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Abstract
We consider a one-dimensional discrete-space birth process with a bounded number of
particle per site. Under the assumptions of the finite range of interaction, translation
invariance, and non-degeneracy, we prove a shape theorem. We also derive a limit
estimate and an exponential estimate on the fluctuations of the position of the rightmost
particle.
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1 Introduction

In this paper we consider a one-dimensional growing particle system with a finite
range of interaction. A configuration is specified by assigning to each site x ∈ Z a
number of particles η(x) ∈ {0, 1, . . . , N }, n ∈ N, occupying x . The state space of the
process is thus {0, 1, . . . , N }Z. Under additional assumptions such as non-degeneracy
and translation invariance, we show that the system spreads linearly in time and the
speed can be expressed as an average value of a certain functional over a certain
measure. A respective shape theorem and a fluctuation result are given.

The first shape theorem was proven in [31] for a discrete-space growth model. A
general shape theorem for discrete-space attractive growthmodels can be found in [18,
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Chapter 11]. In the continuous-space settings shape results for growth models have
been obtained in [15] for a model of growing sets and in [7] for a continuous-space
particle birth process.

The asymptotic behavior of the position of the rightmost particle of the branch-
ing random walk under various assumptions is given in [17,20], and [16], see also
references therein. A sharp condition for a shape theorem for a random walk with
restriction is given in [11]. The speed of propagation for a one-dimensional discrete-
space supercritical branching randomwalk with an exponential moment condition can
be found in [8]. More refined limiting properties have been obtained recently, such as
the limiting law of the minimum or the limiting process seen from its tip, see [1–3,5].
Blondel [9] proves a shape result for the East model, which is a non-attractive particle
system. A law of large numbers and a central limit theorem for the position of the tip
were established in [14] for a stochastic combustion process with a bounded number
of particles per site.

Inmany cases the underlying stochasticmodel is attractive, which enables the appli-
cation of a subadditive ergodic theorem. Typically shape results have been obtained
using the subadditivity property in one form or another. This is not only the case for
the systems of motionless particles listed above (see, among others, [7,15,18]) but
also for those with moving particles, see, e.g., shape theorem for the frog model [6].
A certain kind of subadditivity was also used in [27], where a shape theorem for a
non-attractive model involving two types of moving particles is given. In the present
paper our model is not attractive, and we do not rely on subadditivity (see also Remark
2.6). We work with motionless particles.

In addition to the shape theorem, we also provide a sub-Gaussian limit estimate
on the deviation of the position of the rightmost particle from the mean. Various sub-
exponential and sub-Gaussian estimates on the convergence rate for the first passage
percolation under different assumptions can be found in, e.g., [4,26]. We also derive
an exponential non-asymptotic bound valid for all times.

On Page 4 we describe a particular model with the birth rate declining in crowded
locations. This is achieved by augmenting the free branching rate with certain mul-
tipliers describing the effects of the competition on the parent’s ability to procreate
and offspring’s ability to survive in a dense location. This process is in general non-
attractive.

The paper is organized as follows. In Sect. 2 we describe our model in detail, give
our assumptions, and formulate the main results. In Sect. 3 we outline the construction
of the process as a unique solution to a stochastic equation driven by a Poisson point
process. We note here that this very much resembles the construction via graphical
representation. In Sect. 4 we prove the main results, Theorems 2.4, 2.7, and 2.8. Some
numerical simulations are discussed in Sect. 5.

2 Model and theMain Results

We consider here a one dimensional continuous-time discrete-space birth process
with multiple particles per site allowed. The state space of our process is X :=
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{0, 1, . . . , N }Z. For η ∈ X and x ∈ Z, η(x) is interpreted as the number of parti-
cles, or individuals, at x .

The evolution of the process can be described as follows. If the system is in the
state η ∈ X , a single particle is added at x ∈ Z (that is, the η(x) is increased by 1)
at rate b(x, η) provided that η(x) < N ; the number of particles at x does not grow
anymore once it reaches N . Here b : Z × X → R+ is the map called a ‘birth rate.’
The heuristic generator of the model is given by

LF(η) =
∑

x∈Z
b(x, η)[F(η+x ) − F(η)], (1)

where η+x (y) = η(y), y �= x , and

η+x (x) =
{

η(x) + 1, if η(x) < N ,

η(x), if η(x) = N .
(2)

We make the following assumptions about b. For y ∈ Z, η ∈ X , let η � y ∈ X be
the shift of η by y, so that [η � y](x) = η(x − y).

