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Abstract

Several formalisms for language syntax specification exist in literature. In this

paper, we prove that longstanding syntactical transformations between context-

free grammars and algebraic signatures are adjoint functors and/or adjoint

equivalences that preserve the abstract syntax of the generated terms. The

main result is a categorical equivalence between the categories of algebras (i.e.,

all the possible semantics) over the objects in these formalisms up to the pro-

vided syntactical transformations, namely that all these language specification

frameworks are essentially the same from a semantic perspective.
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1. Introduction

Several formalisms for language syntax specification exist in literature [1].

Among them, formal grammars [2, 3, 4] and algebraic signatures [5, 6, 7] have

played and still play a pivotal role. The former are widely used to define syntax

of programming languages [8], notably due to compelling results on context-free5

parsing techniques [3, 9, 10]. The latter provide an algebraic approach to syntax

specification, and they are ubiquitous in the fields of universal algebra [5], model

theory [11], and logics in general.

Email addresses: samuele.buro@univr.it (Samuele Buro),
isabella.mastroeni@univr.it (Isabella Mastroeni)

Preprint submitted to Journal of LATEX Templates June 7, 2020



Grm Sig Sig≤

∆

V∇

Λ

Figure 1: An informal overview of the mappings between the different syntax formalisms.

In this paper, we narrow the focus to three different syntax formalisms:

context-free grammars (Grm), many-sorted signatures (Sig), and order-sorted10

signatures (Sig≤). The aim is to provide mappings between these frameworks

(see Figure 1) able to translate language syntax specifications from one formal-

ism to another without altering their classes of semantics. Put differently, if

Alg(X ) denotes the class of semantics of an object X (in Grm, Sig, or Sig≤)

and ΥX is its conversion to another formalism, we shall prove that Alg(X )15

and Alg(ΥX ) are equivalent, meaning that X and ΥX are essentially the

same from a semantic point of view.

Formally, this requires two constraints: (1) each syntactical transformation

Υ shall preserve the abstract syntax of terms, and (2) it must exist a categorical

equivalence between the categories of algebras1 Alg(X ) and Alg(ΥX ).20

The mathematical links between these different frameworks have already

been partially studied in literature. Goguen et al. [12] provide a definition of

∆: Grm → Sig that yields an isomorphism between the sets of terms (i.e.,

the term algebras) over G and its conversion to many-sorted signature ∆G, and

conversely the definition of ∇ : Sig → Grm that makes the term algebras over25

S and∇S isomorphic (the proofs are outlined in detail in [13]). Other results on

the subject are given in [7]. The authors provide a definition of Λ: Sig≤ → Sig

that gives rise to an equivalence between the categories of algebras over an

order-sorted signature S and its many-sorted conversion ΛS. Both these results

of [12, 7] are an instance of the aim of this paper, as we will prove later.30

1An algebra over an object X provides a meaning for all the symbols defined by X . Thus,

the category of algebras Alg(X ) over X can be thought as the class of all the possible

semantics for X .
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In the following sections, we unify and broaden such results in a more gen-

eral setting. We model Grm, Sig, and Sig≤ as the categories whose objects are

grammars, many-sorted and order-sorted signatures, respectively (Sections 2.1

and 2.2). Arrows between objects in the same category are morphisms preserv-

ing the abstract syntax [14]. This is a fundamental point: According to [15],35

the essential syntactical structure of programming languages is not

that given by their concrete or surface syntax [. . . ]. Rather, the deep

structure of a phrase should reflect its semantic import.

This viewpoint is also made explicit in [12, 16] where the semantics of a lan-

guage is defined by the unique homomorphism from the initial algebra (i.e., the40

abstract syntax) to another algebra in the same category.

The mappings from one formalism to another are therefore defined in terms

of functors between the respective categories. Since the naturality of such con-

structions, the adjoint nature of these functors is then investigated, discussing

their semantic implications over the categories of algebras (Sections 3, 4, and 5).45

Contributions. The first contribution of this paper is the categorical description

of several syntax transformation methods across different formalisms. In par-

ticular, we prove that some longstanding syntactical transformations between

context-free grammars and many-sorted signatures and between many-sorted

signatures and order-sorted signatures give rise to adjoint functors and/or ad-50

joint equivalences that preserve the abstract syntax of the generated terms (The-

orems 1 and 2). Moreover, we broaden some already known results of [12, 7, 13]

and show that the aforementioned syntactical transformations preserve — up to

an equivalence — the categories of algebras over the objects in their respective

formalisms (Theorems 3, 4, and 5). The conclusion is twofold: Every categori-55

cal property and construction can be shifted between these frameworks (see, for

instance, Example 4); and all these formalisms are essentially the same from a

semantic perspective.
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2. Formalisms for Language Syntax Specification

In this section, we provide a brief presentation of the three syntax formalisms60

discussed in the rest of the article. Their technical aspects are deferred to the

next subsections.

The most popular formalism to specify languages are context-free grammars.

They enable language designers to easily handle both abstract and concrete

aspects of the syntax by combining terminal symbols with syntactic constituents65

of the language through production rules. Several definitions of context-free

grammars exist in literature [13, 17]. Here, we are following [12] (or, the so-

called algebraic grammars in [17]) and, for the sake of succintness, we sometimes

refer to them simply as grammars.

Although grammars are an easy-to-use tool for syntax specification, signa-70

tures provide a more algebraic approach to language definition. The concept of

many-sorted signature arose in [6] in order to lift the theory of (full) abstract

algebras in case of partially defined operations. From the language syntax per-

spective, signatures allow the specification of sorted operators, which in turn

provide a basis for an algebraic construction of the language semantics. In the75

rest of the paper, we follow the exposition of [12] and [18] on this subject.

The last formalism considered here are order-sorted signatures [7]. They

are built upon many-sorted signatures to which they add an explicit treatment

of polymorphic operators. Their main aim is to provide a basis on which to

develop an algebraic theory to handle several types of polymorphism, multiple80

inheritance, left inverses of subsort inclusion (retracts), and complete equational

deduction.

Basic Notions and Notations. Let S be a set of sorts and A a carrier set. An

S-sorted set over A is uniquely determined by a function â : S → ℘(A). Given

s ∈ S, the A-component at s is As = â(s) and, by abusing the notation, we85
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denote the whole sorted set induced by â as A = {As | s ∈ S }.2 Conversely,

we usually define an S-sorted set A by defining each of its components As

(assuming the undefined components to be the empty set). We implicitly extend

set-theoretic operators and predicates to an S-sorted world in a componentwise

fashion. For instance, if A and B are two S-sorted sets, we write A ⊆ B if90

As ⊆ Bs for each s ∈ S, we define the cartesian product A×B by taking each

component (A×B)s = As ×Bs, etc.

