
Chapter 6

Automated Assistance to the Security
Assessment of API for Financial Services

By Andrea Bisegna, Roberto Carbone, Mariano Ceccato,
Salvatore Manfredi, Silvio Ranise, Giada Sciarretta,

Alessandro Tomasi and Emanuele Viglianisi

Copyright © 2020 Andrea Bisegna et al.
DOI: 10.1561/9781680836875.ch6

The work will be available online open access and governed by the Creative Commons “Attribution-Non
Commercial” License (CC BY-NC), according to https://creativecommons.org/licenses/by-nc/4.0/

Published in Cyber-Physical Threat Intelligence for Critical Infrastructures Security: A Guide to Integrated Cyber-
Physical Protection of Modern Critical Infrastructures by John Soldatos, James Philpot and Gabriele Giunta (eds.).
2020. ISBN 978-1-68083-686-8. E-ISBN 978-1-68083-687-5.

Suggested citation: Andrea Bisegna et al. 2020. “Automated Assistance to the Security Assessment of API for
Financial Services” in Cyber-Physical Threat Intelligence for Critical Infrastructures Security: A Guide to Integrated
Cyber-Physical Protection of Modern Critical Infrastructures. Edited by John Soldatos, James Philpot and Gabriele
Giunta. pp. 94–103. Now Publishers. DOI: 10.1561/9781680836875.ch6.

http://dx.doi.org/10.1561/9781680836875.ch6
https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1561/9781680836875.ch6


This chapter presents the challenges related to the security assessment and the auto-
mated synthesis of mitigation measures of APIs for financial services. The focus is
on the APIs supporting the implementation of the new Payment Services Direc-
tive [PSD2]. It also gives an overview of an innovative approach to address these
challenges by (i) the automated identification and mitigation of security miscon-
figurations underlying sessions based on Transport Layer Security [TLS], which is
ubiquitously used to build a foundation layer of security; and (ii) the automated
penetration testing and synthesis of mitigations for the functionalities provided by
APIs built on top of it, both business (e.g., payments) and security (e.g., authentica-
tion or authorization). The main novelty of the proposed approach lies in the tight
integration of identification and mitigation phases by means of actionable mea-
sures that allow users to significantly strengthen the security posture of the entire
API ecosystem.

94



Open Banking API Security Recommendations 95

The Regulatory Landscape

The Electronic Identification, Authentication and Trust Services [eIDAS] Regu-
lation is the keystone regulation that defines requirements granting legal validity
throughout the internal market to electronic transactions, equivalent to previous
paper-based documents. To that end, it regulates Qualified Certificates (QC), elec-
tronic seals and signatures, and trust service providers. Security guidelines for the
appropriate use of QCs have been published by ENISA QTS [ENISA QTS].

The Revised Directive on Payment Services [PSD2] is intended to protect
and promote competition in the internal market by mandating that Account
Servicing Payment Service Providers (ASPSP)—most likely traditional banking
institutions—open their services to Third-party Providers (TPP) of Services includ-
ing account information (AISP) and payment initiation (PISP) providers.

The Regulatory Technical Standard [RTS] defines requirements on the use of
QCs for website authentication and electronic seals for communication among
TPPs and ASPSPs. Guidance on the use of QCs is included in [EBA-OP-2018-7].
The [ETSI TS 119 495] standard defines how to implement the requirements
of the RTS for use of QCs to meet the regulatory requirements of PSD2. For
instance, it defines the requirements for Qualified Website Authentication Cer-
tificates (QWACs), and it clarifies specifically that a QWAC “should be used to
establish a secure TLS channel to protect the communication (in the transport
layer) from potential attackers on the network.”

Open Banking API Security Recommendations

Under PSD2, banks are to provide an interface for third parties to access account
information and perform operations (e.g., payments) on behalf of the account
holder. The regulation does not specify technical solutions.

The Berlin Group standards and harmonization initiative proposes several pos-
sible approaches in its detailed “Access to Account (XS2A) Framework,” including
XML/JSON data model and associated messaging, as well as OpenAPI files to assist
developers with implementation. At its core, XS2A provides a detailed description
of REST API and their usage for the purposes of authentication of involved parties
and authorization to access Service resources, such as Account Information (AIS),
Payment Initiation (PIS), and Confirmation of Funds (PIIS).

