
Journal of Systems and Software 00 (2019) 1–18

Systems
and

Software

Experimental Assessment of XOR-Masking Data Obfuscation based
on K-Clique Opaque Constants

Roberto Fellina,, Mariano Ceccatob

aUniversity of Trento, Trento, Italy
bUniversity of Verona, Verona, Italy

Abstract

Data obfuscations are program transformations used to complicate program understanding and conceal actual values of program
variables. The possibility to hide constant values is a basic building block of several obfuscation techniques. In XOR-Masking, a
constant mask is used to obfuscate data, but this mask must be hidden too, in order to keep the obfuscation resilient to attacks.

In this paper, we present a novel extension of XOR-Masking where the mask is an opaque constant, i.e. a value that is difficult
to guess by static analysis. In fact, opaque constants are constructed such that static analysis should solve the k-clique problem,
which is known to be NP-complete, to identify the mask value.

In our experimental assessment we apply obfuscation to 12 real Java applications. We observe that obfuscation does not
alter the program correctness and we record performance overhead due to obfuscation, in terms of execution time and memory
consumption.

c© 2011 Published by Elsevier Ltd.

Keywords: Data obfuscation; Program transformation; Obfuscation overhead

1. Introduction

Programs often contain sensitive data, e.g., license numbers or decryption keys, that could be extracted and stolen
in case the code is scanned or analysed by malicious users (man-at-the-end attack model [9]). Among the possible pro-
tection strategies that can be applied to limit malicious program understanding, data obfuscation aims at complicating
data extraction by changing data representation and use.

Many approaches for obfuscating the program control flow have been defined and are quite largely adopted in
practice [23]. However, even if the control flow is extremely difficult to understand, when values are stored in clear
in the program binary, they can be easily attacked, because control flow obfuscation does not impede data extraction.
In fact, clear data can be read from the binary program before execution. For this reason, data obfuscation should
complement control obfuscation in protecting against malicious reverse engineering.

XOR-Masking is a popular data obfuscation scheme that uses a mask to encode sensitive program data. However,
in case the attacker is able to identify the mask value, sensitive data can be easily decoded statically, and leak to the
attacker in clear. So, the mask should not be easy to detect with malicious reverse engineering, for instance the mask
should not be a static constant.

Opaque constants are program constants, whose value is opaque for a static analysis tool, because the value is
computed at runtime by the program (once needed), but the value is very difficult to recover by a static analysis tool.

1

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 2

In a companion paper [20] we presented an approach to automatically obtain opaque constants based on the k-clique
problem, that overcomes the limitations of previous art [15] and that seems promising for practical adoption.

In our previous paper, we also empirically shown that an opaque constant is fast to generate at obfuscation time,
but it is extremely hard to attack using static analysis. In this paper, we build on top of our previous results and we
use our opaque constants to implement a novel data obfuscation scheme. We extend XOR-Masking data obfuscation,
by using an opaque constant as mask, such that its resilience to static analysis dramatically improves. Moreover,
while in the former paper, we just used synthetic examples and way too simple programs, in this paper we apply data
obfuscation on real code.

We demonstrate that data obfuscation is sound, because it does not alter programs by introduction implementation
errors, and we measure the practical cost of data obfuscation on realistic case studies, by measure execution time and
memory consumption overhead.

The paper is structured as follows. The problem of strengthening data obfuscation in exposed in Section 2. The
background of opaque constants with k-clique is covered in Section 3. Then, our approach to use opaque constants
to define a novel XOR-Masking data obfuscation scheme is presented in Section 4, which is empirically evaluated in
Section 5. Section 6 comments related work and, lastly, Section 7 summaries conclusions and future work.

2. Problem Definition

Obfuscation [6] denotes program transformation techniques aiming at turning a program into another one more
hard to understand and thus to attack, while preserving execution semantic. In particular, XOR-Masking is a program
transformation approach meant to complicate the representation of data to make them harder to comprehend.

XOR Masking is a quite frequently [25] used data obfuscation transformation based on the bitwise XOR operator.
Variants of XOR-Masking are known to be employed by practitioners and by malware [3]. This obfuscation consists
in encoding a clear value by computing its bitwise XOR (denoted with ˆ) with an integer constant (the mask) p:
e(x) = xˆp.

From the property of the XOR operator that (xˆp)ˆp = x, it follows that the clear value can be recovered using the
decoding function that is e(·) itself.

Figure 1 contains snippets of code before and after having applied the XOR-Masking obfuscation with p = 12.
The values of program variables a, b and x are stored encoded in memory, and they are decoded only where their clear
values are needed. At line 3, a and b are decoded to use their values in a sum, and the result is encoded before being
assigned to x. The program variable x is, then, decoded in the last line, before it is printed.

int a = 5;

int b = 8;

int x = a+b;

...

printf("%d\n",x);
	

int a = 9; // 9 = 5^12

int b = 4; // 4 = 8^12

int x = ((a^12)+(b^12))^12;

...

printf("%d\n",x^12);

Figure 1. Example of XOR-Masking.

Data encoded with XOR-Masking are vulnerable to attacks based on static analysis. In fact, the mask p used in
XOR-Masking is a static constant that, once extracted from the code, can be used to decode and obtain the clear value
of obfuscated variables. A way to make this obfuscation technique more resistant to static analysis attacks, is to turn
this constant into a different software entity that is harder to identify statically. An option is to replace the mask value
with an opaque constant [7]. A constant is opaque when its value (known at obfuscation time) is removed from the
code and it is computed at runtime in a way that is hard to guess by analysing the obfuscated program.

2.1. Attack Model

2

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 3

Our attack model is based on the outcome of series of studies conducted with professional hacker teams and with
a public challenge, to observe how protected programs are attacked [4, 5]. The facts that could be observed from these
studies include the following:

• When tampering with a program, dynamic analysis seems a natural choice. In fact, an attacker might set
breakpoints to suspend the execution at interesting points in time, to read the memory and, possibly, to alter
values;

• In case code-protections are deployed to mitigate attacks, hackers revise their strategy to choose the path of
minimal resistance and minimize the attack effort. E.g., in case anti-debugging [1] is deployed to prevent
debugging, instead of defeating this protection and be able to attach a debugger, attackers prefer to switch to
static analysis;

• Static analysis is one of the main approaches (together with dynamic analysis) used by hackers to attack pro-
tected code;

• Each protection approach has strong and weak points, weak points could be exploited to defeat or work around
a protection. Thus, different code protection approaches should be integrated and deployed together, not only
to protect the code from tampering attacks, but also to protect each other protection from attackers’ attempts to
defeat them.