Given two S-sorted sets A and B, an S-sorted function h : A → B is an

S-sorted set h ⊆ A × B such that hs : As → Bs is a set-theoretic function for

each s ∈ S. If f : A → B and g : B → C are two S-sorted functions, one can95

check that their composition g ◦ f = { (g ◦ f)s = gs ◦ fs | s ∈ S } is still an

S-sorted function from A to C. If A is an S-sorted set and w = s1 . . . sn ∈ S∗,

we denote by Aw the cartesian product As1 × · · · × Asn (when w = ε, then

Aw = {•} is the one-point domain). Likewise, if f is an S-sorted function

and ai ∈ Asi for i = 1 . . . n, then the function fw : Aw → Bw is defined by100

fw(a1, . . . , an) = (fs1(a1), . . . , fsn(an)).

If f : A→ B is a function defined by cases, we sometimes use the conditional

operator f(a) = (P (a) ? b1 : b0 ) as a shorthand for f(a) = b1 if the predicate

P holds for a and b0 otherwise. If A and B are two sets and f : A → B

is a function, we denote by f∗ : A∗ → B∗ the unique monoid homomorphism105

induced by the Kleene closure on the sets A and B extending the function f , i.e.,

f∗(a1 . . . an) = f(a1) . . . f(an). Moreover, if g : A→ B is a function, we still use

the symbol g to denote the direct image map of g (also called the additive lift

of g), i.e., the function g : ℘(A)→ ℘(B) such that g(X) = { g(a) ∈ B | a ∈ X }.

Analogously, if ≤ is a binary relation on a set A (with elements a ∈ A), we110

use the same relation symbol to denote its pointwise extension, i.e., we write

a1 . . . an ≤ a′1 . . . a′n for a1 ≤ a′1, . . . , an ≤ a′n.

2The abuse of notation is twofold: Firstly, we are using the same letter A for denoting the

carrier set of the sorted set and the sorted set itself; Secondly, we are letting two distinct but

internally equal components As1 = As2 to coexist in A = {As | s ∈ S }.
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Finally, if A is a set, we denote by 1A the set-theoretic identity function

on A. Similarly, if X is an object in some category C, then 1X is the identity

morphism on X, and 1C is the identity functor on C (or, the identity morphism115

on C in the category of categories Cat).

2.1. Context-Free Grammars

A context-free grammar [12] (or, a CF grammar) is a triple G = 〈N,T, P 〉,

where N is the set of non-terminal symbols (or, non-terminals), T is the set

of terminal symbols (or, terminals) disjoint from N , and P ⊆ N × (N ∪ T )∗ is120

the set of production rules (or, productions). If (A, β) is a production in P , we

stick to the standard notation A → β (although some authors [13] reverse the

order and write β → A to match the signature formalism). If α, γ ∈ (N ∪ T )∗,

B ∈ N , and B → β ∈ P , we define αBγ ⇒ αβγ the one-step reduction

relation on the set (N ∪ T )∗. The language L(G) generated by G is the union125

of the N -sorted family LN (G) = {LA(G) | A ∈ N }, i.e., L(G) =
⋃
LN (G),

where LA(G) = { t ∈ T ∗ | A ⇒∗ t } and ⇒∗ is the reflexive transitive closure

of ⇒. The non-terminals projection nt: N ∪ T → N ∪ {ε} on G is defined

by nt(x) = (x ∈ N ? x : ε ). In the following, we implicitly characterize

the function nt according to the subscript/superscript of G, namely, if G′, G1,130

etc. are grammars, we denote by nt′, nt1, etc. their non-terminals projections,

respectively.

An abstract grammar morphism (henceforth morphism, when this termi-

nology does not lead to ambiguities) f : G1 → G2 is a map between two

grammars G1 = 〈N1, T1, P1〉 and G2 = 〈N2, T2, P2〉 that preserves the ab-135

stract structure of the generated strings. Formally, f is a pair of functions

f0 : N1 → N2 and f1 : P1 → P2 such that f1(A→ β) = f0(A)→ β′ ∈ P2, where

nt∗2(β′) = (f∗0 ◦ nt∗1)(β).

The identity morphism on an object G = 〈N,T, P 〉 is denoted by 1G and

is such that (1G)0 = 1N and (1G)1 = 1P . The composition of two grammar140

morphism f : G1 → G2 and g : G2 → G3 is obtained by defining (g◦f)0 = g0◦f0

and (g ◦ f)1 = g1 ◦ f1.
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Proposition 1. The class of all grammars and the class of all abstract grammar

morphisms form the category Grm.

The following section makes clear the semantic implications that a grammar145

morphism f : G1 → G2 induces on the categories of algebras over G1 and G2.

The insight is that preserving the abstract syntax of G1 into G2 ensures the

possibility to employ G2-algebras in order to provide meaning to G1-terms.

2.1.1. Algebras over a Context-Free Grammar

The algebraic approach applied to context-free languages is introduced in [19,150

16]. The authors exploit the theory of heterogeneous algebras [18] to provide

semantics for context-free grammars (see also [12]). The algebraic notions that

lead to the category of algebras over a context-free grammar are here summa-

rized.

Let G = 〈N,T, P 〉 be a grammar. A G-algebra [19, 12] is a pair A = 〈A,FA〉,155

where A is an N -sorted set of semantic domains (or, carrier sets) and FA ={
JC → δKA : Ant∗(δ) → AC

∣∣ C → δ ∈ P
}

is a set of interpretation functions. A

G-homomorphism [19, 12] h : A → B between two G-algebras A = 〈A,FA〉 and

B = 〈B,FB〉 is an N -sorted function h : A→ B such that JC → δKB ◦ hnt∗(δ) =

hC ◦ JC → δKA for each production C → δ ∈ P .160

It is well-known [12, 19] that the class of all G-algebras and the class of all

G-homomorphisms form a category, denoted by Alg(G). The initial object in

Alg(G) is the term algebra (or, initial algebra) and it is denoted by T. Specif-

ically, the carrier sets TC of T are inductively defined as the smallest sets such

that, if C → δ ∈ P and nt∗(δ) = ε, then C → δ ∈ TC , and, if nt∗(δ) = C1 . . . Cn165

and ti ∈ TCi for i ∈ {1, . . . , n}, then C → δ(t1, . . . , tn) ∈ TC .3 Then, the inter-

pretation functions are obtained by defining JC → δKT = C → δ, if nt∗(δ) = ε,

and JC → δKT(t1, . . . , tn) = C → δ(t1, . . . , tn), if nt∗(δ) = C1 . . . Cn and

3The parentheses that occur in terms definition are not to be intended as those for the

function application. For this reason, we use the monospaced font to disambiguate these two

different situations.
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ti ∈ TCi for i ∈ {1, . . . , n}.

The following results spell out the identification of the abstract syntax with170

the initial algebra (they are simply the contextualization of basic category theory

notions on initiality):

Proposition 2 (Goguen et al. [12]). (i) If S and S′ are both initial in a class

C of algebras, then S and S′ are isomorphic. If S′′ is isomorphic to an initial

algebra S, then S′′ is also initial. (ii) An algebra S is initial in a class C of175

algebras if and only if for every A in C there exists a unique homomorphism

h : S → A.