Condition 2.1 (Translation invariance) For any x, y ∈ X and η ∈ X ,

b(x + y, η � y) = b(x, η).

Condition 2.2 (Finite range of interaction) For some R ∈ N,

b(x, η) = b(x, ξ), x ∈ Z, η, ξ ∈ X (3)

whenever η(z) = ξ(z) for all z ∈ Z with |x − z| ≤ R.

Put differently, Condition 2.2 means that interaction in the model has a finite range
R. Since the number of particles occupying a given site cannot grow larger than N ,
with no loss in generality we can also assume that

b(x, η) = 0, if η(x) = N . (4)

For η ∈ X we define the set of occupied sites

occ(η) = {z ∈ Z : η(z) > 0}.

Condition 2.3 (Non-degeneracy) For every x ∈ Z and η ∈ X , b(x, η) > 0 if and only
if there exists y ∈ occ(η) with |x − y| ≤ R.

Note that by translation invariance, supx∈Z,η∈X b(x, η) is finite because this supremum
is equal to

b := max{b(0, η) | η ∈ X , η(y) = 0 for all y with |y| > R}. (5)
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Similarly, it follows from translation invariance and non-degeneracy that

b := inf
x∈Z,η∈X ,

dist(x,occ(η))≤R

b(x, η) > 0. (6)

The construction of the birth process is outlined in Sect. 3. Let (ηt )t≥0 = (ηt ) be
the birth process with birth rate b and initial condition η0(k) = 1{k = 0}, k ∈ Z. For
an interval [a, b] ⊂ R and c > 0, c[a, b] denotes the interval [ca, cb]. The following
theorem characterizes the growth of the set of occupied sites.

Theorem 2.4 There exists λr , λl > 0 such that for every ε > 0 a.s. for sufficiently
large t,

(
(1 − ε)[−λl t, λr t] ∩ Z

)
⊂ occ(ηt ) ⊂ (1 + ε)[−λl t, λr t]. (7)

Remark 2.5 If we assume additionally that the birth rate is symmetric, that is, if for all
x ∈ Z, η ∈ X ,

b(x, η) = b(−x, η̃),

where η̃(y) = η(−y), then, as can be seen from the proof, λl = λr holds true in
Theorem 2.4.

Remark 2.6 Note that under our assumptions the following attractiveness property
does not have to hold: if for two initial configuration η10 ≤ η20, then η1t ≤ η2t for
all t ≥ 0. This renders inapplicable the techniques based on a subadditive ergodic
theorem (e.g., [28]) which are usually used in the proof of shape theorems (see e.g.
[7,15,18]). On the other hand, our technique relies heavily on the dimension being
one as the analysis is based on viewing the process from its tip. It would be of interest
to extend the result to dimensions d ≥ 2. To the best of our knowledge, even for the
following modification of Eden’s model, the shape theorem has not been proven. Take
d = 2, N = 1 (only one particle per site is allowed), and for x ∈ Z

2 and η ⊂ Z
2 with

η(x) = 0 let

b(x, η) = 1

⎧
⎨

⎩
∑

y∈Z2:|y−x |=1

η(y) ∈ {1, 2}
⎫
⎬

⎭ .

and define ξt = ηt ∪ {y ∈ Z
2 : y is surrounded by particles of ηt }, t ≥ 0. It is

reasonable to expect the shape theorem to hold for ξt . Note that the classical Eden
model can be seen as a birth process with rate

b(x, η) = 1

⎧
⎨

⎩
∑

y∈Z2:|y−x |=1

η(y) > 0

⎫
⎬

⎭
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started from a single particle at the origin.

For η ∈ X with
∑
x∈Z

η(x) < ∞, let

tip(η) := max{m ∈ Z : η(m) > 0}

be the position of the rightmost occupied site. Let

Xt = tip(ηt ). (8)

By Theorem 2.4 a.s.

Xt

t
→ λr , t → ∞. (9)

We now give two results on the deviations of Xt from the mean. The first theorem
gives a sub-Gaussian limit estimate on the fluctuations around the mean, while the
second provides an exponential estimate for all t ≥ 0. Let λr be as in (9).

Theorem 2.7 There exist C1, ϑ > 0 such that

lim sup
t→∞

P

{
|Xt − λr t | ≥ q

√
t
}

≤ C1e
−ϑq2 , q > 0. (10)

Theorem 2.8 There exist C2, θ > 0 such that

P

{
| Xt

t
− λr | ≥ q

}
≤ C2e

−θqt , q > 0, t > 0. (11)

Of course, Theorems 2.7 and 2.8 also apply to the position of the leftmost occupied
site provided that λr is replaced with λl .