To identify and extract sensitive data from a program, dynamic analysis seems a natural choice. In fact, an attacker
might set breakpoints to suspend execution and read sensitive data in memory at run-time. To protect sensitive data, the
first line of defense consists in blocking dynamic analysis, for instance by preventing a debugger to attach using anti-
debugging. When dynamic analysis is too expensive or too time-consuming, attacker shown to revise their strategy.
Instead of elaborating a very complex solution and continue with dynamic analysis, static analysis becomes a valuable
alternative. Thus, the second line of defense consists in contrasting static analysis, to prevent that attackers can easily
identify and extract sensitive data from the static binary.

The contribution of this paper is positioned in the scope of this second line of defense, to prevent attacks based on
static analysis. In other words, we consider dynamic analysis out of the scope, for instance because it is not applicable
due to anti-debugging.

However, to be effective in practice, protection approaches against static analysis and against dynamic analysis
should be paired and deployed together, to defend each other weak point and, together, to defend the code from
malicious reverse engineering.

Similarly to what assumed by related work [15, 7], in this paper we also assume that an attacker can deploy any
static analysis tool and algorithm on the program. Relevant examples of tools are IDA-Pro and KLEE. The attacker
objective is to extract sensitive values from the program, those values that are meant to be obfuscated.

2.2. Requirements of Data Obfuscation with Opaque Constants

The first requirement descends directly by Collberg’s definition of obfuscation transformation [6]: the obfuscated
program must behaves as the original clear program on valid inputs. This means that, the end-user should notice
no dissimilarity between the clear and the obfuscated program, such as crashes or different results, across all the
implemented features, i.e.:

Requirement Req1: The obfuscation transformation must be sound.

The second requirement for data obfuscation is that it should be resilient and difficult to break. Resilience is
defined as a measure of how well a transformation holds up under attack by an automatic deobfuscator [7]. Attackers
in fact might adopt tools to perform malicious reverse engineering and try to extract decoded values from a program.
For example, if an opaque value is computed starting from constant values, it could be easily recovered using static
analysis techniques such as constant propagation. To avoid this analysis, an opaque value should be computed starting
from random values or program inputs. Moreover, recovering an opaque constant should require the attacker to solve
a known hard problem, i.e. an NP-hard problem. So our second requirement is the following:

3

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 4

Requirement Req2: Guessing the mask values to decode obfuscated values with static analysis should be
hard.

Conversely, from the defender point of view, the obfuscation should be computationally cheap to apply. The
obfuscation should be based on a problem that, despite it is hard to solve by the attacker, it should be easy to construct
and verify by the obfuscating tool. To assess that the obfuscation is correctly applied, the obfuscating tool should not
solve the same problem as the attacker. Thus, the third requirement is the following:

Requirement Req3: Obfuscation should be practically fast to apply.

Additional code is inserted to a program, to compute opaque constants at execution time. When this additional
code is complex, or it is executed very often, the obfuscated code might suffer sensible runtime overhead and perfor-
mance degradation. Despite different execution contexts might pose different constraints to execution time, obfusca-
tion should be in general lightweight and it should not impact too much the program execution speed. For example,
when needed, a clear data should be decoded in polynomial time. Thus, the last requirement is:

Requirement Req4: Performance overhead of obfuscated programs should be acceptable.

2.3. Considerations about Requirements

As we will discuss in the next sections, in this paper we propose an extension of XOR-Masking data obfuscation,
where an opaque constant is used to protect the mask from static analysis. Opaque constants are based on the k-clique
approach, proposed by us in a previous work [20]. In that paper, we also validated some properties of these opaque
constants, so that some of the previous requirements are satisfied, but some others are still open.

7 Req1: Even if an obfuscation scheme is theoretically sound, we could have overlooked important details or have
committed implementation mistake. Thus, we need to check if program behaviour is altered by obfuscation, to
guarantee that no defect has been introduced by our transformation;

3 Req2: Breaking data obfuscation is hard, because guessing an opaque constant based on k-clique with static
analysis is hard. In fact, we already shown [20] that a state-of-the-art symbolic execution tool could not com-
plete the analysis of the piece of obfuscated code that computes opaque constants at runtime. Moreover, a
simplified version of this code required exponential analysis time (more than 11,000 years for normal sized
problems). Analysis time is estimated to take exponentially longer than a similar previous opaque constant
approach, i.e. based on 3SAT by Moser et al. [15];

3 Req3: An obfuscation is practically fast, because constructing the opaque constant at obfuscation time is not a
hard problem. In fact, the obfuscation time is dominated by the time needed to generate a 3SAT unsatisfiable
formula. Our past experimental assessment [20] showed that it takes less than one second to generate a very
hard 3SAT formula, with up to 200 variables;

7 Req4: Computing the opaque constant at execution time is expected to be quite fast. This requirement is
only partially meet by our previous experimental validation. In fact, in our previous paper, we just shown that
computing the opaque constant is fast if done once, but an obfuscated program might require to compute it
multiple times. We still need to investigate the performance overhead of a real obfuscated program, where
obfuscated data are used many times. This second dimension has not been investigated so far.

In the next sections, we will present our approach based on k-clique, to craft resilient and manageable opaque
constants. We will also recall how our solution addresses our requirements.

4

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 5

3. Opaque Constant based on K-Clique

Our opaque constants are based on the k-clique problem, a problem known to be NP-hard [10]. This approach
allows to craft resilient opaque constants that overcome the limitations of previous work.

Intuitively, we adopt a reduction transformation to turn a propositional formula in conjunctive normal form into a
graph. The reduction is defined such that the graph contains a clique of size k if and only if the formula is satisfiable.
Eventually, we compute the opaque constant based on some properties of the graph, such that, to guess the opaque
value, a static analysis tool would have to solve a hard k-clique problem.

The k-clique problem is defined as the decision whether an arbitrary undirected graph contains as subgraph of k
vertexes all pairwise connected. More formally, given an undirected graph G = (V, E) and an integer k (with k ≤ |V |),
the k-clique problem consists in deciding if the graph G contains a clique of size k (or higher). A clique of size k is
a subset V ′ of the graph vertexes (V ′ ⊆ V) of size at least k (|V ′| ≥ k), in which all the pairs of vertexes in V ′ are
connected by an edge in E from the original graph G.

3.1. Generation of a Hard 3SAT Problem

Our approach starts from an unsatisfiable propositional formula for 3SAT problem. A 3SAT problem is defined
as in the following. Let ϕ be a propositional formula in conjunctive normal form with the n propositional variables1

{v1, v2, ..., vn} and with k 3-literals clauses:

ϕ =
∧

i=1,...,k

αi,1 ∨ αi,2 ∨ αi,3 with αi, j ∈ {v j,¬v j| j = 1, ..., n} (1)

The 3SAT problem consists in identifying a truth assignment for variables v1, v2, ..., vn such that ϕ is satisfied (i.e.,
ϕ evaluates to true). An example of such propositional formula in the propositional variables v1, v2 and v3 is:

(¬v1 ∨ ¬v2 ∨ ¬v3) ∧ (¬v1 ∨ v2 ∨ ¬v3) ∧ (v1 ∨ ¬v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3) (2)

To generate a hard instance of the 3SAT problem, we adopt the guidelines proposed by Selman et al. [18] derived
by their empirical study about random sampling 3SAT formulas. They studied 3SAT formulas generated using the
fixed clause-length model, i.e. a model where each clause is produced by randomly choosing a set of 3 variables from
the set of n available, and negating each with probability 0.5. They found that the hardest area for satisfiability is
near the point where 50% of the formulas are satisfiable, and when the ratio between the number of clauses k and the
number of propositional variables n is between 4.25 and 4.55. In our approach, we adopt an average ratio k/n of 4.3,
i.e. our formulas will have n propositional variables and k = b4.3 · nc clauses.