The first part of the proposition captures the independence from notational

variation of the abstract syntax, while the second part ensures the existence of

a unique semantic function towards each algebra in the category [12].180

We now show the semantic effects that grammar morphisms induce on the

respective categories of algebras. Let G1 = 〈N1, T1, P1〉 and G2 = 〈N2, T2, P2〉

be two context-free grammars. Suppose that f : G1 → G2 is a grammar mor-

phism and let A = 〈A,FA〉 be a G2-algebra. We can make A into a G1-algebra

ξfA = 〈ξfA, ξfFA〉 by defining

(ξfA)C = Af0(C) for each C ∈ N1, and

JC → δKξfA = Jf1(C → δ)KA for each C → δ ∈ P1

Moreover, if h : A → B is a G2-homomorphism, then (ξfh)C = hf0(C) is G1-

homomorphism from ξfA to ξfB.

Proposition 3. The map ξf : Alg(G2) → Alg(G1) induced by the abstract

grammar morphism f : G1 → G2 is a functor.

This last proposition suggests to investigate the functorial nature of Alg(−).185

Proposition 4. Alg is a contravariant functor from the category of context-

free grammar Grm to the category of small categories Cat, or, equivalently,

Alg : Grm→ Catop is a (covariant) functor.
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Proof. Let f : G1 → G2 be a grammar morphism and let Alg(f) = ξf . Then,

for each context-free grammar G = 〈N,T, P 〉 and for each algebra A = 〈A,FA〉

in Alg(G) holds that

(Alg(1G)(A))C = (ξ1GA)C = AC for each C ∈ N , and

JC → δKAlg(1G)(A) = JC → δKξ1GA = JC → δKA for each C → δ ∈ P

which imply Alg(1G) = 1Alg(G). Moreover, given two grammar morphisms

f : G1 → G2 and g : G2 → G3 we have that(
Alg(g ◦ f)(A)

)
C

= (ξ(g◦f)A)C

= A(g0◦f0)(C)

= (ξgA)f0(C)

=
(
(ξf ◦ ξg)(A)

)
C

=
(
(Alg(f) ◦Alg(g))(A)

)
C

for each C ∈ N , and

JC → δKAlg(g◦f)(A) = JC → δKξ(g◦f)A

= J(g1 ◦ f1)(C → δ)KA

= Jf1(C → δ)KξgA

= JC → δK(ξf◦ξg)(A)

= JC → δK(Alg(f)◦Alg(g))(A)

for each C → δ ∈ P , and thus Alg(g ◦ f) = Alg(f) ◦Alg(g).

Since functors preserve isomorphisms, we get that isomorphic grammars give190

rise to isomorphic categories of algebras, implying that f does not lose any

(semantic relevant) information.

Corollary 1. If f : G1 → G2 is an abstract grammar isomorphism, then

ξf−1 ◦ ξf = 1Alg(G1) and ξf ◦ ξf−1 = 1Alg(G2)

Therefore, ξf−1 = ξ−1
f and hence Alg(G1) and Alg(G2) are isomorphic.
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Example 1 (Deriving a Compiler). In this example, we show how a grammar

morphism f : G1 → G2 induces a compiler with respect to the semantic functions

in Alg(G2). Consider the following grammar specifications G1 = 〈N1, T1, P1〉

(left) and G2 = 〈N2, T2, P2〉 (right) in the Backus-Naur form:

n ::= +n n | 0 | 1 | 2 | · · · p ::= (p +p ) | even | odd

(Here, we have just specified the productions; terminals and non-terminals can

be easily recovered from such specifications assuming no useless symbols in both

sets). Let f : G1 → G2 be the grammar morphism that maps n to p, n→ +n n

to p → (p +p ), and each production n → n̄ to p → p̄, where n̄ ∈ {0, 1, 2, . . .}

and p̄ = even if n̄ represents an even natural number, and p̄ = odd otherwise.

Suppose that A = 〈A,FA〉 is the G2-algebra such that Ap = {0, 1}, Jp →

evenKA = 0, Jp → oddKA = 1, and Jp → (p +p )KA(p1, p2) = (p1 + p2) mod 2.

Let T1 and T2 denote the G1- and G2-term algebras, respectively. Since T2

is initial, there is a unique homomorphism h2
A : T2 → A, i.e., the semantics of

the language generated by G2 with respect to A. Applying the functor ξf to

h2
A yields the following commutative diagram† (due to the initiality of T1) in

Alg(G1):

T2 A

T1

ξfT2 ξfA

h2
A

ξf ξf
h1
ξfT2

h1
ξfA

ξfh
2
A

†
h1
ξfT2

and h1
ξfA are the unique homo-

morphisms leaving T1.

In this case, the commutativity has an interesting meaning: h1
ξfT2

is the compiler

with respect to the semantic function h2
A induced by the morphism f . Indeed,

it is easy to show that for all terms t ∈ (T2)p, holds that
(
h2

A

)
p
(t) =

(
ξfh

2
A

)
n
(t)

and therefore

ξfh
2
A ◦ h1

ξfT2
= h2

A ◦ h1
ξfT2

= h1
ξfA
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which is the equation characterizing a compiler [20]. For instance, let + 5 3

denotes the T1-term n → +n n(n → 3,n → 5). If we apply the compiler

h1
ξfT2

to + 5 3, we obtain a T2-term which h2
A-semantics agrees with h1

ξfA, i.e.,(
h1
ξfT2

)
n
(+ 5 3) = (odd + odd) where (odd + odd) denotes the T2-term p→

(p +p )(p→ odd,p→ odd), and

(
h2

A

)
p
((odd + odd)) = 0 =

(
h1
ξfA

)
n
(+ 5 3)

/

2.2. Many-Sorted and Order-Sorted Signatures195

A many-sorted signature [12] (or, an MS signature) is a pair S = 〈S,Σ〉,

where S is a set of sorts and Σ is a disjoint4 family of sets Σw,s such that

w ∈ S∗ and s ∈ S. As in the case of context-free grammars, we suppose that

S∩
⋃

Σ = ∅. If σ ∈ Σw,s, we call σ an operator symbol (or simply, an operator),

and we write σ : w → s as a shorthand. Moreover, if w = ε, we say that σ is a200

constant symbol (or simply, a constant) and we write σ : s instead of σ : ε→ s.

Finally, given σ : w → s, we define ar(σ) = w the arity, srt(σ) = s the sort,

rnk(σ) = (w, s) the rank of σ.

A many-sorted signature morphism f : S1 → S2 is a map between two

many-sorted signatures S1 = 〈S1,Σ1〉 and S2 = 〈S2,Σ2〉 that preserves the205

underlying graph structure5 of S1 in S2, in the following sense: f is a pair of

functions f0 : S1 → S2 and f1 :
⋃

Σ1 →
⋃

Σ2 such that f1(σ) : f∗0 (w) → f0(s)

in S2 for each σ : w → s in S1.