Birth rate with regulation via fecundity and establishment. As an example of a non-
trivial model satisfying our assumptions, consider the birth process in X with birth
rate

b(x, η) = exp

{
−
∑

u∈Z
φ(u − x)η(u)

}

∑

y∈Z

[
a(x − y)η(y) exp

{
−
∑

v∈Z
ψ(v − y)η(v)

}]
,

x ∈ Z, η ∈ X , η(x) < N .

(12)

where a, φ, ψ : Z → R+ have a finite range,
∑
x∈Z

a(x) > 0. Birth rate (12) is a

modification of the free branching rate

b(x, η) =
∑

y∈Z
a(x − y)η(y), x ∈ Z, η ∈ X , η(x) < N .
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The purpose of the modification is to include damping mechanisms reduc-
ing the birth rate in the dense regions. The first exponent multiplier in (12),
exp

{−∑u∈Z φ(u − x)η(u)
}
, represents the reduction in establishment at loca-

tion x if η has many individuals around x . The second exponent multiplier,
exp

{−∑v∈Z ψ(v − y)η(v)
}
, represents diminishing fecundity of an individual at

y surrounded by many other individuals. Further description and motivation for an
equivalent continuous-space model can be found in [10,19]. We note here that the
birth process with birth rate (12) does not in general possess the attractiveness property
mentioned in Remark 2.6. Some numerical observations on this model are collected
in Sect. 5.

3 Construction of the Process

Similarly to [7,21,22], we construct the process as a solution to the stochastic equation

ηt (k) =
∫

(0,t]×{k}×[0,∞)

1[0,b(i,ηs−)](u)P(ds, di, du) + η0(k), t ≥ q, k ∈ Z,

(13)

where (ηt )t≥0 is a càdlàg X -valued solution process, P is a Poisson point process on
R+ × Z × R+, the mean measure of P is ds × # × du (# is the counting measure
on Z ). We require the processes P and η0 to be independent of each other. Equation
(13) is understood in the sense that the equality holds a.s. for every k ∈ Z and t ≥ 0.
In the integral on the right-hand side of (13), i = k is the location and s is the time of
birth of a new particle. Thus, the integral from 0 to t represents the number of births
at k ∈ Z which occurred before t .

This section follows closely Section 5 in [7]. Note that the only difference to The-
orem 5.1 from [7] is that the ‘geographic’ space is discrete (Z) rather than continuous
(Rd as in [7]). This change requires no new arguments, ideas, or techniques in com-
parison with [7].

We will make the following assumption on the initial condition:

E

∑

i∈Z
η0(i) < ∞. (14)

Let P be defined on a probability space (
,F , P). We say that the process P is
compatible with an increasing, right-continuous and complete filtration of σ -algebras
(Ft , t ≥ 0), Ft ⊂ F , if P is adapted, that is, all random variables of the type
P(T̄1 × U ), T̄1 ∈ B([0; t]), U ∈ B(Z × R+), are Ft -measurable, and all random
variables of the type P((t, t + h] ×U ), h ≥ 0, U ∈ B(Z × R+), are independent of
Ft (here we consider the Borel σ -algebra for Z to be the collection 2Z of all subsets
of Z).

We equip X with the product set topology and σ -algebra generated by the open
sets in this topology.
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Definition 3.1 A (weak) solution of Eq. (13) is a triple ((ηt )t≥0, P), (
,F , P),
({Ft }t≥0), where

(i) (
,F , P) is a probability space, and {Ft }t≥0 is an increasing, right-continuous
and complete filtration of sub-σ -algebras of F ,

(ii) P is a Poisson point process on R+ × Z × R+ with intensity ds × # × du,
(iii) η0 is a random F0-measurable element in X satisfying (14),
(iv) the processes P and η0 are independent, and P is compatible with {Ft }t≥0,
(v) (ηt )t≥0 is a càdlàg X -valued process adapted to {Ft }t≥0, ηt

∣∣
t=0 = η0,

(vi) all integrals in (13) are well-defined,

E

t∫

0

ds
∑

i∈Z
b(i, ηs−) < ∞, t > 0,

(vii) equality (13) holds a.s. for all t ∈ [0,∞] and all k ∈ Z.

Let

S 0
t = σ

{
η0, P([0, q] × {k} × C), (15)

q ∈ [0, t], k ∈ Z,C ∈ B(R+)
}
,

and letSt be the completion ofS 0
t under P . Note that {St }t≥0 is a right-continuous

filtration.