We run SAT solver on this random 3SAT formula to check that it is unsatisfiable. If the check fails, we discard the
formula and we generate a new one, until the check with the SAT solver passes.

This process is an example of a Bernoulli trial. The expected number of times the check has to be repeated before
the first success is 1/p, where p is the probability of success. In a past work [20], we assessed this probability and the
time required to check the propositional formula to be unsat. The total time required to generate a 3SAT unsatisfiable
formula in up to 200 variables was less than one second with a very high probability. This allows us to conclude that
requirement Req3 is met, because the obfuscating tool can assess the propositional formula fast enough.

Then, this 3SAT unsatisfiable formula is turned into a k-clique problem, as described in the following.

3.2. Reduction of a 3SAT Problem to a k-clique Problem

A 3SAT problem can be reduced2 to a k-clique problem in this way. Let’s assume to have a 3SAT formula ϕ in n
variables consisting in k clauses as in Equation (1). We construct a graph Gϕ = (V, E), whose vertexes V and edges E
are defined according, respectively, to Equation (3) and Equation (4).

1The term propositional variable is used to distinguish Boolean variables used in the 3SAT propositional formula from program variables
subject to data obfuscation.

2Here we intend the reduction as proposed by Karp[14]. Informally, a reduction is the transformation of a decision problem into another by
means of an algorithm that executes in polynomial time.

5

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 6

V = {(i, αi,1), (i, αi,2), (i, αi,3)|i = 1, ..., k} (3)

E = {(i1, αi1, j1), (i2, αi2, j2)) |i1 , i2 and αi1, j1 ∧ αi2, j2 satisfiable} (4)

The vertex set V contains a distinct vertex for each occurrence αi,k of a literal in the clause i. The edge set E
contains an edge for every pair of literals belonging to two different clauses and so that they are jointly satisfiable, i.e.
if one is not the logical negation of the other.

Figure 2 shows the graph corresponding to the example propositional formula in Equation (2). In the figure, a
minus sign ‘-’ stands for the logical negation, for example the literal ¬v1 is written −v1. Nodes (1,¬v2) and (2, v2) are
not connected because v2 and ¬v2 can not be jointly satisfiable, while node (1,¬v2) and node (2,¬v1) are connected
because ¬v2 and ¬v1 can be jointly satisfied (and are present in two different clauses, namely 1 and 2).

By construction, the 3SAT formula ϕ with k clauses is satisfiable if and only if the graph Gϕ contains a k-clique.
In fact, if the graph contains a k-clique, vertexes in the clique refer to literals that can be assigned to true without
resulting in contradiction (all nodes in a clique are pairwise connected and by construction being connected means
being jointly satisfiable). Literals mentioned in clique’s vertexes belong to different k clauses as by definition two
vertexes are connected only if they belong to different clauses. Thus the truth assignment satisfies all the k clauses,
i.e. it satisfies ϕ. On the other hand, if there exists an assignments that satisfies ϕ, it means that for each clause i at
least a literal αi, ji is true and the set V̄ = {(i, αi, ji), i = 1, ..., k} is a k-clique. In fact, if (i1, αi1, ji1), (i2, αi2, ji2) ∈ V̄ with
i1 , i2, it means that αi1, ji1 ∧ αi2, ji2 is satisfiable thus (i1, αi1, ji1) and (i2, αi2, ji2) are connected.

(1, -v1)

(2, -v1) (2, v2) (2, -v3)

(3, -v2)(3, v3)

(4, v2)(4, v3)

(3, v1)

(4, v1)

(1, -v2) (1, -v3)

Figure 2. Graph obtained by means of the Karp’s reduction of a 3SAT problem to a k-clique problem for the formula in Example 2.

In our running example, the propositional formula in Equation (2) has 4 clauses and it is satisfiable. So the graph
in Figure 2 should contain a clique of size 4. In fact, nodes {(1,¬v1), (2,¬v1), (3,¬v2), (4, v3)} form a 4-clique in the
graph. They correspond to the assignment:

v1 = False v2 = False v3 = True

Considering how nodes are generated starting from the propositional formula (see Equation (3)), starting from a
3SAT formula ϕ with k clauses, the resulting graph Gϕ will have 3k nodes.

3.3. Opaque Constants based on k-clique

Our approach leverages the NP-hardness of the k-clique problem for forging resilient opaque constants. The
integer value c to be turned into an opaque constant is split into nb-bits, c = b0b1...bnb−1. To encode the bit bi as a
k-clique problem, first of all we generate the propositional formula ϕi with k clauses, corresponding to a hard 3SAT
problem and we reduce it to the graph Gi = (Vi, Ei) as described earlier. The propositional formula ϕi is generated
such that it is unsatisfiable, i.e. it is false for each Boolean assignment of its propositional variables. Thus the graph
Gi = (Vi, Ei) contains no clique of size k, i.e. any subset of k vertexes will not be a clique.

Figure 3 shows a snippet of code that generates an opaque bit, i.e. a single bit of an opaque constant c. The
function call at Line 13 randomly generates a set of vertexes. The generate subset(idx,n,s) randomly as-
signs elements from the set {0, 1, 2, ..., s − 1} to the vector idx of length n. In the actual obfuscation, the function
generate subset(v,n,m) is inlined. The nested loops at Line 15 and Line 16 verify whether the subgraph induced

6

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 7

by the set of vertexes is a clique or not. If it is not, which is always the case by construction, the bit is set to the
required value, 0 in this example (Line 18). The chunk of code is repeated for all nb.

We already measured [20] how long the code in Figure 3 takes to compute the opaque at runtime by an obfuscated
program. The result shown the 16-bits opaque constants based on k-clique are computed quite fast, they take between
4 and 4.5 seconds for computing 1 million opaque constants. Moreover, computation time increases logarithmically
with an increasing number of propositional variables used in the 3SAT formula. This means that requirement Req4
is at least partially met, because computing an opaque value at runtime is fast. However, a more complete empirical
assessment is required, to measure the actual slowdown of real-world programs when obfuscated with this approach.

1 int gm [][51] = {

2 { 0,0,...,1,1,1,0,1,1,},

3 ...