The identity arrow on S = 〈S,Σ〉 is denoted by 1S and is such that (1S)0

and (1S)1 are the set identity functions on their domains, and the composition of210

two morphisms f : S1 → S2 and g : S2 → S3 is obtained by defining (g ◦ f)0 =

g0 ◦ f0 and (g ◦ f)1 = g1 ◦ f1, which is trivially a morphism from S1 to S3.

4Such a condition is not necessary and may be omitted at the cost of defining signature

morphisms as sorted functions. We follow [12], and we adopt it to simplify the exposition.
5The graph similarity is obtained by considering an operator σ : w → s as a σ-labeled edge

from w to s.
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Proposition 5. The class of all many-sorted signatures and the class of all

many-sorted signature morphisms form the category Sig.

Similarly, we introduce the theory of order-sorted signatures. An order-215

sorted signature [7] (or, an OS signature) is a triple S = 〈S,≤,Σ〉, where 〈S,≤〉

is a poset of sorts and Σ is an (S∗ × S)-sorted family of sets Σw,s such that

satisfies the following condition: If σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2, then

s1 ≤ s2.

Note that S and Σ play the same role as before, except for the fact that220

Σ is no more required to be a disjoint family, thus enabling the definition of

polymorphic operators. Furthermore, we extend to the order-sorted signatures

the terminology that was introduced for the many-sorted case.

An order-sorted signature morphism f : S1 → S2, where S1 = 〈S1,≤1,Σ1〉

and S2 = 〈S2,≤2,Σ2〉, is formed by the two components f0 and f1. The former225

component f0 is a function between S1 and S2 that does not remove existing

constraints, i.e., if s ≤1 s
′ in 〈S1,≤1〉, then f0(s) ≤2 f0(s′) in 〈S2,≤2〉. The

latter component f1 = { f1
w,s : Σ1

w,s → Σ2
f∗0 (w),f0(s) | w ∈ S

∗
1 ∧ s ∈ S1 } is a set of

functions between the sets of operators that preserve sorts and polymorphism,

namely if σ ∈ Σw1,s1 ∩ Σw2,s2 , then f1
w1,s1(σ) = f1

w2,s2(σ).230

The identity morphism 1S over an order-sorted signature S is defined by

taking (1S)0 and each component (1S)1
w,s of (1S)1 the set-theoretic identities on

their domains. The composition g ◦ f of two order-sorted signature morphisms

f : S1 → S2 and g : S2 → S3 is obtained by defining (g ◦ f)0 = g0 ◦ f0 and

(g ◦ f)1
w,s = g1

f∗0 (w),f0(s) ◦ f
1
w,s.235

Proposition 6. The class of all order-sorted signatures and the class of all

order-sorted signature morphisms form the category Sig≤.

2.2.1. Algebras over a Signature

In this section, we prove the same results developed in Section 2.1.1 for the

classes of algebras over a many-sorted and order-sorted signature. Again, we240

provide the basic algebraic notions required to build the category of algebras
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over a given signature, and we redirect the reader to [7] for a thorough exposition

of the following concepts.

Many-Sorted Algebra. Let S = 〈S,Σ〉 be a many-sorted signature. A many-

sorted S-algebra [7] is a pair A = 〈A,FA〉, where A is an S-sorted set of semantic245

domains (or, carrier sets) and FA =
{

JσKA : Aw → As
∣∣ σ ∈ Σw,s

}
is the set of

interpretation functions (we use the same terminology adopted for an algebra

over a context-free grammar). A many-sorted S-homomorphism [7] h : A → B

between two many-sorted S-algebras A = 〈A,FA〉 and B = 〈B,FB〉 is an S-

sorted function h : A → B such that JσKB ◦ hw = hs ◦ JσKA for each σ ∈ Σw,s.250

The category of all S-algebras and S-homomorphisms is denoted by Alg(S).

The many-sorted term S-algebra T is the initial algebra in its category (i.e., the

initial object) and it is obtained in an analogous way to the term algebra over

a grammar [7]. /

Order-Sorted Algebra. If S = 〈S,≤,Σ〉 is an order-sorted signature, an order-255

sorted S-algebra [7] is a pair A = 〈A,FA〉 where A is an S-sorted set and

FA = { JσKw,sA : Aw → As | σ ∈ Σw,s }. Moreover, the following monotonic-

ity conditions must be satisfied:

(i) σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 implies JσKw1,s1
A (a) = JσKw2,s2

A (a) for

each a ∈ Aw1 ; and260

(ii) s1 ≤ s2 implies As1 ⊆ As2 .

An order-sorted S-homomorphism h : A → B between two S-algebras A =

〈A,FA〉 and B = 〈B,FB〉 is an S-sorted function h : A→ B such that

(i) JσKw,sB ◦ hw = hs ◦ JσKw,sA for each σ ∈ Σw,s; and

(ii) s1 ≤ s2 implies hs1(a) = hs2(a) for each a ∈ As1 .265

In the following, we denote by Alg(S) the category formed by S-algebras and S-

homomorphisms. The order-sorted term S-algebra T is guaranteed to be initial

only if S is regular (see [7] for the regularity definition and for details on the

construction of T in the order-sorted case). /
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We now have all the elements to show the semantic effects induced by a

many-sorted signature morphism f : S1 → S2, where S1 = 〈S1,Σ1〉 and S2 =

〈S2,Σ2〉. As in the case of context-free grammars, we can build a mapping from

the category of algebras Alg(S2) to Alg(S1), in order to employ S2-algebras

to provide meaning to S1-terms: Let A = 〈A,FA〉 be an S2-algebra. We can

make A to a S1-algebra ζfA = 〈ζfA, ζfFA〉 by defining

(ζfA)s = Af0(s) for each s ∈ S1, and

JσKζfA = Jf1(σ)KA for each σ ∈
⋃

Σ1

Moreover, given a S2-homomorphism h : A → B, we can define the S1-homo-270

morphism ζfh : ζfA → ζfB such that (ζfh)s = hf0(s). The very same con-

struction can be applied to the order-sorted case, namely, if g : S1 → S2 is an

order-sorted signature morphism, the map ψg : Alg(S2) → Alg(S1) is defined

analogously to ζf .

Proposition 7. The maps ζf : Alg(S2) → Alg(S1) and ψg : Alg(S2) →275

Alg(S1) induced by the signature morphisms f : S1 → S2 and g : S1 → S2,

respectively, are functors.

Again, we can prove that Alg is a contravariant functor (we use the same

name for the functor Alg both for categories of grammars and signatures):

Proposition 8. Alg is a contravariant functor from the category of many-280

sorted signatures (order-sorted signatures) Sig (resp., Sig≤) to the category of

small categories Cat, or, equivalently, Alg : Sig→ Catop (resp., Alg : Sig≤ →

Catop) is a (covariant) functor.

Proof. The proof is similar to the proof of Theorem 4.