The security of these APIs is based on both the transport and application layers.
The first core technology explicitly identified by the guidelines is the Transport
Layer Security [TLS] protocol: in particular, “the communication between the TPP
and the ASPSP is always secured by using a TLS-connection using TLS version 1.2



96 Security Assessment of API for Financial Services

or higher.”1 [XS2A-IG]. Additionally, [XS2A-IG] requires mutual authentication
of TPP and ASPSP using eIDAS- and RTS-compliant QCs, which must include
all the roles for which the TPP is authorized.

On the application layer, the core technology for authorization is the Open
Authorization Protocol [OAuth2], in particular the “Authorisation Code Grant”
flow is mandated for PIS and AIS. While other options are available and discussed
below, OAuth is seen as preferable.

Strong Customer Authentication in XS2A

Strong Customer Authentication (SCA) is one of the main requirements set out
by PSD2 (article 97) and RTS (Chapter III). The ASPSP must determine how to
enforce SCA on a per-transaction basis, in compliance with those requirements.

In the XS2A framework, TPPs have three broad categories of options to allow
compliance with SCA requirements:

1. Redirection—of users to their account holders and back to the TPP—using
an authentication solution based on, e.g., OAuth 2, such as [OIDC];

2. Decoupling, in which the communication between user and account holder
proceeds on an entirely separate channel; and

3. Embedding, in which the TPP has to embed the PSP’s entire SCA flow in
their own app.

Approach 3 involves a deep level of integration with every single account holder,
which is much more work than the other options and requires an extremely high
level of trust between the parties as it requires the sharing of user credentials.
Approach 2 is more lightweight and scalable but incurs a higher risk of hanging
business processes as the TPP must wait for notification of a completed operation
on a separate channel. Option 1 is clearly seen as preferable.

Approach Redirect (OAuth 2) Decoupled Embedded

SCA Directly between user and PSP Entirely at XS2A interface
Third-party
Provider

Does not need detailed
information about the
individual steps of SCA

No impact on the
user/provider interface

Needs SCA details for the
user, e.g., displays
challenge

Example Standard interface, e.g.,
“scope” attribute of
authentication request is
linked to payment initiation or
consent resource

Push notification with
payment transaction
details to dedicated mobile
app or via any other
application or device,
independent of online
banking front-end

Users enter username and
password through their
browser and are shown a
QR code to be scanned

1. We note that TLS 1.2 is now officially marked as obsolete; TLS 1.3 is the current standard.



Automated Analysis of TLS 97

Automated Analysis of TLS

Transport Layer Security [TLS] consists of a set of cryptographic protocols designed
to provide secure communications over a network. The popularity of TLS has
encouraged attackers to find vulnerabilities and develop exploits. The variety of
known attacks is the result of (i) maintaining backward compatibility and (ii) evolv-
ing use-case scenarios in which TLS is deployed.

One cannot “just deploy” TLS. Setting up a TLS server requires some amount
of configuration, including:

• Choosing a set of cipher(s);
• Choosing the versions of TLS to be offered;
• Setting a certificate issued by a trustworthy CA;
• Coping with implementation issues (e.g., vulnerable libraries).

Several tools have been developed to help administrators deploy secure TLS
instances. While such tools are quite effective in automatically finding vulnera-
bilities and issuing warnings about possible attacks, the burden of finding adequate
mitigation measures is left to administrators who must first collect information
about the identified problem and related fixes. Typically, such information is dis-
tributed in several sources ranging from scientific papers to blog posts. Even disre-
garding the effort to collect enough material to enact a mitigation, administrators
should have enough skills to understand the often subtle details and turn the infor-
mation in a concrete strategy to fix the problem. Additionally, each tool has vary-
ing degrees of coverage and does not specify mitigations for the issues identified.
In other words, there is a problem in making the tools’ reports actionable.

To address these issues, we developed TLS Assistant [MRS19], an open source
tool that combines state-of-the-art TLS analyzers with a report system that shows
the full set of viable attacks and suggests appropriate mitigations. The tool’s archi-
tecture is summarized in Figure 6.1. Its goal is to assist an administrator in securing
TLS configurations by:

• Detecting TLS and HTTPS misconfigurations;
• Providing

◦ A brief attack description;
◦ A mitigation description;
◦ Mitigation code snippets (for Apache and nginx web server).