Definition 3.2 A solution of (13) is called strong if (ηt )t≥0 is adapted to (St , t ≥ 0).

Definition 3.3 We say that pathwise uniqueness holds for (13) if for any two (weak)
solutions ((ηt )t≥0, P), (
,F , P), ({Ft }t≥0) and ((η′

t )t≥0, P), (
,F , P), ({Ft }t≥0)

with η0 = η′
0 we have

P
{
ηt = η′

t for all t ≥ 0
} = 1. (16)

Definition 3.4 We say that joint uniqueness in law holds for Eq. (13) with an initial
distribution ν if any two (weak) solutions ((ηt ), P) and ((η′

t ), P
′) of (13), Law(η0) =

Law(η′
0) = ν, have the same joint distribution:

Law((ηt ), P) = Law((η′
t ), P

′).

Theorem 3.5 Pathwise uniqueness, strong existence and joint uniqueness in law hold
for Eq. (13). The unique solution is a Markov process with respect to the filtration
(St , t ≥ 0).

The proof follows exactly the proof of Theorem 5.1 in [7] and is therefore omitted.
We also note here that the unique solution of (13) satisfies a.s. ηt (x) ≤ N for x ∈ Z

and t ≥ 0 by (4).
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4 Proofs

Let Z+ = N∪{0}, Z− = −Z+, and βt : Z− → Z+ be ηt seen from its tip defined by

βt (−n) = ηt (tip(ηt ) − n), n = 0, 1, 2, . . .

Let ht be the position of first block of R sites occupied by N particles seen from the
tip,

ht := max{m ∈ Z− : βt (m − 1) = βt (m − 2)

= · · · = βt (m − R) = N } ∨ min{m ∈ Z− : βt (m) > 0}.

We adopt here the convention max{∅} = −∞, so that if there are no blocks of R
consecutive sites occupied by N particles, ht equals to the furthest from the origin
occupied site for βt . Finally, define αt : Z− → {0, 1, . . . , N } by

αt (m) = βt (m)I{m ≥ ht }.

Thus, αt can be interpreted as the part of ηt seen from its tip until the first block of
R sites occupied by N particles. The process (αt , t ≥ 0) takes values in a countable
space

ϒ :=
⎧
⎨

⎩γ

∣∣∣∣γ : Z− → {0, 1, . . . , N },
∑

x∈Z−
γ (x) < ∞

⎫
⎬

⎭ .

Let us underline that αt is a function of ηt ; we denote by A the respective mapping
A : X → ϒ , so that αt = A(ηt ).

Lemma 4.1 The process (αt , t ≥ 0) is a continuous-time positive recurrent Markov
process with a countable state space. Furthermore, (αt , t ≥ 0) is strongly ergodic.

Proof We start from a key observation: for t ≥ 0, conditionally on the event

η(m) = η(m + 1) = · · · = η(m + R) = N

for some m ∈ Z, the families {ηs(y), s ≥ t, y < m} and {ηs(y), s ≥ t, y > m + R}
are independent. Consequently, (αt , t ≥ 0) is an irreducible continuous-time Markov
chain. The definitions and properties of continuous-timeMarkov chains used here can
be found, e.g., in [13, Section 4.4]. Translation invariance Condition 2.1 ensures that
(αt , t ≥ 0) is time-homogeneous. Define 0ϒ ∈ ϒ by 0ϒ(m) = 0,m = 0,−1,−2, . . .
Now, let us note that

inf
γ∈ϒ

P
[
αt+1 = 0ϒ |αt = γ

] = inf
γ∈ϒ

P
[
α1 = 0ϒ |α0 = γ

]
> 0. (17)
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Indeed, for η0 such that A(η0) = α0 = γ ,

P {α1 = 0ϒ } ≥ P {tip(η1) = tip(η0)}
×P {η1(tip(η1)) = η1(tip(η1 − 1)) = · · · = η1(tip(η1) − R + 1) = N } > 0,

and the last expression is separated from 0 uniformly in γ . It follows from (17) that
the state 0ϒ is positive recurrent. Since (αt , t ≥ 0) is irreducible, it follows that it is
also positive recurrent.

The strong ergodicity follows from (17). ��
Denote by π the ergodic measure for (αt , t ≥ 0). For γ ∈ ϒ , let ηγ ∈ X be

ηγ (m) =
{

γ (m), m ≤ 0

0, m > 0
(18)

Note that A(ηγ ) = γ . Define f : ϒ → R+ by

f (γ ) =
N∑

m=1

mb(x, ηγ ).