This last proposition leads to an equivalent of Corollary 1 for signature mor-285

phisms: Isomorphic signatures give rise to isomorphic categories of algebras,

entailing that signature isomorphisms do not add or remove any semantic rele-

vant information.
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Proposition 9. If f : S1 → S2 and g : S1 → S2 are isomorphism, then

ζf−1 ◦ ζf = 1Alg(S1) ψg−1 ◦ ψg = 1Alg(S1)

ζf ◦ ζf−1 = 1Alg(S2) ψg ◦ ψg−1 = 1Alg(S2)

Therefore, ζf−1 = ζ−1
f and ψg−1 = ψ−1

g , and thus ζf and ψg are isomorphisms.

3. Equivalence between MS Signatures and CF Grammars290

In this section, we generalize the results of [12] by proving the conversion

of a grammar into a signature and vice versa can be extended to functors that

give rise to an adjoint equivalence between Grm and Sig. The major benefit of

such new development is the preservation of all the categorical properties (such

as initiality, limits, colimits, . . . ) from Grm to Sig, and vice versa. A concrete295

example is provided at the end of the section.

The map ∆: Grm → Sig transforms a grammar G = 〈N,T, P 〉 to the

signature ∆G = 〈SG,ΣG〉, where SG = N and ΣGw,s = {A → β ∈ P | A =

s ∧ nt∗(β) = w }, and a grammar morphism f : G1 → G2 to the signature

morphism ∆f such that (∆f)0 = f0 and (∆f)1 = f1.300

Proposition 10. ∆: Grm→ Sig is a functor.

Proof. The only non-trivial fact in the proof is checking that ∆f satisfies the

signature morphism condition: Let G1 = 〈N1, T1, P1〉 and G2 = 〈N2, T2, P2〉 be

two context-free grammars, and let f : G1 → G2 be a grammar morphism. If

∆G1 = 〈SG1 ,ΣG1〉 and ∆G2 = 〈SG2 ,ΣG2〉, then given A → β : nt∗1(β) → A in

ΣG1
holds that

(∆f)1(A→ β) = f1(A→ β) = f0(A)→ β′

where (f∗0 ◦ nt∗1)(β) = nt∗2(β′), and therefore

(∆f)1(A→ β) : nt∗2(β′)→ f0(A)

: (f∗0 ◦ nt∗1)(β)→ f0(A)

: ((∆f)∗0 ◦ nt∗1)(β)→ (∆f)0(A)

15



Hence ∆f is a proper signature morphism from ∆G1 to ∆G2.

Similarly, we define ∇ : Sig→ Grm that maps objects and arrows between

the specified categories. The conversion of a signature S = 〈S,Σ〉 to a grammar

∇S = 〈NS, TS, PS〉 is obtained by defining NS = S, TS =
⋃

Σ, and PS =305

{ s → σw | σ ∈ Σw,s }, while a signature morphism f : S1 → S2 is mapped

to the grammar morphism ∇f such that (∇f)0 = f0 and (∇f)1(s → σw) =

f0(s)→ f1(σ)f∗0 (w).

Proposition 11. ∇ : Sig→ Grm is a functor.

Proof. We show that ∇f yields a proper grammar morphism (the remaining

part of the proof is trivial): Let S1 = 〈S1,Σ1〉 and S2 = 〈S2,Σ2〉 be two

many-sorted signatures, and let f : S1 → S2 be a signature morphism. Also,

let ∇S1 = 〈NS1
, TS1

, PS1
〉 and ∇S2 = 〈NS2

, TS2
, PS2

〉, and let nt∇1
and nt∇2

denote the non-terminals projections on ∇S1 and ∇S2, respectively. Then,

(∇f)1(s→ σw) = f∗(s→ σw) = f0(s)→ f1(σ)f∗0 (w)

for each s→ σw ∈ PS1
. Since the following chain of equalities holds

nt∗∇2
(f1(σ)f∗0 (w)) = f∗0 (w) = f∗0 (nt∗∇1

(σw)) = (f∗0 ◦ nt∗∇1
)(σw)

then ∇f is a grammar morphism from ∇S1 to ∇S2.310

As underlined in [13] (and shown in the next example), ∆ and ∇ are not

isomorphisms. Indeed, in general, S 6= ∆∇S and G 6= ∇∆G, and thus ∆∇ 6=

1Sig and ∇∆ 6= 1Grm. However, as we prove in the next two propositions,

there are natural isomorphisms η and ε−1 that transform the identity functors

1Sig and 1Grm to ∆∇ and ∇∆, respectively. It follows that S ∼= ∆∇S and315

G ∼= ∇∆G (where ∼= means is isomorphic to).

Example 2. Consider the following context-free grammar G (with terminal sym-

bols underlined) for generating natural numbers in Peano’s notation:

n ::= sn | 0
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Its conversion to signature via ∆ and way back to grammar via ∇ is

n ::= n→ sn n | n→ 0

Even though G and ∇∆G are different, there is a trivial grammar isomorphism

f that maps n ::= sn to n ::= n→ sn n and n ::= 0 to n ::= n→ 0. /

Let S = 〈S,Σ〉 be a many-sorted signature. We denote by ηS : S → ∆∇S

the signature morphism defined by (ηS)0 = 1S and (ηS)1(σ) = srt(σ) →320

σ ar(σ). Since in the many-sorted case the arity and the rank are fully de-

termined by the operator (Σ is a disjoint family of sets) the previous function

is well-defined.

Proposition 12. η : 1Sig ⇒ ∆∇ is a natural isomorphism.

Proof. Let S = 〈S,Σ〉 be a many-sorted signature and let σ : w → s in S.

Then, (ηS)1(σ) = s → σw has the same rank of σ. Since (ηS)0 is the identity

on the set of sorts, ηS satisfies the signature morphism condition. Moreover, it

is easy to prove that each component ηS is an isomorphism in Sig by defining

its inverse η−1
S as (η−1

S )0 = 1S and (η−1
S )1(s→ σw) = σ. We complete the proof

by showing that the following diagram commutes for each signature morphism

f : S→ S′:

S S′

∆∇S ∆∇S′

f

ηS ηS′

∆∇f

The 0-th components of the morphisms in the diagram trivially commute. As

regards the 1-th components, they commute if and only if (ηS′)1(f1(σ)) =

(∆∇f)1

(
(ηS)1(σ)

)
for each σ ∈ Σw,s:

(ηS′)1(f1(σ)) = f0(s)→ f1(σ)f∗0 (w)

= (∆∇f)1(s→ σw)

= (∆∇f)1

(
(ηS)1(σ)

)
and hence the thesis.325
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Similarly, let G = 〈N,T, P 〉 be a context-free grammar. We denote by

εG : ∇∆G→ G the grammar morphism defined by (εG)0 = 1N and (εG)1

(
A→

(A, β) nt∗(β)
)

= A→ β.6

Proposition 13. ε : ∇∆⇒ 1Grm is a natural isomorphism.