4 { ... }

5 };

6

7 int phi = TRUE;

8 int i,j;

9 int n = 17;

10 int s = 3*n;

11 int idx[n*sizeof(int)];

12

13 generate_subset(idx ,n,s);

14

15 for (i=0; i<n-1; i++) {

16 for (j=i+1; j<n-1; j++) {

17 if (!gm[idx[i]][idx[j]]) {

18 phi=FALSE;

19 break;

20 }

21 }

22 }

23

24 if (!phi) {

25 opaque_bit = 0;

26 } else {

27 opaque_bit = 1;

28 }

Figure 3. Generation of a single bit of the opaque constant based on our k-clique problem based approach.

4. Xor-Masking Data Obfuscation based on Opaque Constants

Here we present our approach based on opaque constants to propose a novel obfuscation schema for XOR-
Masking. We implemented three different variants of data obfuscation, they are:

• XOR-Masking with constant mask;

• XOR-Masking with opaque mask; and

• XOR-Masking with cached opaque mask.

4.1. XOR-Masking with Constant Mask
This obfuscation is shown in Figure 1. The obfuscation transformation has been implemented as a Java bytecode

transformation in ASM3. Applying the transformation at bytecode level makes it compatible with all the languages

3https://asm.ow2.io/

7

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 8

that compile to Java bytecode, including not only Java, but also JRuby, Jython, Scala and Kotlin. Additionally, the
obfuscation is done directly on the bytecode, so the source code is not needed and we can obfuscate also libraries.

Obfuscation applies to class fields of types int, long, float, double, char and string. For char, int and float types a
32-bit mask is used, while for long and double types a 64-bit mask is used. Variables of type string are obfuscated by
iterating over all the characters and applying a 32-bit mask to each character.

f(x);
GETFIELD B.x

INVOKEVIRTUAL B.f(I)I 	
GETFIELD B.x

BIPUSH 12

IXOR

INVOKEVIRTUAL B.f(I)I

Figure 4. Obfuscation of filed uses (Java code, compiled clear bytecode and obfuscated bytecode).

Field uses: Figure 4 shows how XOR-Masking transforms field read accesses, i.e. field uses. The code in the
left-hand side shows a piece of Java that accesses the field x and uses its value as actual parameter to call the method
f. This code compiles to the bytecode shown in the center, the field is read by GETFIELD opcode and stored in the
operand stack. The subsequent opcode INVOKEVIRTUAL calls the method f that expects parameters to be available in
the operand stack.

Our transformation applies after the field is read, by adding two brand new opcodes. The obfucated code is shown
in Figure 4, right-hand side. BIPUSH pushes the constant mask (value 12) on the stack, next to the field value. Then,
IXOR consumes two entries in the stack (the filed value and the mask value), it computes the bitwise xor and pushes
the results into the stack. This corresponds to decoding the obfuscated values of field x, needed by the subsequent
opcode INVOKEVIRTUAL, that calls method f with the clear value of x as actual parameter.

x = f();
INVOKEVIRTUAL B.f()I

PUTFIELD B.x 	
INVOKEVIRTUAL B.f()I

BIPUSH 12

IXOR

PUTFIELD B.x

Figure 5. Obfuscation of filed assignments (Java code, compiled clear bytecode and obfuscated bytecode).

Field defs: Figure 5 shows the second pattern, in case of assigning a value to a field that should be obfuscated. In
the left-hand side, a piece of Java code contains an assignment to x. The corresponding compiled bytecode is shown
in the center. The method call (opcode INVOKEVIRTUAL) stores a return value in the operand stack, and the opcode
PUTFIELD consumes it and assigns it to x. Our transformation adds two brand new opcodes (see right-hand side).
After method f returned, the clear return value in the stack is encoded by pushing the mask in the stack (BIPUSH
opcode) and by computing the bitwise xor (IXOR opcode). The encoded value, now available in the stack, is then
assigned to the field.

Slightingly similar obfuscation patterns apply in case the filed to obfuscate is a static filed, because the patterns
have to match opcodes GETSTATIC and PUTSTATIC instead.

4.2. XOR-Masking with Opaque Mask

The resilience of the previous scheme can be improved by replacing the constant mask with an opaque constant,
as shown in Figure 6. Resilience is improved, because such an opaque mask is harder to identify with static analysis.
In fact, static analysis would require to solve an NP-hard problem to figure out the mask.

Instead of using a constant mask (12 in the previous scheme), we call the function (i.e., to oc 12) generated by
our approach, that dynamically computes the value of the mask to use in the XOR operations. For a 32-bit mask, this

8

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 9

function contains 32 copies of the code in Figure 3. As a further improve (not shown in the example) the body of the
function that computes the opaque mask is inlined in the calling context, so that it is even harder to understand.

In case an opaque constant should be used instead of a constant mask, the patterns in Figure 4 and Figure 5 need
to be adapted. Before computing the bitwise xor in encode/decode operations, the code of Figure 3 should be used to
dynamically compute the mask value.

int a = 5;

int b = 8;

int x = a+b;

...

printf("%d\n",x);
	

int a = 9; // 9 = 5^12

int b = 4; // 4 = 8^12

int x = ((a^oc_12())+(b^oc_12()))^oc_12();

...

printf("%d\n",x^oc_12());

Figure 6. Example of XOR-Masking with opaque mask.

4.3. XOR-Masking with cached opaque mask
Discarding the mask value after each use and recomputing it each time it is needed is quite secure, because it

limits the opportunity for an attacker to detect the mask value. However, this strategy might bring consistent runtime
performance overhead, caused by recomputing the mask value too many times. A trade off between obscurity and
performance is represented by a third approach, that relies on a cache to still use on opaque constant as mask, but save
its value for future uses after it is computed at the first usage.

This obfuscation scheme is shown in Figure 7, the opaque constant is computed only once the first time it is needed
to decode a and b at line 3, by calling the function oc 12. The mask value is stored in the local variable m and used in
the subsequent statements.

Also in this case, the body of the function that compute the opaque mask is inlined in the calling context.

int a = 5;

int b = 8;

int x = a+b;

...

printf("%d\n",x);
	

int a = 9; // 9 = 5^12

int b = 4; // 4 = 8^12

int m = oc_12();

int x = ((a^m)+(b^m))^m;

...

printf("%d\n",x^m);

Figure 7. Example of XOR-Masking with cached opaque mask.

5. Empirical Evaluation

We performed an empirical evaluation of the proposed approach, to validate the correctness of obfuscated code
and the execution overhead caused by data obfuscation.

5.1. Research Questions and Variable Selection
We formalized our evaluation goals in the following research questions:

• RQ1: Does data obfuscation preserve program semantics?

• RQ2: What is the practical impact of data obfuscation on performance overhead?
9

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 10

• RQ3: What is the impact on performance overhead when increasing the complexity of the k-clique problem?