Note that

sup
γ∈ϒ

f (γ ) ≤ R(R + 1)

2
b. (19)

Since f is bounded, by the ergodic theorem for continuous-time Markov chains
a.s.

1

t

t∫

0

f (αs)ds → 〈 f 〉π , (20)

where 〈 f 〉π := ∑
γ∈ϒ

π(γ ) f (γ ) (here for convenience π({γ }) is denoted by π(γ ),

γ ∈ ϒ).
Recall that Xt = tip(ηt ). The process (Xt , t ≥ 0) is an increasing pure jump

type Markov process, and the rate of jump of size m ∈ {1, 2, . . . , R} at time t is
b(Xt + m, ηt ). Indeed, note that

Xt =
R∑

k=1

k
∫

(0,t]×Z×[0,∞)

1{i = k + Xs−}1[0,b(k+Xs−,ηs−)](u)P(ds, di, du)

=
R∑

k=1

k
∫

(0,t]×[0,∞)

1[0,b(k+Xs−,ηs−)](u)P(k)(ds, du),

(21)

123



Journal of Theoretical Probability

where the integrator is defined by

P(k)(A × B) = P
({(t, i, u) ∈ R+ × Z × R+

∣∣Xt− + k = i, (t, u) ∈ A × B}),
A, B ∈ B(R+), k ∈ {1, . . . ,m}.

In other words, P(k)(A × B) is P(A × {i} × B) if A ⊂ {t : Xt− + k = i} and
B ∈ B(R+). Note that P(k) is a Poisson point process on R+ × R+ with mean
measure ds × du (this follows for example from the strong Markov property of a
Poisson point process, as formulated in appendix in [7], applied to the jump times of
(Xt , t ≥ 0) ). The indicators in (21) are

1{i = k + Xs−} =
{
1, if i = k + Xs−,

0, otherwise,

1[0,b(k+Xt ,ηs−)](u) =
{
1, if u ∈ [0, b(k + Xt , ηs−)],
0, otherwise.

(22)

Therefore, by, e.g., (3.8) in Section 3, Chapter 2 of [25], the process

Mt := Xt −
t∫

0

R∑

k=1

kb(Xt + k, ηs)ds = Xt −
t∫

0

f (αs)ds. (23)

is a martingale with respect to the filtration (St , t ≥ 0) defined below (15).
We now formulate a strong law of large numbers for martingales. The following

theorem is an abridged version of [24, Theorem 2.18].

Theorem 4.2 Let {Sn = ∑n
i=1 xi , n ∈ N} be an {Sn}-martingale and {Un}n∈N be

a non-decreasing sequence of positive real numbers, limn→∞ Un = ∞. Then for
p ∈ [1, 2] we have

lim
n→∞U−1

n Sn = 0

a.s. on the set
{∑∞

i=1U
−p
n E

{|xi |p
∣∣Fi−1

}
< ∞

}
.

Lemma 4.3 Strong law of large numbers applies to (Mt , t ≥ 0):

P

{
Mt

t
→ 0

}
= 1. (24)

Proof Let �Mn = Mn+1 − Mn . Then �Mn is stochastically dominated by V1 +
2V2 + · · · + RVR + R(R+1)

2 b, where V1, . . . ,VR are independent Poisson random
variables with mean b, independent ofFn . Applying the strong law of large numbers
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for martingales from Theorem 4.2 with p = 3
2 and Un = n, we get a.s.

1

n

∑
�Mn → 0. (25)

Since a.s. for every ε > 0,

P

{
sup

s∈[0,1]
|Mn+s − Ms | ≥ εn for infinitely many n

}
= 0,

(24) follows. ��
Proof of Theorem 2.4 Let λr = 〈 f 〉π . From (20) and Lemma 4.3 we get a.s.

1

t
Xt − 〈 f 〉π → 0, (26)

or

1

t
tip(ηt ) − λr → 0. (27)

In the same way (due to the symmetric nature of our assumptions) we can show the
equivalent of (27) for the leftmost occupied site Yt for ηt : there exists λl > 0 such
that for any ε > 0 a.s. for large t ,

|Yt |
t

− λl → 0. (28)

Hence the second inclusion in (7) holds. (As an aside we point out here that λl can
be expressed as an average value in the same way as λr = 〈 f 〉π . To do so, we would
need to define the opposite direction counterparts to (βt , t ≥ 0), (αt , t ≥ 0), f , and
other related objects.)