Proof. Let G = 〈N,T, P 〉 be a context-free grammar and let A→ (A, β) nt∗(β)

be a production in P∆G. Recall that

(εG)1(A→ (A, β) nt∗(β)) = A→ β and (εG)0(A) = A

and therefore

((εG)∗0 ◦ nt∗∇∆)((A, β) nt∗(β)) = nt∗(β)

where nt∇∆ is the non-terminals mapping on ∇∆G. Thus, εG is a proper

grammar morphism. Moreover, εG is an isomorphism in Grm: Let ε−1
G denotes

its inverse defined by

(ε−1
G )0 = 1N and (ε−1

G )1(A→ β) = A→ (A, β) nt∗(β)

Now one can check that εG ◦ ε−1
G = 1G and ε−1

G ◦ εG = 1∇∆G. In order to

prove the thesis, we show the commutativity of the following diagram for each

grammar morphism f : G→ G′:

∇∆G ∇∆G′

G G′

∇∆f

εG εG′

f

Since ∇∆f = f and (εG)0 and (εG′)0 are the identity functions, we can conclude

the commutativity of the 0-th components of the diagram. Moreover,

(εG′)1

(
(∇∆f)1(A→ (A, β) nt∗(β))

)
= (εG′)1

(
f0(A)→ f1(A→ β)(f0 ◦ nt)∗(β)

)
6Note that the productions in P∆G are formed from those in P , i.e., P∆G = {A →

(A, β) nt∗(β) | A→ β ∈ P }. Therefore, when considering a general production in P∆G derived

from A → β in P , we write A → (A, β) nt∗(β) (or, A ::= A→ β nt∗(β) when considering a

specific production in some example) instead of A→ A→ β nt∗(β) to avoid any confusion.
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for each production rule A→ (A, β) nt∗(β) in P∆G. Let G′ = 〈N ′, T ′, P ′〉. Since

f is a grammar morphism and A → β ∈ P , then f0(A) → β′ ∈ P ′ for some β′

where (nt′)∗(β′) = (f∗0 ◦ nt∗)(β). Therefore, we can continue the previous chain

of equalities:

= (εG′)1

(
f0(A)→ f1(A→ β)(nt′)∗(β′)

)
= f0(A)→ β′

= f1(A→ β)

= f1

(
(εG)1(A→ (A, β) nt∗(β))

)
and the proof is complete.330

Example 3. Consider the context-free grammar G of the previous example. The

grammar morphism εG transforms ∇∆G back to G. Indeed,

(εG)1(n ::= n→ sn n) = n→ sn and

(εG)1(n ::= n→ 0) = n→ 0

/

The previous results suggest to study if∇ and ∆ form an adjunction between

the categories Grm and Sig.

Theorem 1. ∇ is left adjoint to ∆ and (ε, η) are the counit and the unit of the

adjunction (∇,∆, ε, η).335

Proof. We need to prove the following triangle equalities:

∆ ∆∇∆

∆

η∆

∆ε

∇∆∇ ∇

∇

ε∇

∇η

The 0-th components of both diagrams trivially commutes. We only prove the

commutativity of the 1-th components.
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• For each s→ σw ∈ PS

(ε∇S)1

(
(∇ηS)1(s→ σw)

)
= (ε∇S)1

(
(ηS)0(s)→ (ηS)1(σ)(ηS)∗0(w)

)
= (ε∇S)1(s→ (s, σw)w)

= s→ σw

• For each A→ β ∈ ΣGnt∗(β),A

(∆εG)1

(
(η∆G)1(A→ β)

)
= (∆εG)1(A→ (A, β) nt∗(β))

= (εG)1(A→ (A, β) nt∗(β))

= A→ β

340

Since ∇ is left adjoint to ∆ (Theorem 1) and η and ε are natural isomor-

phisms (Propositions 12 and 13), we get the following corollary.

Corollary 2. (∇,∆, ε, η) is an adjoint equivalence.

Theorem 1 implies that Grm and Sig are identical except for the fact that

each category may have different numbers of isomorphic copies of the same ob-345

ject. A consequence of this result is that we can move categorical limits between

Grm and Sig. The next example provides a definition of coproduct in Grm

able to recognize the union of two context-free languages. As a consequence of

Theorem 1, we achieve for free the same construction in Sig.

Example 4 (Coproduct Preservation). Suppose to have the following notion

of categorical coproduct in Grm: Given two context-free grammars G1 =

〈N1, T1, P1〉 and G2 = 〈N2, T2, P2〉, the coproduct of G1 and G2 is defined by

G1⊕G2 = 〈N1]N2, T1]T2, P1]P2〉, where ] is the disjoint union of sets. The

inclusion morphism ik : Gk → G1⊕G2 for k ∈ {1, 2} are defined by (ik)0 = 1Nk

and (ik)1 = 1Pk . Given two morphisms f1 : G1 → G and f2 : G2 → G, where

G is a context-free grammar, one can check that the unique morphism f that
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makes the following diagram commute

G

G1 G1 ⊕G2 G2

f1

i1

f
f2

i2

is obtained by defining f0(n) = (n ∈ N1 ? (f1)0(n) : (f2)0(n) ) and f1(A →350

β) = (A → β ∈ P1 ? (f1)1(A → β) : (f2)1(A → β) ). The term algebra over

G1⊕G2 carries terms both in G1 and G2 and recognizes the (disjoint) union of

the languages over G1 and G2. Since (∇,∆, ε, η) is an adjoint equivalence, then

so is (∆,∇, η−1, ε−1). Therefore, ∆ is left adjoint to ∇ and hence it preserves

colimits. Since a coproduct is a colimit, ∆(G1 ⊕ G2) is the coproduct of ∆G1355

and ∆G2 in Sig.

4. Equivalence between MS Signatures and OS Signatures

In this section, we show that similar results of those in Section 3 hold for

many-sorted and order-sorted signature transformations Λ and V.

The map Λ: Sig≤ → Sig converts an order-sorted signature S = 〈S,≤,Σ〉360

to the many-sorted signature SS = 〈SS ,ΣS〉 defined by SS = S and ΣSw,s =

{σw,s | σ ∈ Σw,s } (such a construction is provided in [7]). The transfor-

mation of an order-sorted signature morphism f : S1 → S2 to a many-sorted

signature morphism Λf : ΛS1 → ΛS2 is obtained by defining (Λf)0 = f0 and

(Λf)1(σw,s) =
(
f1
w,s(σ)

)
f∗0 (w),f0(s)

.365

Proposition 14. Λ: Sig≤ → Sig is a functor.

Similarly, the map V: Sig → Sig≤ maps the many-sorted signature S =

〈S,Σ〉 to the order-sorted signature SS = 〈SS,≤S,ΣS〉, where SS = S, ≤S is

the reflexive binary relation on S, and ΣS
w,s = Σw,s. Moreover, if f : S1 → S2 is

a many-sorted signature morphism, then Vf : VS1 → VS2 defined by (Vf)0 =370

f0 and (Vf)1
w,s = f1|Σw,s is an order-sorted signature morphism.

