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Abstract We consider the pricing problem related to payoffs of polynomial growth that
can have discontinuities of the 1st kind. The asset price dynamic is modeled within the
Black-Scholes framework characterized by a stochastic volatility term driven by a fractional
Ornstein-Uhlenbeck process. In order to solve the aforementioned problem, we consider
three approaches. The first one consists in a suitable transformation of the initial value of the
asset price, in order to eliminate possible discontinuities. Then we discretize both the Wiener
process and the fractional Brownian motion and estimate the rate of convergence of the
related discretized price to its real value whose closed-form analytical expression is usually
difficult to obtain. The second approach consists in considering the conditional expectation
with respect to the entire trajectory of the fractional Brownian motion (fBm). Here we derive
a presentation for the option price which involves only an integral functional depending on
the fBm trajectory, and then discretize the fBm and estimate the rate of convergence of the
associated numerical scheme. In both cases the rate of convergence is the same and equals
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n−rH , where n is the partition size, H is the Hurst index of the fBm, and r is the Hölder
exponent of the volatility function. The third method consists in calculating the density of
the integral functional depending on the trajectory of the fBm via Malliavin calculus and
providing the option price in terms of the associated probability density.

Keywords Option pricing · Stochastic volatility · Black–Scholes model · Wiener
process · Discontinuous payoff function · Polynomial growth · Rate of convergence ·
Discretization · Conditioning · Malliavin calculus · Stochastic derivative · Skorokhod
integral
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1 Introduction

Starting with the pioneering works by Hull and White (1987) and Heston (1993), stochas-
tic volatility models for assets prices have been a subject of intensive research activity,
which is still vibrant from analytical, computational and statistical points of view. Of course,
option pricing is one of most relevant problems. In the latter context, stochastic volatil-
ity models are widely used because of their flexibility. Concerning the stochastic volatility
modeling, note that there are approaches involving Gaussian (Nicolato and Venardos 2003;
Schobel and Zhu 1999), non-Gaussian (Barndorff-Nielsen and Shephard 2001, 2002), jump-
diffusion and Lèvy processes (Cont and Tankov 2004; Kyprianou and Schoutens 2005), as
well as time series (Carrasco and Chen 2002; Palm 1996; Shephard 1996). Our references
are not in any way intended to be exhaustive or complete, we only illustrate the availability
of various approaches. We would also like to mention the books (Fouque et al. 2000; Kahl
2008; Knight and Satchell 2011) and references therein, as well as the paper (Altmayer
and Neuenkirch 2015) which in some sense was a starting point for our considerations. A
useful decomposition formula for option prices that is valid even when the Malliavin reg-
ularity conditions are not satisfied, was obtained in Alòs (2012). Furthermore, the models
of financial market where the asset price includes stochastic volatility with long memory
in the volatility process is a subject of extensive research activity, see, e.g., Bollerslev and
Mikkelsen (1996), where a wide class of fractionally integrated GARCH and EGARCH
models for characterizing financial market volatility was studied, Comte et al. (2012) for
affine fractional stochastic volatility models, and Chronopoulou and Viens (2012), where
the Heston model with fractional Ornstein–Uhlenbeck stochastic volatility was studied. As
was mentioned in Comte et al. (2012), long memory included into the volatility model
allows to explain some option pricing puzzles such as steep volatility smiles in long term
options and co-movements between implied and realized volatility. Although the long mem-
ory effect corresponds to the case H > 1/2, empirical evidence suggests values H < 1/2,
(“rough volatility”), see for example (Bayer et al. 2016) or discussion in Funahashi and
Kijima (2017), where an approximation formula is proposed. When dealing with “rough
volatility”, one may find useful the decomposition approach developed in Bergomi and
Guyon (2012). Concerning the approach that permits to get the semi-closed form solution
for the call option price in Heston model with jumps in the asset price and semimartin-
gale stochastic volatility with long memory, see Pospı́šil and Sobotka (2016). Note again
that as a rule, the option pricing in stochastic volatility models needs some approximation
procedures including Monte–Carlo methods.
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The present paper contains a comprehensive and diverse approach to the exact and
approximate option pricing of the asset price model that is described by the linear model
with stochastic volatility driven by the fractional Ornstein–Uhlenbeck process with Hurst
index H ∈ (0, 1). We assume that the Wiener processes, one of which is driving the
asset price and another one is the underlying Wiener process for the fractional Brownian
motion driving stochastic volatility, are correlated with a constant correlation coefficient.
The significant novelty of our approach is that we consider three possible levels of the repre-
sentation and approximation of the option price, with the corresponding rate of convergence
of discretized option price to the original one. Another novelty is that we can rigorously
treat the class of discontinuous payoff functions of polynomial growth. As an example, our
model allows to analyze linear combinations of a digital and call option. Moreover, we pro-
vide, for the first time in literature to the best of our knowledge, rigorous estimates for the
rates of convergence of option prices for polynomial discontinuous payoffs f and Hölder
volatility coefficients, a crucial feature considering settings for which exact pricing is not
possible.

The first level of approximation corresponds to the case when the price is presented as
the functional of both driving stochastic processes, the Wiener process and the fBm. We
dicretize and simulate both the trajectories of the Wiener process and of the fBm (the dou-
ble discretization) and estimate the rate of convergence for the discretized model. In these
settings we apply the Malliavin calculus technique, following Altmayer and Neuenkirch
(2015), to transform the option price to the form that does not contain discontinuous func-
tions. The second level corresponds to the case when we discretize and simulate only the
trajectories of the fBm involved in Ornstein–Uhlenbeck stochastic volatility process (the
single discretization), basically conditioning on the stochastic volatility process, then cal-
culating the corresponding option price as a functional of the fBm trajectory, and finally
estimating the rate of convergence of the discretized price. This approach allows to simulate
only the trajectories of the fBm. Corresponding simulations are presented and compared to
those obtained by the first level. We conjecture that the single discretization gives better sim-
ulation results. In general conditioning is widely used in option pricing in various situations,
see, e.g., Bertholon et al. (2007) and references therein, so, it is not surprising that it helps
here as well. The third level potentially permits to avoid simulations, because it is possible
to provide an analytical expression for the option price, as an integral including the density
of the functional which depends on stochastic volatility. However, the density we obtain
within the Malliavin calculus framework is rather complicated from the computational point
of view.

Taking into account previously mentioned approaches and techniques, the subject of the
present paper is a financial market characterized by a finite maturity time T and composed
by a risk free bond, or bank account, β = {βt , t ∈ [0, T ]}, whose dynamic reads as βt =
eβt , where β ∈ R

+ represents the risk free interest rate, and a risky asset S = {St , t ∈
[0, T ]} whose stochastic price dynamic is defined over the probability space {�,F ,F =
{Ft }t∈[0,T ], P} by the following system of stochastic differential equations

dSt = bStdt + σ(Yt )StdWt , (1)

dYt = −αYtdt + dBH
t , t ∈ [0, T ]. (2)

Here W = {Wt, t ∈ [0, T ]} is a standard Wiener process, b ∈ R, α > 0 are constants, and
Y = {Yt , t ∈ [0, T ]} characterizes the stochastic volatility term of our model, being the
argument of the function σ . The process Y is Ornstein-Uhlenbeck, driven by a fractional
Brownian motion BH = {BH

t , t ∈ [0, T ]} with Hurst parameter H ∈ (0, 1), and is assumed
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to be correlated with W . Recall that an fBm is a centered Gaussian process with covariance
function EBH

t BH
s = 1

2 (s2H + t2H −|t − s|2H ). Moreover, due to the Kolmogorov theorem,
any fBm has a modification such that almost surely its trajectory is a Hölder function up
to order H . In what follows we shall consider such a modification. Recall that for H > 1

2 ,
fBm has a long memory. This is suitable for stochastic volatility which represents the mem-
ory of the model. On the other hand, the case H < 1

2 corresponds to rough volatility. We
would also like to emphasize that a market model described by the system of Eqs. 1 and
2 is incomplete because of two sources of uncertainty, whether or not it is arbitrage-free.
Therefore, in what follows we focus our attention on the so called physical, or real world,
measure, instead of using an equivalent martingale one. Note, however, that in the case
when the market is indeed arbitrage-free and there exists a minimal martingale measure,
the stock prices evaluated w.r.t. the minimal martingale measure, resp. w.r.t. the objective
measure, differ only by the non-random coefficient e(b−β)t , as it happens in the standard
Black–Scholes framework. A discussion of arbitrage–free property of the market under con-
sideration (with additional restrictions of the coefficients), a presentation of the class of
martingale measures, and a formula for the minimal martingale measure is contained in
Section 2. For more details on the arbitrage-free property of the markets with stochastic
volatility see, e.g., Kuchuk-Iatsenko and Mishura (2015). Concerning the payoff function,
we consider a measurable one defined by f : R+ → R

+, and depending on the value ST of
the stock at maturity time T . Our main goal is to calculate and approximate Ef (ST ) using
the aforementioned levels, also providing rigorous estimates for the corresponding rate of
convergence for the first and second levels.

The paper is organized as follows: in Section 2 we give additional assumptions on the
components of the model and formulate auxiliary results; Section 3 contains the necessary
elements of the Malliavin calculus that will be used later; Section 4 contains the main results
on the rate of convergence of the discretized option pricing approach; Section 5 contains
the main results concerning the rate of convergence of the discretized option pricing prob-
lem when conditioning on the trajectory of the fBm; Section 6 is devoted to the analytical
derivation of the option price in terms of the density of the volatility functional; the proofs
are collected in Section 7; finally, Section 8 provides the numerical simulations associated
to the approaches described in Sections 4 and 5.

2 Payoff Function: Additional Assumptions, Auxiliary Properties.
Discussion of Asset Price Model, Absence of Arbitrage, Incompleteness

2.1 Assumptions on the Payoff Function and Volatility Coefficient

Throughout the paper we assume that the payoff function f : R
+ → R

+ satisfies the
following conditions:
(A)

(i) f is a measurable function of polynomial growth,

f (x) ≤ Cf (1 + xp), x ≥ 0,

for some constants Cf > 0 and p > 0.
(ii) The Function f is locally Riemann integrable, possibly, having discontinuities of the

first kind.
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Moreover we assume that the function σ : R → R satisfies the following conditions:
(B) there exists Cσ > 0 such that

(i) σ is bounded away from 0, σ(x) ≥ σmin > 0;
(ii) σ has moderate polynomial growth, i.e., there exists q ∈ (0, 1) such that

σ(x) ≤ Cσ (1 + |x|q), x ∈ R;
(iii) σ is uniformly Hölder continuous, so that there exists r ∈ (0, 1] such that

|σ(x) − σ(y)| ≤ Cσ |x − y|r , x, y ∈ R;
(iv) σ ∈ C(R) is differentiable a.e. w.r.t. the Lebesgue measure on R, and its derivative

is of polynomial growth: there exists q ′ > 0 such that

|σ ′(x)| ≤ Cσ (1 + |x|q ′
),

a.e. w.r.t. the Lebesgue measure on R.

Remark 1 1) Concerning the relations between properties (ii) and (iii), note that we
allow r = 1 in (iii) whereas (ii) follows from (iii) only in the case r < 1.

