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ABSTRACT – The present paper treats the generalized Merton-type optimal consumption invest-
ment problem for a financial market whose characterizing parameters depend on the regime of the
economy. In particular, we consider an agent which controls both his consumption and invest-
ment, as well as an insurance contract, and whose objective is to maximize the total discounted
utility of consumption over an infinite horizon. In the case of Hyperbolic Absolute Risk Aversion
(HARA) utility functions it is possible to obtain explicit solutions to the optimal consumption,
investment and insurance problems, showing that the optimal strategies depend on the state of the
economy. Exploiting latter result we perform a novel financial analysis assuming that the economy
is characterized by three volatility regimes, also studying the impact of adding an exogenous wage
in the investor’s wealth process.

Keywords – Regime switching, insurance, stochastic optimization problem, Hamilton-Jacobi-Bellman equa-
tion, CRRA utility function, HARA utility function

1 INTRODUCTION

The optimal consumption and investment problem introduced by Merton in [12] is a key problem in both
theory and practice of finance. Merton derived a closed-form solution to the optimization problem assuming
perfect market, a Black & Scholes model for the dynamic of the risky asset, and a Constant Relative Risk
Aversion (CRRA) utility function type. Such an approach has been then generalized along different lines as, e.g.,
in [8] and [17].

In the traditional models for consumption and investment problems there is only one source of risk given by
the uncertainty of the stock price, whereas in real life an economic agent faces also risks such, e.g., the credit
default, the property-liability risk or the insurable risk. Concerning the latter, the investor can buy insurance,
which may reward him and offset capital losses if the risk event occurs. Obviously, the cost of insurance diminishes
the investor’s ability to consume and consequently his expected utility of consumption. The problem of determine
the optimal insurance strategy of an economic agent under a given utility maximization criterion is called optimal
insurance problem. In [1], Arrow gave first results with respect to the discrete time case, considering a static single-
period model, and showing that under fairly general conditions the optimal insurance is deductible insurance.

In [13], Moore and Young analyzed for the first time the problem of combining the Merton’s optimal
consumption-investment problem and the Arrow’s optimal insurance problem in a dynamic continuous-time
framework. They allowed the horizon to be random also giving an impact measure for insurance on the invest-
ment and consumption strategies and finding solutions for different utility functions.
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The introduction of an insurable risk in the optimization problem is an important extension, but not the only
possible one. In particular it is well known that the market behavior is affected by macroeconomic conditions that
may change dramatically as time evolves. The Regime Switching Models (RSM) approach takes into considerations
such long-term factors by allowing the market parameters, e.g., risk-free interest rate, stock return and volatility,
etc., to change in time according with the dynamic of an underlying continuous-time Markov chain whose states
represent the different regimes of the economy.

Hamilton pioneered the econometric applications of RSM in [6], showing in particular that a Markov switching
autoregressive time series model can represent the stock returns better than the usual model with deterministic
coefficients. Thereafter, RSM have been applied, e.g., to option pricing, portfolio analysis, optimal consumption,
investment and insurance problems. In [18] Sotomayor and Cadenillas consider a RSM where both the coefficients
and the utility function depend on the regime, aiming at the study of the stochastic control problem of an investor
who seeks to maximize his expected total discounted utility from consumption in the infinite horizon case. In
particular they give an explicit solutions for four different utility functions, and defines the first version of
the Hamilton-Jacobi-Bellman (HJB) equation for a stochastic control problem in infinite horizon with regime
switching.

Results obtained in [18] and [13], have been recently combined by Zou and Cadenillas in [19] to provide for
the first time a rigorous verification theorem to simultaneous optimal consumption, investment and insurance
problem, in a RS framework. Following the general outline of the latter paper, we present in Sections 2 and 3
the structure of the model and two verification theorems, together with the HJB equation related to this partic-
ular optimization problem. In Section 4 we recall results concerning explicit solutions for optimal consumption,
investment and insurance policies for the Hyperbolic Absolute Risk Aversion (HARA) utility functions case. The
last section is devoted to a novel numerical analysis concerning the impact of regimes, market coefficients and
investor’s risk aversion on optimal policies. Such results extends those obtained by Zou and Cadenillas, who set
their model in a two regimes framework, by assuming that there are three states in the economy. Moreover in
Subsection 5.2 we presents new results concerning the impact of adding a non-zero, exogenous wage in investor’s
wealth equation and we outline a comparison with respect to the standard problem.

2 STRUCTURE OF THE MODEL

Let W := {Wt, t ≥ 0} be a standard Brownian motion and let S := {St, t ≥ 0} be an observable, continuous-
time, stationary, finite-state Markov chain defined on a filtered probability space (Ω,F ,Ft,P), where Ft = (Ft)t≥0
indicates the P-augmentation of the filtration (FW,St )t≥0, and, for every t ∈ [0,∞), FW,St := σ{Ws, Ss | 0 ≤ s ≤ t}.
Note that, by definition of P-augmentation, the filtration Ft is complete and right-continuous. Furthermore, we
assume that W and S are independent. Let us denote by M := {1, 2, . . . ,M} the state space of the Markov
chain, where M ∈ {2, 3, 4, . . .} corresponds to the number of regimes in the economy, hence, for every t ∈ [0,∞),
St ∈M represents the state of the economy at time t. Assume that the rates for the Markov chain transitions are
described by a strongly irreducible generator matrix Q = (qij)i,j∈S , where ∀i ∈M,

∑
j∈S qij = 0, qij > 0 for i 6= j

and qii = −
∑
j 6=i qij . Following [19], we consider a financial market with two assets, a bond (riskless asset) and

a stock (risky asset), with price represented by the Ft-adapted process P 0 := {P 0
t , t ≥ 0} and P 1 := {P 1

t , t ≥ 0},
respectively. These price processes are assumed to be driven by the following dynamics:

dP 0
t = rStP

0
t dt ,

dP 1
t = P 1

t (µStdt+ σStdWt),

with initial conditions P 0
0 = 1 and P 1

0 > 0. Note that the coefficients of the market depend on the state of the
economy, and for all i ∈ M the rate of return ri for the riskless asset, the expected rate of return µi, and the
risky asset volatility σi, are all positive constants.

