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Abstract: In clinical practice, administration of low ozone (O3) dosages is a complementary therapy
for many diseases, due to the capability of O3 to elicit an antioxidant response through the Nuclear
Factor Erythroid 2-Related Factor 2 (Nrf2)-dependent pathway. Nrf2 is also involved in the adipogenic
differentiation of mesenchymal stem cells, and low O3 concentrations have been shown to stimulate
lipid accumulation in human adipose-derived adult stem cells in vitro. Thus, O3 treatment is a
promising procedure to improve the survival of explanted adipose tissue, whose reabsorption after
fat grafting is a major problem in regenerative medicine. In this context, we carried out a pilot
study to explore the potential of mild O3 treatment in preserving explanted murine adipose tissue
in vitro. Scanning and transmission electron microscopy, Western blot, real-time polymerase chain
reaction and nuclear magnetic resonance spectroscopy were used. Exposure to low O3 concentrations
down in the degradation of the explanted adipose tissue and induced a concomitant increase in the
protein abundance of Nrf2 and in the expression of its target gene Hmox1. These findings provide
a promising background for further studies aimed at the clinical application of O3 as an adjuvant
treatment to improve fat engraftment.

Keywords: fat; lipid loss; ozone therapy; scanning electron microscopy; transmission electron
microscopy; real-time polymerase chain reaction; nuclear magnetic resonance spectroscopy

1. Introduction

During the last decades, low dosages of ozone (O3), a highly unstable gas that rapidly decomposes
to oxygen, have increasingly been applied in O2-O3 mixtures as a successful adjuvant/complementary
treatment for several diseases [1–3]. The therapeutic effect of low O3 concentrations relies in the
cascade of metabolic events triggered by an initially induced mild oxidative stress, which is able to
activate the antioxidant cell response but is insufficient to cause damage [4,5]; this is consistent with the
principle of hormesis, i.e., “the beneficial effect of a low level exposure to an agent that is harmful at
high levels” [6]. Recently, we have provided mechanistic evidence that low O3 concentrations stimulate
in a dose-dependent manner a cytoprotective response via the Nuclear Factor Erythroid 2-Related
Factor 2 (Nrf2)-mediated Keap1-dependent pathway [7] through the transcription of genes induced by
antioxidant response elements (AREs).
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Nrf2 also plays a regulatory role in the adipogenic differentiation of mesenchymal stem
cells [8,9]. Consistent with this, we showed that treatment with low O3 concentrations stimulates lipid
accumulation in human adipose-derived adult stem cells without altering the adipogenic process [10].

Autologous fat transplantation is nowadays commonly used in reconstructive surgery, especially
for partial or total breast reconstruction in cancer patients [11], since it allows avoiding the use of
silicon prosthesis implants [12]. However, fat graft survival is often suboptimal due to the progressive
loss of adipocytes and the conversion of the graft into fibrous tissue and cysts [13], thus requiring
multiple grafting sessions to reach optimal reconstruction [14]. New strategies to improve the viability
of the harvested fat cells and graft preservation are definitely crucial [15], and O3 treatment may be an
interesting candidate.

In this view, we carried out a pilot study using explanted mouse visceral AT maintained under
in vitro conditions as a standardized experimental model, and we investigated the effects of the exposure
to low O3 concentrations by a multimodal approach including scanning (SEM) and transmission (TEM)
electron microscopy, biomolecular analyses and Nuclear Magnetic Resonance spectroscopy (1H NMR).

2. Materials and Methods

Perigonadal visceral AT was explanted from seven healthy 3-month-old female Balb/c mice
used in the frame of a research project approved by the Italian Ministry of Health (ref. 538/2015-PR).
Animals were handled according to the regulations of the Italian Ministry of Health (DL 4 March
2014, n. 26, directive implementation 2010/63/UE) and to the directives of the European Council
(Directive 63/2010/EU of the European Parliament and of the Council). A murine model was selected
because it ensures the standardized experimental conditions necessary to obtain reliable results when
investigating basic biological mechanisms, and the perigonadal fat pads were chosen as typically
the most accessible and abundant fat pads in the mouse. The mice were deeply anaesthetized using
Tribromoethanol (TBE) and then euthanized by cervical dislocation.

