1t it follows

r1t = σ1

∫ t

0
e−κ(t−s)eαr

0
sdWs,

Applying again Itô’s lemma to the function h(r) = eαr
0
t eκs we get

eαr
0
t − eαr

0
0 =

∫ t

0

(

γ − καr0s
)

eαr
0
sds+

∫ t

0
ασ0e

αr0sdWs , (18)

with γ := κ+ακθ+
α2σ2

0
2 . The expression for r1t thus follows applying eq. (18)

and solving for integral w.r.t. the Brownian motion.

Remark 3.2. With the same argument we can derive also the second
correction term r2t . In fact applying Th. 2.3 we have that

r2t = −

∫ t

0
κr2sds+

∫ t

0
σ1αe

αr0sdWs = σ1α

∫ t

0
e−κ(t−s)eαr

0
sdWs .

The particular choice of f(r) = eαr can easily be extended to any real func-
tion which can be written as a Fourier transform, resp. Laplace transform,
f(r) =

∫

R0
eirαλ(dα), resp. f(r) =

∫

R0
eαrλ(dα) of some positive measure

λ on R0 (e.g. a probability measure) resp. which has finite Laplace trans-
form. Formulae (20) holds with Kαe

αr0τ replaced by
∫

R0
Kαe

iαr0τλ(dα), resp.
∫

R0
Kαe

αr0τλ(dα), which are finite if, e.g.
∫

R0
|Kα|λ(dα) < ∞, resp. λ has

compact support. In fact eq. (18) gets replaced by
∫

R0

eαr
0
t λ(dα) = 1 +

∫

R

[
∫ t

0

(

eαr
0
sαµ +

α2

2
σ2
0e

αr0s

)

ds

]

λ(dα)

+

∫

R

[
∫ t

0
eαr

0
sασ0dWs

]

λ(dα) .
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By repeating the steps used before we get the statements in Prop. 3.3 extended
to these more general cases.

3.1.2. The Vasicek Model: A First Order Correction with Jumps

In the present section we will deal with the previous model with an addition
of a small perturbed Poisson compensated measure N . In particular we will
assume Ñ(t, A) := N(t, A)−tν(A) for all A ∈ B(R, 0), 0 6∈ Ā, N being a Poisson
random measure on R+ × R0 and ν(A) = E(N(1, A), while R0 := R \ {0} and
∫

R0
(|x|2 ∧ 1)ν(dx) < ∞. Eventually the Poisson random measure is assumed to

be independent of the Brownian motion Wt. We refer to [5] for details on Levy
processes.

Under previous conditions let us assume we are given an interest rate rǫt
evolving according to the SDE

{

drt = κ [θ − rt] dt+ (σ0 + ǫσ1f(r
ǫ
t)) dWt + ǫ

∫ t

0

∫

R0
xÑ(ds, dx) ,

r0 = r0,
(19)

with the notation as previously introduced.

Let us again consider the particular case f(r) = eαr, for some α ∈ R, then
we get the following proposition.

Proposition 3.3. For the particular case where f(r) = eαr, for some
α ∈ R0, we have that rǫt can be written a power series, namely

rǫt = r0t + ǫr1t +R1(ǫ, t) ,

where the expansion coefficients read as

r
0
t = r0e

−κt + θ
(

1− e
−κt

)

+ σ0

∫ t

0

e
κ(t−s)

dWs, with law N (µt, Qt) ,

r
1
t =

σ1

ασ0

(

e
αr0

t − e
αr0

)

+

∫ t

0

C
1
αe

−κ(t−s)
e
αr0

sds+

∫ t

0

C
2
αe

−κ(t−s)
r
0
se

αr0
s

+

∫ t

0

∫

R0

xÑ(ds, dx) ,

, (20)

with constants as in Prop. 3.4.

Proof. The proof is completely analogous to the one of Prop. 3.4 just taking
into account the Poisson random measure.
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3.1.3. Application to Pricing

Expanding the payoff function Φ, assumed to be smooth, according to eq. (14)
we have that the first order correction to the fair price of an option written on
the underlying rǫ is given by

ZBO
1(0;T ) = E

[

e
−

∫
T

0
rǫ
s
dsΦ(rǫT )

]

= E

[

e
−

∫
t

0
r0
s
ds

(

1− ǫ

∫ t

0

r
1
sds

)

Φ
(

r
0
T

)

]

+ E

[

e
−

∫
t

0
r0
s
ds

(

1− ǫ

∫ t

0

r
1
sds

)

Φ′
(

r
0
T

)

]

.

(21)

Proposition 3.4. The first order corrected fair price of an option written
on the underlying rǫt reads as

ZBO
1(0;T ) = E

[

e
−

∫
T

0
rǫ
s
dsΦ(rǫT )

]

= ZBO + ǫE

[

e
−

∫
t

0
r0
s
ds

∫ T

0

r
1
sdsΦ

(

r
0
T

)

]

+ ǫE
[

e
−

∫
t

0
r0
s
dsΦ′

(

r
0
T

)

]

.

(22)

Proof. Expanding the rǫs in a converging power series we have that

e
−

∫
t

0
rǫ
s
ds = e

−
∫
t

0
r0
s
ds−ǫ

∫
t

0
r1
s
ds+R1(ǫ,t) = e

−
∫
t

0
r0
s
ds

(

1− ǫ

∫ t

0

r
1
sds+ R̃1(ǫ, t)

)

,

where r0t , r
1
t are given in Prop. 3.3 for the particular case of f(x) = eαx.

The expansion in eq. (22) follows applying Th. 2.3 to the payoff function
Φ.

If we consider the particular case of pricing a zero coupon bond (ZCB),
namely we consider a terminal payoff Φ = 1, we have the following.

Proposition 3.5. The first order corrected fair price of an option written
on the underlying rǫt reads as

ZCB1(0;T ) = ZCB + ǫE

[

e−
∫ t

0
r0sds

∫ T

0
r1sds

]

, (23)

where ZCB is the price given in eq. (13).

Proof. The claim follows by Prop. 3.4, with Φ = 1.
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[5] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies
in Advanced Mathematics Vol. 116, Cambridge University Press, Cam-
bridge, (2009).

[6] L. Arnold, Stochastic differential equations: theory and applications, J.
Wiley & Sons, (1974).

[7] D. Brigo, F. Mercurio, Interest rate models: theory and practice, Springer
Finance,Springer-Verlag, Berlin, (2006).

[8] J-P. Fouque, G. Papanicolau, R. Sircar, Derivatives in financial markets

with stochastic volatility, Cambridge University Press, (2000).

[9] C.W. Gardiner, Handbook of stochastic methods for physics, chemistry and

natural sciences, vol. 13, Springer series in Synergetics, Springer-Verlag,
Berlin, (2004).

[10] I.I. Gihman, A.V. Skorohod, Stochastic differential equations, Springer-
Verlag, New York, (1972).

[11] E. Lütkebohmert, An asymptotic expansion for a BlackScholes type model,
Bulletin des sciences mathematiques, 128 (2004), 661-685.
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