An investor chooses the proportion of wealth invested in the stock, π := {πt, t ≥ 0}, a consumption rate process
c := {ct, t ≥ 0} and he is subjected to an insurable loss L(t, St, Xt) or Lt for short, Xt being his wealth at time t,
characterized by a Poisson process N = {Nt, t ≥ 0} with intensity λSt , where λi > 0 for every i ∈ M. Suppose
that the investor can also control the payout amount process I := {It, t ≥ 0}, where It : [0,∞) × Ω 7→ [0,∞)
and It(ω) := It(L(t, St(ω), Xt(ω))) or, in short, It := It(Lt). In what follows we suppose that the premium
is payable continuously by the investor, at a rate Pt which is proportional to the expected payout, namely
Pt := λSt(1 + θSt)E[It(Lt)], where the positive constant θi, for i ∈ M is known as the loading factor and is due
to the administrative costs, tax and profit that an insurance company has to sustain. Moreover we assume that
W , S, and N are mutually independent, while the loss process L is independent of N and we denote with F the
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P-augmentation of the filtration generated by W , N , L and S. The wealth process associated to an investor with
a triplet of strategies ut := (πt, ct, It) is given by the F-adapted process X = {Xt, t ≥ 0}, driven by the following
dynamics:

dXt = (rStXt + (µSt − rSt)πtXt − ct − Pt)dt+ σStπtXtdWt − (Lt − It(Lt))dN(t), (1)

with initial conditions X0 = x > 0 and S0 = i ∈M. The investor’s utility of consumption is given by a function
U : (0,∞) ×M → R such that, for each state i ∈ M, U(·, i) is C2(0,+∞), strictly increasing, strictly concave,
satisfying a linear growth condition of the following type

∃K > 0 s.t. U(y, i) ≤ K(1 + y), ∀y > 0, i ∈M. (2)

The assumption that the utility function depends on the market regime is supported by many works on financial
economics,see, e.g., [3, 9, 11]. Note that, for a fixed regime i ∈M, it is possible to define U(0, i) := limy→0+ U(y, i)
and U ′(0, i) := limy→0+ U ′(y, i), extending the utility function to the domain [0,∞). A criterion functional of
the optimal consumption-investment-insurance problem is defined as follows

Definition 2.1. Given a control process u = ut := (πt, ct, It) for t ≥ 0 and initial conditions X0 = x > 0,
S0 = i ∈M, the criterion functional J is defined as

J(x, i;u) := Ex,i
[∫ ∞

0
e−δtU(ct, St)dt

]
, (3)

where δ > 0 is the discount rate and Ex,i represents the expectation conditioned to X0 = x and S0 = i.

Obviously, the investor will be able to consume and invest only if his wealth is positive, hence we define the
bankruptcy stopping time as Θ := inf{t ≥ 0 : Xt ≤ 0}, and impose Xt = 0 for all t ≥ Θ. Moreover, it is necessary
to characterize the admissibility of a control process.

Definition 2.2. A control u := (π, c, I) is said to be admissible if {ut}t≥0 is predictable with respect to the
filtration F and satisfies

Ex,i
[∫ t

0
csds

]
< +∞ ; Ex,i

[∫ t

0
σ2
Ssπ

2
sds

]
< +∞ ; Ex,i

[∫ Θ

0
e−δsU+(cs, Ss)ds

]
< +∞ , (4)

where, for all t ∈ [0,Θ], U+(ct, St) := max(0, U(ct, St)).
Moreover, ∀t ≥ 0, ct ≥ 0 and It ∈ It := {I : 0 ≤ I(Y ) ≤ Y , Y , Ft-measurable process}, i.e., the payout

amount is never greater than the loss amount, so the investor cannot obtain a gain from his loss. The set of all
admissible controls with initial conditions X0 = x and S0 = i will be denoted by Ax,i.

The investor wants to solve the following optimization problem:

Problem 2.1. Select an admissible control û = (π̂, ĉ, Î) ∈ Ax,i that maximizes the criterion functional (3), and
find the value function V (x, i) := supu∈Ax,i J(x, i;u), then the control û is the optimal control (or optimal policy)
of the optimization problem.

3 VERIFICATION THEOREMS

Let ψ : (0,∞) ×M → R be a function with ψ(·, i) ∈ C2(0,∞), ∀i ∈ M and define the operator Lui , for all
i ∈M, by Lui := (rix+ (µi − ri)πx− c− λi(1 + θi)E[I(L)])∂ψ∂x + 1

2σ
2
i π

2x2 ∂2ψ
∂x2 − δψ, then, see [19], pp. 8-11. we

have
Theorem 3.1. Suppose that U(0, i) is finite ∀i ∈M. Let v(·, i) ∈ C2(0,∞), i ∈M, be an increasing and concave
function in (0,∞) such that v(0, i) = U(0,i)

δ ∀i ∈M. If the function v(·, i) satisfies the Hamilton-Jacobi-Bellman
equation

sup
u
{Lui v(x, i) + U(c, i) + λiE[v(x− L+ I(L), i)− v(x, i)]} = −

∑
j∈M

qij

(
v(x, j)− U(0, j)

δ

)
, (5)

for every x > 0, and the control û = (π̂, ĉ, Î) defined by

ût := arg sup
u

(
LuStv(X̂t, St) + U(c, St) + λStE[v(X̂t − Lt + I(Lt), St)− v(X̂t, St)]

)
10≤t<θ ,
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is admissible, then û is an optimal solution to problem (2.1). Moreover, the value function is given by

V (x, i) := v(x, i) + 1
δ
Ex,i

[∫ ∞
0

e−δsdU(0, Ss)
]
,

where dU(0, Ss) :=
∑
j∈M qSs,jU(0, j)ds. Furthermore, if the utility function does not depend on the regime, i.e.

U(y, i) = U(y) for every i ∈M, y ∈ [0,∞), then the value function is given by V (x, i) = v(x, i).
Theorem 3.2. Suppose that U(0, i) = −∞ ∀i ∈M. Let v(·, i) ∈ C2(0,∞), i ∈M, be an increasing and concave
function in (0,∞) such that v(0, i) = U(0,i)

δ = −∞ ∀i ∈ M. If the function v(·, i) satisfies the Hamilton-Jacobi-
Bellman equation

sup
u
{Lui v(x, i) + U(c, i) + λiE[v(x− L+ I(L), i)− v(x, i)]} = −

∑
j∈M

qijv(x, j) , (6)

for every x > 0, and the control û = (π̂, ĉ, Î) defined by

ût := arg sup
u

(
LuStv(X̂t, St) + U(c, St) + λStE[v(X̂t − Lt + I(Lt), St)− v(X̂t, St)]

)
10≤t<θ ,

is admissible, then û is an optimal control to problem (2.1) and the value function is given by V (x, i) = v(x, i).