The perigonadal AT was excised, cut in small pieces (1–2 mm3, as suggested by [16]) and
washed twice with sterile phosphate buffered saline (PBS) to remove cell debris. After removing
visible blood clots, the specimens were weighed and placed in culture medium (M199 containing
1% penicillin/streptomycin, 1% glutamine, 50 µg/mL gentamicin, 0.1% insulin, 1% dexamethasone)
keeping a proportion of approximately 30 mg/mL [17]. Before treatment, AT pieces were maintained
for 48 h in an incubator (saturating humidity, 5% CO2, 37 ◦C), and then exposed to O2 or O2-O3 gas
mixtures (O3 concentrations of 10, 20 or 100 µg O3/mL O2), adapting the protocol previously set up for
cell cultures [18]. Briefly, 90 mg of AT fragments were suspended in 3 mL of culture medium in a 10 mL
polypropylene (O3 resistant) syringe (Terumo Medical Corporation, Somerset, NJ, USA); an equal
volume of gas was drawn into the syringe, which was gently shaken for 10 min to facilitate the mixing
of medium with gas. It has been established that a 10 min treatment allows the cell sample to react
with the O3 dose totally [19]. The concentrations of 10 and 20 µg O3 were chosen as they are usually
administered in clinical practice and have been shown to be non-cytotoxic for cultured adipose stem
cells [10], while 100 µg O3 was used as a highly oxidizing condition. The gas was produced by an OZO2
FUTURA apparatus (Alnitec s.r.l., Cremosano, CR, Italy), which generates O3 from medical-grade O2,
and allows photometric real-time control of gas flow rate and O3 concentration. The treatment with
pure O2 was performed in order to discriminate the effect of O3 from O2 in the context of the O2-O3

gas mixtures. Controls consisted in AT samples submitted to the same handling but without exposure
to O2 or O2-O3 gas.

After gas treatment, AT samples were placed into fresh medium in plastic dishes and maintained
in the incubator until analysis. The effects were evaluated at increasing incubation times after
treatment (see below). AT samples were processed for SEM and TEM, as well as for Western blot
and real-time quantitative polymerase chain reaction (RT-qPCR), while the medium was collected for
lactate dehydrogenase (LDH) assay and composition analysis (1H NMR).
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2.1. LDH Assay

LDH, a cytosolic enzyme released by lysed cells, was evaluated as an estimate of the cytotoxic
effect of gas exposure by using the CytoTox96 nonradioactive assay (Promega, Milano, MI, Italy).
After treatment, AT samples were placed in the medium and LDH was measured at 2 h, 24 h and 48 h.
At each time point, aliquots of medium for each condition were collected, placed in a 96 multi-well
plate, mixed with Cytotox96 reagent and incubated for 30 min at room temperature. After addition of
the stop solution, the absorbance was measured at 492 nm, and the data were corrected for culture
medium background and normalized to the maximum LDH release (i.e., lysed sample). The results of
three distinct experiments (n = 3) are presented as mean of percent LDH release ± standard error (SE).

2.2. Scanning Electron Microscopy

At 2 h, 24 h and 48 h post-treatment, AT samples were collected and immediately fixed for 2 h at
4 ◦C with 2% glutaraldehyde in 0.1 M phosphate buffer (PB), post-fixed with 1% OsO4 in the same
buffer for 1 h at 4 ◦C, and dehydrated in acetone. Then, they were critical-point-dried (CPD 030,
Balzers, Vaduz, Liechtenstein), fixed to stubs with colloidal silver, sputtered with gold by a MED 010
coater (Balzers), and examined with a XL30 SEM (FEI Company, Eindhoven, Netherlands). At least
three AT samples per animal were analysed.