To show the first inclusion in (7), we fix ε > 0, and for each x ∈ Z. By (27) and
(28), a.s. for large t

[
−λl t

(
1 + ε

4

)−1
, λr t

(
1 + ε

4

)−1
]

⊂ [Yt , Xt ]. (29)

For x ∈ Z, let

σ(x) := inf{t ≥ 0 : dist(x, occ(ηt )) ≤ R},
τ (x) := inf{t ≥ 0 : ηt (x) ≥ 1} = inf{t ≥ 0 : x ∈ occ(ηt )}. (30)

Clearly, for any x ∈ Z, 0 ≤ σ(x) ≤ τ(x). Because of the finite range assumption, by
(29) a.s. for x ∈ N with large |x |

σ(x) ≤ (1 + ε
4 )|x |

λr
. (31)
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By (6), the random variable τ(x)−σ(x) is stochastically dominated by an exponential
random variable with mean b−1. In particular

P

{
τ(x) − σ(x) ≥ ε|x |

4λr

}
≤ exp{−ε|x |b

4λr
}.

Since
∑

x∈N exp{− ε|x |b
4λr

} < ∞, a.s. for all but finitely many x ∈ N we have

τ(x) − σ(x) ≤ ε|x |
4λr

.

Hence from (31) a.s. for all but finitely many x ∈ N,

τ(x) ≤ (1 + ε
2 )|x |

λr
. (32)

From (32) it follows that a.s. if t is large and x ∈ N, |x | ≤ λr t
1+ ε

2
, then τ(x) ≤ t . Note

that occ(ηt ) = {x ∈ Z : τ(x) ≤ t}. Thus for large t .
[
0,

λr t

1 + ε
2

]
∩ Z ⊂ occ(ηt ). (33)

Repeating this argument verbatim for −x ∈ N and λl in place of x ∈ N and λr ,
respectively, we find that

[
− λl t

1 + ε
2

, 0

]
∩ Z ⊂ occ(ηt ). (34)

Since 1 − ε ≤ 1
1+ ε

2
for ε > 0, the first inclusion in (7) follows from (33) and (34). ��

Lemma 4.4 For some �2 ∈ (0,+∞) a.s.

1

t
[M]t → �2, t → ∞. (35)

Proof Let θ0 = 0 and denote by θn , n ∈ N, the moment of n-th hitting of 0ϒ by the
Markov chain (αt , t ≥ 0). For n ∈ N, define a random piecewise constant function
Zn by

Zn(t) = α(t+θn)∧θn+1 , t ≥ 0. (36)

The sequence {Zn}n∈N can be seen as a sequence of independent random elements
in the Skorokhod space D := D([0,∞), ϒ) endowed with the usual Skorokhod
topology.

Let G : D → Z+ be the functional such that G(Zn) = [M]θn+1−θn is the change of
([M]t ) between θn and θn+1. The function G can be written down explicitly, but it is
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not necessary for our purposes. Now, since the number of jumps for Z1 has exponential
tails, for any m ∈ N

E
{
Gm(Z1)

}
< ∞. (37)

By the strong law of large numbers, a.s.

1

n

n∑

i=1

G(Zi ) → E {G(Z1)} > 0. (38)

Since θ2 − θ1, θ3 − θ2, …, are i.i.d. random variables, a.s.

θn

n
→ E {θ2 − θ1} > 0. (39)

For t > 0, let n = n(t) ∈ N be such that t ∈ [θn, θn+1). Then by (38) and (39) a.s.

lim
t→∞

[M]t
t

= lim
t→∞

[M]θ1 +∑n(t)
i=1 G(Zi )

t
= lim

t→∞

∑n(t)
i=1 G(Zi )

n(t)

n(t)

t

= E {G(Z1)}
E {θ2 − θ1} > 0. (40)

��
Before proceeding with the final part of the paper, we formulate a central limit

theorem for martingales used in the proof of Theorem 2.7. The statement below is a
corollary of [23, Theorem 5.1].

Proposition 4.5 Assume that (35) holds and that for some K > 0 a.s.

sup
t≥0

|Mt − Mt−| ≤ K .

Then

1√
t
Mt

d→ N (0, �2), t → ∞. (41)

Proposition 4.5 follows from [23, Theorem 5.1, (b)] by taking Mn in notation of [23]
to be Mtn

n in our notation.