4 EXPLICIT SOLUTIONS OF VALUE FUNCTION

The objective of this section consists in obtaining explicit solutions to optimal consumption, investment and
insurance problem for particular choices of the utility function. Consider an utility function of HARA (Hyperbolic
Absolute Risk Aversion) type, which is characterized by the following functional form:

U(x) = 1− α
α

(
ax

1− α + b

)α
, x ∈ R+

where a, b and the risk aversion parameter α, are given constants. Note that this class of utility functions
includes the logarithmic utility U(x) = log(ax), takig the limit α → 0 with b = 0, as well as the smaller class
of CRRA utility functions. Suppose that the insurable loss L is proportional to the investor’s wealth, namely
L(t, St, Xt) = ηSt ltXt, where for every i ∈M, ηi > 0 measures the intensity of the insurable loss in regime i, and
for every t ≥ 0, lt ∈ (0, 1) is an Ft-measurable process indicating the loss proportion at time t. In the sequel, we
will assume that the loss proportion do not depend on time t, and in particular that l is constant or uniformly
distributed on (0, 1). In this context, we note that the HJB equation (5) is equivalent to

sup
π∈R

[
f(π, x, i)

]
+sup
c≥0

[
g(c, x, i)

]
+λi sup

I≥0

[
h(I, x, i)

]
= (δ+λi)v(x, i)−rixv′(x, i)−

∑
j∈M

qij

(
v(x, j)− U(0, j)

δ

)
, (7)

while the HJB equation (6) is equivalent to

sup
π∈R

[
f(π, x, i)

]
+ sup

c≥0

[
g(c, x, i)

]
+ λi sup

I≥0

[
h(I, x, i)

]
= (δ + λi)v(x, i)− rixv′(x, i)−

∑
j∈M

qijv(x, j), (8)

where v′ := ∂v/∂x, v′′ := ∂2v/∂x2 and

f(π, x, i) := (µi − ri)πxv′(x, i) + 1
2σ

2
i π

2x2v′′(x, i) ; g(c, x, i) := U(c, i)− cv′(x, i); (9)

h(I, x, i) := E
[
v(x− ηilx+ I(ηilx), i)

]
− (1 + θi)E

[
I(ηilx)

]
v′(x, i). (10)

If v(·, i) is strictly increasing and concave for every i ∈ M, i.e. v′ > 0 and v′′ < 0 for all x > 0, i ∈ M, then a
candidate for the optimal investment strategy is

π̂(x, i) := arg sup
π∈R
{f(π, x, i)} = − (µi − ri)v′(x, i)

σ2
i xv
′′(x, i) , (11)

and a candidate for the optimal consumption strategy is given by

ĉ(x, i) := arg sup
c≥0
{g(π, x, i)} = (U ′)−1(v′(x, i), i). (12)

Note that U ′ is strictly decreasing, so the inverse of U ′ exists; in particular, for HARA utility functions such
inverse always exists on (0,∞). For the optimal insurance policy, we have the following theorem:
Theorem 4.1. The optimal insurance, denoted with Î, is either no insurance or deductible insurance (a.s.)
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• The optimal insurance is no insurance, i.e. Î(x, i, l) = 0 ∀i ∈M, if (1+θi)v′(x, i) ≥ v′
(
(1−ηiess sup(l))x, i

)
.

• The optimal insurance is deductible insurance, i.e. Î(x, i, l) = (ηilx− di)+ ∀i ∈M, if ∃di := di(x) ∈ (0, x)
such that (1 + θi)v′(x, i) = v′(x− di, i).

Proof. See [19], Lemma 4.1 and Theorem 4.1.

The result in theorem 4.1 is well known in static models: indeed, Schlesinger and Gollier proved in [16] that
if one considers per-claim insurance and if the premium is proportional to the expected payout E[It(Lt)], then
optimal insurance is deductible insurance. Moore and Young were the first to show that the same result holds
in a dynamic setting, see [13], Proposition 3.1. Note that if θi = 0, then the deductible is null (di = 0), i.e. full
insurance is optimal if the premium rate is actuarially fair. Furthermore, the optimal insurance Î satisfies some
usual properties, namely it is an increasing function of the loss, a decreasing function of the price, and it vanishes
when insurable loss is zero. In order to find an explicit function v(·, i), i ∈ M, that satisfies either equation (5)
or equation (6), we consider four utility functions of HARA type: the first three are very common in financial
economics and do not depend on the market regimes, whereas the last one changes its parameters according to
the regime of the economy.

1. U(x, i) = ln(x), x > 0,

2. U(x, i) = −xα, x > 0, α < 0,

3. U(x, i) = xα, x > 0, 0 < α < 1,

4. U(x, i) = βi
√
x, x > 0, βi > 0, i ∈M.

It is possible to verify that these functions satisfy all the requirements for being utility functions: in particular,
for a fixed i ∈M each of them is C2(0,∞), strictly increasing and strictly concave, and satisfy the linear growth
condition (2) for suitable constants K > 0. To be more specific, K = 1 for the first three utility functions and
K = maxi{βi} for the last one.