2.3. Transmission Electron Microscopy

At 2 h, 24 h and 48 h post-treatment, AT samples were collected and fixed with a 2.5%
glutaraldehyde and 2% paraformaldehyde in PBS for 2 h at 4 ◦C. The samples were then rinsed
with PBS, post-fixed with 1% OsO4 and 1.5% K4Fe(CN)6 for 2 h at 4 ◦C, dehydrated in acetone and
embedded in Epon resin. Ultrathin sections were stained with Reynolds lead citrate and observed in
a Philips Morgagni TEM (FEI Company) equipped with a Megaview III camera. At least three AT
samples per animal were analysed.

The area of small lipid droplets extruding from the central one was measured in a total of 500 µm2

of cytoplasm per experimental condition (X7′100) using the ImageJ software (NIH), and their total area
was calculated and expressed as percentage of the measured cytoplasmic area.

A morphometric analysis was carried out also on 30 randomly-chosen mitochondria (X28′000)
per control, O2-, 10 µg- or 20 µg O3-treated samples: the mitochondrial area and the ratio between
inner and outer membrane (estimating the extension of cristae independently of the mitochondrial
size) were assessed. The means ± SE were calculated and a statistical comparison was performed as
described below.

2.4. Western Blot Analysis

AT samples were collected at different post-treatment times (2 h for Nrf2; 24 h for heme oxygenase-1
(Ho-1, encoded by Hmox1); 24 h and 48 h for mitochondrial heat-shock protein 70, mtHsp70) and
immediately frozen in liquid nitrogen to be then placed at −80 ◦C. Proteins were extracted according to
standard procedures in RIPA buffer (150 mM NaCl, 10 mM Tris pH7.5, 1% NP40, 1% Decoxycholate,
0.1% SDS) supplemented with phosphatase and protease inhibitors (Sigma-Aldrich, Milan, MI, Italy).
Samples were resolved on Tris-glycine 4–20% gradient SDS-PAGE (BIO-RAD, Segrate, MI, Italy), blotted
on PVDF membrane (BIO-RAD), and developed with ECL Western Blotting Substrate (Thermo Scientific,
Rodano, MI, Italy). The following antibodies were used: anti-Nrf2 1:1000 (ab62532 Abcam, Cambridge,
United Kingdom), anti-Ho-1 1:500 (3391-100 BioVision, Inc), anti-mtHsp70 1:1000 (ALX-804-077-R100,
Enzo Life Sciences, Farmingdale, NY, USA), anti-Gapdh 1:5000 (ab181602, Abcam) and βActin 1:5000
(ab8226 Abcam).
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2.5. Real-Time Quantitative Polymerase Chain Reaction

At 4 h post-treatment, AT samples were collected and RNA was extracted using the Qiagen
RNAeasy Plus mini kit (ref. 74134). cDNA was generated by SuperScript™ III Reverse Transcriptase
(Invitrogen, Carlsbad, CA, USA; cat. no. 18080093) and used with Applied Biosystems SYBR™
Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA; cat. no. 4309155) for real-time
qPCR analysis (Hmox1 forward primer: AGGTACACATCCAAGCCGAGA, Hmox1 reverse primer:
CATCACCAGCTTAAAGCCTTCT). Assays were performed using an Applied Biosystems Step-One
Real-Time PCR System.

2.6. Nuclear Magnetic Resonance Spectroscopy

The identification and quantification of AT metabolites released in the culture medium were
performed by 1H NMR.

Because AT samples treated with 100 µg O3 were found to be necrotic already 2 h post-treatment,
they were excluded from the metabolomics analysis.

One-ml aliquots of culture medium per each experimental condition were collected at 2 h, 24 h
and 48 h post-treatment, immediately frozen in liquid nitrogen and placed at −80 ◦C. Experiments were
performed with a Bruker Avance III 600 MHz spectrometer equipped with a TCI cryoprobe operating at
298 K. The samples were defrosted on ice and 500 µL were mixed with 50 µL of D2O containing TSP, as
reference. The 1H NMR spectra of the culture media were obtained by the water-suppressed standard
1D Carr-Purcell-Meiboom-Gill pulse sequence. The free induction decays (FIDs) were recorded by 32K
data points with a spectral width of 7200 Hz and 64 scans with a relaxation delay of 4.0 s.