Obfuscation changes a program to make it harder to understand and to analyze, but it should not introduce devia-
tions with respect to the behaviour. The first research question aims at assessing whether the input-output behavior of
(real world) programs is preserved after applying obfuscation. However, obfuscation comes at some cost, at least in
terms of performance overhead. The latter two research questions are meant to quantify overhead in terms of longer
execution time. In particular, the second research question compare execution time of clear and obfuscated programs.
The last research question investigates overhead with harder and harder obfuscation schemes.

To answer these research questions, we will consider these metrics:

• ETIME: Execution time (in seconds) taken for running a scenario by an (either clear or obfuscated) program,
as reported by Maven Surefire Report.

• MEM: Amount of memory used by a program, expressed as the MB reported Maven Surefire Report.

• NVARS: Number of propositional variables in a 3SAT formula used to create the k-clique problem for data
obfuscation;

• TESTS: Percentage of passing test cases. This value is computed as the ration between the test cases that pass
on the obfuscated code and the number of test cases that pass on the original clear code.

5.2. Case Studies

In this empirical validation, we involve 12 open source Java projects from different domains. Table 1 lists the case
studies, together with some statistics. For each case study (first column), the table reports the size in terms of number
of classes (second column) lines of code (third column). The fourth and fifth columns report the amount of test code
coming with these projects, respectively, as the number of test classes and the number of lines of code. In total, case
studies contain more than 390K LoCs and mode than 360K LoCs of test cases.

The case studies considered are:

• Java2word4: Java library able to generate Microsoft Word Documents from Java code without any special
component.

• Jfreechart5: Java chart library which allows to display professional quality charts in Java applications.

• Xml-Security6: Java library with the aim of providing implementation of the primary security standards for
XML such as Digital Signature and Encryption.

• Jimfs7: Java library which implements an in-memory file system for Java 7 and above, implementing the
java.nio.file abstract file system APIs.

• Joda-Time8: Java library which provides a quality replacement for the Java date and time classes. It is the
standard date and time library for Java prior to Java SE 8.

• Stream-lib9: Java library for summarizing data in streams for which it is infeasible to store all events.

• Gson10: Java library that can be used to convert Java Objects into their JSON representation. It can also be used
to convert a JSON string to an equivalent Java object.

4https://github.com/leonardoanalista/java2word
5http://www.jfree.org/jfreechart/
6http://santuario.apache.org/
7https://github.com/google/jimfs
8http://www.joda.org/joda-time/
9https://github.com/addthis/stream-lib

10https://github.com/google/gson

10

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 11

• cglib11: Java library which provides high level API to generate and transform JAVA byte code.

• Quartz12: job scheduling library that can be integrated within virtually any Java application.

• LibRec13: Java library for recommender systems (Java version 1.7 or higher required). It implements a suit
of state-of-the-art recommendation algorithms, aiming to resolve two classic recommendation tasks: rating
prediction and item ranking.

• jackson-databind14: Java library with the general-purpose of data-binding functionality and tree-model. It
performs JSON data-binding and other data formats, as long as parser and generator implementations exist. It
builds on Streaming API (stream parser/generator) package, and uses Jackson Annotations for configuration.

• GraphHopper Routing Engine15: fast and memory efficient Java routing engine, released under Apache License
2.0. By default it uses OpenStreetMap and GTFS data, but it can import other data sources.

Application Classes LoC Test classes LoC Test
Java2word 47 4 147 20 2 343
Jfreechart 629 6 698 366 76 856

Xml-Security 463 11 896 197 54 684
Jimfs 58 12 838 50 13 548

Joda-Time 166 70 756 158 72 770
Stream-lib 48 7 925 29 5 429

Gson 74 14 894 101 18 761
cglib 129 14 640 72 7 031

Quartz 204 57 970 69 10 617
LibRec 186 36 921 82 7 107
jackson 418 107 570 498 71 960

GraphHopper 288 44 836 138 22 792
Total 2 710 391 091 1 780 363 898

Table 1. Case studies.

5.3. Obfuscation Configuration
To assess obfuscation correctness, we rely on the test cases that come with case studies to test the obfuscated

code, and check if test cases still pass after applying data obfuscation. However, to be able and accurately assess
the correctness of the obfuscated code, we mean to obfuscate only those fragment of code that we can test to a large
extent.

Moreover, the transformed code should not be just trivial methods (e.g., setter and getter methods). To assess the
correctness of our obfuscation in realistic and general settings, we mean to obfuscate code with a non-trivial level of
complexity. Thus, we adopt the following procedure to select what piece of data to obfuscate:

• Data access: Identify what data fields (of primitive types) are accessed by the code of program methods.

• High test coverage: Identify those program methods whose test coverage is high, i.e. at least 70% of program
code is tested by test cases;

• Not trivial code: Program methods to be obfuscated are complex and large, i.e. the number of branches is large.

11https://github.com/cglib/cglib
12https://github.com/quartz-scheduler/quartz
13https://github.com/guoguibing/librec
14https://github.com/FasterXML/jackson-databind
15https://github.com/graphhopper/graphhopper

11

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 12

We need to know what fields are accessed by program methods. However, considering that we will run the program
based on the scenarios realized by test cases, instead of opting for static data-access information, we preferred to
consider dynamic analysis and count the actual data accesses occurring when test cases are executed.

To this aim, we instrument the code to log when program method code accesses a class field of primitive type
(numeric, character or string). Instrumentation has been implemented as a rewrite rule in ASM, that add a trace
statement after opcodes that reads/writes class fields of these types. Logs are in the form method name→ field name.
Then, test cases are executed and execution traces are collected with the code/data mapping.

Test coverage (i.e., what portion of program code is tested by which test cases) is collected using EclEmma.
EclEmma collects coverage data in terms of the number of branches in each program method that are taken after the
whole test suite has been executed. It also reports the static size of each program method, in terms of the total number
of branches. We use the total number of branches in a program method to represent method complexity and method
size.

Based on these information, we make the final decision of what piece of data to obfuscate. We keep only program
methods that access data of primitive types (that, thus, our obfuscation scheme supports) and whose code is tested very
well by test cases (coverage > 70%). We discard all the other program methods that do not meet these conditions. The
remaining program methods are sorted by according to the number of branches that they contain, and the 10 program
methods with the largest number of branches are selected. A data filed is picked for each of these 10 program methods,
and marked as target for data obfuscation.

With this procedure, we make sure that we obfuscate a piece of data that is used by non-trivial code that is well
tested.

The masks are randomly generated, using the default random number generator available in Java. They are either
32-bit or 64-bit values, depending on the length of the type of the field to obfuscate.

When using opaque variants of masks, an instance of k-clique problem is needed. We create it starting from a
random 3SAT formula, as explained in Section 3. We set the number of propositional variables to 50 (NVARS = 50)
and, consequently, the size k of the k-clique problem is 215 (in fact, k = b4.3 · NVARSc).

5.4. RQ1: Correctness of Obfuscated Code
Obfuscation consists in a set of transformations to alter the code and make it harder to understand and analyze.