4.1 U(x, i) = ln(x), x > 0
In this case, a solution to the HJB equation (6) is given by v̂(x, i) = 1

δ ln(δx) + Âi, i ∈ M,where the constants
Âi, i ∈ M, will be determined below. In order to find the equations for optimal investment, consumption and
insurance policies, compute first v̂′(x, i) = 1

δx , v̂
′′(x, i) = − 1

δx2 and (U ′)−1(x, i) = 1
x ; with these resuts, by (11)

and (12), we obtain that π̂(x, i) = µi−ri
σ2
i

and ĉ(x, i) = δx, then 1+θi
δx = 1

δ(x−di) , which gives di = θi
1+θix

and Since there exists di := di(x) ∈ (0, x) satisfying (1 + θi)v′(x, i) = v′(x − di, i), then, by Th.4.1, we have

Î(x, i, l) =
(
ηil− θi

1+θi

)+
x. Substituting the optimal controls in HJB equation (6), we obtain that the constants

Âi, i ∈M, has to satisfy the following equation:
1
δ

(ri + γi + λiΛ̂i − δ) = δÂi −
∑
j∈M

qijÂj , (13)

where γi := (µi − ri)2/(2σ2
i ) and

Λ̂i := E
[
ln
(

1− ηil +
(
ηil −

θi
1 + θi

)+)]
− (1 + θi)E

[(
ηil −

θi
1 + θi

)+]
. (14)

Note that the Λ̂1, Λ̂2, . . . , Λ̂M , for M ∈ {2, 3, 4, . . .}, are the only quantities not directly given by the market;
in particular, in section 5 we will compute the value of Λi, ∀i ∈M, from equation (14), assuming a constant loss
proportion l and, without loss of generality, that θ1

η1(1+θ1) <
θ2

η2(1+θ2) < . . . < θM
ηM (1+θM ) .

Proposition 4.2. The function v̂(·, i), i ∈ M, given by v̂(x, i) =
{

1
δ ln(δx) + Âi, x > 0
−∞, x = 0,

where Âi, i ∈ M,

satisfies the linear system (13), is the value function of Problem 2.1 with utility function U(x, i) = ln(x), x > 0.
Moreover, the optimal policy is given by

ût = (π̂t, ĉt, Ît) =
(
µSt − rSt
σ2
St

, δX̂t,

(
ηSt lt −

θSt
1 + θSt

)+
X̂t

)
, (15)

where {X̂t, t ≥ 0} denotes the wealth process for an investor who chooses the optimal strategy ût at every time
t ≥ 0. Proof: See [19], pp. 17-18.
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4.2 U(x, i) = −xα, x > 0, α < 0, ∀i ∈M
In this framework, a solution to the HJB equation (6) is given by ṽ(x, i) = −Ã1−α

i xα, where the constants
Ãi > 0, i ∈ M will be determined below. Since ṽ′(x, i) = −αÃ1−α

i xα−1, ṽ′′(x, i) = α(1 − α)Ã1−α
i xα−2 and

(U ′)−1(x, i) = (−αx )
1

1−α , we obtain, ∀i ∈ M, π̂(x, i) = µi−ri
(1−α)σ2

i
and ĉ(x, i) = x

Ãi
. Concerning the optimal

insurance policy, solving the equation (1+θi)ṽ′(x, i) = ṽ′(x−di, i) we find di = νix, where νi := 1− (1+θi)−
1

1−α ,
which implies Î(x, i, l) = (ηil − νi)+x. By substituting the candidate control û = (π̂, ĉ, Î) into the HJB equation
(6), we obtain the following non-linear system for the constants Ãi, i ∈M:(

δ − αri −
α

1− αγi + λi(1− Λ̃i)
)
Ã1−α
i − (1− α)Ã−αi =

∑
j∈M

qijÃ
1−α
j , (16)

where Λ̃i := E
[
(1 − ηil + (ηil − νi)+)α

]
− α(1 + θi)E

[
(ηil − νi)+] can be easily computed assuming that l is

constant or uniformly distributed on (0,1), as in previous case. Note that the constants Ãi, i ∈ M, must be
positive by definition of the optimal consumption process ĉ(x, i), and that Ãi ≡ 0 ∀i ∈ M is a trivial solution
of system (16), because 1 − α and −α are both positive constants. Therefore, in order to guarantee the above
non-linear system has a unique positive solution, an additional condition is necessary:
Lemma 4.3. The non-linear system (16) has a unique positive solution Ãi, i ∈M, if the parameter δ satisfies

δ > max
i∈M

{
αri + α

1− αγi − λi(1− Λ̃i)
}
. (17)

Proof. See [18], Lemma 4.1.

Proposition 4.4. The function ṽ(·, i), i ∈M, given by ṽ(x, i) =
{
−Ã1−α

i xα, x > 0
−∞, x = 0

, where Ãi, i ∈M is the

unique solution to the linear system (16) with condition (17), is the value function of Problem 2.1 with utility
function U(x, i) = −xα, x > 0, α < 0. Moreover, the optimal policy is given by

ût = (π̂t, ĉt, Ît) =
(
µSt − rSt

(1− α)σ2
St

,
X̂t

ÃSt
,
(
ηSt lt − νSt

)+
X̂t

)
, t ≥ 0. (18)

4.3 U(x, i) = xα, x > 0, 0 < α < 1, ∀i ∈M
We have to consider the HJB equation (5), since U(0, i) = 0 ∀i ∈ M, and a solution is given by the function
v̄(x, i) = Ā1−α

i xα, where the constants Āi > 0, i ∈ M, satisfies again the non linear system (16), with the only
difference that now 0 < α < 1. This can be easily proven by showing that for every i ∈ M the candidates for
optimal investment, consumption and insurance policies are the same as before.
Lemma 4.5. System (16) with 0 < α < 1 has a unique positive solution Āi, i ∈M, if the parameter δ satisfies

δ > max
i∈M

{
αri + α

1− αγi
}
. (19)

Proof. See [18], Lemma 4.2.

Proposition 4.6. The function v̄(x, i) := Ā1−α
i xα, x ≥ 0, i ∈M, where Āi, i ∈M is the unique solution to the

linear system (16) with condition (19), is the value function of Problem 2.1 with utility function U(x, i) = xα,
x > 0, 0 < α < 1. Moreover, the optimal policy is given by

ût = (π̂t, ĉt, Ît) =
(
µSt − rSt

(1− α)σ2
St

,
X̂t

ĀSt
,
(
ηSt lt − νSt

)+
X̂t

)
, t ≥ 0. (20)

4.4 U(x, i) = βi
√
x, x > 0, βi > 0, ∀i ∈M

Consider a power utility function with α = 1
2 and with the particularity that it depends explicitly on the state

of the economy. In this scenario, the value function that solves the HJB equation (5) is v̌(x, i) = (Ǎix) 1
2 , where

the constants Ǎi > 0, i ∈M satisfy a non-linear system that will be determined below.
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From v̌′(x, i) = 1
2 Ǎ