For data processing and multivariate analysis, see Supplementary Materials, Multivariate Data
Analysis, and Methods.

2.7. Statistical Analysis

Statistical analysis of the LDH assay, morphometric evaluation of lipid droplets and mitochondria
and RT-qPCR was performed by the one-way ANOVA, followed by Tukey’s pairwise test of the.
For Western blots, linear regression modelling was used to test the dose-dependence hypothesis. In the
case of mtHsp70, one-way ANOVA was performed, followed by Dunnett’s multiple comparisons
test to examine for significant differences with the control. Statistical difference in the mean value of
selected metabolites was assessed using one-way ANOVA followed by Tukey’s pairwise test. For all
statistical tests, significant difference was set at p ≤ 0.05.

3. Results and Discussion

3.1. LDH Assay

Two hours post-treatment, cell death (as estimated by LDH release) in the AT samples was
slightly increased after O2-O3 gas exposure at all O3 concentrations in comparison with the control and
O2-treated samples (Figure 1). Although the difference was statistically significant, the LDH values
were always below 4% for both 10 and 20 µg O3, reaching about 8% in samples treated with 100 µg O3.

The effect of this initial stress decreased at later time points: in fact, after 24 h, AT treated with
10 µg O3 showed even lower LDH values in comparison to control and 20 µg O3-treated samples,
suggesting that, in our experimental model, the concentration of 10 µg O3 may be optimal to induce a
cytoprotective mechanism. Conversely, LDH values in response to 100 µg O3 remained the highest.
After 48 h, no significant difference in LDH release was found among control, O2-, 10 µg O3- and 20 µg
O3-treated samples, whereas 100 µg O3 yielded significantly higher values, probably due to strong
oxidative stress.

In summary, these data demonstrate that 10 and 20 µg O3 treatments do not induce appreciable
cell death in explanted AT, which is consistent with previous findings in cultured cells [10,18,20].
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Figure 1. LDH assay on AT samples. Histograms show the mean value ± SE of percentage of tissue
viability after 2 h, 24 h and 48 h from the treatment. Statistical difference is indicated by # (p < 0.05).
The value referring to 100 µg O3 is statistically different from all other samples at each time point
(* p < 0.001). CT, control.

3.2. Scanning and Transmission Electron Microscopy

Ultrastructural analysis by SEM and TEM confirmed that the protocol we used [16] allows good
preservation of explanted AT in vitro.

At SEM, all AT samples were typically characterized by unilocular mature adipocytes, surrounded
by an extracellular scaffolding network of thin collagen fibres.

At 2 h post-treatment, AT exposed to either O2 (Figure 2B), 10 µg O3 (Figure 2C) or 20 µg
O3 (Figure 2D) showed spherical adipocytes with a smooth surface, similar to control (Figure 2A);
conversely, adipocytes exposed to 100 µg O3 were wrinkled (Figure S1A).
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Figure 2. Scanning electron micrographs of adipocytes 2 h (A–D), 24 h (E–H) and 48 h (I–L) after gas
treatment. At 2 h, the adipocytes were spherical with smooth surface and surrounded by an extracellular
network of thin collagen fibres in control (A), O2- (B), 10 µg O3- (C) and 20 µg O3- (D) treated samples.
At 24 h, control (E), O2- (F) and 10 µg O3- (G) treated samples maintained a well-preserved morphology,
while adipocytes exposed to 20 µg O3 (H) showed small lipid droplets budding from the surface.
At 48 h, control adipocytes (I) showed clusters of lipid droplets budding from the surface; O2 (J) and
10 µg O3 (K)-treated samples showed well-preserved spherical adipocytes with smooth surface. 20 µg
O3-treated samples (L) showed slight depressions and many budding lipid droplets. CT, control. Bars,
10 µm (A–L), 2 µm (insets).
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At 24 h, AT samples treated with O2 (Figure 2F) and 10 µg O3 (Figure 2G) maintained a
well-preserved morphology comparable to control (Figure 2E), whereas the adipocytes of samples
treated with 20 µg O3 (Figure 2H) showed a few small lipid droplets budding from their surface;
samples exposed to 100 µg O3 were characterized by markedly wrinkled adipocytes (not shown).