2) Concerning the relations between properties (iii) and (iv), neither of these properties
implies the other one unless r = 1. Indeed, on the one hand, a typical trajectory of a
Wiener process is Hölder up to order 1

2 but nowhere differentiable. On the other hand,
even continuous differentiability does not imply the uniform Hölder property.

3) Concerning the assumption (i), we need it for theoretical calculations because in the
process of smoothing the payoff function we divide on σ .

2.2 Properties of Fractional Ornstein–Uhlenbeck Process

According to Norros et al. (1999), fBm admits a compact interval representation via some
Wiener process B, specifically,

BH
t =

t∫

0

k(t, s)dBs,

k(t, s) =cH

⎛
⎝
(

t

s

)H−1/2

(t−s)H−1/2−(H −1/2)s−H+1/2

t∫

s

uH− 3
2 (u−s)H− 1

2 du

⎞
⎠1s<t ,

cH =
(

2H�( 3
2 − H)

�(H + 1
2 )�(2 − 2H)

)1/2

(3)

For H > 1/2 the kernel k(t, s) is simplified to

k(t, s) =
(

H − 1

2

)
cH s

1
2 −H

t∫

s

uH− 1
2 (u − s)H− 3

2 du1s<t . (4)

The processes B, BH and Y generate the same flow of σ -fields. Denote this flow as

F
H = {FH

t = σ {BH
s , 0 ≤ s ≤ t}, t ≥ 0}.

Our next assumption is that the processes B and W are correlated as follows
(C) E(BtWt ) = ρt, with some constant ρ ∈ [−1, 1].
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It means that Wt = ρBt +√1 − ρ2Vt , t ≥ 0, where V is a Wiener process, independent
of B. For technical reasons we introduce the notation μ = √1 − ρ2.

The next result is almost evident, however, we formulate it and give a short proof for the
reader’s convenience.

Lemma 2 (i) Eq. 2 has a unique solution of the form

Yt = Y0e
−αt +

∫ t

0
e−α(t−s)dBH

s := Y0e
−αt + BH

t − α

∫ t

0
e−α(t−s)BH

s ds. (5)

Moreover, for any a > 0 and any � < 2

E exp{a sup
t∈[0,T ]

|Yt |�} < ∞. (6)

(ii) Eq. 1 has a unique solution of the form

St = S0 exp

{
bt +

∫ t

0
σ(Ys)dWs − 1

2

∫ t

0
σ 2(Ys)ds

}
. (7)

(iii) For any m ∈ Z we have E(ST )m < ∞, and consequently for any m > 0 the
following relation holds: E(f (ST ))m < ∞. Moreover, for any m ∈ Z we have

supt∈[0,T ] E exp
{
m
∫ t

0 σ(Ys)dBs

}
< ∞, and E exp

{
m
∫ T

0 σ 2(Ys)ds
}

< ∞.

Remark 3 We can generalize assertion (ii) of Lemma 2 to the following one: for any
function ψ = ψ(x) : R → R of polynomial growth supt∈[0,T ] E(|ψ(St )|) < ∞. Also,
it follows from (i) that for any function ψ = ψ(x) : R → R of polynomial growth
supt∈[0,T ] E(|ψ(Yt )|) < ∞, and in particular, supt∈[0,T ] E(|σ(Yt )|) < ∞.

2.3 Arbitrage-free Property, Class of Martingale Measures, Incompleteness,
Minimal Martingale Measure

We formulate the arbitrage properties of the market (1)–(2) in the following statement.

Theorem 4 Let the volatility coefficient σ satisfy assumption (B). Then the market
described by (1)–(2) has the following properties:

(i) It is arbitrage-free and incomplete.
(ii) Any probability measure Q with Radon-Nikodym derivative

dQ

dP
= exp

{∫ T

0
ν1(s)dBs +

∫ T

0
ν2(s)dVs − 1/2�2

i=1

∫ T

0
ν2
i (s)ds

}
(8)

with non-anticipative bounded coefficients νi satisfying the equation

ρν1(s) + μν2(s) = β − b

σ(Ys)
, (9)

is a martingale measure.
(iii) Taking ν1(s) = ρ

β−b
σ(Ys )

and ν2(s) = μ
β−b
σ(Ys )

in (8), we get the minimal martingale
measure.
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3 Elements of Malliavin Calculus and Application to Option Pricing

In what follows, we recall some basic definitions and results about Malliavin calculus. Our
main reference here is Nualart (2006). Let W̃ = {W̃ (t), t ∈ [0, T ]} be a Wiener process on
the standard probability space {�,F , F = {F W̃

t }, t ∈ [0, T ], P}, where � = C([0, T ],R).
Denote by Ĉ∞(R) the set of all infinitely differentiable functions with the derivatives of
polynomial growth at infinity.

Definition 5 Random variables ξ of the form ξ = h(W̃ (t1), . . . , W̃ (tn)),

h = h(x1, . . . , xn) ∈ Ĉ∞(Rn), t1, . . . tn ∈ [0, T ], n ≥ 1

are called smooth. Denote by S the class of smooth random variables.

Definition 6 Let ξ ∈ S . The stochastic derivative of ξ at t is the random variable

Dtξ =
n∑

i=1

∂h

∂xi
(W̃ (t1), . . . , W̃ (tn))1t∈[0,ti ], t ∈ [0, T ].

Considered as an operator from L2(�) to L2(�; L2[0, T ]), D is closable. We use the
same notation D for its closure. D is known as the Malliavin derivative, or the stochastic
derivative. The domain of the operator of the stochastic derivative is a Hilbert space D1,2 of
random variables, on which the inner product (which coincides with the operator norm) is
given by

〈ξ, η〉1,2 = E(ξη) + E(〈Dξ,Dη〉H ), H = L2([0, T ],R).

Thus, the stochastic derivative operator D is closed, unbounded and defined on a dense
subset of the space L2(�) (see Nualart 2006). The following statement is known as the
chain rule.

Proposition 7 (Nualart 2006, Proposition 1.2.3). Let ϕ : R
m → R be a continuously

differentiable function with bounded partial derivatives. Suppose that ξ = (ξ1, ..., ξm) is a
random vector whose components belong to D1,2. Then ϕ(ξ) ∈ D1,2 and

Dϕ(ξ) =
m∑

i=1

∂iϕ(ξ)Dξi .

Denote by δ the operator adjoint to D and by Dom δ its domain. The operator δ is
unbounded in H with values in L2(�) and such that

(i) Dom δ consists of square-integrable random processes u ∈ H, satisfying
∣∣E (〈Dξ, u〉H )

∣∣ ≤ C(E(ξ2))1/2,

for any ξ ∈ D1,2, where C is a constant depending on u;
(ii) If u belongs to Dom δ, then δ(u) is an element of L2(�) and

E (ξδ(u)) = E (〈Dξ, u〉H )

for any ξ ∈ D1,2.
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The operator δ is closed. Consider the space L1,2 = L2([0, T ], D1,2) with the norm ||·||L1,2 ,

where

||u||2
L1,2 = E

(∫ T

0
u2

t dt +
∫ T

0

∫ T

0
(Dsut )

2 dtds

)
.

If u ∈ L1,2, then the integral δ(u) is correctly defined, the notation δ(u) = ∫ T

0 utdWt is
used and

E

(∫ T

0
utdWt

)2

≤ ||u||2
L1,2

(see Nualart 2006). In this case operator δ(u) is called the Skorokhod integral of the process
u and is denoted by

δ(u) =
T∫

0

utdW̃t .

To apply Malliavin calculus to the asset price S, note that we have a two-dimensional
case with two independent Wiener processes (V , B). With evident modifications, denote
by (DV ,DB) the stochastic derivative with respect to the two-dimensional Wiener process
(V , B). Denote also

X(t)= log S(t)= log S0+bt − 1

2

t∫

0

σ 2(Ys)ds+
t∫

0

σ(Ys)dWs = log S0 + bt− 1

2

t∫

0

σ 2(Ys)ds

+ μ

t∫

0

σ(Ys)dVs + ρ

t∫

0

σ(Ys)dBs.

Lemma 8 (i) The stochastic derivatives of the fBm BH equal to

DV
u BH

t = 0, DB
u BH

t = k(t, u)1u<t .

(ii) The stochastic derivatives of Y equal to

DV
u Yt = 0, DB

u Yt =
(

k(t, u) − α
t∫

u

e−α(t−s)k(s, u)ds

)
1u<t . (10)

In particular, for H > 1/2 the stochastic derivative of Y can be simplified to

DB
u Yt = cH e−αtu1/2−H

t∫
u

eαssH−1/2(s − u)H−3/2ds1u<t . (11)

(iii) The stochastic derivatives of X equal to

DV
u Xt =μσ(Yu)1u<t , DB

u Xt =
⎛
⎝−

t∫

u

σ (Ys)σ
′(Ys)D

B
u Ysds

+
t∫

u

σ ′(Ys)D
B
u YsdWs +ρσ(Yu)

⎞
⎠1u<t . (12)

Lemma 9 The laws of ST and XT are absolutely continuous with respect to the Lebesgue
measure.
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From now on, we denote C any constant whose value is not important and can change
from line to line and even inside the same line. Throughout the paper, C cannot depend on
n, t, s, but can depend on σ,H, T , Y0, S0, α, b, p, r, q, q ′, f and other parameters specified
in the problem. In what follows we need the statement contained in the next remark.

Remark 10 The chain rule of stochastic differentiation can be extended to a wider class
of functions in the following way. Applying Proposition 1.2.4 from Nualart (2006) and the
related remark, we get that if the function ϕ is Lipschitz continuous and has a derivative a.e.
w.r.t. the Lebesgue measure on R, and the law of the r.v. ξ is absolutely continuous with
respect to the Lebesgue measure on R, then ϕ(ξ) has a stochastic derivative and Dϕ(ξ) =
ϕ′(ξ)Dξ a.e. w.r.t. the Lebesgue measure on R.

In particular, consider the stochastic differentiation of the functions of the Ornstein–
Uhlenbeck process Y . Let ϕ be locally Lipschitz, with both and ϕ and ϕ′ being of
polynomial growth. Then ϕn(x) = ϕ(x)1|x|≤n + (ϕ(−n))1x<−n + ϕ(n)1x>n is Lipschitz,
has a derivative ϕ′

n a.e. w.r.t. the Lebesgue measure. Moreover, there exists a polynomial ϕ̄

with non-negative coefficients such that

|ϕn(x)| + |ϕ′
n(x)| ≤ ϕ̄(|x|), x ∈ R,

which implies that

E|ϕ(Ys) − ϕn(Ys)|2 ≤ 4E
(
ϕ̄2(|Ys |)1Ys /∈[−n,n]

)
→ 0.

Also, it follows from (10) that in fact DBYs is in L2([0, T ]). Furthermore,

E

(
max

s∈[0,T ] ϕ̄
2(|Ys |)

)
< ∞,

due to the fact that max
s∈[0,T ] |Ys | has exponential moments. Therefore,

E

⎛
⎝

T∫

0

(ϕ′(Ys)D
B
u Ys − DB

u ϕn(Ys))
2du

⎞
⎠

≤ 4E

⎛
⎝ max

s∈[0,T ]
ϕ̄2(|Ys |)1 max

s∈[0,T ] Ys /∈[−n,n]
s∫

0

(DB
u Ys)

2du

⎞
⎠→ 0.

