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Abstract

The notion of gauge momenta is a generalization of the momentum map which is relevant
for nonholonomic systems with symmetry. Weakly Noetherian functions are functions which
are constants of motion of all ‘natural’ nonholonomic systems with a given kinetic energy and
any G-invariant potential energy. We show that, when the action of the symmetry group on
the configuration manifold is free and proper, a functions which is linear in the velocities is
weakly—Noetherian if anf only if it is a gauge momenta which has a horizontal generator.
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1 Introduction

The relationship between constants of motion and symmetries of nonholonomic systems has been
extensively studied over the last fifty years [1, 13, 14, 2, 3, 8,9, 6, 17, 7, 18, 4, 15, 10, 11, 5, 12], but
a complete comprehension of such a link—if it exists—is still missing. Investigations have mostly
focussed on analogies and differences from the well understood holonomic (that is, Hamiltonian)
case. There are two main differences among the holonomic and the nonholonomic cases. They are
more simply explained in the simplest case of nonholonomic systems with linear constraints and
natural Lagrangian (= kinetic minus potential) and of symmetry groups acting in the configuration
manifold; this is in fact the only case that we consider in this article.

1. In the Hamiltonian case, a (Hamiltonian) symmetry group produces the conservation of its
momentum map. In the nonholonomic case the situation is not as simple. On the one hand,
only certain components of the momentum map (that we call here ‘momenta’) are conserved—
those whose infinitesimal generators belong to a certain distribution [10]. On the other hand,
there are conserved quantities which are not momenta, but which are rather conserved ‘gauge
momenta’ [2, 11]. Conserved gauge momenta are generated by certain vector fields which are
not infinitesimal generators of the group action, but are nevertheless tangent to the group
orbits and have an additional invariance property (see below). Being tangent to the group
orbits, they can be written as pointwise linear combinations of infinitesimal generators, and
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this is the origin of the term ‘gauge’. If the generating vector field is a section of the constraint
distribution as well, then one speaks of ‘horizontal gauge momenta’. The case of horizontal
gauge momenta is that which was originally investigated in [2], but it is not exhaustive:
examples of conserved gauge momenta which are not horizontal are given in [11].

2. A second peculiarity of the link symmetries—conservation laws in the holonomic context is that
the momentum map of a symplectic group action is conserved by all Hamiltonian systems
with that symmetry. This property, which is called ‘Noetherian condition’ in [16], fails in
nonholonomic mechanics [1, 14, 4, 11]. A weaker notion was introduced in [11, 12]: a weakly
Noetherian function (or weakly Noetherian constant of motion) is a constant of motion of all
nonholonomic systems with given kinetic energy and any G—invariant potential energy. It is
an immediate observation that horizontal gauge momenta are weakly Noetherian [11].

The purpose of this article is to further investigate the relationship between gauge momenta and
weakly Notherian functions, by proving a converse to the last statement in the realm of linear con-
stants of motion. Specifically, we will show that, under certain conditions on the group action, see
below, the weakly Noetherian functions which are linear in the velocities are exactly the horizontal
gauge momenta (section 2). In addition, in section 3 we collect a few remarks on these topics.

2 Linear weakly Noetherian functions are horizontal gauge
momenta

In order to properly state our result we need to recall some definitions. In the sequel, a natural linear
nonholonomic system on a configuration manifold @ is formed by a pair (L, D), where L : TQ — R
is a natural Lagrangian and D is a (maximally) nonintegrable constant-rank distribution on Q.

Saying that the Lagrangian L is natural means that it can be written as the difference L =
T — V om, where the kinetic energy T is a positive definite quadratic form on T'QQ and V : Q — R
is the potential energy; m : TQQ — @ is the canonical projection. The kinetic energy defines a
Legendre transformation T'Q)Q — T*(@ and, through it, ‘conjugate momenta’ that we view as a
fiberwise linear function p : TQ — T*Q.