1
2
i x
− 1

2 , v̌′′(x, i) = − 1
4 Ǎ

1
2
i x
− 3

2 and (U ′)−1(x, i) =
(
βi
2x
)
we obtain

π̂(x, i) = 2(µi − ri)
σ2
i

, ĉ(x, i) = β2
i x

Ǎi
and Î(x, i, l) = (ηil − ν̌i)+x,

where ν̌i = 1− 1
(1+θi)2 ∀i ∈M. Substituting these candidates for optimal policies in the HJB equation (5) yields

the following non-linear system for constants Ǎi(
δ − 1

2ri − γi + λi(1− Λ̌i)
)
Ǎ

1
2
i −

1
2
β2
i

Ǎ
1
2
i

=
∑
j∈M

qijǍ
1
2
j , (21)

where Λ̌i := E
[
(1− ηil + (ηil − ν̌i)+) 1

2
]
− 1

2 (1 + θi)E
[
(ηil − ν̌i)+]. One can prove that system (21) has a unique

positive solution if condition (19) is satisfied for α = 1
2 .

Proposition 4.7. For every i ∈M, the function v̌(x, i) := (Ǎix) 1
2 , x ≥ 0, where Ǎi is the unique solution to the

linear system (21) with condition (19) and α = 1
2 , is the value function of Problem 2.1 with the regime-dependent

utility function U(x, i) = βix
1
2 , x > 0, βi > 0. Moreover, the optimal policy is given by

ût = (π̂t, ĉt, Ît) =
(

2(µSt − rSt)
σ2
St

,
βStX̂t

ǍSt
,
(
ηSt lt − ν̌St

)+
X̂t

)
, t ≥ 0. (22)

5 ECONOMIC ANALYSIS

In the first part of this section we analyze the impact of risk aversion and market parameters on optimal
policy from an economical point of view, and we extend the results presented in [19] by assuming that there are
three, instead of two, regimes in the economy:
• regime 1, or low volatility state, represents a market with good economic conditions, for instance a market
in economic boom or in which security prices are rising (bull market);

• regime 2, or medium volatility state, represents an average economy, in which prices are stable;

• regime 3, or high volatility state, corresponds to a market with bad economic conditions, for instance a
market in recession or in which security prices are very variable and are expected to fall (bear market).

Next, we study the impact of adding an exogenous wage in the investor’s wealth process by setting a new
optimization problem and comparing the relative value function with the previous one.

5.1 Impact of market parameters and risk aversion
According to the economic theory, the market parameters should satisfy some conditions, among which the

assumption that ri < µi for every i = 1, 2, 3 and that the stock returns are higher in better economic conditions,
i.e. µ1 > µ2 > µ3 (for a complete analysis see, e.g., [5]). On the other hand, both stock volatility and default
risk are higher during a period of economic crisis, that is σ1 < σ2 < σ3 and η1 < η2 < η3. The data of treasury
bill rate suggest the risk-free interest rate is higher in good economy, hence r1 > r2 > r3, and Haley found in [7]
that the underwriting margin is negatively correlated with the interest rate, which implies that during recessions
the insurance company will increase the loading factor, i.e. θ1 < θ2 < θ3. In order to analyze how the regime
switching together with the level of risk aversion affect the decision of the investor, consider only the first three
utility functions, for which the optimal investment strategy can be uniformly expressed as

π̂t = 1
1− α

µSt − rSt
σ2
St

, (23)

where α = 0 for the utility function U(x, i) = ln(x), x > 0. Equation (23) shows that the optimal proportion
invested in the the stock is constant in any given regime, and depends only on the state of economy and on
investor’s risk aversion parameter α. This result is consistent with [12], in which Merton proved that for constant
market coefficients and just one regime, the optimal portfolio investment does not depend on time or wealth, i.e. is
constant. As we can see, for every i = 1, 2, 3, π̂ is directly proportional to the expected excess return on the stock
(µi − ri), and inversely proportional to the variance of the stock return (σ2

i ); even tough it has been proven that
the expected excess returns are lower in a period of good economic conditions, the effect of volatility in the ratio
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(µi − ri)/σ2
i is strong enough to ensure that the expected excess return over variance is higher when the market

conditions are strong (see [5] for an exhaustive analysis on empirical data). Therefore, the investor allocates a
higher fraction of his wealth in a period of good economic conditions, that is π̂(x, 1) > π̂(x, 2) > π̂(x, 3). From
equation (23) we have that the optimal investment policy is inversely proportional to the relative risk aversion
1−α, tehrefore that an investor with low risk tolerance (α < 0) will invest a smaller proportion of his wealth on
the stock. Figure 1 represents the optimal investment as a function of the risk aversion parameter, given market
coefficients r1 = 0.08, r2 = 0.05, r3 = 0.03, µ1 = 0.25, µ2 = 0.2, µ3 = 0.15, σ1 = 0.25, σ2 = 0.4 and σ3 = 0.6.

Figure 1: Optimal investment policy for α ∈ [−10, 1)

Let us examine in details the optimal consumption policies for the first three utility functions: since they are
all proportional to the wealth process X̂t, t ≥ 0, we consider the optimal consumption to wealth ratio

kt := ĉt

X̂t

=


δ, if U(x, i) = ln(x), α = 0;

1
ÃSt

, if U(x, i) = −xα, α < 0;
1
ĀSt

, if U(x, i) = xα, 0 < α < 1,

where t ≥ 0 and Ãi, Āi are the positive solutions to system (16) with α < 0 and 0 < α < 1, respectively. Since kt
is positive in all three cases, the economic agent will consume proportionally more when he becomes wealthier,
regardless of the market regime: this agrees with the economic theory and with previous studies on the positive
effect of wealth on consumption (see, e.g., [14]). In order to study the dependency of the optimal consumption
to wealth ratio on the risk aversion parameter α, we are going to analyze separately the three cases α = 0, α < 0
and α ∈ (0, 1). For moderate risk-avers investors (α = 0), kt is a constant equal to the discount rate δ and
does not vary with the regime of the economy; therefore, ĉ(x, 1)/x = ĉ(x, 2)/x = ĉ(x, 3)/x for every x > 0, and
investors who use a logarithmic utility function will consume the same proportion of their wealth in every market
regime. In the case of high risk-averse investors (α < 0), we solve numerically system (16) for three regimes and
market parameters δ = 0.15, r1 = 0.08, r2 = 0.05, r3 = 0.03, µ1 = 0.25, µ2 = 0.2, µ3 = 0.15, σ1 = 0.25, σ2 = 0.4,
σ3 = 0.6, λ1 = 0.1, λ2 = 0.15, λ3 = 0.2, q12 = 4.04, q13 = 4.04, q21 = 4.4, q23 = 4.4, q31 = 4.64, q32 = 4.64,
η1 = 0.8, η2 = 0.9, eta3 = 1, θ1 = 0.15, θ2 = 0.2 and θ3 = 0.25. Suppose that the loss proportion lt is constant
and equal to l for every time t ≥ 0, then from definition of Λ̃i in (16) one obtains, for i = 1, 2, 3,