However, the obfuscation should be sound, i.e. obfuscation should not change the input-output behavior of a program,
for instance by introducing errors in the transformed code. We use test cases to assess the absence of defects in
transformed code on a set of programs.

All the case study application are subject to the analysis described above to decide which fields to obfuscate.
Three obfuscated versions are produced for each case study, by applying the three variants of data obfuscation, they
are XOR-Masking with constant constant mask, with opaque mask and with cached opaque mask. Then, the test cases
that come with each case study are run either on the clear program and on three obfuscated versions of it. We record
what tests pass on obfuscated code among those that pass on clear code.

The number of test cases is shown in Table 2, each case study in a different line. As we can see in the table,
approximately 20k distinct tests have been used to assess the correctness of obfuscated code. 100% of the test cases
that pass on the clear programs also pass on the obfuscated programs with all the three transformation variants. Thus,
we can answer RQ1 in the following way:

XOR-Masking data obfuscation based on opaque constants with k-clique is sound, because test cases
could detect no defect when run on the obfuscated version of realistic programs.

5.5. RQ2: Impact of Data Obfuscation on Runtime Overhead
The time taken to execute test cases (ETIME) and the amount of memory used (MEM) by clear and obfuscated

code are reported on Maven Surefire Report. Time measurement is repeated 100 times, to improve accuracy and
control random errors.

Table 3 compares the execution time of the whole test suite between clear code and obfuscated code, with all the
three variants of XOR-Masking. XOR-Masking with constant mask brings almost unnoticeable slowdown, in fact it
is 0% increase in most of the cases, with the only exception of cglib where increase is +1% and Joda-Time where time
increases by 7%.

12

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 13

Application Tests
Java2word 154
Jfreechart 2 256

Xml-Security 1 041
Jimfs 5 830

Joda-Time 4 207
Stream-lib 152

Gson 1 050
cglib 302

Quartz 302
LibRec 362
jackson 2 130

GraphHopper 1 375
Total 19 161

Table 2. Test cases used to assess the correctness of obfuscated code.

As expected, when using opaque masks, the execution time increase is larger. The lowest increase is +13% for
Quartz and the largest is +2,871% for Gson. The average increase for this variant of code obfuscation is +433%,
which means that the obfuscated code takes between 4 and 5 times longer to execute than the clear code, when an
opaque mask is used.

The opaque mask with cache (last column of Table 3) represents tradeoff with intermediate performance. In fact,
the overhead is more similar to the case of constant mask (+12% on average), while the mask is still hidden to static
analysis, because it is computed at runtime.

Application Clear Constant Opaque Opaque cached
Java2word 0.30 0.30 (+0%) 0.91 (+203%) 0.36 (+10%)
Jfreechart 5.27 5.26 (+0%) 12.05 (+128%) 5.39 (+2%)

Xml-Security 34.41 34.39 (+0%) 79.22 (+130%) 34.18 (+0%)
Jimfs 2.44 2.44 (+0%) 16.34 (+567%) 4.37 (+79%)

Joda-Time 3.58 3.85 (+7%) 5.79 (+61%) 3.90 (+9%)
Stream-lib 119.24 119.17 (+0%) 362.93 (+204%) 119.81 (+0%)

Gson 0.76 0.76 (+0%) 22.58 (+2871%) 0.96 (+26%)
cglib 3.90 3.95 (+1%) 15.99 (+310%) 4.14 (+6%)

Quartz 403.39 403.20(+0%) 456.94 (+13%) 407.78 (+1%)
LibRec 193.52 193.30 (+0%) 269.97 (+39%) 193.72 (+0%)
jackson 7.99 7.99 (+0%) 30.90 (+287%) 8.47 (+6%)

GraphHopper 13.35 13.30 (+0%) 65.53 (+391%) 14.37 (+8%)

Table 3. Execution time (ETIME) overhead caused by XOR-Masking obfuscation.

Table 4 shows the memory increase due to obfuscation. While XOR-Masking with constant mask does not require
additional memory in most of the cases, the other variants record noticeable memory overhead. The variant with
opaque mask requires on average more memory than the case when the mask is cached.

The execution time overhead and the memory overhead have a large distribution, especially for the XOR-Masking
with opaque constants. To investigate the possible reasons of this large variability across different case studies, we
computed the correlations of performance overhead with the impact of obfuscation transformation. In particular we
consider the following metrics:

• Obfuscated fields: The number of fields that have been obfuscated with XOR-Masking;

• Static refs: The number of static references (definitions and uses) to these fields that was found in the code, that
required to be obfuscated with XOR-Masking;

13

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 14

Application Clear Constant Opaque Opaque cached
Java2word 209.66 207.99 (+0%) 210.52 (+0%) 209.43 (+0%)
Jfreechart 264.96 264.41 (+0%) 295.45 (+11%) 259.45 (-2%)

Xml-Security 888.90 877.52 (+0%) 961.79 (+8%) 901.45 (1%)
Jimfs 345.45 345.49 (+0%) 339.7 (-1%) 342.66 (+0%)

Joda-Time 239.53 238.19 (+0%) 345.58 (+44%) 237.63 (-1%)
Stream-lib 163.68 163.34 (+0%) 164.19 (+1%) 165.81 (1%)

Gson 234.78 235.20 (+0%) 290.24 (+23%) 237.03 (+1%)
cglib 231.90 230.08 (+0%) 289.98 (+25%) 247.68 (+7%)

Quartz 956.35 95582(+0%) 1 360.14 (+42%) 885.55 (-7%)
LibRec 1 742.49 1 744.83 (+0%) 1 734.28 (0%) 1 745.98 (+0%)
jackson 841.07 837.36 (+0%) 1 615.42 (+92%) 682.11 (-18%)

GraphHopper 247.94 250.15 (+1%) 255.58 (+3%) 246.61 (+0%)

Table 4. Memory overhead (MEM) caused by XOR-Masking obfuscation.

• Dynamic refs: The number of dynamic references (definition and uses) that have been executed when running
the test cases.

General linear model (GLM) incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA,
MANCOVA, ordinary linear regression, t-test and F-test. We used a general linear model to test the presence of sig-
nificant correlation between measured overhead (performance difference between obfuscated and clear programs) and
the three metrics reported above (number of fields, static refs, dynamic refs). This consists of fitting a model of the
dependent output variables (time and memory overhead) as a function of the independent input variables (number of
fields, static refs, dynamic refs). A general linear model allows to test the statistical significance of the influence of all
factors on the overhead. We assume significance at 95% confidence level (α=0.05), so we reject the null-hypotheses
having p-value<0.05.

