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Improving Rigid 3-D Calibration for Robotic Surgery
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Abstract—Autonomy is the next frontier of research in robotic surgery
and its aim is to improve the quality of surgical procedures in the next
future. One fundamental requirement for autonomy is advanced percep-
tion capability through vision sensors. In this article, we propose a novel
calibration technique for a surgical scenario with a da Vinci® Research
Kit (dVRK) robot. Camera and robotic arms calibration are necessary
to precise position and emulate expert surgeon. The novel calibration
technique is tailored for RGB-D cameras. Different tests performed on
relevant use cases prove that we significantly improve precision and accu-
racy with respect to state of the art solutions for similar devices on
a surgical-size setups. Moreover, our calibration method can be easily
extended to standard surgical endoscope used in real surgical scenario.

Index Terms—Surgical robotics, calibration, multi

calibration.

arm

I. INTRODUCTION

A significant part of current research in Robotic-assisted Minimally
Invasive Surgery (R-MIS) is focussing on the development of
autonomous systems for the execution of repetitive surgical steps,
such as suturing, ablation and microscopic image scanning [1]. This
would potentially help surgeons, who could focus on the more cogni-
tive demanding parts of the procedure, leaving repetitive actions to the
robot. Autonomy requires systems with advanced perception, reason-
ing and motion planning, as highlighted in [2], [3]. Specifically, better
medical imaging and vision techniques have significantly improved
the performance of robotic surgical systems in a range of clini-
cal scenarios, such as orthopaedics and neurosurgery [4]. Vision
systems can retrieve pre and intra operative information from tomog-
raphy (CT) [5], magnetic resonance (MR) and ultrasound to plan toll
trajectories and support surgeons’ decision making. However, image-
guided interventions require an accurate calibration to map poses
of robots, instruments and anatomy to a common reference frame.
Hand-eye calibration has been widely studied within the robotics
literature [6]. In R-MIS systems, where the patient-side arms are
constrained by a Remote Center of Motion (RCM), it is challenging
to obtain the camera motion range needed to guarantee an accurate
calibration. Wang et al. [7] takes advantage of this constraint by
finding a unique relationship between the endoscope and the surgi-
cal tool using camera perspective projection geometry. A different
approach is followed in [8], [9] where the instruments themselves
are used as calibration tools. Thus far, several closed-form solutions
for 2d images have been proposed for hand-eye calibration that use
linear methods that separate rotations and translations. In [10], the
orientation component was derived by utilizing the angle-axis for-
mulation of rotation, then the translational component was estimated
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using standard linear systems techniques. Chou and Kamel [11] intro-
duced quaternions to represent orientation and solved the quaternion
coefficients as a homogeneous linear least squares problem. A closed
form solution was then derived using the generalized inverse method
with singular value decomposition analysis. Other works [12]-[14]
used the Kronecker product to get a homogeneous linear equation
for the rotation matrix. However, separating the rotational and trans-
lational components neglects the intrinsic correlation between them.
Working directly in 3D space is then a better solution. In [15] the
authors studied the comparison between hand-eye calibration based
on 2D and 3D images, introducing quantitative 2D and 3D error
metrics to assess the calibration accuracy. They proved that the 3D
calibration approach provides more accurate results on average but
requires burdensome manual preparation and much more computation
time than 2D approaches. Kim used 3D measurements at the center
of markers for the hand-eye calibration [16]. Fuchs [17] proposed a
solution based on depth measurements instead of 2D images, using a
calibration plane with known position and orientation. The hand-eye
calibration was then obtained by estimating the best fitting calibration
plane of the measured depth values.

In this article, we propose a novel calibration method for the surgi-
cal robotic scenario using the da Vinci® Research Kit (dVRK) and
an RGB-D camera. Differently from [17], the accuracy and com-
putational time of our method do not depend on the placement of
the calibration board within the workspace. We perform exhaustive
experimental validation on relevant use cases for surgery. We separate
the calibration of the robotic arms (two Patient-Side Manipulators,
PSM1 and PSM2, and an Endoscope Camera Manipulator, ECM)
from the hand-eye calibration of the camera. For both calibrations
we propose a three-step method with closed-form solution:

1) touching reference points on a custom calibration board with

the end-effectors of the surgical robot.

2) recognizing the same reference points with the RGB-D camera.

3) mapping the poses reached by the robotic arms in the first step

to the 3D points computed in the second step.
The main advantage of the proposed method is the improved accuracy
in a 3D metric space, which is increased by a factor of four with respect
to the state-of-the-art results with comparable sensors [15]. Moreover,
with our method the camera can be mounted on the moving endoscopic
arm of the dVRK, overcoming the limitations of a fixed camera.