The distribution D, which is called the constraint distribution, may be viewed as a submanifold
D of TQ), that we call the constraint submanifold. The constraints are assumed to fulfill d’Alembert
principle, so that the nonholonomic system (L, D) defines a dynamical system on D, that is, a
vector field X, p on D.

A constant of motion of the natural linear nonholonomic system (L, D) is a smooth function
F : D — R which is constant along the flow of X p, that is, the Lie derivative X p(F) = 0
in D.

A linear function on D is the restriction to D of a smooth function T'¢) — R which is linear on
the fibers of T'Q). Equivalently, it is a smooth function D — R which is linear on the fibers of D. A
linear function on D can always be written as (Z, p)|p for some (non—unique) smooth vector field
Z on @, which is called a generator of it. Any linear function on D has a unique generator which
is a section of the constraint distribution [14, 10] and is therefore called the ‘horizontal generator’
of the linear function.

Given a smooth action ¥ : G x @ — Q of a Lie group G on @, we denote by G the distribution
on () whose fibers are the tangent spaces to the orbits of W. The action ¥ defines a lifted action
UTQ . G x TQ — TQ. For shortness, and with no danger of confusion, we speak of G-invariance,
G-orbits etc to refer to either the action of G on @ or to its lift to TQ.

If & and &’ are two distributions on @, we denote by &N &’ the distribution on @ whose fibers
are the intersection of the fibers of € and of &. We say that € is an overdistribution of &', and
write €& D &', if the fibers of & contain—or coincide with—those of &’. We denote by Z7? the lift
to T'Q of a vector field Z on Q.
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We may now define the two notions of gauge momenta and of weakly Noetherian functions.

Definition 1 Consider a natural linear nonholonomic system (L, D), an action of a Lie group G
on @ and a distribution & on Q. An (€, G)—gauge momentum of (L, D) is a linear function on D
which has a generator Z which is a section of N & and which moreover satisfies ZT?(L)|p = 0.

This definition of gauge momenta is taken from [11], where it was however stated under the ad-
ditional hypothesis of G—invariance of the Lagrangian. While this is of course the case of interest—
and the very idea of the ‘gauge method’ was introduced in [2] specifically to study nonholonomic
systems with symmetry—this hypothesis is logically not necessary. The reason is that, since the
tangent lift ZT? of a section Z of § which is not an infinitesimal generator of the group action
need not preserve all G—invariant functions on T'Q, the definition of gauge momenta need the
assumption Z79(L)|p = 0. This—not the G-invariance of L—is the relevant condition, and all
the results we quote here from [11] remain true without the assumption of G-invariance of L. We
will shortly comment on this fact in the Remarks.

It was proven in [10, 11] that there exists a distribution R, on @, called the reaction—
annihilator distribution, which is such that an (€, G)-gauge momentum of (L =T — V, D) is a
constant of motion if and only if € C R% ;.. This follows from the following fact, that we will use
several times in the sequel: '

Proposition 1. [10] Given a natural linear nonholonomic system (L =T —V, D) and a smooth
vector field Z on Q, any two of the following three conditions imply the third: (C1) Z is a section
of Ry v (C2) ZTQ(L)|p = 0. (C3) Z is a generator of a linear constant of motion of (L, D).

The distribution R% |, is constructed out of the reaction forces exherted by the nonholonomic
constraint and hence, given the constraint distribution D, it depends on T and V' (separately, not
just on the difference T'— V'); for the description of this distribution see [10, 11]. The distribution
Rryisa (typically strict) over—distribution of D. Therefore, the class of conserved gauge momenta
include the (D,G)-gauge momenta, but might be larger than such a family of functions. The
(D, G)—gauge momenta are called horizontal G-gauge momenta of (L, D).

Definition 2 Consider a configuration manifold Q, a constraint distribution D on Q, a smooth
action of a Lie group G on Q, and a kinetic energy T : TQ — R. Then, a (T, D,G)-weakly
Noetherian function is a smooth function F : D — R which is a constant of motion of all natural
linear nonholonomic systems (T —V o m, D) with any G—invariant function V : Q — R.