Results of the test with GLM is shown in Table 5. The table reports the p-values of GLM, with statistically
significant cases in boldface, each obfuscation variant in a different line. The left-hand side reports the values for
the time overhead. The number of obfuscated fields is not correlated with the execution time overhead, in fact we
configured the case studies to have a similar number of obfuscated fields (see Section 5.3). The observed slowdown
is significantly correlated with the number of dynamic references to obfuscated variables. In fact, the time spent in
decoding/encoding values is proportional to the number decoding/encoding operations occurring at run-time. How-
ever, significance is observed only for XOR-Masking with constant mask and with opaque mask. In fact, when the
mask is cached, only the first encode/decode operation takes time, the subsequent operations can reuse the available
mask value. Indeed, when the mask is cached, the observed execution time overhead in Table 3 was quite limited.
Execution time overhead is never correlated with the number of static definitions.

The right-hand side of Table 5 reports the correlation results for the memory overhead. In no obfuscation variant
we observe significant correlation either with memory overhead. Probably, the lack of correlation is due to the fact
that memory overhead has a smaller variation across case studies and it is in general quite low.

Obfuscation variant Time overhead Memory overhead
No. of fields Static refs Dynamic refs No. of fields Static refs Dynamic refs

Constant 0.138 0.326 0.048 0.399 0.613 0.804
Opaque 0.417 0.804 <0.001 0.530 0.960 0.974

Opaque cached 0.545 0.584 0.826 0.457 0.887 0.885

Table 5. Analysis of correlation between static/dynamic field access and time/memory overhead.

Considering these results, we can answer RQ2 in the following way:

14

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 15

The practical impact of data obfuscation based on XOR-Masking depends on the specific program to
obfuscate. XOR-Masking with constant mask bring negligible execution time and memory overhead. When
an opaque mask is used the program slows down on average of 4-5 times and it requires 20% more
memory. In case the opaque mask is cached, the slowdown is on +12% on average and the memory
overhead is negligible. When the mask is not cached, the execution time overhead is correlated with the
number of accesses to obfuscated fields, that dynamically occur in an execution scenario.

5.6. RQ3: Impact of the k-clique problem complexity

By increasing the complexity of the k-clique problem used in data obfuscation, we can turn static analysis arbi-
trarily hard, however at an increasing cost execution time overhead of the obfuscated code. In other words, the more
obscurity corresponds to the larger obfuscation cost. RQ3 is meant to quantify the practical impact of obfuscation on
real world programs.

Practically, we pick one random case study application among those considered previously (i.e., Java2word) and
we repeat the overhead measurement when obfuscation uses increasing values of k. Here we consider the obfuscation
variant with the highest runtime cost, i.e. XOR-Masking with opaque mask.

We generate 5 distinct 3SAT propositional formula with increasing complexity, i.e. with increasing number of
propositional variables: NVARS = {10, 20, 30, 40, 50} and k = b4.3 · NVARSc. These propositional formulas are,
then, reduced to distinct k-clique problems and, eventually, used to obfuscate the case study with 5 distinct obfuscation
configurations.

All the test cases of this case study have been executed on the original clear code (without obfuscation) and on all
the 5 obfuscated versions, collecting execution time and memory consumption. Measurement is repeated 100 times
to control random measurement errors.

●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

0.4

0.6

0.8

1.0

0 10 20 30 40 50

NVARS

E
T

IM
E

(a) Time

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

175

200

225

250

0 10 20 30 40 50

NVARS

M
E

M

(b) Memory

Figure 8. Runtime overhead when increasing the complexity of the k-clique problem used for opaque constants.

NVARS K ETIME Increase
- - 0.31 -

10 43 0.47 +52%
20 86 0.58 +88%
30 129 0.69 +123%
40 172 0.80 +162%
50 215 0.91 +196%

Table 6. Average execution time for clear and obfuscated program, with increasing obfuscation complexity.

Experimental results are shown in Figure 8. The boxplot on the left-hand side shows the execution time for
clear code (left-most box) and for increasing complexity of obfuscation. While static analysis complexity grows

15

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 16

exponentially with the size of the problem (k-clique is an NP-hard problem), we can observe a linear trend in the
recorded execution time.

Average execution time values are also reported in Table 6. While the execution of clear code takes on average
0.31 seconds (first line), obfuscated code takes from 0.47 seconds (+52%) up to 0.91 seconds (+196%) depending on
what obfuscation is used.

Figure 8, right-hand side shows the boxplot of memory used by the clear and obfuscated code with increasing
NVAR (from left to right). We can notice that the memory required to run all the versions is approximately the same.

Considering these results, we can answer RQ3 as follows:

While execution time overhead increases linearly with obfuscation complexity, no noticeable memory
overhead is observed.

5.7. Possible Extensions

As discussed in Section 2.1, our attack model focuses on static analysis. As such, we acknowledge that our
approach is vulnerable to dynamic analysis. Potential extensions to overcome this limitation are represented by the
following:

• Integration with anti-debugging. A debugger could be used to suspend the execution after the mask is computed
and to read the mask value directly from the program memory. To overcome this limitation, our approach should
be paired with an existing anti-debugging approach [1], so that it would be much harder to attach a debugger
and set breakpoints. An approach that integrates data obfuscation and anti-debugging might mitigate at the
same time either malicious reverse engineering based on static analysis and attacks based on dynamic analysis;

• Dynamic opaque predicates. Once the mask leaks, it can be used to attack all the instances of an obfuscated
program, because all of its executions share the same mask. Dynamic opaque predicates [16, 24] are predicates
whose value changes at each execution. Control flow obfuscation has been built on top of dynamic opaque pred-
icates such that, even if predicate values are different in each execution, the control flow and the semantic of the
obfuscated code is preserved. We could extend our approach using a similar concept, i.e. data obfuscation based
in dynamic opaque predicates. According to this intuition, the mask should be different for each execution, but
the same clear value of sensitive variables should correctly decoded when needed by the program logics. In this
way, even if the mask value would leak, it would be of limited benefit for mounting a reusable attack, because
subsequent executions of the obfuscated program would be based on different values of the mask, that would
be still unknown to the attacker.

6. Related Work

The most related work by Moser et al. [15] and our previous work [20]. Moser at al. presented an approach based
on based on the 3SAT problem to craft opaque constants that are difficult to guess by static analysis. However, their
work has the main limitation that obfuscation can not be too resilient, because the obfuscator has the solve the same
3SAT problem as the static analysis attacker. In our previous work, we overcome this limitation by proposing opaque
constants based on the k-clique problem, that can be checked fast by the obfuscator but still require exponentially
longer time by an attack based on static analysis.

Other relevant techniques to tackle the problem of generating opaque constants and opaque predicates were pre-
sented by Collberg et al. [6][7][8] and by Wang et al. [22].

The techniques proposed by Collberg et al. leverage the hardness (undecidability, in general [17]) of the statically
must/may point-to analysis problem. The opaque predicate is formulated on a dynamic data structure (e.g. a graph)
that is difficult to analyse statically, because continuously updated at runtime.