After 48 h, in control (Figure 2I) and 20 µg O3-treated samples (Figure 2L), several adipocytes
showed clusters of lipid droplets budding from their surface, while samples treated with O2 (Figure 2J)
and 10 µg O3 (Figure 2K) showed spherical adipocytes with smooth surface; in samples treated with
100 µg O3, adipocytes were shrunken, with evident plasma membrane breakages (not shown).

Previous studies on human AT harvested by liposuction demonstrated that chemical and
mechanical stress triggers an active process of lipid loss in adipocytes [21]: depending on the
stress intensity, the lipid loss may result in the extrusion of a few small droplets (through the micropores
that transitorily form in the plasmalemma, while cell structure and viability are preserved) or the
adipocyte may become wrinkled due to a massive release of large droplets, until depleted adipocytes
acquire a cup-like morphology. Consistently, in the present study, AT samples treated with 100 µg O3

underwent rapid and massive lipid loss, a concentration of 20 µg O3 induced lipid budding from the
cell surface thus indicating a mild stress, while O2 and 10 µg O3 did not cause any lipid loss, even 48 h
after gas treatment.

The SEM findings were corroborated and extended by the TEM observations. At 2 h post-treatment,
control (Figure 3A), O2- (Figure 3B), 10 µg O3- (Figure 3C) and 20 µg O3-treated samples (Figure 3D)
showed well-preserved unilocular adipocytes surrounded by a thin cytoplasmic sheet where organelles
and a flat nucleus were located; mitochondria were numerous, elongated and rich in cristae; the tubules
and vesicles of the smooth endoplasmic reticulum were particularly abundant; the rough endoplasmic
reticulum and Golgi complexes were well developed; and many glycogen granules were distributed in
the cytosol. Following 100 µg O3, the adipocytes underwent evident necrosis, with marked lipid loss
and barely recognizable organelles (Figure S1B).

After 24 h, adipocytes of control (Figure 3E) and 10 µg O3-treated samples (Figure 3G) were similar
to those at 2 h post-treatment; after exposure to O2 (Figure 3F) or 20 µg O3 (Figure 3H), lipid droplets
were observed budding from the main droplet while all the other organelles were well preserved.
The adipocytes treated with 100 µg O3 were completely necrotic (not shown).

After 48 h, in control samples (Figure 3I) the adipocytes showed several small lipid droplets
distributed in the cytoplasm and some of them were found to be extruding from the cell; however,
no alteration of cell organelles was observed. In samples exposed to 10 µg O3 (Figure 3K), no lipid
extrusion or organelle modification was ever observed, adipocyte morphology being very similar as
at 2 h post-treatment. In samples treated with O2 (Figure 3J) or 20 µg O3 (Figure 3L,L′) many lipid
droplets were found budding from the large central droplet and scattered in the cytoplasm; moreover,
most mitochondria showed a few cristae, although all other organelles were still well preserved.

Consistent with the morphological observations, morphometric evaluation (Table 1) demonstrated
that, after 24 h, the amount of small lipid droplets scattered in the cytoplasm was significantly higher
in O2- and 20 µg O3-treated samples in comparison to control, while 10 µg O3-treated samples showed
values similar to control. After 48 h, control, O2- and 20 µg O3-treated samples contained similar large
amounts of lipid droplets distributed in the cytoplasm, whereas in 10 µg O3-treated adipocytes the
value remained markedly lower, thus supporting the cytoprotective effect of this O3 concentration.