This definition is taken from [12], where it was however stated under the additional hypothesis
of G—-invariance of the Lagrangian. Also, the expression ‘weakly Noetherian constant of motion’
was used there.

Theorem 1. Consider a configuration manifold Q, a constraint distribution D on Q, a kinetic
energy T : TQ — R and a smooth action of a Lie group G on Q. Then:
(i) Any horizontal G-gauge momentum of (T, D) is (T, D, G)-weakly Noetherian.
(i1) Assume furthermore that the action of G on Q is free and proper. Then any linear (T, D, G)—
weakly Noetherian function is a horizontal G—-gauge momentum of (T, D).

Proof. Statement (i) was already proven in [11]; we give here the proof for completeness. If F is a
horizontal G-gauge momentum of (7, D) then it has a generator Z which satisfies Z7?(T)|p = 0
and is a section of GND. Consider a G—invariant function on Q. Since Z is a section of §, Z(V) =0
and hence ZT9(T —Vom)|p = ZT9(T)|p — Z(V) om|p = 0. Thus, Z satisfies the two conditions
Cl and C2 for L =T — V ow of Proposition 1 and therefore satisfies C3 as well.

We now prove statement (ii). Denote by Jg the set of smooth G—invariant real functions on Q.
Assume F is a linear (T, D, G)—weakly Noetherian function and consider a function V' € Jg. Thus,
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F is a constant of motion of (T'— V om, D) and the unique generator Z of F which is a section of
D satisfies conditions C1 and C3 of Proposition 1. Hence, Z satisfies condition C2 as well, namely
0=2TT ~Vorm)|p = 2ZT9T)|p — Z(V) ox|p. By the arbitrariness of V € Jg this implies
the two conditions Z7%(T)|p = 0 and Z(V) = 0 for any V € Jg. If the action is free and proper,
the latter condition is equivalent to the fact that Z is a section of § (see [16], Theorem 2.5.10).
Therefore, F' has a generator which is a section of D N G and satisfies Z79(T)|p = 0. This shows
that F is a horizontal G-gauge momentum for (T',D). ®

3 Remarks

1. Definition 2 of weakly Noetherian functions is taken from [12]. A definition of weak Noetherianity
for linear functions had been previously given in [11]. We thus show here that, at least if the action
is free and proper, the two definitions agree, in that the definition given in [11] for linear functions
coincides with the specialization of Definition 2 to linear functions. (As mentioned, all definitions in
[11, 12] require the G—invariance of the Lagrangian, that we disregard here). Using the terminology
of the present article, the definition given in [11] can be rephrased as follows: given T, D and G,
a linear function on D is weakly Noetherian if (1) it has a generator which is a section of § and
(2) it is a constant of motion of all natural linear nonholonomic systems (7' — V o w, D) with G-
invariant potential energy V. This definition appears stronger than the specialization of Definition
2 to linear functions because of the first requirement. That it is not so follows from the fact that
statement (ii) of Theorem 1 can, clearly, be restated as follows: Fiz T, D,G and assume that the
action of G on @ 1is free and proper; then the horizontal generator of a linear function which is
(T, D, G)-weakly Noetherian (in the sense of Definition 2) is a section of G.

2. The previous argument shows that the unique horizontal generator of a linear weakly Noetherian
function is a section of §. However, generators of linear functions on D are not unique and not all
of them need to be sections of §. We cannot characterize in geometrical terms the class of these
generators which are sections of §. However, it is possible to characterize the class of generators
which preserve the kinetic energy on D and are sections of G.

In order to do this, we need to introduce some notations. Fix the kinetic energy T and let
D+ be the distribution on @ whose fibers are the orthogonal complements of the fibers of D with
respect to the Riemannian metrics gr on @ induced by T. If Z is a vector field Z on @) denote by
Zp and Zp . its gp-orthogonal projections on D and D+, respectively. Then, two vector fields Z
and Y generate the same linear function on D if and only if Zp = Yy [14].