Λ̃i =
{

(1− ηil)α if (ηil − νi)+ = 0;
(1− νi)α − α(1 + θi)(ηil − νi) if (ηil − νi)+ > 0,

where νi := 1− (1 + θi)−
1

1−α satisfy ν1
η1
≤ ν2

η2
≤ ν3

η3
for every α ∈ (−∞, 0). Note that these parameters satisfy also

the technical condition (17), which ensures the existence and uniqueness of the positive solution of system (16).
In table 1 are shown the results for l = 0.5 and different values of α. We can see that Ã1 < Ã2 < Ã3 in every

case, which implies ĉ(x, 1)/x > ĉ(x, 2)/x > ĉ(x, 3)/x : in other words, a very risk-averse investor will consume
proportionally more when the economic conditions are good, i.e. in regime 1. However, for a fixed regime the
consumption to wealth rate is still lower than the consumption to wealth rate of a less risk-averse investor, that is,
the optimal consumption to wealth ratio is an increasing function of α. In general, we can say that an economic
agent with a very low risk tolerance does not consume much, since for almost all values of α, he allocates less
then 10% of his initial wealth for consumption. Hence, a change of wealth does not have a strong effect on the
investor’s consumption rate. In addition, for a fixed value of the risk aversion parameter α, as the loss proportion
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increases, the economic agent will behave more conservatively by reducing the proportion of wealth spent in
consumption. This result is shown in figure 2, where the optimal consumption ratio for α ∈ [−2.5, 0) and l = 0.2,
l = 0.5 and l = 0.7 is represented. In figure 3 a shorter interval for the risk aversion parameter is considered,
which allows us to see in a clearer way that the red dashed line (corresponding to regime 1) is upper for every
value of α and for every l. Furthermore all the ratios converge to 0.15 for α → 0, which is exactly the optimal
consumption to wealth ratio when α = 0 and U(x, i) = ln(x), as reported in fig.3. Note that all these graphs
have been obtained by interpolation of the values of α given in table 1.

α Ã1 Ã2 Ã3 ĉ(x, 1)/x ĉ(x, 2)/x ĉ(x, 3)/x

-0.5 8.5721 8.6115 8.6307 0.11665 0.11612 0.11586
-0.8 10.0341 10.0893 10.1179 0.09966 0.09911 0.09883
-1 11.1043 11.1691 11.2037 0.09005 0.08953 0.08925
-1.5 14.1036 14.1916 14.2418 0.07090 0.07046 0.07021
-2 17.6072 17.7192 17.7866 0.05679 0.05643 0.05622
-2.5 21.7159 21.8545 21.9413 0.04604 0.04575 0.04557
-3 26.5847 26.7538 26.8633 0.03761 0.03737 0.03722
-3.5 32.4394 32.6443 32.7808 0.03082 0.03063 0.03050
-4 39.6121 39.8602 40.0296 0.02524 0.02508 0.02498

Table 1: Optimal consumption to wealth ratio for an investor with high risk aversion (α < 0) and l = 0.5

Figure 2: Optimal consumption to wealth ratio when α < 0

Figure 3: Consumption to wealth ratio for −0.2 ≤ α < 0
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For low risk-averse investors (0 < α < 1), the optimal consumption to wealth ratio is given by ĉ(x, i) = 1/Āi,
where the constant Āi, i = 1, 2, 3 are computed from system (16). This time we change some market parameters,
setting in particular δ = 0.2, r1 = 0.15, r2 = 0.11, r3 = 0.08, σ1 = 0.4, σ2 = 0.6 and σ3 = 0.8, for which
condition (19) is satisfied. As we can see in table 2, which exhibits the results of solving numerically system
(16) for different values of α ∈ (0, 1), and loss proportion l = 0.5, also in this case the optimal consumption
to wealth ratio is an increasing function of α. However, the difference is that now Ā1 > Ā2 > Ā3, which
implies ĉ(x, 1)/x < ĉ(x, 2)/x < ĉ(x, 3)/x: in other words, an investor with high risk tolerance will spend a greater
proportion of wealth on consumption under bad economic conditions than under strong market conditions. Then,
by interpolating the values in this table, we obtain the plot in figure 4, that shows a more evident difference
between regimes and a faster growth of the optimal consumption to wealth ratio with respect to the case of a
very risk averse investor.

α Ā1 Ā2 Ā3 ĉ(x, 1)/x ĉ(x, 2)/x ĉ(x, 3)/x

0.1 4.6156 4.6115 4.6083 0.216656 0.21685 0.216998
0.2 4.2235 4.2148 4.2083 0.236769 0.237257 0.237623
0.4 3.4195 3.3995 3.3852 0.29244 0.294164 0.2954
0.5 3.0121 2.9843 2.9653 0.331991 0.335087 0.337232
0.6 2.6102 2.5714 2.5463 0.383118 0.388898 0.392727
0.8 2.0042 1.8980 1.8424 0.49894 0.526859 0.542785

Table 2: Optimal consumption to wealth ratio for an investor with low risk aversion (0 < α < 1) and l = 0.5

Figure 4: Optimal consumption to wealth ratio when 0 < α ≤ 0.8

The optimal insurance policy is proportional to the investor’s wealth X̂t for every t ≥ 0, and is given by

Ît =
[
ηSt lt − 1 + (1 + θSt)−

1
1−α
]+
X̂t, (24)

where we assume α = 0 for the log-utility function. Note that it is optimal to buy insurance if and only if