Proposition 15. V: Sig→ Sig≤ is a functor.
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As before, we can provide natural transformations ϕ : 1Sig ⇒ ΛV and

ϑ : VΛ ⇒ 1Sig≤ . Let S = 〈S,Σ〉 be a many-sorted signature. Then, the

S-component ϕS : S → ΛVS of ϕ is defined by taking (ϕS)0 = 1S and375

(ϕS)1(σ) = σar(σ),srt(σ).

Proposition 16. ϕ : 1Sig ⇒ ΛV is a natural isomorphism.

Proof. The component ϕS at S of ϕ is trivially an invertible many-sorted sig-

nature morphism for each many-sorted signature S = 〈S,Σ〉. Thus, we only

prove the naturality of ϕ, i.e., that

S S′

ΛVS ΛVS′

f

ϕS ϕS′

ΛVf

commutes for each many-sorted signature morphism f : S → S′. The 0-th

component of the diagram commutes because (ΛVf)0 = f0 and ϕS and ϕS′ are

the right and left identities for f , respectively. As regards the 1-th component

of the diagram, we have that

(ΛVf)1(σw,s) =
(
(Vf)1(σ)

)
(Vf)∗0(w),(Vf)0(s)

= (f1(σ))f∗0 (w),f0(s)

= (ϕS′)1(f1(σ))

and hence the thesis.

Conversely, if S = 〈S,≤,Σ〉 is an order-sorted signature, the S-component

ϑS : VΛS → S of ϑ is obtained by defining (ϑS)0 = 1S and (ϑS)1
w,s(σw,s) = σ.380

Proposition 17. ϑ : VΛ⇒ 1Sig≤ is a natural transformation.

Proof. We prove the naturality of ϑ, i.e., that

VΛS VΛS ′

S S ′

VΛf

ϑS ϑS′

f
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commutes for each order-sorted signature morphism f : S → S ′. The 0-th com-

ponent of the diagram trivially commutes. As regards the 1-th component, we

have that

(ϑS′)
1
f∗0 (w),f0(s)

(
(VΛf)1

w,s(σw,s)
)

= (ϑS′)
1
f∗0 (w),f0(s)

(
(Λf)1(σw,s)

)
= (ϑS′)

1
f∗0 (w),f0(s)

(
f1
w,s(σ)f∗0 (w),f0(s)

)
= f1

w,s(σ)

= f1
w,s

(
(ϑS)1

w,s(σw,s)
)

and hence the thesis.

Again, Λ and V form an adjunction:

Theorem 2. V is left adjoint to Λ and (ϑ, ϕ) are the counit and the unit of the

adjunction (V,Λ, ϑ, ϕ).385

Proof. We prove the following triangle equalities (0-th component trivially com-

mutes):

Λ ΛVΛ

Λ

ϕΛ

Λϑ

VΛV V

V

ϑV

Vϕ

• For each σ ∈ ΣS
w,s

(ϑVS)1
w,s

(
(VϕS)1

w,s(σ)
)

= (ϑVS)1
w,s

(
(ϕS)1(σ)

)
= (ϑVS)1

w,s(σw,s)

= σ

• For each σw,s ∈ ΣSw,s

(ΛϑS)1

(
(ϕΛS)1(σw,s)

)
= (ΛϑS)1((σw,s)w,s)

=
(
(ϑS)1

w,s(σw,s)
)
w,s

= σw,s

23



390

The results in this section can be rephrased in terms of free constructions.

Indeed, the order-sorted signature VS is actually a free object on S (together

with the morphism ϕS : S → ΛVS). In this context, the functor Λ: Sig≤ →

Sig acts as a forgetful functor which forgets the ordering between sorts of the

signature, whereas the free functor V: Sig→ Sig≤ adds the loosest ordering on

the set of sorts of a many-sorted signature (i.e., the smallest reflexive relation).

Therefore, it follows that, given a many-sorted signature S, for each order-sorted

signature S and (many-sorted) morphism f : S→ ΛS there is a unique (order-

sorted) morphism g : VS→ S such that the following diagram commutes:

S ΛVS

ΛS

ϕS

f
Λg

Example 5. In this example, we denote by ≡X the smallest reflexive relation

on a given set X, i.e., ≡X = { (x, x) | x ∈ X }. Let S = 〈S1,Σ1〉 be the

many-sorted signature with only two sorts a and b, and two operators a : a and

b : b. The free order-sorted signature on S is VS = 〈S1,≡S1
,Σ1〉. Now, let

S = 〈S2,≤2,Σ2〉 be the following order-sorted signature

a : a b : b c : c where ≤2 = {(a,b), (a, c), (b, c)} ∪ ≡S2

The forgetful functor Λ maps S to ΛS = 〈S2, Σ̂2〉, where Σ̂2
w,s = {aε,a, bε,b, cε,c}.

Suppose that f : S → ΛS is the many-sorted morphism which its first compo-

nent f0 acts as the inclusion function from S1 to S2, and f1(a) = aε,a and

f1(b) = bε,b. The unique morphism g : VS → S which makes the previous

diagram commute is the one who mimics the behavior of f , namely g0(s) = s395

for each s ∈ S1 and g1
w,s(σ) = σ for each σ ∈ Σ1

w,s.

5. Semantic Equivalence

In this section, we show that the provided syntactical transformations be-

tween context-free grammars and many-sorted signatures (Section 3) and be-
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tween many-sorted and order-sorted signatures (Section 4) give rise to equivalent400

categories of algebras over the transformed objects.

More specifically, if Υ ∈ {∆,∇,Λ,V} is a syntactical transformation and X

is a language specification in the domain of Υ, then we prove that Alg(X ) and

Alg(ΥX ) are equivalent, namely

X ΥX

Alg(X ) Alg(ΥX )

Υ

Alg Alg

∼=

Some of these equivalences are presented as isomorphisms of categories. It

is well-known that an isomorphism of categories is a strong notion of categorical

equivalence where functors compose to the identity.

5.1. Context-Free Grammars and Many-Sorted Signatures405

As mentioned in the introduction, [12] proves an equivalence between the

many-sorted term ∆G-algebra T∆G and the initial algebra TG over each gram-

mar G. We now extend this result to the whole categories of algebras Alg(G)

and Alg(∆G).

Let A = 〈A,FA〉 be a G-algebra, and recall that the conversion of G to410

many-sorted signature is denoted by ∆G = 〈SG,ΣG〉. Then, we map A to the

many-sorted ∆G-algebra A↑ = 〈A↑, FA↑〉 such that A↑N = As for each N ∈ SG
and JC → δKA↑ = JC → δKA for each C → δ ∈

⋃
ΣG (operators in ∆G are

productions in G). Furthermore, given a G-homomorphism h : A→ B, we define

the ∆G-homomorphism h↑ : A↑ → B↑ such that h↑N = hN .415

Conversely, let A = 〈A,FA〉 be a ∆G-algebra. Then, we define the inverse

construction that maps A to the G-algebra A↓ = 〈A↓, FA↓〉 such that A↓N = AN

for each non-terminal N and JC → δKA↓ = JC → δKA for each production C → δ.