This article is organized as follows. In Section II and Section III
we describe our calibration technique and the setup used to test our
method. In Section IV we describe the validation of the proposed
method by evaluating the workspace through simple kinematic tasks.
We also compare our calibration method with Tsai’s [18], which is
the gold standard for hand-eye calibration, in two different tasks:
grasping and camera projection to 3D space. In Section V we present
our conclusions and plans for future works.

II. PROPOSED METHOD

The aim of the calibration procedure is twofold. First, we per-
form computation of the rigid transformations T}’ between the
common reference frame (world) and the base frame of the arms,
* € {ecmyp, psmyy, psmop}. Second, we estimate the transformation
TS4 between the camera reference frame and the ECM reference
frame. The resulting transformation tree is shown in Figure 1.
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Fig. 1. The reference frames produced by our proposed method (the axes
direction of the reference frames are only for visualisation purpose). The
orange transformations are known, whereas the black transformations are to
be estimated.

(a) Calibration pattern

(b) ECM adapter

Fig. 2. The calibration components. a) the calibration board with the marker,
the coloured axes represents the common reference frame directions b) the
adapter for the ECM positioning.

We use a custom calibration board, shown in Figure 2(a), with
an ArUco marker in the center of a circumference of 50 mm radius,
with several reference dots. We equipped the ECM with a 3D-printed
adapter, shown in Figure 2(b). The adapter has a smaller tip than the
ECM to guarantee precise positioning on the dots on the board.

The procedure starts by positioning the calibration board in the
robot workspace. We choose a set of reference points P such that
each point p € P is reachable by the three arms and visible from the
camera. The points in P must be symmetric with respect to the center
of the board to compute the origin of the common reference frame;
at least three points are needed to estimate the plane coefficients. The
best fitting plane is characterized by the centroid of the point set P,
¢, and the normal vector n. Their optimal estimations are the solution
of the optimisation problem

n 2
{¢, ) = argmin Z((p,- - c)Tn> (1
¢,[nxa=1;_

As in [19] the centroid is estimated by

L1l
c=;Zpi. (2)
i=1

The normal vector n is obtained by factorizing the distance matrix A
with Singular Value Decomposition (SVD)

A=USVT =[p; —¢&,...pp — &) e R>" A3)

and taking the third column of the matrix U = [u; uy wu3],
n = u3. To generate a common reference frame for all the tools
we implement the following three main steps:

(1) Arm calibration

(2) Camera calibration

(3) Hand-eye calibration.

A. Arm Calibration

To find the transformation of the arms base frame with respect to
the common reference frame we record the end effector pose of the
arms (PSMs and ECM with adapter) on each point in the set P. In
order to obtain the ECM effective pose, we remove the known rigid
transformation between the adapter and the ECM. On this set we
estimate the best fitting plane using (1). The set P is then augmented
by adding a point above the calibration board acquired by moving
the arm’s end effector. This last point is used to define the desired
plane normal direction

Pny1 — €
Pn+1 — €|y

ng =

where pp1 is the last point in the ordered set P, ¢ is the centroid
of P and | * | is the vector norm. For each arm, the homogeneous
transformation 7}” of the common reference with respect to the arm
base frame is defined using the direction versors

u = sign(n - ng)n
P —¢
Ip1 —clp

f=1xu

l=ux

and the centroid c,

B. Camera Calibration

To find the transformation T}, for the RGB-D camera we first
detect the center of the ArUco marker on the board with respect to
the camera frame. Once we find a camera position that ensures good
visibility and a stable pose of the ArUco marker, we align the pose
on the point cloud generated from the depth map acquired by the
RGB-D camera. We use the marker pose and its known radius to
generate the pose of every dot in the set P in the marker reference
frame, as well as the point above the calibration board.

Once the pose set P is obtained we find the best fitting plane
using (1) and then we build the homogeneous transformation T},
between the common reference frame to the camera base frame by
adapting the previous approach used for the arms.

C. Hand-Eye Calibration

The hand-eye calibration problem is formulated using the homo-
geneous transformation matrices:

AX =XB

where A and B are known homogeneous matrices representing the
frames of the base of the robot and the camera, respectively. The
unknown transformation X is between the robot coordinate frame
and the camera coordinate frame. Given T}.,,,, we can compute X as
the relative homogeneous transformation between the end effector of
the ECM and the RGB-D base frame:

oy —1
cam __ pcam ecn
Tecm - TW (TW ) *
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Fig. 3.