ηSt lt > 1− (1 + θSt)−
1

1−α , (25)

or equivalently if and only if the insurable loss (ηSt l) is large, the cost of insurance (θSt), and the investor is very
risk averse (α small). When condition (25) is satisfied, then Ît =

[
ηSt lt − 1 + (1 + θSt)−

1
1−α
]
X̂t, from which we

note that optimal insurance is directly proportional to ηSt and l, as expected. Furthermore, since

∂Ît
∂θSt

= −
[

1
1− α (1 + θSt)−

2−α
1−α

]
X̂t < 0 ; ∂2Ît

∂θ2
St

=
[

2− α
(1− α)2 (1 + θSt)

2α−3
1−α

]
X̂t > 0,

the optimal insurance is a decreasing and convex function of θ. That is, as the premium load increases, the
investor will reduce the purchase of insurance, and the amount of reduction in insurance decreases as θ rises.
Moreover, the optimal insurance is a decreasing function of the risk aversion parameter α, which implies that
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investors with high risk tolerance will spend a small amount of money on insurance. Figure 5 shows in particular
the optimal insurance to wealth ratio Kt := Ît/X̂t for the first set of market coefficients and for α ∈ [−5, 1); as
we can see, for α > 0.6 the optimal strategy is no insurance in every regime.

Figure 5: Optimal insurance to wealth ratio when α ∈ [−5, 1)

5.2 Impact of adding a wage

The purpose of this subsection is to examine the impact of adding a non-zero, exogenous wage ω = {ωt, t ≥ 0}
to the wealth process X = {Xt, t ≥ 0}. To achieve this objective, we calculate the value function vω(x, i) for
three particular HARA utility functions when the investor is subject to a positive income, and we compare it
with the value function of problem 2.1. In the case of an exogenous wage, the dynamics of the wealth process
becomes

dXt = (rStXt + (µSt − rSt)πtXt − ct + ωt − Pt)dt+ σStπtXtdWt − (Lt − It(Lt))dN(t), (26)

with the standard initial conditions X0 = x > 0 and S0 = i ∈M.
For this reason, the operator Lui defined at the beginning of section 3 is now given by

Lui (ψ) := (rix+ (µi − ri)πx− c+ ω − λi(1 + θi)E[I(L)])∂ψ
∂x

+ 1
2σ

2
i π

2x2 ∂
2ψ

∂x2 − δψ, (27)

and the Hamilton-Jacobi-Bellman equation (8) becomes

sup
π∈R

[
f(π, x, i)

]
+ sup

c≥0

[
g(c, x, i)

]
+ λi sup

I≥0

[
h(I, x, i)

]
= (δ + λi)v(x, i)− (rix+ ω)v′(x, i)−

∑
j∈M

qijv(x, j), (28)

where f , g and h are defined as before.
Remark 5.1. Note that we are considering only the case in which U(0, i) = −∞ or U(0, i) ≡ 0 ∀i = 1, 2, 3, since
all the utility functions considered in previous section are of this form; however, we would have the same results
for an utility function with U(0, i) finite and different from zero.

Let us first consider the logarithmic utility function U(x, i) = ln(x), for x > 0. If we substitute in the HJB
equation (28) the value function v̂(x, i) = 1

δ ln(δx) + Âωi , i = 1, 2, 3, and the corresponding optimal policies
(which are equal to those defined in subsection 4.1), we obtain that, for every i = 1, 2, 3, Âωi must now satisfy the
following equation: 1

δ (ri + ω
x + γi + λiΛ̂i − δ) = δÂωi −

∑
j∈{1,2,3} qijÂ

ω
j , where γi := (µi−ri)2

2σ2
i

and Λ̂i, i = 1, 2, 3,
is defined in equation (14). Now the values of Âωi depend on x > 0, and become constant only for a fixed initial
wealth. In particular, if we consider the first set of market coefficients with loss proportion l = 0.3 and exogenous
wage ω = 1, we have Âω1 = −1.22951 + 44.4

x , Âω2 = −1.34173 + 44.4
x , Âω3 = −1.38509 + 44.4

x . This implies that
Âω1 > Âω2 > Âω3 ∀x > 0, and consequently that v̂ω(x, 1) > v̂ω(x, 2) > v̂ω(x, 3). Moreover, since for the same
parameter set but with ω ≡ 0, we obtain Â1 = −1.22951, Â2 = −1.34173, Â3 = −1.38509, then we note
that for every x > 0 and i = 1, 2, 3 the value function for the problem with a positive income is greater than
the value function of the problem with no wage. Figure 6 shows the two functions for i = 2: as we can see, for
x→∞, i.e. as the ratio ω/x goes to zero, the value function v̂ω, in red color, tends to v̂.

Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 
Volume 02 – Issue 06, December 2014

Asian Online Journals (www.ajouronline.com) 185



Figure 6: v̂ω(x, 2) (wage ω = 1) vs v̂(x, 2) (no wage)

If we do not fix a wage, the value of Âωi , i = 1, 2, 3 will depend on ω and x, and the value function is
now a surface, as shown in the three-dimensional plot of figure 7. Note that the value function is very high
for small values of the initial wealth and high values of the wage, and in particular when ω is bigger than x:
reasonably, a wage that is three times the investor’s initial wealth will affect considerably the value function,
since it corresponds to a substantial addition of money and a change in agent’s life.

Figure 7: v̂ω(x, ω, 2) vs v̂(x, ω, 2), 3-dimensional plot

Remark 5.2. An investor with a logarithmic utility function does not change his optimal strategies if he is subject
to an external input of money. Indeed, optimal investment, consumption and insurance policies do not depend
on the values of Âi, but only on market parameters. This is due to the risk-neutrality of the economic agent:
we are going to see next that for an investor with high risk aversion (U(x, i) = −xα, α < 0) or low risk aversion
(U(x, i) = xα, 0 < α < 1) the optimal consumption policy changes with the addition of a wage in the wealth
process.