Proof of Theorem 2.7 By Lemma 4.1, the continuous-time Markov chain (αt , t ≥ 0)
is strongly ergodic. Since the function f is bounded, the central limit theorem holds
for (αt , t ≥ 0) by [29, Theorem 3.1]. That is, the convergence in distribution takes
place

1√
t

⎡

⎣
t∫

0

f (αs)ds − 〈 f 〉π
⎤

⎦ d→ N (0, σ 2
f ), t → ∞, (42)
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where σ 2
f ≥ 0 is a constant depending on f , and N (c, σ 2) is the normal distribution

with mean c ∈ R and variance σ 2 ≥ 0. Recall that 〈 f 〉π = λr . By (42), for some
C1, ϑ1 > 0

lim sup
t→∞

P

⎧
⎨

⎩

∣∣∣∣∣∣

t∫

0

f (αs)ds − λr t

∣∣∣∣∣∣
≥ q

√
t

⎫
⎬

⎭ ≤ C1e
−ϑ1q2 , q > 0. (43)

Recall that Mt was defined in (23). By Lemma 4.4 for some �2 ∈ (0,+∞) a.s.

1

t
[M]t → �2, t → ∞. (44)

By the martingale central limit theorem (Proposition 4.5)

1√
t
Mt

d→ N (0, �2), t → ∞. (45)

Hence for some C2, ϑ2 > 0

lim sup
t→∞

P

⎧
⎨

⎩

∣∣∣∣∣∣
Xt −

t∫

0

f (αs)ds

∣∣∣∣∣∣
≥ q

√
t

⎫
⎬

⎭ ≤ C2e
−ϑ2q2 , q > 0. (46)

By (43) and (46),

lim sup
t→∞

P

{
|Xt − λr t | ≥ q

√
t
}

≤ C3e
−ϑ3q2 , q > 0, (47)

for some C3, ϑ3 > 0. ��

Remark 4.6 Since �2 > 0 in the proof of Theorem 2.7, ϑ in Theorem 2.7 cannot be
taken arbitrary large; that is, the limiting fluctuations are of order

√
t .

Proof of Theorem 2.8 By (21), (23), and [25, (3.9), p. 62, Section 3, Chapter 2], the
predictable quadratic variation

〈M〉t = 〈X〉t =
t∫

0

R∑

k=1

k2b(k + Xs−, ηs−)ds =
t∫

0

g(αs−)ds, (48)

where g : ϒ → R+ is such that g(α) = ∑R
k=1 k

2b(k+tip(η), η)wheneverA(η) = α.
Recall that the mappingAwas defined on Page 7; g(α) does not depend on the choice
of η ∈ A−1(α).
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By [12, Theorem 1.1] (see also [34, Theorem 1 and Remark 3a])

P

⎧
⎨

⎩

∣∣∣∣∣∣
1

t

t∫

0

g(αs−)ds − 〈g〉π
∣∣∣∣∣∣
≥ q

⎫
⎬

⎭ ≤ C1e
−δq t , q > 0, t ≥ 0, (49)

where C1 > 0, δq > 0 depends on q but not on t , and δq grows not slower than
linearly as a function of q. Note that the jumps of (Mt , t ≥ 0) do not exceed R. By
an exponential inequality for martingales with bounded jumps, [32, Lemma 2.1], for
any a, b > 0

P {|Mt | ≥ a, 〈M〉t ≤ b for some t ≥ 0} ≤ exp

{
− a2

2(aR + b)

}
. (50)

Taking here a = r t , b = 〈g〉π (1 + ε)t for r > 0, ε ∈ (0, 1), we get for t ≥ 0

P {|Mt | ≥ r t, 〈M〉t ≤ 〈g〉π (1 + ε)t} ≤ exp

{
− r2

2(r R + 〈g〉π (1 + ε))
t

}
. (51)

By (48) and (49),

P {〈M〉t > 〈g〉π (1 + ε)t} ≤ P

{
1

t
|〈M〉t − 〈g〉π | ≥ ε〈g〉π

}
≤ C1e

−δε〈g〉π t . (52)

By (51) and (52) we get

P {|Mt | ≥ r t} ≤ P {|Mt | ≥ r t, 〈M〉t ≤ 〈g〉π (1 + ε)t} + P {〈M〉t > 〈g〉π (1 + ε)t}

≤ exp

{
− r2

2(r R + 〈g〉π (1 + ε))
t

}
+ Ce−δε〈g〉π t ≤ Ce−δ1r t , t ≥ 0,

(53)

where δ1 > 0 does not depend on r or t .
Recalling the definition of M in (23), we rewrite (53) as