We successfully tested the use of TLSAssistant in the deployment of an eIDAS
solution based on the new Italian identity cards before its submission for eIDAS
notification, discovering that the first release was prone to Lucky 13 [AFP13]



98 Security Assessment of API for Financial Services

Figure 6.1. TLSAssistant workflow.

and 3SHAKE [BDLFPS14]. The server-side vulnerabilities issues were promptly
patched, and the report was judged to be both easy to read and complete.

RESTful API Security Testing

API security issues can have a serious impact on all the applications that
depend on them. Indeed, not only is there a growing business for API man-
agement [GMQAPI19] but there is a dedicated [OWASP API] top 10 security
issue list, of which we highlight “API2:2019 Broken User Authentication” and
“API7:2019 Security Misconfiguration.” For example, the Harbor enterprise docker
container management service was found to expose a “POST /api/users” registra-
tion API in which new users could self-register and inject a “HasAdminRole=true”
attribute, thereby mounting an escalation of privilege attack remotely on any service
exposing this API—see [CVE-2019-16097].

Specifically in the financial sector, a report by TrendMicro [HMcAM19] high-
lights challenges arising from the new paradigm, for instance, due to the different
trust model underpinning the open banking framework. Among several issues, the
basic building block of authorization protocols is still a work in progress.

While OAuth 2.0 is arguably the de facto standard for authorization protocols,
it is a family of profiles tailored to specific use cases and scenarios. The higher
security requirements inherent to the financial sector and the intrinsic novelty of
exposing banking APIs to third parties have prompted the establishment of a work-
ing group for a dedicated Financial-grade API profile [FAPI], designed to harden
OAuth under more adversarial circumstances—for instance, by assuming that sen-
sitive tokens can be leaked by the user’s browser or operating system, as is the case
for many man-in-the-middle attacks, and allowing for the possibility that API end-
points may be misconfigured. Several mitigations have been proposed, for instance,
requiring the use of mutual TLS between third parties and account providers;
nevertheless, researchers in [FHK19] found that the expected security properties



RESTful API Security Testing 99

did not appear to hold in all cases, for instance, allowing malicious actors to force
an honest TPP to perform write-like operations (e.g., payment authorizations) from
the attacker’s device on an honest user’s account.

We note that the use of OAuth on its own for authentication is considered
improper; the OpenID Connect [OIDC] protocol builds an authentication layer
on top of OAuth, and indeed, this is used in FAPI.

Automated Black-box Testing of RESTful APIs

We developed a synthesis of functional and security black-box tests, to appear in
[VDC20]. It allows the automatic generation of test cases for RESTful API against
errors and vulnerabilities. Indeed, errors can be indicators of potential vulnerabili-
ties that may be exploited to mount attacks.

The tool’s architecture is summarized in Figure 6.2. It takes as input an OpenAPI
specification, containing all the necessary information to reach the API and the
description of the endpoints. The first module generates an Operation Dependency
Graph that, together with the Swagger specification, is given as input parameter
to the Nominal Tester module in order to test the API’s nominal behavior. The
Nominal Tester outputs the nominal test cases and a set of structured reports that
are given as input to both Error Tester and Security Tester. The former tests the

Figure 6.2. Black-box tool workflow.



100 Security Assessment of API for Financial Services

correct error handling in case of malformed requests, for example, missing required
parameters. The latter tests the API against common security vulnerabilities issues,
such as SQL injection.

The execution scenarios generated by Nominal Tester, Error Tester, and Security
Tester are run in the RESTful-API-under-test and its responses are monitored to
spot the presence of programming mistakes, errors, and vulnerabilities. A set of
oracles are defined to this aim, which check responses across multiple dimensions,
such as error status code, data consistency with the OpenAPI specification, syntax
and well-formed output data, traces of injection vulnerabilities.

Interesting execution scenarios generated by nominal, error and security testers
are output as a set of test cases, consisting of JSON description of steps and java
code using swagger codegen, to document and reproduce the issues.

OAuth/OIDC Testing

We also developed a tool for automated OAuth/OIDC penetration testing as a
plug-in for the Burp Suite, designed to be integrated in our security training and
pen-testing environment Micro-ID-Gym [BCMOPR19]. Our plug-in performs
both passive and active tests over the traffic generated during an OIDC flow.

Passive tests do not interfere with the flow itself but analyze the recorded traffic,
checking, for instance, standard compliance—whether exchanged messages con-
form to specifications—and Cross-Site Request Forgery (CSRF) protection—e.g.,
by correct implementation of Proof Key for Code Exchange (PKCE). Active tests
verify the behavior of the endpoints when subject to unexpected, modified, or
removed input parameters during the OAuth flow.