The presence of lipid droplets in the peripheral cytoplasmic rim is one of the typical features
at the onset of adipocyte apoptosis [22]; however, in our AT samples, we never observed apoptotic
signs, such as nuclear chromatin condensation, hypertrophic mitochondria, or dilated endoplasmic
reticulum. This suggests that the lipid loss observed in our samples may represent an active response
to cell stress aimed at preserving cell viability, as hypothesized by Conti et al. [21]. Accordingly, under
another stressing condition (nanoparticle-mediated hyperthermia [23]), rapid lipid loss was observed
in adipocytes that were fully vital with unchanged ultrastructural features.
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Figure 3. Transmission electron micrographs of the peripheral cytoplasmic rim of adipocytes 2 h (A–D),
24 h (E–H) and 48 h (I–L) after gas treatment. At 2 h, all cytoplasmic organelles were well preserved in
control (A), O2- (B), 10 µg O3- (C) and 20 µg O3- (D) treated samples. At 24 h, control (E) and 10 µg O3-
(G) treated samples maintained a good morphology, while adipocytes exposed to O2 (F) or 20 µg O3

(H) showed small lipid droplets (asterisks) budding from the large central one. At 48 h, control (I),
O2- (J) and 20 µg O3 (L,L′)-treated samples showed many lipid droplets (asterisks) budding from the
central one or distributed in the cytoplasm; note (I) the lipid droplet extruding from the cell (arrow).
O2- (J) and 20 µg O3 (L′)-treated adipocytes also showed mitochondria poor in cristae. Conversely,
10 µg O3-treated adipocytes (K) showed excellent structural preservation. CT, control; LD, central lipid
droplet. Bars, 500 nm.

Table 1. Mean ± SE of percentage values of cytoplasmic area occupied by the small lipid droplets
budding from the main central droplet. Asterisks indicate significant difference from control (** p < 0.01;
*** p < 0.001).

Control O2 10 µg O3 20 µg O3

24 h 0.198 ± 0.142 11.742 ± 2.873 ** 0.049 ± 0.034 9.024 ± 0.009 **
48 h 23.697 ± 3.518 29.992 ± 3.023 0.291 ± 0.267 *** 27.827 ± 2.479

Treatment with O2, 10 and 20 µg O3, proved to be non-toxic even after 48 h, as damaged organelles
were never observed; on the contrary, the highly oxidizing concentration of 100 µg O3 induced rapid
and massive necrosis. However, morphometric evaluation demonstrated that, while no mitochondrial
size alteration occurred (Table 2), a significant reduction in the length of mitochondrial cristae took
place in adipocytes 48 h post-treatment with O2 and 20 µg O3 (Table 3).

Table 2. Mitochondrial area values (mean ± SE) according to treatment and incubation
time post-treatment.

Control O2 10 µg O3 20 µg O3

2 h 0.119 ± 0.013 0.117 ± 0.014 0.090 ± 0.010 0.094 ± 0.012
24 h 0.093 ± 0.009 0.098 ± 0.008 0.079 ± 0.010 0.085 ± 0.009
48 h 0.089 ± 0.009 0.091 ± 0.007 0.085 ± 0.009 0.073 ± 0.007
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Table 3. Mitochondrial inner/outer membrane ratio (mean ± SE) according to treatment and incubation
time post-treatment. Asterisks indicate statistical difference from control (* p < 0.05).

Control O2 10 µg O3 20 µg O3

2 h 1.989 ± 0.154 2.123 ± 0.142 2.019 ± 0.135 1.965 ± 0.176
24 h 1.811 ± 0.101 1.848 ± 0.226 1.903 ± 1.104 1.710 ± 0.090
48 h 1.841 ± 0.131 1.283 ± 0.176 * 1.862 ± 0.107 1.341 ± 0.163 *

This is suggestive of reduced and/or altered respiratory capability [24]. It is known that
mitochondrial functions are strictly related to the level of reactive oxygen species (review in [25]), and
it is likely that the oxidative stress due to O2 and 20 µg O3 (although unable to cause organelle damage)
could induce functional alteration at the longest incubation time. In contrast, 10 µg O3 proved to be
safe, consistent with previous demonstration that appropriate O3 concentrations may even positively
affect mitochondrial activity [26,27].

3.3. Biomolecular Analyses

Nrf2 belongs to the cap‘n’collar basic-region (CNC) leucine zipper transcription factor family
together with NF-E2, Nrf1 and Nrf3; it plays a primary role in the cellular response to O3 exposure
and, more generally, to oxidative stress, being involved in multiple metabolic pathways [28].