Previous results, together with the fact that D is closed, imply that DB
u ϕ(Ys) = ϕ′(Ys)D

B
u Ys .

Let us introduce the following notations: g(y) = f (ey), F(x) =
x∫
0
f (z)dz and let

G(y) =
y∫
0
g(z)dz, x ≥ 0, y ∈ R. Also, let

ZT =
T∫

0

σ−1(Yu)dVu. (13)

Note that ZT is well defined because of condition (B), (i). Now, analogously to Altmayer
and Neuenkirch (2015), we are in position to transform the option price in such a way that
it does not contain discontinuous functions.
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Lemma 11 Under conditions (A) and (B) the option price Ef (ST ) = Eg(XT ) can be
represented as

Ef (ST ) = E

(
F(ST )

ST

(
1 + ZT

T

))
. (14)

Alternatively,

Eg(XT ) = 1

T
E (G(XT )ZT ) . (15)

4 The Rate of Convergence of Approximate Option Prices
in the Case When Both Wiener Process and Fractional Brownian
Motions are Discretized

In the present section we provide our first approach (first level) to the numerical approxi-
mation of the solution for the option pricing problem. In particular, we are going to provide
a double discretization procedure with respect to both the Wiener process and the fBm, also
estimating the rate of convergence for the corresponding approximated option prices to the
real value given by Ef (ST ).

To pursue latter aim, let us introduce the following notation. For any n ∈ N consider
equidistant partition of the interval [0, T ]: ti = ti (n) = iT

n
, i = 0, 1, 2, ..., n. Then we

define the discretizations of Wiener processes W,V,B and the fractional Brownian motion
BH :

�Pi = P (ti+1) − P (ti) , i = 0, 1, 2, ..., n, P = W, V,B,BH .

Discretized processes Y and X, corresponding to a given partition have the form

Yn
tj

= Y0e
−αtj + BH

tj
− αT

n

j−1∑
i=0

e−α(tj −ti )BH
ti

,

Xn
tj

= X0 + btj − T

2n

j−1∑
i=0

σ 2 (Yn
ti

)+
j−1∑
i=0

σ
(
Yn

ti

)
�Wi

= X0 + btj − 1

2

tj∫

0

σ 2(Y n
s )ds +

tj∫

0

σ(Y n
s )dWs, j = 0, ..., n,

where we take Yn
s = Yn

ti
for s ∈ [ti , ti+1

)
. The discretization of ZT from (13) is Zn

T =
T∫
0

1
σ(Yn

s )
dVs . Also, we define Sn

tj
= exp

{
Xn

tj

}
. The three lemmas below contain the auxiliary

bounds that are necessary in order to establish the main result.

Lemma 12 (i) For any θ > 0 there exists a constant C depending on θ such that for
any s, t ∈ [0, T ]

E|Yt − Ys |θ ≤ C |t − s|θH .

(ii) For any θ > 0 there exists a constant C depending on θ such that for any 0 ≤ j ≤ n

E
∣∣∣Ytj − Yn

tj

∣∣∣θ ≤ Cn−θH .

(iii) For any θ > 0 there exists a constant C depending on θ such that for any s ∈ [0, T ]
E|Ys − Yn

s |θ = E|Ys − Yn
ti
|θ ≤ Cn−θH .
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(iv) Approximating process has uniformly bounded moments: for any θ > 0

sup
s∈[0,T ]

E|Yn
s |θ < ∞, (16)

and bounded exponential moments: for any a > 0 and any � < 2

E exp{a sup
t∈[0,T ]

|Yn
t |�} < ∞. (17)

Remark 13 Using (16) and (17), we can prove similarly to Lemma 2 and 3 that for any
m ∈ Z

sup
n≥1

sup
0≤j≤n

E
(
Sn

tj

)m

< ∞, sup
n≥1

sup
t∈[0,T ]

E exp

{
m

∫ t

0
σ(Y n

s )dBs

}

< ∞, sup
n≥1

E exp

{
m

∫ T

0
σ 2(Y n

s )ds

}
< ∞, (18)

and

sup
n≥1

sup
t∈[0,T ]

E exp

{
m

(∫ t

0
σ(Y n

s )dBs − 1

2

∫ t

0
σ 2(Y n

s )ds

)}
< ∞.

Lemma 14 There exists a constant C > 0 such that for any n ≥ 1

E(XT − Xn
T )2 ≤ Cn−2rH , (19)

and
E(ZT − Zn

T )2 ≤ Cn−2rH . (20)

Lemma 15 Under conditions (A) and (B) we have the following upper bound: there exists
a constant CF > 0 such that

E

∣∣∣∣F(ST )

ST

− F(Sn
T )

Sn
T

∣∣∣∣
2

≤ CF · n−2rH .

Using previous lemmas, we are now in a position to state the main result of this section,
namely to provide the rate of convergence of the discretized option price to the exact one
represented by Ef (ST ), under the double discretization.

Theorem 16 Let conditions (A) and (B) hold. There exists a constant C > 0 not depending
on n such that ∣∣∣∣Ef (ST ) − E

(
F(Sn

T )

Sn
T

(
1 + Zn

T

T

))∣∣∣∣ ≤ Cn−rH .

5 The Rate of Convergence of Approximate Option Prices in the Case
When only Fractional Brownian Motion is Discretized

The present section is devoted to the implementation of the second approach (second level)
to approximate the option price. It is based on the fact that the logarithm of the asset price is
conditionally Gaussian given the trajectory of the fractional Brownian motion. It allows to
exclude Wiener process W from the consideration and to calculate the option price explicitly
in terms of the trajectory of fBm BH . Respectively, we can discretize and simulate only the
trajectories of BH (the single discretization). Theorem 18 gives the explicit option pricing
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formula as the functional of the trajectory of fBm BH , and Theorem 19 gives the rate of
convergence. Comparing to Theorem 16, we see that the rate of convergence admits a bound
of the same order, influenced by the behavior of volatility.

Let us introduce the following notations: define a covariance matrix

C
X,Z

=
(

μ2σ 2
Y μT

μT σ 2
Z

)
,

and let

σ 2
Y =

T∫

0

σ 2(Ys)ds, mY = X0 + bT − 1

2
σ 2

Y + ρ

T∫

0

σ(Ys)dBs,

σ 2
Z =

T∫

0

σ−2(Ys)ds, � = |CX,Z| = μ2(σ 2
Y σ 2

Z − T 2).

Evidently, � ≥ 0. We assume additionally that the following assumption is satisfied.
(D) � = σ 2

Y σ 2
Z − T 2 > 0 with probability 1, in particular, μ > 0.

Note that the random vector

(XT , ZT )=
⎛
⎝X0 + bT − 1

2

T∫

0

σ 2(Ys)ds+ρ

T∫

0

σ(Ys)dBs +μ

T∫

0

σ(Ys)dVs,

T∫

0

σ−1(Ys)dVs

⎞
⎠

(21)
is Gaussian conditionally to the σ -field FH

T . The conditional mean vector equals to (mY , 0),
and the conditional covariance matrix is CX,Z . Next lemma presents common conditional
density of (XT , ZT ). Note that under assumption (D) the distribution of (XT , ZT ) is non-
degenerate in R

2.

Lemma 17 Let assumption (D) hold. Then the common conditional density pX,Z(x, z) of
(XT , ZT ), conditionally to the given trajectory {Yt , t ∈ [0, T ]}, equals

pX,Z(x, z) = 1

2π�
1
2

exp

{
− 1

2�

(
σ 2

Z(x − mY )2 + μ2σ 2
Y z2 − 2T μ(x − mY )z

)}
. (22)

The next result states that the option price can be presented as a functional of σ 2
Y and

T∫
0
σ(Ys)dBs only.

Theorem 18 Under conditions (A)–(D) the following equality holds:

Eg(XT ) = (2π)−
1
2

∫

R

G(x)E

(
(x − mY )

μ2σ 3
Y

exp

{
− (x − mY )2

2μ2σ 2
Y

})
dx

= (2π)−
1
2 E

⎛
⎝(σY )−1

∫

R

G((x + mY )σY )
x

μ2
e
− x2

2μ2 dx

⎞
⎠ . (23)



Methodol Comput Appl Probab (2019) 21:331–366 343

In order to state the main result of the present section, let us define the following
quantities

σ 2
Y,n

=
T∫

0

σ 2(Y n
s )ds, mY,n = X0 + bT − 1

2
σ 2

Y,n + ρ

n∑
k=0

σ(Ytnk
)�Bk

= X0 + bT − 1

2
σ 2

Y,n + ρ

∫ T

0
σ(Y n

s )dBs.

Theorem 19 Under conditions (A) – (D) we have∣∣∣∣∣∣Eg(XT ) − (2π)−
1
2

∫

R

G(x)E

(
(x − mY,n)

μ2σ 3
Y,n

exp

{
− (x − mY,n)

2

2μ2σ 2
Y,n

})
dx

∣∣∣∣∣∣ ≤ Cn−rH .

(24)

Without any doubt, the form of density is much simplified in the case ρ = 0, i.e., pro-
cesses W and B are independent, because in this case the option price can be presented as
the functional of σ 2

Y only. The great advantage of this situation is that we can discretize just
the trajectories of Y . And although this case is perhaps more particular and not so common,
we still prefer to consider it, since similar methods can be applied also in the case of a weak
dependence between W and B. In particular, if ρ = 0, we have

C
X,Z

=
(

σ 2
Y T

T σ 2
Z

)
, mY = X0 + bT − 1

2
σ 2

Y , mY,n = X0 + bT − 1

2
σ 2

Y,n,

and (24) transforms into∣∣∣∣∣∣Eg(XT ) − (2π)−
1
2

∫

R

G(x)E

(
(x − mY,n)

σ 3
Y,n

exp

{
− (x − mY,n)

2

2σ 2
Y,n

})
dx

∣∣∣∣∣∣ ≤ Cn−rH .

6 Option Price in Terms of the Density of the Integrated Stochastic
Volatility

Consider for simplicity the case when ρ = 0. Applying Theorem 18 and equality (23),

we clearly see that the option price depends on the random variable σ 2
Y =

T∫
0
σ 2(Ys)ds.

Therefore it is natural to derive the density of this random variable. Since σ 2
Y depends on

the whole trajectory of the fBm BH on [0, T ], we apply Malliavin calculus in an attempt to
find the density. First, establish some auxiliary results. For any ε > 0 and δ > 0 introduce
the stopping times τε = inf{t > 0 : |BH

t | ≥ ε} and νδ = inf{t > 0 : |Yt − Y0| ≥ δ}.

Lemma 20 For any l > 0 the negative moment is well defined: E(νδ)
−l < ∞.

Now we introduce additional assumptions on σ .
(E) The function σ ∈ C(2)(R), its derivative σ ′ is strictly nonnegative, σ ′(x) > 0, x ∈

R, and σ ′, σ ′′ are of polynomial growth.
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Lemma 21 Under assumptions (B) and (E) the stochastic process

DBσ 2
Y

||DBσ 2
Y ||2H

=
{

DB
t σ 2

Y

||DBσ 2
Y ||2H

, t ∈ [0, T ]
}

belongs to the domain Dom δ of the Skorokhod integral δ.