The plug-in is built on top of Burp Proxy, a tool which allows testers to
intercept all requests and responses and leverages the selenium-webdriver browser
automation library. The input is a recorded test track, used as a guide for a sele-
nium instance. The track contains the instructions to guide the selenium driver
through an OAuth/OIDC flow. The track can be played back so that a tester may
observe whether the browser, controlled by the selenium driver, is performing as
expected. The tool is designed to pinpoint the step of the flow in which incorrect
behavior has been sighted, and courses of action to mitigate against it are to be
integrated.

Summary

Our proposed approach to TLS and API security is one that integrates the gen-
eration of actionable intelligence and offers concrete courses of action for the



References 101

mitigation of vulnerabilities. Our ongoing work includes the integration of TLSAs-
sistant in the FinSec platform, the identification of compliance impacts of identified
vulnerabilities, and models for continuous risk assessment. In future work, we aim
at extending API testing with new penetration testing functionalities, bundle them
to build a set of cooperating security services, and integrate the resulting component
in a suitable platform.

Acknowledgments

Black-box and white-box security tests for REST API were developed as part of
Teîchos, an EIT Digital Finance project.

TLSAssistant was developed in a joint lab with IPZS and is currently being
enhanced and integrated in FINSEC, a H2020 Critical Infrastructure Innovation
Action project (Contract Number: 786727), which is co-funded by the European
Commission in the scope of its H2020 program.

References

[AFP13] N. J. Al Fardan and K. G. Paterson: “Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols.” 2013 IEEE Symposium on Security and Pri-
vacy, Berkeley, CA, 2013, pp. 526–540, doi: 10.1109/SP.2013.42.

[BDLFPS14] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti and P.
Strub: “Triple Handshakes and Cookie Cutters: Breaking and Fixing Authen-
tication over TLS”. IEEE Symposium on Security and Privacy 2014: 98–113.

[BCMOPR19] A. Bisegna, R. Carbone, I. Martini, V. Odorizzi, G. Pellizzari and
S. Ranise: “Micro-Id-Gym: Identity Management Workouts with Container-
Based Microservices.” IJISC 8 (1), pp. 45–50, 2019.06.28.

[CVE-2019-16097] NIST National Vulnerability Database: Common Vulnera-
bilities and Exposures #2019-16097. URL: https://nvd.nist.gov/vuln/detail/
CVE-2019-16097

[EBA-OP-2018-7] “Opinion of the European Banking Authority on the use of
eIDAS certificates under the RTS on SCA and CSC.” URL: https://eba.
europa.eu/file/58802/

[eIDAS] “Regulation (EU) No. 910/2014 of the European Parliament and of
the Council of 23 July 2014 on electronic identification and trust services
for electronic transactions in the internal market and repealing Directive
1999/93/EC.” URL: http://data.europa.eu/eli/reg/2014/910/oj

http://dx.doi.org/10.1109/SP.2013.42
https://nvd.nist.gov/vuln/detail/CVE-2019-16097
https://nvd.nist.gov/vuln/detail/CVE-2019-16097
https://eba.europa.eu/file/58802/
https://eba.europa.eu/file/58802/
http://data.europa.eu/eli/reg/2014/910/oj


102 Security Assessment of API for Financial Services

[ENISA QTS] “ENISA studies on qualified trust services.” URL: https://www.
enisa.europa.eu/topics/trust-services/qualified-trust-services

[ETSI TS 119 495] “Electronic Signatures and Infrastructures (ESI); Sector
Specific Requirements; Qualified Certificate Profiles and TSP Policy
Requirements under the payment services Directive (EU) 2015/2366”.
V1.4.1, November 2019. URL: https://www.etsi.org/standards-search#page=
1&search=TS119495

[FAPI] OpenID Financial-grade API (FAPI) Working Group. URL: https://
openid.net/wg/fapi/

[FHK19] D. Fett, P. Hosseyni and R. Kuesters: “An Extensive Formal Security
Analysis of the OpenID Financial-Grade API.” Proceedings of S&P 2019,
pp. 1054–1072. doi: 10.1109/SP.2019.00067.