Wang et al. [22] presented a technique to obfuscate predicates that trigger malware behaviours. The technique aims
at preventing symbolic execution to devise which conditions satisfy a certain predicate. To this aim, they leverage
mathematical conjectures, such as the Collatz’s one.

16

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 17

However, the arguments of Collberg et al. and Wang et al. to support the strength of their approaches are informal.
Conversely, we adopted an empirical framework to study runtime impact of our obfuscation scheme.

Work by cryptographers, such as Barak et al. [2], aims to a formal definition for the concept of obfuscation,
proving possibility or impossibility theorems for the existence of different strength class of obfuscations, such as
indistinguishability obfuscation [11]. Other work focuses on proposing obfuscation implementations for practitioners
and on providing measures or speculations on obfuscation’s strength and ability to delay attacks.

Jakubowski et al. [12] used code metrics (size, cyclomatic number and knot count) to measure code complexity as
a proxy of human understanding effort.

The term “resilience” was proposed by Collberg et al. [8] as a quality related to how difficult is an obfuscated
program to be automatically de-obfuscated. Karnick et al. [13] measure resilience as the number of errors generated
when decompiling the obfuscated code. Sutherland at al. [19] relied on a program binary instrumentation tool to
measure the fraction of the obfuscating transformations that attackers can undo automatically. Udupa et al. [21]
evaluated the effectiveness of control flow flattening obfuscation, by measuring how long a combination of static and
dynamic analysis takes to perform the automatic de-obfuscation.

7. Conclusions and Future Work

Opaque constants are cornerstone features to extend and improve existing obfuscation transformations. We pre-
sented a novel extension of XOR-Masking data obfuscation, by using opaque constants to hide the mask. Our novel
approach to data obfuscation shown to be sound and experienced performance overhead that can be controlled by
trading off obscurity code performance.

As future work, we plan to investigate the effect of our obfuscation on human comprehension. Human participants
will be involved in a controlled experiment to measure how hard is to tamper with obfuscated code.

References

[1] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, and B. De Sutter. Tightly-coupled self-debugging software protection. In Proceedings of the
6th Workshop on Software Security, Protection, and Reverse Engineering, page 7. ACM, 2016.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the (im) possibility of obfuscating programs.
Journal of the ACM (JACM), 59(2):6, 2012.

[3] J. Cannell. Obfuscation: Malwares best friend, March 2013.
[4] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter, P. Falcarin, and M. Torchiano. How professional hackers understand protected

code while performing attack tasks. In 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC), pages 154–164.
IEEE, 2017.

[5] M. Ceccato, P. Tonella, C. Basile, P. Falcarin, M. Torchiano, B. Coppens, and B. De Sutter. Understanding the behaviour of hackers while
performing attack tasks in a professional setting and in a public challenge. Empirical Software Engineering, 24(1):240–286, 2019.

[6] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations. Technical Report 148, Dept. of Computer Science,
The Univ. of Auckland, 1997.

[7] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 184–196. ACM, 1998.

[8] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation: tools for software protection. IEEE Trans. Softw. Eng.,
28:735–746, August 2002.

[9] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski. Guest editors’ introduction: Software protection. Software, IEEE, 28(2):24–27,
2011.

[10] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh freeman New York, 2002.
[11] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation and functional encryption for

all circuits. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40–49. IEEE, 2013.
[12] M. H. Jakubowski, C. W. Saw, and R. Venkatesan. Iterated transformations and quantitative metrics for software protection. In SECRYPT,

pages 359–368, 2009.
[13] M. Karnick, J. MacBride, S. McGinnis, Y. Tang, and R. Ramachandran. A qualitative analysis of java obfuscation. In Proceedings of 10th

IASTED International Conference on Software Engineering and Applications, Dallas TX, USA, 2006.
[14] R. M. Karp. Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March

20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research,
Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department, chapter Reducibility
among Combinatorial Problems, pages 85–103. Springer US, Boston, MA, 1972.

[15] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In Computer security applications conference, 2007.
ACSAC 2007. Twenty-third annual, pages 421–430. IEEE, 2007.

17

Fellin and Ceccato / Journal of Systems and Software 00 (2019) 1–18 18

[16] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang. Experience with software watermarking. In Proceedings 16th
Annual Computer Security Applications Conference (ACSAC’00), pages 308–316. IEEE, 2000.

[17] G. Ramalingam. The undecidability of aliasing. ACM Transactions on Programming Languages and Systems (TOPLAS), 16(5):1467–1471,
1994.

[18] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability problems. Artificial intelligence, 81(1):17–29, 1996.
[19] I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley. An empirical examination of the reverse engineering process for binary files. Computers

& Security, 25(3):221–228, 2006.
[20] R. Tiella and M. Ceccato. Automatic generation of opaque constants based on the k-clique problem for resilient data obfuscation. In 2017

IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 182–192. IEEE, 2017.
[21] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation: Reverse engineering obfuscated code. In Proceedings of the 12th Working

Conference on Reverse Engineering, pages 45–54, Washington, DC, USA, 2005. IEEE Computer Society.
[22] Z. Wang, J. Ming, C. Jia, and D. Gao. Linear obfuscation to combat symbolic execution. In Computer Security–ESORICS 2011, pages

210–226. Springer, 2011.
[23] G. Wroblewski. General Method of Program Code Obfuscation. PhD thesis. PhD thesis, Wroclaw University of Technology, Institute of

Engineering Cybernetics, 2002., 2002.
[24] D. Xu, J. Ming, and D. Wu. Generalized dynamic opaque predicates: A new control flow obfuscation method. In International Conference

on Information Security, pages 323–342. Springer, 2016.
[25] C. Zarate, S. L. Garfinkel, A. Heffernan, K. Gorak, and S. Horras. A survey of xor as a digital obfuscation technique in a corpus of real data.

Technical report, DTIC Document, 2014.

18

	1 Introduction
	2 Problem Definition
	2.1 Attack Model
	2.2 Requirements of Data Obfuscation with Opaque Constants
	2.3 Considerations about Requirements

	3 Opaque Constant based on K-Clique
	3.1 Generation of a Hard 3SAT Problem
	3.2 Reduction of a 3SAT Problem to a k-clique Problem
	3.3 Opaque Constants based on k-clique

	4 Xor-Masking Data Obfuscation based on Opaque Constants
	4.1 XOR-Masking with Constant Mask
	4.2 XOR-Masking with Opaque Mask
	4.3 XOR-Masking with cached opaque mask

	5 Empirical Evaluation
	5.1 Research Questions and Variable Selection
	5.2 Case Studies
	5.3 Obfuscation Configuration
	5.4 RQ1: Correctness of Obfuscated Code
	5.5 RQ2: Impact of Data Obfuscation on Runtime Overhead
	5.6 RQ3: Impact of the k-clique problem complexity
	5.7 Possible Extensions

	6 Related Work
	7 Conclusions and Future Work