Denote η = (||DBσ 2
Y ||2H )−1, l(u, s) = cH e−αs

s∫
u

eαvvH−1/2(v − u)H−3/2dv, κ(y) =
σ(y)σ ′(y).

Theorem 22 (i) The density pσ 2
Y
of the random variable σ 2

Y is bounded, continuous and
given by the following formulas

pσ 2
Y
(u) = E

[
1σ 2

Y >uδ

(
DBσ 2

Y

||DBσ 2
Y ||2H

)]
, (25)

where the Skorokhod integral is in fact reduced to a Wiener integral,

δ

(
DBσ 2

Y

||DBσ 2
Y ||2H

)
= 2η

∫ T

0
κ(Ys)

(∫ s

0
u1/2−H l(u, s)dBu

)
ds−

∫ T

0
DB

u ηDB
u (σ 2

Y )du.

(ii) The option price Eg(XT ) can be represented as the integral with respect to the
density pσ 2

Y
(u) defined by (25) as follows:

Eg(XT )

= (2π)−
1
2 T

∫

R

G(x)

∫
R

(x + u/2 − X0 − bT )

u3
exp

{
− (x + u/2 − X0 − bT )2

2u2

}
pσ 2

Y
(u)du.

7 Proofs

Proof of Lemma 2. (i) The representation (5) for the fractional Ornstein-Uhlenbeck pro-
cess Y is well known, see, e.g., Cheridito et al. (2003). It is a continuous Gaussian process
with supt∈[0,T ] E(Yt )

2 < ∞. The finiteness of any exponential moments of the form (6)
follows from Fernique (1975), or (Ledoux 1996, Theorem 4.1).

(ii), (iii) To establish the representation (7) for S, we need only to prove that the inte-
grals

∫ t

0 σ(Ys)dWs and
∫ t

0 σ(Ys)SsdWs are well defined, while the form of the representation
is straightforward, because W is a square-integrable martingale with respect to the flow
F

B,V generated by the couple of independent processes B and V . Concerning
∫ t

0 σ(Ys)dWs ,
it follows from (6) and condition (B), (i) that

∫ t

0 Eσ 2(Ys)ds ≤ C
∫ t

0 E(1 + |Ys |2q)ds < ∞,

consequently
∫ t

0 σ(Ys)dWs is well defined. Moreover, the following moments of any order
are finite: supt∈[0,T ] Eσ 2n(Yt ) < ∞. Additionally, for any � < 2 exponential inequality (6)
follows from Fernique (1975). Therefore, taking into account that q < 1, we get that for
any k > 0

E exp

{
k

∫ t

0
σ 2(Ys)ds

}
≤ E exp

{
Cσ k

∫ t

0
(1 + |Ys |2q)ds

}
≤ CE exp

{
Cσ T k sup

s∈[0,T ]
|Ys |2q

}
< ∞.

(26)
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It follows immediately from (26) and from Novikov’s condition that for any n ∈ Z

E exp

{
2n

∫ t

0
σ(Ys)dWs − 2n2

∫ t

0
σ 2(Ys)ds

}
= 1,

consequently

sup
t∈[0,T ]

ESn
t ≤ C sup

t∈[0,T ]
E exp

{
n

∫ t

0
σ(Ys)dWs − n

2

∫ t

0
σ 2(Ys)ds

}

≤ C sup
t∈[0,T ]

((
E exp

{
2n

∫ t

0
σ(Ys)dWs − 2n2

∫ t

0
σ 2(Ys)ds

})1/2

×
(

E exp

{
(2n2 − n)

∫ t

0
σ 2(Ys)ds

})1/2
)

= C sup
t∈[0,T ]

(
E exp

{
(2n2 − n)

∫ t

0
σ 2(Ys)ds

})1/2

< ∞. (27)

Further, applying both final and intermediate bounds from (27), we get that

∫ T

0
E(σ 2(Ys)S

2
s )ds ≤ T

(
sup

t∈[0,T ]
ES4

t sup
t∈[0,T ]

Eσ 4(Yt )

) 1
2

< ∞, (28)

and finally the proof of (ii) follows from (27) and (28). To establish (iii), it sufficient to
prove that for any m ∈ Z, supt∈[0,T ] E exp{m∫ t

0 σ(Ys)dBs} < ∞. But we can proceed as
before: it follows from (26) that for any n ∈ Z and any t ∈ [0, T ]

E exp

{
m

∫ t

0
σ(Ys)dBs − 1

2
m2
∫ t

0
σ 2(Ys)ds

}
= 1,

and consequently

sup
t∈[0,T ]

E exp

{
m

∫ t

0
σ(Ys)dBs

}
≤ sup

t∈[0,T ]

(
E exp

{
2m

∫ t

0
σ(Ys)dBs − 2m2

∫ t

0
σ 2(Ys)ds

})1/2

×
(

E exp

{
2m2

∫ t

0
σ 2(Ys)ds

})1/2

< ∞.

Remark 23 Analyzing the bounds obtained in (27), we can immediately conclude that for
any m ∈ Z

sup
t∈[0,T ]

E exp

{
m

(∫ t

0
σ(Ys)dWs − 1

2

∫ t

0
σ 2(Ys)ds

)}
< ∞,

and

sup
t∈[0,T ]

E exp

{
m

(∫ t

0
σ(Ys)dBs − 1

2

∫ t

0
σ 2(Ys)ds

)}
< ∞.

Proof of Theorem 4. Let a probability measure Q be defined via (8) with functions νi

satisfying (9). Then the discounted process

Dt := e−βtSt · dQ

dP

∣∣∣
Ft
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gets a form

Dt = 1 +
∫ t

0
(ρσ(Ys) + ν1(s)) dBs +

∫ t

0
(μσ(Ys) + ν2(s)) dVs,

therefore it is a martingale w.r.t. the measure P. Therefore, e−βtSt is a martingale w.r.t.
the measure Q, and we established both (i) and (ii). To check (iii), note that the minimal
martingale measure, according to Schweizer (1995), is defined via the relation

dQ

dP

∣∣∣
Ft

= 1 −
∫ t

0
Zsα(s)dMs,

where the price process has a form St = S0 + Mt + ∫ t

0 α(s)d〈M〉s . In our case Mt =∫ t

0 Ssσ (Ys)dWs,
∫ t

0 α(s)d〈M〉s = (b − β)
∫ t

0 Ssds, therefore α(s) = b−β

Ssσ 2(Ys )
, whence 1 −∫ t

0 Zsα(s)dMs = 1 + ∫ t

0 Zs
β−b
σ(Ys )

dWs . It means that the minimal martingale measure Q (that
is unique) has a Radon–Nikodym derivative

dQ

dP

∣∣∣
Ft

= exp

{∫ t

0

β − b

σ(Ys)
dWs − 1/2

∫ t

0

(β − b)2

σ 2(Ys)
ds

}
,

and this equality is satisfied if we choose ν1(s) = ρ
β−b
σ(Ys )

and ν2(s) = μ
β−b
σ(Ys )

. The theorem
is proved.

Proof of Lemma 8. Statement (i) follows directly from the definition of stochastic deriva-
tive and from the fact that B and V are independent. Similarly, the first equality in (10) is
obvious since Y is independent of V . Furthermore, integrating by parts (5) and taking into
account representation (3), we get the following equalities

Yt = Y0e
−αt + BH

t − αe−αt

∫ t

0
eαsBH

s ds, (29)

whence

DB
u Yt =

(
k(t, u) − αe−αt

∫ t

u

eαsk(s, u)ds

)
1u<t ,

where the kernel k was introduced in (3). Now, let H > 1/2. Then we can use representation
(4). Note that the derivative k′

s of the kernel k equals

k′
s(s, u) = cH u

1
2 −H sH− 1

2 (s − u)H− 3
2 1u<s.

It is an integrable function, therefore we can integrate by parts once again and get

DB
u Yt = e−αt

∫ t

u

eαsk′
s(s, u)ds = cH e−αtu

1
2 −H

t∫

u

eαssH− 1
2 (s − u)H− 3

2 ds1u<t .

So, we get (10) and (11). The first equation from (12) follows from the definition of
stochastic derivative. Further,

DB
u Xt =

⎛
⎝−1

2

t∫

0

DB
u (σ 2(Ys))ds +

t∫

0

DB
u (σ (Ys))dWs

⎞
⎠1u<t .
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By Remark 10 and since Ys has a Gaussian distribution and the function σ is continuous
and a.e. differentiable, we can apply the chain rule to σ(Ys). Moreover, the result can be
written in the standard form, so that DB

u (σ (Ys)) = σ ′(Ys)D
B
u (Ys), and

DB
u (σ 2(Ys)) = 2σ(Ys)σ

′(Ys)D
B
u (Ys) (30)

a.e. w.r.t. the Lebesgue measure on R. Besides, similarly to proof of Lemma 2, we can apply
properties (B), (ii) and (iv), which together with (10) ensure that the integrals in (12) exist,
whence the proof follows.

Proof of Lemma 9. Conditionally on the σ -field FH
T , XT is a Gaussian random variable.

Therefore, for any Borel set A ⊂ R of zero Lebesgue measure, we have

P{XT ∈ A} = E(1XT ∈A) = E
(

E
(
1XT ∈A|FH

T

))
= 0.

The absolute continuity of the law of ST follows from that of XT since ST = exp{XT }.

Proof of Lemma 11. Let the function H be locally Lipschitz and H ′(x) = h(x) a.e. with
respect to the Lebesgue measure. Assume additionally that h is of exponential growth.
Hence it follows from Remark 10 that

DV
u H(XT ) = h(XT )DV

u XT .

We will now establish that H(XT ) ∈ D1,2, where we consider stochastic differentiation
w.r.t. V . Indeed, h is of exponential growth,

h(x) ≤ Ch(1 + eph|x|),

and

H(x) =
∫ x

0
h(y)dy ≤ Ch|x|(1 + eph|x|) ≤ Ch(1 + e(ph+1)|x|).

Furthermore, since

e(ph+1)|XT | = (ST )ph+1 ∨ (ST )−ph−1,

we get from (27) that EH 2(XT ) < ∞. Additionally,

E

T∫

0

(
h(XT )DV

u XT

)2
du = μ2E

⎛
⎝h2(XT )

T∫

0

σ 2(Yu)du

⎞
⎠ =

≤ C

⎛
⎝Eh4(XT )

T∫

0

Eσ 4(Yu)du

⎞
⎠

1/2

< ∞.

Therefore

H(XT ) ∈ D1,2. (31)
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Having established both the existence and the form of the stochastic derivative, together
with (31), we can proceed as in the proof of Proposition 4.1 (Altmayer and Neuenkirch
2015). Namely, the Skorokhod integral is the adjoint operator to the Malliavin derivative,
therefore

Eh(XT ) = 1

T
E

⎛
⎝

T∫

0

h(XT )DV
u XT

1

DV
u XT

du

⎞
⎠ = 1

T μ2
E

⎛
⎝

T∫

0

DV
u H(XT )

1

σ(Yu)
du

⎞
⎠

= 1

T μ2
E

⎛
⎝H(XT )

T∫

0

1

σ(Yu)
dVu

⎞
⎠ = 1

T
E (H(XT )Z(T )) . (32)

The function G is locally Lipschitz and G′(x) = g(x) a.e. with respect to the Lebesgue
measure. Moreover, g is of exponential growth, namely,

g(x) ≤ Cf (1 + ep|x|),
therefore (15) follows directly from (32).