[GMQAPI19] Gartner “Magic Quadrant for Full Life Cycle API Management”
2019. URL: https://www.gartner.com/doc/reprints?id=1-1OGPZC68&ct=
190905&st=sb

[HMcAM19] F. Hacquebord, R. McArdle, F. Mercês and D. Sancho: “Ready
or Not for PSD2: The Risks of Open Banking.” TrendMicro, 2019.
URL: https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-
digital-threats/the-risks-of-open-banking-are-banks-and-their-customers-
ready-for-psd2

[MRS19] S. Manfredi, S. Ranise and G. Sciarretta: “Lost in TLS? No More!
Assisted Deployment of Secure TLS Configurations.” In: DBSec 2019:
Data and Applications Security and Privacy XXXIII pp. 201–220. LNCS
11559. doi: 10.1007/978-3-030-22479-0_11. URL: https://stfbk.github.io/
tools/TLSAssistant

[OAuth2] “The OAuth 2.0 Authorization Framework.” IETF proposed standard.
URL: https://tools.ietf.org/html/rfc6749

[OIDC] “OpenID Connect”. URL: https://openid.net/connect/
[OWASP API] OWASP foundation Top 10 API security issue list. URL: https:

//owasp.org/www-project-api-security/
[PSD2] “Directive (EU) 2015/2366 of the European Parliament and of the

Council of 25 November 2015 on payment services in the internal market,
amending Directives 2002/65/EC, 2009/110/EC and 2013/36/EU and Reg-
ulation (EU) No. 1093/2010, and repealing Directive 2007/64/EC.” URL:
http://data.europa.eu/eli/dir/2015/2366/oj

https://www.enisa.europa.eu/topics/trust-services/qualified-trust-services
https://www.enisa.europa.eu/topics/trust-services/qualified-trust-services
https://www.etsi.org/standards-search#page=1&search=TS119495
https://www.etsi.org/standards-search#page=1&search=TS119495
https://openid.net/wg/fapi/
https://openid.net/wg/fapi/
http://dx.doi.org/10.1109/SP.2019.00067
https://www.gartner.com/doc/reprints?id=1-1OGPZC68&ct=190905&st=sb
https://www.gartner.com/doc/reprints?id=1-1OGPZC68&ct=190905&st=sb
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-risks-of-open-banking-are-banks-and-their-customers-ready-for-psd2
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-risks-of-open-banking-are-banks-and-their-customers-ready-for-psd2
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-risks-of-open-banking-are-banks-and-their-customers-ready-for-psd2
http://dx.doi.org/10.1007/978-3-030-22479-0_11
https://stfbk.github.io/tools/TLSAssistant
https://stfbk.github.io/tools/TLSAssistant
https://tools.ietf.org/html/rfc6749
https://openid.net/connect/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
http://data.europa.eu/eli/dir/2015/2366/oj


References 103

[RTS] “Commission Delegated Regulation (EU) 2018/389 of 27 November 2017
supplementing Directive (EU) 2015/2366 of the European Parliament and
of the Council with regard to regulatory technical standards for strong cus-
tomer authentication and common and secure open standards of communi-
cation (Text with EEA relevance).” URL: http://data.europa.eu/eli/reg_del/
2018/389/oj

[TLS] “The Transport Layer Security (TLS) Protocol”. IETF proposed standard.
URL: https://tools.ietf.org/html/rfc8446 (v1.3), https://tools.ietf.org/html/
rfc5246 (v1.2 – obsolete).

[VDC20] E. Viglianisi, M. Dallago, M. Ceccato: “RESTTESTGEN: Automated
Black-Box Testing of RESTful APIs.” Accepted to appear in ICST 2020
Research Papers.

[XS2A-OR] NextGenPSD2 Access to Account Interoperability Framework –
Operational Rules V1.3 2018.12.21. URL: https://www.berlin-group.org/
nextgenpsd2-downloads

[XS2A-IG] NextGenPSD2 Access to Account Interoperability Framework –
Implementation Guidelines V1.3.4 2019.07.05. URL: https://www.berlin-
group.org/nextgenpsd2-downloads

http://data.europa.eu/eli/reg_del/2018/389/oj
http://data.europa.eu/eli/reg_del/2018/389/oj
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.berlin-group.org/nextgenpsd2-downloads
https://www.berlin-group.org/nextgenpsd2-downloads
https://www.berlin-group.org/nextgenpsd2-downloads
https://www.berlin-group.org/nextgenpsd2-downloads