In our AT samples, 2 h post-treatment, the total amount of Nrf2 protein in all O3-treated tissue
increased in proportion to the O3 concentration, as demonstrated by the linear regression analysis
(Figure 4A).

It has been already demonstrated in different cell types [7,20,29] that mild O3 treatment leads to a
specific antioxidant response by inducing gene transcription via AREs. By combining sub-nuclear
tracking of Nrf2 localization at fluorescence and electron microscopy and functional genetic engineering
approaches, it was demonstrated that low O3 concentrations such as 10 and 20 µg increase Nrf2
protein stability by preventing its Keap1-mediated degradation [7,30]. In fact, even under a mild
oxidative stress due to low O3 concentrations, Nrf2 rapidly dissociates from its negative regulator
Keap1 and translocates into the nucleus, thus activating the expression of ARE-driven genes [7,30].
This regulatory mechanism is very efficient, since it ensures the rapid transcription of antioxidant
genes without requiring the de novo synthesis of Nrf2. Moreover, a combined approach of microarray
gene expression and real-time qPCR with ultrastructural immunocytochemistry allowed identifying
the antioxidant genes up-regulated through Nrf2 activation in response to O2-O3 gas mixtures used for
O3 therapy [20]. In particular, concentrations of 10 and 16 µg O3 were found to induce genes involved
in the cellular response to stress (Hmox1, ERCC4, CDKN1A) and in the transcription machinery
(CTDSP1). Finally, a recent microarray analysis of gene expression correlated the expression of Hmox1
gene with the therapeutic use of O3 in myocardial ischemia/reperfusion injury [29]. It is therefore well
established that the O3-mediated activation of Nrf2 induces the transcription of antioxidant genes.
Accordingly, RT-qPCR demonstrated a statistically significant upregulation of Hmox1, a well-known
Nrf2 target gene whose expression is usually increased after Nrf2 activation [31], in explanted AT
treated with 10 µg O3 in comparison with CT, O2-, and 100 µg O3-treated samples (Figure 4B). On the
other hand, AT samples treated with 20 µg O3 showed an increased though not significant activation of
the Hmox1 gene. Consistently, the expression of Ho-1, which is encoded by Hmox1 and is involved in
many cytoprotective pathways exerting anti-oxidant, anti-inflammatory and anti-apoptotic effects [32],
showed the same pattern as Hmox1 gene expression, albeit without statistically significant differences
among the experimental conditions. It may be therefore hypothesized that Hmox1 upregulation
contributes to the preservation of explanted AT treated with 10 µg O3.

Interestingly, according to previous evidence [7,20], in AT samples pure O2 negligibly affected
Nrf2 activation, further supporting the cytoprotective role of O3.
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Figure 4. Biomolecular analysis of Nrf2, Hmox1/Ho-1 and mtHsp70 in control (CT), O2-, 10 µg O3-,
20 µg O3- and 100 µg O3-treated AT samples. (A) Western blot of Nrf2 protein. Nrf2 stabilization was
observed 2 h after O3 treatment (Western blot and histogram). The protein level is proportional to
the O3 concentration (linear regression p = 0.05; right). (B) Gene expression of Hmox-1 in AT at 4 h
post-treatment (* p < 0.05, ** p < 0.005; left). The maximum level of Hmox1 expression was reached by
treating samples with 10 µg/mL O3. The amount of Ho-1 protein was evaluated at 24 h post-treatment
(Western blot and histogram; right). (C) mtHsp70 protein was evaluated at 24 h and 48 h post-treatment
(left). The protein level is not significantly proportional to the O3 concentration (linear regression 24 h:
p = 0.8; 48 h: p = 0.5; right). The values presented are means ± SE of 3 independent experiments.
Data were normalized to the level of housekeeping proteins (Gapdh and βActin) and expressed as in
proportion to the levels in control samples.