To establish (14), we start with the identity

G(x) = F(ex)

ex
+

x∫

0

F(ey)

ey
dy − F(1),

then we rewrite it, applying (15), as follows:

Ef (ST ) = Eg(XT ) = 1

T
E (G(XT )ZT )

= 1

T
E

⎛
⎝
⎛
⎝F(ST )

ST

+
XT∫

0

F(ey)

ey
dy − F(1)

⎞
⎠ZT

⎞
⎠ = 1

T
E

(
F(ST )

ST

ZT

)

+ 1

T
E

⎛
⎝

XT∫

0

F(ey)

ey
dyZT

⎞
⎠− 1

T
E(F (1)ZT )

= 1

T
E

(
F(ST )

ST

ZT

)
+ 1

T
E

⎛
⎝

XT∫

0

F(ey)

ey
dyZT

⎞
⎠ .

Applying Eq. 32 to h(x) = F(ex)
ex , we get

E

(
F(ST )

ST

)
= 1

T
E

⎛
⎝

XT∫

0

F(ey)

ey
dyZT

⎞
⎠ .

Hence

Ef (ST ) = 1

T
E

(
F(ST )

ST

ZT

)
+ E

(
F(ST )

ST

)
= E

(
F(ST )

ST

(
1 + ZT

T

))
.

Proof of Lemma 12. Since the process Y as well Yn are Gaussian, it is sufficient to
consider throughout the proof only the case θ = 2.
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(i) The increment of Y can be presented as

Yt − Ys = BH
t − BH

s − α(e−αt − e−αs)

s∫

0

eαuBH
u du + e−αt

t∫

s

eαuBH
u du.

Since |e−αt − e−αs | ≤ α|t − s| for t, s ≥ 0, we have

E (Yt −Ys)
2 ≤ C

⎛
⎜⎝E
(
BH

t − BH
s

)2 + |t − s|2E

⎛
⎝

s∫

0

eαuBH
u du

⎞
⎠

2

+E

⎛
⎝

t∫

s

eαuBH
u du

⎞
⎠

2
⎞
⎟⎠

≤ C
(
|t − s|2 + |t − s|2H

)
≤ C|t − s|2H .

(ii) Define the approximation en(s) = e−αti BH
ti

, s ∈ [ti , ti+1), 0 ≤ i ≤ n − 1. Then,
similarly to above calculations,

E
(
Ytj − Yn

tj

)2 = e−2αtj E

⎛
⎜⎝

tj∫

0

(
eαsBH

s − en(s)
)
ds

⎞
⎟⎠

2

≤ C

n2
+ C

n2H
≤ C

n2H
.

(iii) Now, let s ∈ [ti , ti+1) and θ ≥ 1. Then it follows from (i) and (ii) that

E|Ys − Yn
s |θ = E|Ys − Yn

ti
|θ ≤ CE|Ys − Yti |θ + CE|Yti − Yn

ti
|θ ≤ Cn−θH .

Statement (iv) follows immediately from Lemma 2, statement (i), and from statement (iii)

above.

Proof of Lemma 14. Let us start with (19). Taking into account condition (B), (ii) and
(iii), we can write

E(XT − Xn
T )2 = E

⎡
⎣−1

2

T∫

0

σ 2(Ys)ds +
T∫

0

σ(Ys)dWs + 1

2

T∫

0

σ 2(Y n
s )ds−

T∫

0

σ(Y n
s )dWs

⎤
⎦

2

≤ 2E

⎡
⎣1

2

T∫

0

(σ 2(Ys) − σ 2(Y n
s ))ds

⎤
⎦

2

+ 2E

⎡
⎣

T∫

0

(σ (Ys) − σ(Y n
s ))dWs

⎤
⎦

2

≤ T

2

T∫

0

E(σ 2(Ys) − σ 2(Y n
s ))2ds + 2

T∫

0

E(σ (Ys) − σ(Y n
s ))2ds

= T

2

T∫

0

E
[
|σ(Ys)−σ(Y n

s )|2|σ(Ys)+σ(Y n
s )|2

]
ds+2

T∫

0

E(σ (Ys)−σ(Y n
s ))2ds

≤ C

T∫

0

(
E
(∣∣Ys − Yn

s

∣∣2r
(
C + |Ys |2q + |Yn

s |2q
))

+ E
∣∣Ys − Yn

s

∣∣2r
)
ds

≤ C

T∫

0

(
E
∣∣Ys − Yn

s

∣∣4r E
(
C + |Ys |4q + |Yn

s |4q
))1/2

ds. (33)
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Lemma 2 (i), and Lemma 12 (ii) imply that for any θ ≥ 1

sup
n∈N,s∈[0,T ]

E
(|Ys |θ + |Yn

s |θ ) < ∞. (34)

Moreover, it follows from Lemma 12 that for any s ∈ [0, T ] and θ ≥ 1

E|Ys − Yn
s |θr ≤ Cn−θrH . (35)

Set θ = 4q in (34) and θ = 4 in (35) and substitute the result into the right-hand side of
(33):

E(XT − Xn
T )2 ≤ C

T∫

0

(
E
(
Ys − Yn

s

)4r
) 1

2
ds ≤ Cn−2rH ,

so that (19) is proved. Now we move on to (20). Taking into account condition (B), (i), we
get that ∣∣∣∣ 1

σ(x)
− 1

σ(y)

∣∣∣∣ ≤ |σ(x) − σ(y)|
σ(x)σ (y)

≤ |σ(x) − σ(y)|
σ 2

min

,

whence

E(ZT − Zn
T )2 =

T∫

0

(
1

σ(Y )
− 1

σ(Y n
s )

)2

ds

≤ 1

σ 2
min

Cσ

T∫

0

E
(
Ys − Yn

s

)2r
ds.

We can apply (35) with θ = 2 to the last inequality and conclude this part of the proof
exactly as it was done for (19).

Proof of Lemma 15. We can write

E

∣∣∣∣F(ST )

ST

− F(Sn
T )

Sn
T

∣∣∣∣
2

≤ 2E

∣∣∣∣F(ST )

ST

− F(ST )

Sn
T

∣∣∣∣
2

+ 2E

∣∣∣∣F(ST )

Sn
T

− F(Sn
T )

Sn
T

∣∣∣∣
2

:= 2I1 + 2I2.

(36)
Now we estimate the right-hand side of (36) term by term. For I1 we have

I1 = E
(
F(ST )

(
(ST )−1 − (Sn

T )−1))2 ≤
(

E(F (ST ))4E
(
(ST )−1 − (Sn

T )−1)4)1/2
. (37)

On the one hand, since f and F both have a polynomial growth, E(F (ST ))4 < ∞ according
to Remark 3. On the other hand,

E
(
(ST )−1 − (Sn

T )−1)4 = S−4
0 e−4bT (38)

×E

⎛
⎝exp

⎧⎨
⎩

1

2

T∫

0

σ 2(Y n
s )ds −

T∫

0

σ(Y n
s )dWs

⎫⎬
⎭− exp

⎧⎨
⎩

1

2

T∫

0

σ 2(Ys)ds −
T∫

0

σ(Ys)dWs

⎫⎬
⎭
⎞
⎠

4

.

Using the inequalities

|ex − ey | ≤ (ex + ey)|x − y|, x, y ∈ R,

(x + y)2n ≤ C(n)(x2n + y2n), x, y ∈ R, n ∈ N,
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along with results outlined in Remarks 3 and 13, the Burkholder–Davis–Gundy and Hölder
inequalities, condition (B), (ii) and (iii), and relation (34) with ν = 16q, we get from (38)
that

E
(
(ST )−1 − (Sn

T )−1)4

≤ CE

⎛
⎝exp

⎧⎨
⎩

1

2

T∫

0

σ 2(Y n
s )ds −

T∫

0

σ(Y n
s )dWs

⎫⎬
⎭− exp

⎧⎨
⎩

1

2

T∫

0

σ 2(Ys)ds −
T∫

0

σ(Ys)dWs

⎫⎬
⎭
⎞
⎠

4

≤ CE

⎛
⎝
⎛
⎝exp

⎧⎨
⎩2

T∫

0

σ 2(Y n
s )ds − 4

T∫

0

σ(Y n
s )dWs

⎫⎬
⎭+ exp

⎧⎨
⎩2

T∫

0

σ 2(Ys)ds − 4

T∫

0

σ(Ys)dWs

⎫⎬
⎭
⎞
⎠

×
⎛
⎝1

2

T∫

0

σ 2(Y n
s )ds −

T∫

0

σ(Y n
s )dWs − 1

2

T∫

0

σ 2(Ys)ds +
T∫

0

σ(Ys)dWs

⎞
⎠

4⎞
⎟⎠

≤ C

⎛
⎝E

⎛
⎝exp

⎧⎨
⎩4

T∫

0

σ 2(Y n
s )ds − 8

T∫

0

σ(Y n
s )dWs

⎫⎬
⎭

+ exp

⎧⎨
⎩4

T∫

0

σ 2(Ys)ds − 8

T∫

0

σ(Ys)dWs

⎫⎬
⎭
⎞
⎠
⎞
⎠

1/2

×
⎡
⎢⎣E

⎛
⎝1

2

T∫

0

σ 2(Y n
s )ds −

T∫

0

σ(Y n
s )dWs − 1

2

T∫

0

σ 2(Ys)ds +
T∫

0

σ(Ys)dWs

⎞
⎠

8⎤
⎥⎦

1/2

≤ C

⎡
⎢⎣E

⎛
⎝1

2

T∫

0

σ 2(Y n
s )ds −

T∫

0

σ(Y n
s )dWs − 1

2

T∫

0

σ 2(Ys)ds +
T∫

0

σ(Ys)dWs

⎞
⎠

8⎤
⎥⎦

1/2

≤ C

⎡
⎢⎣E

⎛
⎝

T∫

0

σ 2(Y n
s )ds −

T∫

0

σ 2(Ys)ds

⎞
⎠

8

+ E

⎛
⎝

T∫

0

σ(Y n
s )dWs −

T∫

0

σ(Ys)dWs

⎞
⎠

8⎤
⎥⎦

1/2

≤ C

⎡
⎢⎣T 7E

⎛
⎝

T∫

0

(
σ 2(Y n

s ) − σ 2(Ys)
)8

ds

⎞
⎠+ CE

⎛
⎝

T∫

0

(
σ(Y n

s ) − σ(Ys)
)2

ds

⎞
⎠

4⎤
⎥⎦

1/2

= C

⎡
⎣T 7

⎛
⎝

T∫

0

E
{
(σ (Y n

s ) − σ(Ys))(σ (Y n
s ) + σ(Ys))

}8
ds

⎞
⎠

+CT 3E

⎛
⎝

T∫

0

(
σ(Y n

s ) − σ(Ys)
)8

ds

⎞
⎠
⎤
⎦

1/2
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≤ C

⎡
⎣E

⎛
⎝

T∫

0

(
E|Ys − Yn

s |16rE
(
C + |Ys |16q + |Yn

s |16q
))1/2

ds

⎞
⎠

+ E

⎛
⎝

T∫

0

∣∣Ys − Yn
s

∣∣8r
ds

⎞
⎠
⎤
⎦

1/2

≤ C

⎡
⎣

T∫

0

((
E
∣∣Ys − Yn

s

∣∣16r
) 1

2 + E
∣∣Ys − Yn

s

∣∣8r
)

ds

⎤
⎦

1/2

. (39)

Applying (35) consequently with θ = 8 and θ = 16 we get that the last expression in

(39) does not exceed C
(

1
n

)4rH

, thus from (37) we obtain

I1 ≤ Cn−2rH . (40)

Now we continue with I2 from (36):

I2 ≤
[
E(F (ST ) − F(Sn

T ))4
]1/2 [

E(Sn
T )−4

]1/2
.