Moreover, if h : A → B is a ∆G-homomorphism, then h↓ : A↓ → B↓ such that

h↓s = hs is a proper G-homomorphism.420

Theorem 3. The inverse of ( )↑ is ( )↓, therefore they form an isomorphism

of categories between Alg(G) and Alg(∆G) for each context-free grammar G.
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Since an isomorphism of categories is a strict notion of categorical equiv-

alence, it preserves the initial objects, and thus, by applying ( )↑ and ( )↓ to

the initial algebras, we have the exactly result of [12], i.e., T↑G = T∆G and425

T↓∆G = TG.

In a similar manner, given a many-sorted signature S, we can extend the

equivalence between the initial algebras TS and T∇S to their whole categories

of algebras Alg(S) and Alg(∇S).

Let A = 〈A,FA〉 be a many-sorted S-algebra. We denote by ∇S = 〈NS,430

TS, PS〉 the context-free grammar obtained by converting the signature S. We

define the ∇S-algebra ↑A = 〈↑A, F↑A〉, where ↑As = As for each s ∈ NS

and Js → σwK↑A = JσKA for each s → σw ∈ PS. The conversion of a S-

homomorphism h : A → B to a ∇S-homomorphism ↑h : ↑A →↑ B is analogous

to the previous case.435

On the contrary, if A = 〈A,FA〉 is a ∇S-algebra and h : A → B is a ∇S-

homomorphism, we can obtain a many-sorted S-algebra ↓A and an S-homomor-

phism ↓h : ↓A→↓ B by simply inverting the previous construction.

Theorem 4. The inverse of ↑( ) is ↓( ), therefore they form an isomorphism

of categories between Alg(S) and Alg(∇S) for each many-sorted signature S.440

Again, the result of [12] is a special case of this last theorem by noting that

↑TS = T∇S and ↓T∇S = TS.

Example 6 (Example 4 Continued). In the Example 4, we have shown how to

preserve categorical constructions between Grm and Sig. Theorems 3 and 4

can be applied on the top of Theorem 1 to ensure the semantic equivalence of445

the achieved constructions. For instance, if the (G1⊕G2)-algebra A provides the

semantics of the disjoint union of languages over G1 and G2, then A↑ provides

the equivalent semantics in the category Alg(∆(G1⊕G2)), as a consequence of

Theorem 3.
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5.2. Many-Sorted and Order-Sorted Signatures450

The forgetful functor Λ transforms an order-sorted signature S to the many-

sorted signature ΛS by forgetting the ordering on the sorts. In [7], the authors

prove the categorical equivalence between Alg(S) and Alg(ΛS). We now extend

such a result to its left adjoint V.

Let A = 〈A,FA〉 be a many-sorted S-algebra and let VS = 〈SS,≤S,ΣS〉.455

We define the order-sorted VS-algebra A↑ = 〈A↑, FA↑〉 such that (A↑)s = As

for each s ∈ SS and JσKw,sA↑
= JσKA for each σ ∈ ΣS

w,s. Moreover, if h : A → B

is an S-homomorphism, then h↑ : A↑ → B↑ is the ΛS-homomorphism defined

by (h↑)s = hs. Furthermore, we denote by ( )↓ the inverse functor that maps

ΛS-algebras and ΛS-homomorphism to the category Alg(S).460

Theorem 5. The inverse of ( )↑ is ( )↓, therefore they form an isomorphism

of categories between Alg(S) and Alg(VS) for each many-sorted signature S.

6. Discussion and Related Works

This article is an extension of the conference paper [21] along three different

ways: Firstly, we have added examples and detailed proofs for every major the-465

orem in the paper. Secondly, we have studied the (contravariant) functoriality

nature of Alg (Proposition 4 and Proposition 8) which has lead to a neater

presentation of Corollary 1 and Corollary 9. Finally, we have strengthened the

definition of an order-sorted morphism f : S1 → S2 by (1) embedding the sort

ordering of S1 into S2 through f0 and by (2) preserving polymorphic operators.470

As a result, we have obtained a free construction in terms of adjoint functors

(Theorem 2) — instead of an adjoint equivalence — that nevertheless gives rise

to an isomorphism between the respective categories of algebras (Theorem 5).

The work most directly related to ours is [13], where the correspondence

between context-free grammars and algebraic signatures is studied, both in the475

first-order and high-order setting. In particular, the author provides a proof

(Proposition 2.15) of the isomorphism between the term algebra over a gram-

mar and over its conversion to a many-sorted signature, and vice versa. Our
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work can be seen as generalizing these results (for the first-order case but as

well including order-sorted specifications) towards a categorical framework, in480

which also a correspondence between internal transformations (morphisms) and

external transformations (functors) is established. Moreover, this more abstract

point of view has enabled us to extend the aforementioned isomorphisms to the

whole category of algebras, not only to the initial object.

To the best of our knowledge, the first paper presenting the syntactical trans-485

formations studied in this work is [12]. More specifically, the authors provided

the definitions of ∆G and ∇S with the properties described in [13]. A similar

approach is taken in [7], where the definition of Λ is given, along with the proof

(Theorem 4.2) that Alg(S) is equivalent to Alg(ΛS).

7. Conclusion and Further Research490

In this paper, we have provided a categorical model of three different syntax

formalisms (context-free grammars, many-sorted signatures and order-sorted

signatures). We have shown how the extension to functors of already existing

syntactical transformations gives rise to adjoint constructions able to preserve

the abstract syntax of the generated terms. Finally, we have proved that the495

categories of algebras over the objects in these formalisms are categorically

equivalent up to the provided transformations.

An obvious but important consequence of the underlying categorical model is

the compositional nature of the proved results. Indeed, we can get a free equiva-

lence between the category of grammars Grm and the category of order-sorted500

signatures Sig≤ by simply composing V∆ and ∇Λ. The algebraic counterpart

of the same observation allows us to claim that the composition of the functors

( )↓ ◦ ( )↑ gives rise to an isomorphism between Alg(G) and Alg(V∆G) (and,

of course, the dual result holds).

Further research concern refinements of the syntactical transformations be-505

tween the formalisms in order to preserve specific properties of the concrete

syntax [22]. Among them, polymorphism seems the most interesting. Unfortu-
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nately, the composition of functors V∆ and ∇Λ yields non-polymorphic set of

operators. Another future work goes in the direction of providing syntactical

transformation from Grm to Sig≤ that yields only regular (see [7] for regularity510

definition) order-sorted signatures. Then, studying the adjoint of such a trans-

formation could provide an interesting notion of regularity in the category of

grammars that may be employed to weaken the standard notion of ambiguity.
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