Consider now high risk-averse investors with utility function U(x, i) = −xα and α < 0. Following the same
procedure, we substitute in the HJB equation (28) the value function ṽω(x, i) = −(Ãωi )1−αxα, and we get the
following non-linear system for Ãωi , i = 1, 2, 3:(

δ − αri − α
w

x
− α

1− αγi + λi(1− Λ̃i)
)

(Ãωi )1−α − (1− α)(Ãωi )−α =
∑

j∈{1,2,3}

qij(Ãωj )1−α, (29)

where for every i = 1, 2, 3, Λ̃i are defined in section 4.2. In order to ensure that system (29) has a unique positive
solution for every fixed x > 0, we have to slightly modify condition (17) for the parameter δ, which becomes

δ > max
i∈{1,2,3}

{
αri + α

w

x
+ α

1− αγi − λi(1− Λ̃i)
}
. (30)

In this case we cannot find the values of Ãωi as function of the initial wealth x, since system (29) does not
have a closed form solution. Therefore, we have fixed different values of x and solved numerically the system
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with the usual market parameters, α = −1 and ω = 1, obtaining the results shown in table 3. On the other
hand, constants Ãi for the problem without income and with the same risk aversion parameter are given by
Ã1 = 9.38109, Ã2 = 9.4304, Ã3 = 9.45366, which are bigger than the corresponding values for an investor
with positive wage, for all values of x considered in the table. It can be shown that this is true ∀x > 0, which
implies that the values function for the problem with wage is always greater than the other, for every i = 1, 2, 3.
Figure 8, obtained by interpolating the data in table 3, compares the value functions ṽω(x, 1) and ṽ(x, 1), showing
again that for x→∞ the difference between them tends to be zero.

x Ãω
1 Ãω

2 Ãω
3 ṽω(x, 1) ṽω(x, 2) ṽω(x, 3)

0.1 0.195257 0.195989 0.196347 -0.381252 -0.384117 -0.38552
0.6 1.06025 1.06548 1.06796 -1.87356 -1.89207 -1.9009
1.5 2.26615 2.27775 2.28324 -3.42363 -3.45878 -3.47547
4 4.3083 4.33072 4.34131 -4.64036 -4.68878 -4.71174
10 6.3774 6.41078 6.42654 -4.06712 -4.10982 -4.13005
25 7.8939 7.93532 7.95487 -2.49254 -2.51877 -2.5312
75 8.82677 8.87314 8.89502 -1.03883 -1.04977 -1.05495
100 8.95912 9.00619 9.0284 -0.802658 -0.811114 -0.81512

Table 3: Solutions to system (29) for different values of x, investor with α = −1 and exogenous wage ω = 1

Figure 8: ṽω(x, 1) vs ṽ(x, 1) for α = −1

Since the optimal consumption policy is given by ĉ(x, i) = x/Ãωi , we get that an economic agent will consume
proportionally more in periods of good economic conditions and, more important, that the optimal consumption
to wealth ratio is higher for an investor with a positive income. For the case of a low risk-averse investor, we
consider the utility function described in section 4.4, that is U(x, i) = βi

√
x with x > 0 and β1 = 1.5, β2 = 1

and β3 = 0.5: in particular, this utility function depend on the state of the economy and can be related to an
investor with a counter-cyclical risk-aversion, i.e. an investor that is less risk averse during periods of boom or
good economic condition than during periods of crisis. With this choice a solution to the HJB equation (28) is
given by the value function v̌ω(x, i) = (Ǎωi x) 1

2 , where now, for i = 1, 2, 3, Ǎωi satisfies the following nonlinear
system (

δ − 1
2ri − α

w

x
− γi + λi(1− Λ̌i)

)
(Ǎωi ) 1

2 − 1
2

β2
i

(Ǎωi ) 1
2

=
∑

j∈{1,2,3}

qij(Ǎωj ) 1
2 . (31)

The above system, with Λ̌i given in section 4.4, has certainly a positive solution if we change condition (19) for

α = 1/2 into the following one: δ > maxi∈{1,2,3}
{

1
2ri + αwx + γi

}
.As in the previous case, we choose ω = 1 and

solve numerically system (31) for different values of x, obtaining the results in table 4. Figure 9 compares the
value function of the problem with exogenous wage with the one of the original stochastic optimization problem,
which is given by v̌(x, i) = (Ǎix) 1

2 and Ǎ1 = 4.13656, Ǎ2 = 4.00495, Ǎ3 = 3.9331.
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x Ǎω
1 Ǎω

2 Ǎω
3 v̌ω(x, 1) v̌ω(x, 2) v̌ω(x, 3)

3.4 217.911 216.026 214.887 27.2195 27.1015 27.0299
3.6 55.7464 55.1895 54.8594 14.1664 14.0955 14.0533
4 24.6402 24.3384 24.1636 9.92778 9.86679 9.83129
7 7.8510 7.6877 7.59695 7.41331 7.3358 7.29237
15 5.30338 5.16161 5.08377 8.91912 8.7991 8.7325
50 4.42822 4.29404 4.22069 14.8799 14.6527 14.527
100 4.27735 4.1445 4.07193 20.6818 20.3581 20.179

Table 4: Solutions to system (31) for different values of x and ω = 1

Figure 9: v̌ω(x, 1) vs v̌(x, 1)

Even if only the value functions related to regime 1 are plotted, as in previous cases we have v̌ω(x, i) > v̌(x, i)
for every i = 1, 2, 3. Moreover, we can observe from the table that also in this case the value function of
an investor subjected to a positive profit is always bigger during periods of economic growth, i.e. v̌ω(x, 1) >
v̌ω(x, 2) > v̌ω(x, 3). On the other hand, let us stress the fact that, since the optimal consumption to wealth ratio
is given by ĉ(x, i) = 1/Ǎωi and for every x > 0 fixed we have Ǎωi > Ǎi, i = 1, 2, 3, a low risk-averse investor who
earns a wage will consume a smaller proportion of his wealth than a similar investor without salary. A possible
explanation for this counterintuitive situation can be found in the choice of saving money that can be invested,
for example, in the risky asset: his propensity to the risk induces the economic agent not to spend the additional
input in consumption, but to increase his wealth in order to have a bigger amount invested in the stock at the
next step.

Conclusions

Following the approach developed by Zou and Cadenillas in [19], the present paper exhibits a novel numerical
analysis concerning the impact of regimes, market coefficients and investor’s risk aversion on optimal insurance
policies. Such results extends those in [19] since we allow for a third, intermediate regime characterizing the
state of the considered economy. In the same framework, we also provide new results concerning the impact of
adding a non-zero, exogenous wage in investor’s wealth equation and we outline a comparison with respect to
the standard problem.
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