The second multiplier is bounded according to Remark 13, therefore it follows from
condition (A), (i), that

I2 ≤ C
[
E(F (ST ) − F(Sn

T ))4
]1/2 = C

⎡
⎢⎢⎣E

⎛
⎜⎝

ST ∨Sn
T∫

ST ∧Sn
T

f (x)dx

⎞
⎟⎠

4
⎤
⎥⎥⎦

1/2

≤ C(Cf )2
[
E
(
|ST −Sn

T |4(1 + S
p
T + (Sn

T )p)4
)]1/2 ≤ C

[
E|ST −Sn

T |8E(1+S
p
T +(Sn

T )p)8
]1/4

.

According to Lemma 2 and Remark 13,

sup
n∈N

E(1 + S
p
T + (Sn

T )p)8 < ∞,

whence we get that

I2 ≤ C
(

E|ST − Sn
T |8
)1/4

.

To evaluate the right-hand side of this inequality, we can proceed as in the proof of (39) and
the subsequent inequalities, because neither the opposite sign of the exponents nor the 8th
power instead of the 4th lead to serious discrepancies in the estimations. Therefore we get

I2 ≤ C

⎡
⎣

T∫

0

((
E
∣∣Ys − Yn

s

∣∣32r
) 1

2 + E
∣∣Ys − Yn

s

∣∣16r
)

ds

⎤
⎦

1
8

≤ C
(
n−16rH

)1/8 = Cn−2rH .

(41)
Bounds (40) and (41) complete the proof.
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Proof of Theorem 16. By Lemma 11 we can write

∣∣∣∣Ef (XT )−E

(
F(Sn

T )

Sn
T

(
1+ Zn

T

T

))∣∣∣∣=E

∣∣∣∣
(

F(ST )

ST

(
1+ ZT

T

))
−
(

F(Sn
T )

Sn
T

(
1+ Zn

T

T

))∣∣∣∣
≤ 1

T
E

∣∣∣∣F(ST )

ST

(
ZT − Zn

T

)∣∣∣∣+ E

∣∣∣∣
(

1 + Zn
T

T

)(
F(ST )

ST

− F(Sn
T )

Sn
T

)∣∣∣∣

≤ 1

T

(
E

(
F(ST )

ST

)2

E
(
ZT − Zn

T

)2
)1/2

+
(

E

(
F(ST )

ST

− F(Sn
T )

Sn
T

)2

E

(
1 + Zn

T

T

)2
)1/2

.

According to Lemma 2, 3 and the Cauchy–Schwartz inequality, E
(

F(ST )
ST

)2
< ∞.

Obviously,

sup
n≥1

E
(
Zn

T

)2
<

T

σ 2
min

.

Now the proof follows from Lemma 14 and Lemma 15.

Proof of Lemma 17. The proof immediately follows from the general formula for the
density of a two dimensional Gaussian vector:

f (x1, x2) = (1 − �2)−1/2

2πσ1σ2

× exp

(
− 1

2(1 − �2)

[
(x1 − m1)

2

σ 2
1

+ (x2 − m2)
2

σ 2
2

− 2�(x1 − m1)(x2 − m2)

σ1σ2

])
(42)

with the mean vector and covariance matrix respectively(
m1
m2

)
,

(
σ 2

1 �σ1σ2

�σ1σ2 σ 2
2

)
.

In our case the covariance matrix equals

CX,Z =
(

μ2σ 2
Y μT

μT σ 2
Z

)
,

the mean vector (mY , 0) = (log S0 + bT − 1
2σ 2

Y + ρ
T∫
0
σ(Ys)dBs, 0), and � = T

σ
Y

σ
Z

. Now

(22) follows immediately from (42).

Proof of Theorem 18. Applying Lemma 11, equality (15), and Lemma 17, we get that

T Eg(XT ) = E

⎛
⎝G(XT )

T∫

0

1

σ(Yu)
dVu

⎞
⎠ = E

⎛
⎝E

⎛
⎝G(XT )

T∫

0

1

σ(Yu)
dVu

∣∣∣∣FH
T }
⎞
⎠
⎞
⎠

= E

⎛
⎜⎝E

⎛
⎜⎝
∫

R2

G(x)zp
X,Z

(x, z)dxdz

∣∣∣∣FH
T }
⎞
⎟⎠
⎞
⎟⎠ = E

∫

R2

G(x)zp
X,Z

(x, z)dxdz

= E
∫

R

G(x)

⎛
⎝
∫

R

zp
X,Z

(x, z)dz

⎞
⎠ dx. (43)
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The inner integral can be significantly simplified. Indeed, denote x̃ = x − mY . Then

∫

R

zp
X,Z

(x, z)dz = 1

2π�
1
2

∫

R

z exp

{
− 1

2�

(
σ 2

Zx̃2 + μ2σ 2
Y z2 − 2μT x̃z

)}
dz

= 1

2π�
1
2

∫

R

z exp

{
− 1

2�

((
μσY z − T x̃

σY

)2

− T 2x̃2

σ 2
Y

+ σ 2
Zx̃2

)}
dz

= 1

2π�
1
2

exp

{
− x̃2

2�

σ 2
Y σ 2

Z − T 2

σ 2
Y

}∫

R

z exp

{
− 1

2�

(
μσY z − T x̃

σY

)2 }
dz

= 1

2π�
1
2

exp

{
− x̃2

2μ2σ 2
Y

}∫

R

z exp

{
−
(

μσY√
2�

1
2

z − T x̃√
2�

1
2 σY

)2 }
dz.

Since ∫

R

xe−(ax−b)2
dx = b

a2

√
π,

we obtain ∫

R

zp
X,Z

(x, z)dz = T x̃

μ2σ 3
Y

√
2π

exp

{
− x̃2

2μ2σ 2
Y

}
. (44)

Combining (43) and (44), we get the proof.

Proof of Theorem 19. To simplify notation, without loss of generality, let us assume that
X0 + bT = 0. Then, using (23), we get that

∣∣∣∣Eg(XT ) − (2π)−
1
2

∫

R

G(x)E

(
(x − mY,n)

μ2σ 3
Y,n

exp

{
− (x − mY,n)

2

2μ2σ 2
Y,n

})
dx

∣∣∣∣

= (2π)−
1
2

∣∣∣∣
∫

R

G(x)E

(
(x − mY )

μ2σ 3
Y

exp

{
− (x − mY )2

2μ2σ 2
Y

}

− (x − mY,n)

μ2σ 3
Y,n

exp

{
− (x − mY,n)

2

2μ2σ 2
Y,n

})
dx

∣∣∣∣

≤ (2π)−
1
2

∫

R

G(x)

[
E

(
1

μ2

∣∣∣∣x − mY

σ 3
Y

− x − mY,n

σ 3
Y,n

∣∣∣∣ exp

{
− (x − mY,n)

2

2μ2σ 2
Y,n

})

+E

∣∣∣∣ (x − mY )

μ2σ 3
Y

(
exp

{
− (x − mY )2

2μ2σ 2
Y

}
− exp

{
− (x − mY,n)

2

2μ2σ 2
Y,n

})∣∣∣∣
]
dx

:= (2π)−
1
2

(∫

R

G(x)(J n
1 (x) + J n

2 (x))dx

)
.

To bound J n
1 (x) from above, denote

En
exp(x) =

(
E exp

{
− (x − mY,n)

2

μ2σ 2
Y,n

})1/2

, Eexp(x) =
(

E exp

{
− (x − mY )2

μ2σ 2
Y

})1/2

.
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By the Cauchy–Schwarz inequality,

J n
1 (x) ≤ 1

μ2
E

( ∣∣∣∣∣
x − mY

σ 3
Y

− x − mY,n

σ 3
Y,n

∣∣∣∣∣
2 )1/2

En
exp(x). (45)

Furthermore,

x − mY

σ 3
Y

− x − mY,n

σ 3
Y,n

= 1

2
σ−3

Y (σ 2
Y − σ 2

Y,n) + (x + 1

2
σ 2

Y,n)(σ
−3
Y − σ−3

Y,n)

+ ρ

(∫ T

0
(σ (Ys) − σ(Y n

s ))dBs

)
(σ−3

Y − σ−3
Y,n). (46)

Since |a3
1 − a3

2 | ≤ |a2
1 − a2

2 |(a1 + a2), a1, a2 > 0, and also the lower bounds σ 2
Y ≥ T σ 2

min,
σ 2

Y,n ≥ T σ 2
min hold, we can conclude that

∣∣∣σ−3
Y − σ−3

Y,n

∣∣∣ ≤
∣∣∣σ−2

Y − σ−2
Y,n

∣∣∣
(
σ−1

Y,n + σ−1
Y

)
=
∣∣∣σ 2

Y − σ 2
Y,n

∣∣∣
σ 2

Y σ 2
Y,n

(
σ−1

Y,n + σ−1
Y

)

≤
2
∣∣∣σ 2

Y − σ 2
Y,n

∣∣∣
σ 2

Y,nT
3
2 σ 3

min

≤ C|σ 2
Y − σ 2

Y,n|. (47)

By the penultimate bound from (47) and since σ 2
Y,n

is bounded from below uniformly in n,
we get

|(x + 1

2
σ 2

Y,n)(σ
−3
Y − σ−3

Y,n)| ≤ (|x| + 1
2σ 2

Y,n)|σ 2
Y − σ 2

Y,n|
σ 2

Y,nT
3
2 σ 3

min

≤ C

(
|x|
σ 2

Y,n

+ 1

2

)
|σ 2

Y − σ 2
Y,n| ≤ C(1 + |x|)

∣∣∣σ 2
Y − σ 2

Y,n

∣∣∣ . (48)

Summarizing (46)–(48) we get

∣∣∣∣∣
x − mY

σ 3
Y

− x − mY,n

σ 3
Y,n

∣∣∣∣∣ ≤ C

(
1 + |x| +

∫ T

0
(σ (Ys) − σ(Y n

s ))dBs

)
|σ 2

Y − σ 2
Y,n|. (49)

Furthermore, applying Burkholder–Davis–Gundy inequality and Remark 3 together with
Lemma 12, we obtain

E

((∫ T

0
(σ (Ys) − σ(Y n

s ))dBs

)
(σ 2

Y − σ 2
Y,n)

)2

≤
(

E

(∫ T

0
(σ (Ys) − σ(Y n

s ))dBs

)4

E
(
σ 2

Y − σ 2
Y,n

)4
)1/2

≤ C

(
E

(∫ T

0
(σ (Ys) − σ(Y n

s ))2ds

)2

E
(
σ 2

Y − σ 2
Y,n

)4
)1/2

≤ C

(
E
(
σ 2

Y − σ 2
Y,n

)4
)1/2

. (50)
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Finally, we get from (45) – (50) that