Proposition 2. Fix T, D and G. Assume that G acts freely and properly on Q and denote by
Ja the class of all G—invariant functions on Q. Consider a (T, D,G)-weakly Noetherian linear
function F on D and let Z be a generator of F which satisfies ZT?(T)|p = 0. Then, Z is a
section of Ry, for all V € I if and only if any of the following two conditions is verified:

(i) Z is a section of §.

(ii) The gr—orthogonal projection Zgp 1 of Z is a section of G.

Proof. (i) Fix V € Jg. The vector field Z generates the first integral F' of (T — V, D) and is a
section of R7. 1. Therefore, by Proposition 1, ZTQ(T — V)|p = 0. By the arbitrariness of V € Jg
this implies Z(V) =0 for all V € Jg, that is, for a free and proper action, Z is a section of G.

Consider any V € Jg. If Z is a section of G, then Z(V) = 0. Hence ZT9(T — V)|p = 0 and,
by Proposition 1, Z is a section of R7 . (That the action is free and proper is not not necessary
for this implication).

(ii) We resort to a coordinate description. Let (¢,4) € U x R®, U C R", be local bundle
coordinates on T'Q). The fiber D, of D over a point ¢ € U can be written as the kernel of a k x n
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matrix S(g) which has rank k and smoothly depends on g, where k = rank D. We denote by A(q)
the kinetic matrix, so that T'(q,q) = %q'TA(q)(j. As shown e.g. in [1, 10], at each point g € U the
reaction force exerted by the nonholonomic constraint is a function R : T,U = R"™ — Dy which in
coordinates can be written as

R(q,q) = (TIV')(q) +7(q,9)

where V' = %—‘q/, I=ST(SA-18T)~1§A1 is the A~1-orthogonal projector onto D° and r(q, §) is
a V—independent term whose expression can be found in the quoted references but is not important
here. What is important here is the fact that the V—-independency of (g, ¢) implies that it equals
the reaction force exerted by the constraints in the natural linear nonholonomic system (7', D).

We now compute the intersection (,¢q, R7 1. The fibers of the reaction-annihilator distri-
bution R7. |, are the annihilators of the fibers of the distribution Ry whose fibers are the images
quDq R(g, ¢) of the fibers of D under the map R. Hence Ry,y = IV’ 4+ Ry o. Therefore

M Rev = (Z RT,V>O: (Z HV’+ﬂzT,O>O .

Veila Veila Veilag

Since the action of G is free and proper we have ZVejG V’ = G° and hence

() Riv = [S° + Rpp)® = (IIS°)° N R
Vela

By definition of A~!'-orthogonal projection we have I1G° = (9° + DOT) N D°, where the apex |
denotes the A~'-orthogonal complement, and hence

ﬂ Ryv = [(SNDT°) + D] N R

Vela

We now note that D°7° = D+, In fact from D = ker S it follows that D+ = ImA~'S7 (given
that (A71ST|Alker S) = SA~'Aker S = SkerS = 0) and that D° = Im ST, D°T = ker SA™!,
Defe = Im A~1ST. Hence

M Ry = [(SNDY) + D] N R
Velag

We can now proof statement (ii). By hypothesis, Z generates a linear constant of motion of
(T, D) and its tangent lift preserves T on D. Hence, by Proposition 1, Z is a section of Ry . Thus,
the previous computation shows that Z is a section of [, e1e R7y if and only if it is a section of
(9 N ?J—) + D, that is, if and only if its component Zq . is a section of §. H

3. It has been pointed out several times that the conservation of a component of the momentum
map—and more generally of a gauge momentum—does not require any G-invariance property
of the constraint distribution [4, 15, 11]. The fact that, likewise, the notion of gauge momenta
does not need the G—invariance of the Lagrangian indicates that, in the nonholonomic context,
the conservation of a gauge momentum does not in principle require any G-invariance property
of the system. Nevertheless, in all the examples we know, gauge momenta come out of a natural
symmetry group of the Lagrangian.
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