The proposed setup for calibration, with the RealSense d435, the
PSMs and the calibration pattern.

TABLE I
REALSENSE D435 SPECIFICATIONS

Camera specifications

Resolution 1280 x 720

Field of view (FOV) 91° x 65° x 100°

Frame rate 90 fps

Baseline 50 mm

Z-accuracy < 2% of the working distance

III. EXPERIMENTAL SETUP

The validation of the proposed method has been carried out with
the dVRK robot shown in Figure 3.

The stereo endoscope has been augmented with an Intel RealSense
d435 RGB-D camera rigidly attached to the endoscope through a 3D
printed adapter. The camera specifications are reported in Table I. The
whole calibration method has been implemented in Robot Operating
System (ROS) using the Point Cloud Library (PCL) and OpenCV. The
present setup is not compatible with a surgical scenario. However it
is well possible that in the near future small RGBD cameras could
be integrated within the endoscope.

IV. EXPERIMENTAL RESULTS

To experimentally validate our methodology we compared our cal-
ibration with the Tsai’s method [18] in two benchmark tests for
surgical robotics:

o Localization and grasping of small targets,

e Dual-arm manipulation
Finally we evaluated the accuracy of the projection from 2D camera
image plane to the 3D workspace.

A. Localization and Grasping

In the first scenario (Figure 4) the two PSMs must autonomously
grasp a ring placed on the calibration board, in this case on location 2.
The RGB-D camera identifies the point cloud corresponding to the
ring after color and shape segmentation, and points are transformed
from the camera to the common reference frame. The ring has a
diameter of 15 mm, and the target point for both PSMs is chosen as
the center of the ring. The ring is placed in the 9 different locations on
the board to cover the full x—y plane, as shown in Figure 4. The arms
reach the target points ten times, and for each iteration we compute
the Euclidean distance between the target and the final positions of the
PSMs. In this way, we estimate the mean accuracy of our calibration
procedure on the x — y plane. The results are reported in Figure 5
and compared with state-of-the-art Tsai’s calibration method [18]. It
is worth mentioning that errors are comprehensive of the estimated
kinematic accuracy of the da Vinci® : 1.02mm on average when

Fig. 4. Setup for the localization and grasping experiment. The numbers on
calibration board represents the nine locations used during the experiment.
The ring is identified by the camera and then reached by the PSMs.

‘ 4 Our
$ Tsai

Location number

Fig. 5. The measured 3D positioning errors between the robot end effector
and the grasping point.

TABLE II
A COMPARISON OF THE ERROR IN THE LOCALIZATION
AND GRASPING TEST

Max error  Mean error  Std dev

(mm) (mm) (mm)
Our method 1.07 0.53 0.15
Tsai [18] 3.17 1.83 0.33

localizing and reaching fiducial markers [20], with a maximum error
of 2.72 mm [21].

Table II shows that our method achieves significantly better
accuracy (0.53 mm average error against 1.83 mm with Tsai’s cal-
ibration). The error does not depend on the location of the ring on
the x — y plane.

B. Dual Arm Manipulation

In the second scenario (Figure 6) the PSMs start holding the
same ring, and they must execute simultaneous pre-computed circular
trajectories with center on the z axis of the common reference frame
(45 mm above the calibration board) and radius r ranging from 10 mm
to 40 mm. Circumferences are first defined in the x — z plane of
the common reference frame (normal to the calibration board), and
then replicated in planes rotated around the z axis with a step of
10deg. In this way we define a spherical workspace by interpolation
between the recorded trajectories. PSMs are commanded with the
transformed waypoints in their relative frames. This task validates the
accuracy of the transformations between the arms computed with the
proposed method. We measure the difference between the trajectories
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Fig. 6. Dual arm manipulation experiment. The two arms carries a ring while
performing circular trajectories through the workspace.

of the two PSMs, and we consider the standard and the maximum
deviations from the mean for each radius. In absence of calibration and
kinematic errors, the difference between the trajectories would have
null standard deviation. Figure 7 shows the absolute error through
the workspace for spheres with radii 20 mm, 30 mm and 40 mm, by
using the Lambert equal-area cylindrical projection [22]. In Table III
we report the errors for all the spheres. We notice that the mean error
increases with the radius of the sphere, as the PSMs move away from
the calibration plane. The standard deviation of the error increases with
the radius but remains below 0.11 mm, hence the overall error does
not change significantly on the surface of the spheres. This ensures
good repeatability of motions in the whole workspace. The accuracy
of our calibration method in 3D is compatible with the requirements of
surgery (the mean error between the arms is below 1 mm, comparable
with the known kinematic accuracy of the da Vinci®).