J n
1 (x) ≤ C(1 + |x|)(E(σ 2

Y,n − σ 2
Y )4)1/4En

exp(x). (51)

Similarly to (33) and (39), by applying condition (B), Lemma 12, (iii) and (iv), together
with the standard Hölder’s inequality, we get

E(σ 2
Y,n − σ 2

Y )4 = E

⎛
⎝

T∫

0

(σ 2(Y n
s ) − σ 2(Ys))ds

⎞
⎠

4

≤ CE

T∫

0

(σ 2(Y n
s ) − σ 2(Ys))

4ds

≤Cσ C

T∫

0

[
E(Y n

s −Ys)
8rE(σ (Y n

s ) + σ(Ys))
8
]1/2

ds

≤ C

T∫

0

[
E(Y n

s −Ys)
8r
]1/2

ds ≤Cn−4rH . (52)

Combining inequality (52) with (51) we get

J n
1 (x) ≤ Cn−rH (1 + |x|)En

exp(x),

and consequently∫

R

G(x)J n
1 (x)dx ≤ Cn−rH

∫

R

G(x)(1 + |x|)En
exp(x)dx. (53)

Let us show that the integral in the right–hand side of (53) is bounded in n ≥ 1. In this
connection, denote κ = T μ2σ 2

min. Applying the standard Hölder inequality together with
polynomial growth of G(x) and relations (18) from Remark 13, we get that

∫

R

G(x)(1 + |x|)En
exp(x)dx

≤
⎛
⎝
∫

R

G2(x)(1 + |x|)2e−(2p+1)|x|dx

⎞
⎠

1
2
⎛
⎝
∫

R

e(2p+1)|x|E exp

{
− (x − mY,n)

2

μ2σ 2
Y,n

}
dx

⎞
⎠

1/2

≤ C

⎛
⎝E
∫

R

e(2p+1)|x+mY,n| exp

{
−x2

κ

}
dx

⎞
⎠

1/2

≤ C

⎛
⎝E
∫

R

e(2p+1)(x+mY,n) exp

{
−x2

κ

}
dx

⎞
⎠

1/2

+C

⎛
⎝E
∫

R

e−(2p+1)(x+mY,n) exp

{
−x2

κ

}
dx

⎞
⎠

1/2

= C

⎛
⎝Ee(2p+1)mY,n

∫

R

e(2p+1)x exp

{
−x2

κ

}
dx

⎞
⎠

1/2

+C

⎛
⎝Ee−(2p+1)mY,n

∫

R

e−(2p+1)x exp

{
−x2

κ

}
dx

⎞
⎠

1/2

≤ C. (54)

Construction of an upper bound for J n
2 (x) is similar. Indeed,

| exp{−u2} − exp{−v2}| ≤ (exp{−u2} + exp{−v2})|u − v|(|u| + |v|). (55)

In our case

u = x − mY√
2μσY

, v = x − mYn√
2μσYn

.
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Note that

E|u|2 ≤ CE

(
|x| + σY +

∣∣∣∣
∫ T

0
σ(Ys)dBs

∣∣∣∣
)2

≤ C(1 + |x|)2,

and the moments of higher order of u and v can be bounded similarly. For |u2 − v2|, in the
same way as in (46), (47) and (48) we have

|u − v| ≤ C

(
1 + |x| +

∣∣∣∣
∫ T

0
σ(Y n

s )dBs

∣∣∣∣
)

|σY − σY,n| + C

∣∣∣∣
∫ T

0
(σ (Ys) − σ(Y n

s ))dBs

∣∣∣∣ .
(56)

Additionally,

|σY − σY,n| ≤ |σ 2
Y − σ 2

Y,n|
σY + σY,n

≤ C|σ 2
Y − σ 2

Y,n|.
Hence, applying Hölder, Minkowski, and Burkholder–Davis–Gundy inequalities together
with condition (B), (iii), we get from (56)

(E|u − v|8)1/8 ≤ C(1 + |x|)(E(σ 2
Y − σ 2

Y,n)
8)1/8

+
(

E

(∫ T

0
σ(Y n

s )dBs

)16)1/16

(E(σ 2
Y −σ 2

Y,n)
16)1/16

+C

(
E

(∫ T

0
(σ (Ys)−σ(Y n

s ))dBs

)8)1/8

≤ C(1 + |x|)(E(σ 2
Y − σ 2

Y,n)
16)1/16

+C

(
E

(∫ T

0
(σ (Ys) − σ(Y n

s ))2ds

)4)1/8

. (57)

Proceeding as in (52), we get

(E(σ 2
Y − σ 2

Y,n)
16)1/16 ≤

(
E

(∫ T

0
(σ 2(Ys) − σ 2(Y n

s ))ds

)8)1/16

≤ Cn−rH ,

and (
E

(∫ T

0
(σ (Ys) − σ(Y n

s ))2ds

)4)1/8

≤ Cn−rH .

Now we continue, preserving for the moment the notations u and v and taking into account
(55)–(57):

J n
2 (x) = E

(∣∣∣∣ u

σY

∣∣∣∣ | exp{−u2} − exp{−v2}|
)

≤ κ
−1
(

E|u|2E
(
| exp{−u2} − exp{−v2}|

)2
)1/2

≤ C(1 + |x|)
(

E
(
| exp{−u2} − exp{−v2}|

)2
)1/2

≤ C(1 + |x|)
(

E
(
| exp{−u2} + exp{−v2}|

)4
)1/4 (

E (|u − v|)8
)1/8 (

E (|u| + |v|)8
)1/8

≤ C(1 + |x|)3n−rH

(
E
(
| exp{−u2} + exp{−v2}|

)4
)1/4

. (58)
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Together with (58) this implies that∫
R

G(x)J2(x)dx ≤ Cn−rH

∫
R

(1 + |x|)3G(x)

×
(

E

(
exp

{
− (x−mY )2

2μ2σ 2
Y

}
+exp

{
− (x−m

Y,n
)2

2μ2σ 2
Y,n

}))4) 1
4

dx. (59)

The fact that the integral in the right-hand side of (59) is bounded in n, can be established
via the same approach as applied to the integral

∫
R

G(x)(1 + |x|)En
exp(x)dx in (54).

Proof of Lemma 20. For any δ > 0 choose ε = ε(δ) in such a way that ε(2 + α|Y0|) < δ.
Then we get from the representation (29) that for 0 ≤ t ≤ τε ∧ ε

|Yt − Y0| ≤ |Y0|(1 − e−αt ) + |BH
t | + αe−αt

∫ t

0
eαs |BH

s |ds

≤ |Y0|αε + ε + εe−αt (eαt − 1) ≤ ε(2 + α|Y0|) < δ.

Therefore for ε < δ
2+α|Y0| we have that νδ > τε ∧ ε. So, it is sufficient to prove that for any

ε > 0 and any l > 0
E(τε ∧ ε)−l < ∞. (60)

Now, for v < ε

P{τε ∧ ε < v} = P{τε < v} = P{ sup
0≤t≤v

|BH
t | ≥ ε}.

Furthermore, it follows from the self-similarity and symmetry of the fBm that
P{sup0≤t≤v |BH

t | ≥ ε} ≤ 2P{sup0≤t≤1 BH
t ≥ ε

vH }. Let us denote ϑ = E sup0≤t≤1 BH
t .

Then, according to inequality (2.2) from Talagrand (1994), for v < ε such that additionally
ε

vH > ϑ we have

P{ sup
0≤t≤v

BH
t ≥ ε

vH
} ≤ exp

⎧⎪⎨
⎪⎩−

(
ε

vH − ϑ
)2

2

⎫⎪⎬
⎪⎭ = exp

{
− (ε − ϑvH )2

2v2H

}
,

and (60) follows since

E(τε∧ε)−l =
∞∫

0

P{(τε∧ε)−l > u}du =
∞∫

0

P{τε∧ε <
1

u
}du =

∞∫

0

1

v2
P{τε∧ε < v}du < ∞.

Remark 24 Exponential bounds for the distribution of τε allow to prove that E(τε ∧ ε ∧
a)−l < ∞ for any a, l > 0.

Proof of Lemma 21. As it follows from Proposition 2.1.1 and Exercise 2.1.1 in Nualart
(2006), it is sufficient to show that

σ 2
Y ∈ D2,4 (61)

and that

E
(
||DBσ 2

Y ||H
)−8

< ∞. (62)

Recall that κ(x) = σ(x)σ ′(x). It follows from conditions (B) and (E) that κ and
κ ′ are functions of polynomial growth, κ(x) > 0. Recall the notation l(u, s) =
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cH e−αs
s∫
u

eαvvH−1/2(v − u)H−3/2dv. Taking into account (30) and (10), we write the

stochastic derivative as

DB
u (σ 2

Y ) = DB
u (

T∫

0

σ 2(Ys)ds) = 2

T∫

0

κ(Ys)D
B
u Ysds

= 2cH u1/2−H

T∫

u

κ(Ys)e
−αs

s∫

u

eαvvH−1/2(v − u)H−3/2dvds

= 2u1/2−H

T∫

u

κ(Ys)l(u, s)ds.

Therefore, the iterated derivative equals

DB
z (DB

u (σ 2
Y )) = 2u1/2−H z1/2−H

T∫

u∨z

κ ′(Ys)l(z, s)l(u, s)ds. (63)

Since the right-hand side of (63) is in H ⊗ H and the corresponding integral has moments
of any order due to polynomial growth of κ ′, (61) follows.

To prove (62), note that

DB
u (σ 2

Y ) ≥ C

T∫

u

κ(Ys)(s − u)H−1/2ds,

whence

||DBσ 2
Y ||2H =

T∫

0

(
DB

u σ 2
Y

)2
du ≥ C

T∫

0

du

⎛
⎝

T∫

u

κ(Ys)(s − u)H−1/2ds

⎞
⎠

2

.

Now, let σ ′(Y0) = σ0 > 0. Choose δ > 0 so that for y ∈ [Y0 − δ, Y0 + δ] we have
σ ′(y) >

σ0
2 . Then choose ε = ε(δ) as in the proof of Lemma 20, and take ζ = τε ∧ ε ∧ T

2 .
Then

T∫

0

du

⎛
⎝

T∫

u

κ(Ys)(s − u)H−1/2ds

⎞
⎠

2

≥ C

1
3 ζ∫

0

du

⎛
⎜⎜⎝

ζ∫

2
3 ζ

κ(Ys)(s − u)H−1/2ds

⎞
⎟⎟⎠

2

≥ C

1
3 ζ∫

0

du

⎛
⎜⎜⎝

ζ∫

2
3 ζ

σminσ0

(
1

3
ζ

)H−1/2

ds

⎞
⎟⎟⎠

2

= Cζ 2+2H .

It follows immediately from Lemma 20 and 24 that

E
(
||DBσ 2

Y ||H
)−8 ≤ CEζ−8−8H ≤ CE

(
τε ∧ ε ∧ T

2

)−8−8H

< ∞.
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Proof of Theorem 22. From Lemma 21 and Proposition 2.1.1, Nualart (2006) we get the
first part of equality (25):

pσ 2
Y
(u) = E

[
1σ 2

Y >uδ

(
DBσ 2

Y

||Dσ 2
Y ||2H

)]
.