P

⎧
⎨

⎩

∣∣∣∣∣∣
Xt −

t∫

0

f (αs)ds

∣∣∣∣∣∣
≥ r

⎫
⎬

⎭ ≤ C2e
−δ2r t , t ≥ 0, (54)

where C2, δ2 > 0. By [12, Theorem 1.1] (or [34, Theorem 1, Remark 3a]),

P

⎧
⎨

⎩

∣∣∣∣∣∣
1

t

t∫

0

f (αs−)ds − 〈 f 〉π
∣∣∣∣∣∣
≥ r

⎫
⎬

⎭ ≤ C3e
−δ3r t , t ≥ 0, (55)

where the constant δ3 does not depend on r . Combining (54) and (55) yields (11) and
completes the proof. ��
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Remark 4.7 We see from the proofs that the non-degeneracy condition can be weak-
ened. In particular, (6) can be removed if we instead require (αt , t ≥ 0) to be strongly
ergodic with the ergodic measure satisfying 〈 f 〉π > 0. Of course, occ(η) in Theorem
2.4would need to be replacedwith the set of sites surrounded by occ(η). Some changes
in the proof would have to be made. In particular, if π(0ϒ) = 0, the moments of time
θn in the proof of Lemma 4.4 would need to be redefined as the hitting moments of a
state γ ∈ ϒ with π(γ ) > 0.

Remark 4.8 It would be of interest to see whether the finite range condition can be
weakened to include interactions decaying exponentially or polynomially fast with
the distance. If the interaction range is infinite, there is no reason for (αt , t ≥ 0) to be
a recurrent Markov chain, let alone a strongly ergodic one. It may be the case however
that the process seen from the tip (βt , t ≥ 0) turns out to possess some kind of a
mixing property, which would enable application of limit theorems.

5 Numerical Simulations andMonotonicity of the Speed

We start this section with the following conjecture claiming that the speed is a mono-
tone functional of the birth rate. Consider two birth processes (η

(1)
t , t ≥ 0) and

(η
(2)
t , t ≥ 0) with different birth rates b1 and b2, respectively, satisfying conditions of

Theorem 2.4. Denote by λ
( j)
r the speed at which (η

( j)
t , t ≥ 0) is spreading to the right

in the sense of Theorem 2.4, j = 1, 2.

Question 5.1 Assume that for all x ∈ Z and η ∈ X

b1(x, η) ≤ b2(x, η). (56)

Is it always true that λ(1)
r ≤ λ

(2)
r ?

The answer to Question 5.1 is positive if b2 is additionally assumed to be monotone
in the second argument, that is, if

b2(x, η) ≤ b2(x, ζ ), x ∈ Z

whenever η ≤ ζ . Indeed, in this case the two birth processes (η
(1)
t , t ≥ 0) and

(η
(2)
t , t ≥ 0) with rates b1 and b2 are coupled in such a way that a.s.

η
(1)
t ≤ η

(2)
t , t ≥ 0

(see Lemma 5.1 in [7]). One might think that the answer is positive in a general case,
too.

It turns out that the birth rate with fecundity and establishment regulation discussed
on Page 4 links up naturally with Question 5.1. Let the birth rate b be as in (12) with
R = N = 3, a(x) = 1{|x | ≤ 3},
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Fig. 1 The speed of the tip for various cfec, cest. For each pair, the speed is computed as the average speed

of the tip Xt between t1 = 100 and t2 = 1000, that is, as
Xt2−Xt1
t2−t1

. Early evolution is excluded to reduce
bias

ψ(x) = cfec

[
1{|x | = 0} + 1

2
1{|x | = 1}

]
,

ψ(x) = cest

[
1{|x | = 0} + 1

2
1{|x | = 1}

]
.

Note that b decreases as either of the parameters cfec and cest increases. Figure 1
shows the speed of the model with birth rate (12) for a thousand randomly chosen
from [0, 1]2 pairs of parameters (cfec, cest).

Interestingly, we observe that for the values of cfec close to one, the speed increases
as a function of cest. This phenomenon is more apparent in Fig. 2, where the speed
is computed as a function of cest with cfec = 1. This example demonstrates that the
answer to Question 5.1 is negative without additional assumptions on b1 and b2.

In Fig. 3 ten different trajectories with cfec = cest = 0.5 are shown. Numerical
analysiswas conducted in R [30], and figureswere produced using the package ggplot2
[33].

123



Journal of Theoretical Probability

0

2

4

6

0 1 2 3 4
cest

sp
ee

d

Fig. 2 The speed as a function of cest. The other parameter with is fixed cfec = 1. Each estimate is computed

as
Xt2−Xt1
t2−t1

with t1 = 100 and t2 = 10,000
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Fig. 3 Ten trajectories of the tip. The parameters are cfec = cest = 0.5
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