C. 2D/3D Projection

In the last scenario the PSM1, with a colored marker on its tip,
executes a spiral-shaped trajectory along the entire workspace. The
RGB-D camera identifies the marker in the image plane, and the
corresponding 3D point can be computed using the depth value.
The trajectory starts near the origin of the common reference frame
and then increases in radius and altitude according to the following
parametric equations

x(t) = xtcos(wt)
y(t) = ktsin(wt)
z(t) = kt

where w is the constant angular speed and x € R is a time-scaling
factor. The orientation of the end effector is kept fixed towards the
camera along the trajectory. We measure the Euclidean error between
the points in the trajectory executed by the arm and the re-projected
points from the camera image plane. Figure 8§ and Table IV show that
the re-projection accuracy with our method significantly outperforms
the one reached with Tsai’s. In fact, the mean error (4.71 mm) and
the maximum error (11.76 mm) are four and two times smaller than
the one achieved by Tsai’s method. It is important to remark that the
measured error also includes the marker detection accuracy.

Finally Figure 9 shows the re-projection of PSMs end effector posi-
tion onto the camera image plane with both calibration methods. Our
method achieves a better re-projection better of the 3D instruments.

V. CONCLUSION

In this article we proposed a novel 3D calibration procedure for
the patient-side manipulators and the ECM of the da Vinci® surgical
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Fig. 7. Absolute error of the dual arm manipulation through the workspace.
The workspace has been projected using the Lambert equal-area cylindrical
projection, the error is reported in mm. a) the workspace surface of the sphere
with radius 10 mm, b) the projected surface of the sphere with radius 10 mm,
c¢) the workspace surface of the sphere with radius 20 mm, d) the projected
surface of the sphere with radius 20 mm, e) the workspace surface of the
sphere with radius 30 mm, f) the projected surface of the sphere with radius
30mm, g) the workspace surface of the sphere with radius 40 mm, h) the
projected surface of the sphere with radius 40 mm.

TABLE III
THE POSITIONING ERROR BETWEEN THE PSM1 AND PSM2 DURING THE
DUAL-ARM MANIPULATION EXPERIMENT

Radius  Max error  Mean error  Std dev
(mm) (mm) (mm) (mm)
10 0.61 0.11 0.06
20 0.37 0.13 0.08
30 0.51 0.14 0.10
40 0.62 0.16 0.11

robot. Our procedure exploits an RGB-D Realsense camera. We
have validated our calibration procedure by evaluating the 2D/3D
projection errors on two relevant use cases for surgery localization
and grasping of a small object and dual-arm manipulation. Both
tasks require an accurate estimation of the transformation tree con-
necting the arms and the camera, to guarantee precise positioning
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Fig. 8. Spiral-shaped trajectory executed by the PSM1 with our method in

(a) and Tsai’s method in (b). The red trajectory represents the kinematics of
the PSM1, while the blue trajectory represents the marker identified in 3D
space.

TABLE IV
A COMPARISON OF THE ERROR BETWEEN THE MARKER TIP TRAJECTORY
AND THE MEASURED TIP TRAJECTORY FOR THE PROJECTION TEST

Max error  Mean error  Std dev

(mm) (mm) (mm)
Our method 11.76 471 0.89
Tsai [18] 20.85 16.41 1.21

-, 7

(a) Our method (b) Tsai’s method

Fig. 9. An example of re-projection of da Vinci® surgical instruments by
using kinematic re-projection of the model directly onto camera color image.

and coordination of the PSMs. In our experiments the proposed
method outperforms the state-of-the-art solution proposed by Tsai.
Our method reaches an accuracy below 1 mm on the x —y plane and
in the dual arm manipulation scenario, which is comparable with the
intrinsic kinematic precision of the da Vinci®.

The main drawback of our solution is the use of a RGB-D
camera, which limits its actual application in surgery. We think
that our methodology can be extended to a setup with a stan-
dard surgical endoscope. The main issue with an endoscope is
that the small baseline between the stereo cameras introduces addi-
tional complexities in computing depth maps and reduces the depth
range of view. We will address this problem in our future research.
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Moreover, we will develop an autonomous procedure for our cal-
ibration method, which can significantly reduce manual errors and
simplify its implementation in a surgical setup.
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