To get the second part, note that η := (||Dσ 2
Y ||H

)−2
admits stochastic derivative and,

according to Proposition 1.3.3 from Nualart (2006), the following holds

δ

(
DBσ 2

Y

||DBσ 2
Y ||2H

)
=
∫ T

0
ηDB

u (σ 2
Y )dBu = η

∫ T

0
DB

u (σ 2
Y )dBu

−
∫ T

0
DB

u ηDB
u (σ 2

Y )du = 2η

∫ T

0
u1/2−H

T∫

u

κ(Ys)l(u, s)dsdBu

−
∫ T

0
DB

u ηDB
u (σ 2

Y )du.

According to Lemma 2.10 from León and Nualart (1998), we can apply the Fubini theorem
for the Skorokhod integral. We have

∫ T

0
u1/2−H

T∫

u

κ(Ys)l(u, s)dsdBu =
∫ T

0
κ(Ys)(

∫ s

0
u1/2−H l(u, s)dBu)ds,

where the interior integral is a Wiener one.
Finally, taking into account that mY = X0 + bT − 1

2σ 2
Y , we get

E
(x − mY )

σ 3
Y

√
2π

exp

{
− (x − mY )2

σ 2
Y

}

=
∫
R

(x + u/2 − X0 − bT )

u3
√

2π
exp

{
− (x + u/2 − X0 − bT )2

u2

}
pσ 2

Y
(u)du.

Combining this with (23), we get the proof.

8 Simulations

In this section we use the discretization schemes proposed in 4 and 5 to simulate the option
price. We treat double and the single discretization, respectively, and we also compare it to
the direct Monte Carlo average. Note that in Theorem 16 and 19 we prove convergence of
the expectation, in other words, we prove that the bias is going to zero as the partition size n

increases. The tables below suggest that the variance of the estimate expectedly remain on
about the same level.

The values of b, α and T are the same in all simulations, and equal b = 0.2, α =
0.6, T = 1.

We present here the results of simulations for different functions σ and f . Tables from
1 to 6 demonstrate results of simulations for different n. All numbers have 6 digits after the
decimal point. The tables include the outcomes of computations based on (14) (the double
discretization, ‘dd’ in the tables), (23) (the single discretization based on conditioning, ‘sd’
in the tables), and the direct averaging (‘da’ in the tables). The mean squared errors are also
included. For the single discretization the values in the mean squared errors column (column
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Table 1 f (s) = (s − 1)+ + 1s>1, σ(y) = √|y| + 0.55 , H = 0.6

n dd dd error sd sd error da da error

100 0.951019 14.363830 0.956867 0.008173 0.956300 6.128996

300 0.973156 15.927797 0.956734 0.007935 0.965695 6.652094

900 0.982417 21.924333 0.956843 0.007999 0.970280 7.991714

2700 0.935197 19.155798 0.957068 0.007875 0.938319 7.233949

8100 1.006177 19.731601 0.956925 0.007998 0.987641 7.904191

24300 0.953743 16.835284 0.957012 0.007977 0.949628 6.776577

5) are obtained by taking same expression as in (23) and replace the mean of the sample by
the variance of the sample.

In Tables 1 and 2 f has a linear growth and σ takes moderate values (note that the
larger values σ(Yt ) takes, the higher the variance of ST is going to be). With f (s) = (s −
1)+ + 1s>1, G is given by G(x) = 1x>0(exp(x) − 1). We see that the single discretization
performs better than the other methods considered here, while the double discretization
results in a higher mean squared error than the direct averaging.

In Table 3 the results of the single discretization computations for various functions σ

are given. Note that the choices of σ result in σ(Yt ) taking higher values (on average) and
therefore in a high variance for St . Because of that, both the double discretization and the
direct averaging do not work well under these circumstances. It is therefore noteworthy to
point out that the single discretization shows a very robust performance here.

In Tables 4 and 5 σ is as in Tables 1 and 2, respectively, while f is an indicator of an
interval. With f (s) = 1s∈[1,2] we have G(x) = max(0, min(x, log(2))). The single dis-
cretization again performs better here. Unlike previously, using double discretization results
in a smaller mean squared error than the direct averaging.

Table 6 confirms a good overall performance of the single discretization, and that the
single discretization works well in settings where the direct averaging and the double
discretization would require a huge number of trials.

Table 7 shows the results of simulations for when f grows faster than linearly: f (s) =
((s − 1)+)3/2 + 1s>1. In this case

G(x) =
⎧⎨
⎩

x +
x∫
0
(ez − 1)3/2dz, x ≥ 0,

0, x < 0.

(64)

Single discretization method again shows a robust performance here, while double dis-
cretization and direct averaging have high variance.

Table 2 f (s) = (s − 1)+ + 1s>1, σ(y) = cos(8y) + 1.2 , H = 0.6

n dd dd error sd sd error da da error

100 1.005087 39.331162 0.973939 0.010322 0.987789 11.421569

300 0.967322 24.129696 0.973903 0.010282 0.972769 8.368354

900 1.014731 38.291297 0.973755 0.010448 0.984578 10.110878

2700 0.973777 26.510487 0.973658 0.010284 0.969705 9.600445

8100 0.967524 26.988813 0.973172 0.010471 0.963961 9.561456

24300 0.954076 24.880125 0.973564 0.010226 0.969705 9.872354
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Table 3 The single discretization only, f (s) = (s − 1)+ + 1s>1 , H = 0.4

n σ(y) = 2|y| + 2.2 error σ(y) = 5 sin(y) + 5.05 error σ(y) = 10
√

y2 + 1 error

100 1.196685 0.000532 1.221111 0.000004 1.219343 0.000000

300 1.197129 0.000511 1.221111 0.000006 1.219582 0.000000

900 1.197123 0.000508 1.221124 0.000005 1.219601 0.000000

2700 1.197186 0.000508 1.221130 0.000004 1.219290 0.000000

8100 1.197294 0.000510 1.221140 0.000004 1.219335 0.000000

24300 1.197131 0.000512 1.221117 0.000005 1.219385 0.000000

Table 4 f (s) = 1s∈[1,2], σ(y) = √|y| + 0.55 , H = 0.8

n dd dd error sd sd error da da error

100 0.173459 0.085342 0.172270 0.003021 0.171200 0.141891

300 0.170377 0.083396 0.171784 0.002989 0.171875 0.142334

900 0.172513 0.084694 0.172209 0.002994 0.171275 0.141940

2700 0.170567 0.083248 0.171828 0.002964 0.174650 0.144147

8100 0.172327 0.084907 0.171824 0.002967 0.168925 0.140389

24300 0.172714 0.084648 0.171822 0.002933 0.170300 0.141298

Table 5 f (s) = 1s∈[1,2], σ(y) = cos(8y) + 1.2 , H = 0.8

n dd dd error sd sd error da da error

100 0.162822 0.191493 0.163004 0.018580 0.164850 0.137674

300 0.167634 0.199874 0.163181 0.018253 0.162775 0.136279

900 0.165612 0.196169 0.163669 0.018401 0.163775 0.136953

2700 0.163298 0.193913 0.164235 0.019251 0.166050 0.138477

8100 0.164814 0.193648 0.164236 0.018682 0.165650 0.138210

24300 0.162855 0.191648 0.164496 0.018850 0.165525 0.138126

Table 6 f (s) = 1s∈[1,2], σ(y) = 2|y| + 2.2 , H = 0.8

n dd dd error sd sd error da da error

100 0.009435 0.004724 0.009434 0.000074 0.009125 0.009042

300 0.008986 0.004406 0.009259 0.000072 0.009025 0.008944

900 0.009631 0.004674 0.009296 0.000072 0.009525 0.009434

2700 0.009373 0.004600 0.009241 0.000070 0.009300 0.009214

8100 0.009703 0.004775 0.009247 0.000071 0.009250 0.009164

24300 0.009217 0.004554 0.009206 0.000071 0.009650 0.009557
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Table 7 The single discretization only, f (s) = ((s − 1)+)3/2 + 1s>1 , H = 0.7

n σ(y) = √
(|y| + 0.55) error σ(y) = cos(8y) + 1.2 Error

100 1.914334 0.009626 2.326036 0.021973

300 1.923092 0.009487 2.327452 0.022298

900 1.919237 0.009389 2.321790 0.022594

2700 1.917376 0.009398 2.318913 0.022438

8100 1.920846 0.009454 2.313767 0.022488

24300 1.921878 0.009446 2.317305 0.022312

The simulations are done in R. For each estimate 40000 trials were used. To simulate
the fBm, we used a modified version of the a function from the package dvfBm R kindly
provided by J.-F. Coeurjolly in private conversation. For simulations related to the double
discretization we take the average of the value under the expectation in the right hand side
of (14) over 4 ∗ 104 trials. For simulations related to the single discretization, we replace
infinite interval of integration in the right hand side of (23) with a finite one, making sure
that the integral over the complement is small. To be more precise, assume, for technical
simplicity, that f (y) ≤ yk for some k ∈ N. Then, for example, the right-hand tail of the
integral in (23) can be bounded from above in the following way:

(2π)−
1
2 E

(
(σY )−1

∫ ∞

A

G((x + mY )σY )
x

μ2
e
− x2

2μ2 dx

)

≤ (2π)−
1
2 E

(
(σY )−1

∫ ∞

A

ek(x+mY )σY e
x

μ2 − −Ax

4μ2 dx

)

≤ (2π)−
1
2 E

(
(σY )−1ekmY σY

(
A

4μ2
− μ−2 − kσy

)−1
)

.
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Fig. 1 The picture shows the plot of the integrand in (24), n = 900, H = 0.6, f (s) = (s − 1)+ + 1s>1,
σ(y) = 2|y| + 2.2, G(x) = 1x>0(exp(x) − 1)
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Fig. 2 The picture shows the plot of the integrand in (24), n = 24100, H = 0.4, f (s) = (s − 1)+ + 1s>1,
σ(y) = 5 sin(y) + 5.05, G(x) = 1x>0(exp(x) − 1)

We discretize the finite interval; the partition size varies, but is at least 2000. For each x

from the partition, we take the average over the same 4 ∗ 104 trials of the value under the
expectation in (23).

Figures 1, 2, and 3 display the integrand in (24) from various simulations.
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Fig. 3 The picture shows the plot of the integrand in (24), n = 24100, H = 0.7, f (s) = 1s∈[1,2], σ(y) =
cos(8y) + 1.2, G(x) = max(0, min(x, log(2)))
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Fig. 4 The picture shows the plot of the integrands in (24) for different n, H = 0.8, f (s) = ((s − 1)+)3/2 +
1s>1, σ(y) = √

(|y| + 0.55), G is given by (64). Since the functions are very close to each other, their plots
overlap

The above pictures give plot for a single choice of n. It’s worth pointing out that the
resulting function changes very little with n as can be seen on Fig. 4. Each curve almost
coincides with previous ones, so the curve for n = 24300 almost completely conceals the
plots for the other values of n. In fact the absolute value of the difference between each two
functions does not exceed 0.0023 in our simulations. This pattern is also observed for other
choices of f and σ considered in this section.

As a conclusion, the single method discretization allows to achieve a higher precision. It
keeps showing consistent results and a relatively small error in situations where the other
considered methods suffer from high variance.
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