It is known that ARE gene expression can also be induced by Nrf1, which plays multiple roles but
distinct from those of Nrf2 [33,34]. However, to our knowledge, no evidence on the involvement of
Nrf1 in the cytoprotective response induced by mild O3 treatment has been reported so far. Increased
expression of Nrf1 has been found only in mice exposed to repeated inhalation of high doses of
O3 [35], probably due to its role in modulating the inflammatory response [33]. Likewise, no data are
available on the involvement of Nrf3 in the cell response to O3; this factor, which has been poorly
studied in comparison to the other members of the CNC family, seems to play a role in differentiation,
inflammation, and carcinogenesis [36], and can negatively regulate ARE-mediated gene expression [37].
Future investigations into the mechanisms accounting for the cytoprotective response following mild
O3 exposure should thus also take into consideration the possible contributions of Nrf1 and Nrf3
besides that of Nrf2.

Among its various functions, Nrf2 is involved in mitochondrial biogenesis [38,39]; moreover,
mitochondrial respiration and ATP synthesis are strictly related to Nrf2/Keap1 levels, which play a
crucial role in the functional modulation of mitochondria under stress conditions in order to preserve
cell redox homeostasis [40–42]. The O3-induced activation of Nrf2 may therefore contribute to the
excellent preservation of mitochondria in 10 µg O3-treated AT, in comparison to AT treated with
O2 (which induced a lower level of Nrf2 activation), further supporting the conclusion that, in our
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experimental conditions, this O3 concentration is able to yield an optimal balance between oxidative
stress and antioxidant response.

The expression of mtHsp70 also correlates with mitochondrial biogenesis and activity, being
consequently central for cell survival; in fact, its expression is induced by various mitochondrial
stresses [43] or by common inducers of the Keap1/Nrf2/ARE pathway, but independently of Nrf2 [44].
As shown by linear regression analysis, the amount of mtHsp70 did not correlate with O3 concentration
at any time point (Figure 4C). After 48 h, ANOVA revealed a significantly reduced amount of mtHsp70
in all treated AT samples compared with control (O2: p = 0.0007; 10 µg O3: p = 0.0185; 20 µg O3:
p = 0.0002; 100 µg O3: p = 0.0001). Interestingly, this reduction was particularly marked in samples
treated with O2, 20 µg O3 and 100 µg O3, suggesting that mtHsp70 failed to preserve mitochondrial
integrity at later time points. This finding is consistent with the morphological and morphometric
analyses by TEM that provided evidence of mitochondrial alteration (in O2- and 20 µg O3-treated
AT samples) or damage (in 100 µg O3-treated samples), whereas mitochondria in 10 µg O3-treated
samples were well preserved.

3.4. Nuclear Magnetic Resonance Spectroscopy

By this method, we performed a metabolomic analysis to identify specific metabolites released in
the medium that reflect the functional response of AT to in vitro culture and treatment.

Visual inspection of the 1D 1H NMR spectra recorded on culture media derived from AT
samples after gas exposure showed that the peak intensity and position of several metabolites were
different among the samples (representative spectra are shown in Supplementary Materials, Figure S2).
The variability and complexity of the spectra were interpreted by a multivariate statistical approach
to identify the meaningful metabolites discriminating treated and control samples (Supplementary
Materials, Multivariate data analysis, Results, Figure S3). Figure 5A shows the trend along the
incubation times post-treatment of the identified metabolites with unequivocal assignment obtained
from NMR (coefficients of variation for each analysed metabolite are reported in Supplementary
Materials, Table S1). In the culture media, the levels of most metabolites remained constant at 2 h
and 24 h. Only the levels of 3-hydroxybutyrate and isovaleric acid increased 24 h post-treatment in
all samples, suggesting an increase in fatty acid catabolism. The 3-hydroxybutyrate is synthesized
from acetyl-CoA through β-oxidation of fatty acids [45], and it is considered a signalling metabolite
because it is taken up by peripheral tissues and oxidized for ATP production [46,47]. This finding
therefore suggests that some lipid catabolism occurs in all AT samples after 24 h in culture independent
of treatment, probably as a consequence of maintenance under in vitro conditions.

However, the strongest variations were observed at 48 h, when a marked decrease in the relative
content of two main carbon sources (glucose and glutamine) and an increase in glycerol and lactate
were observed in all samples. The enhanced uptake of glucose and the release of free glycerol and
lactate in the media from 24 to 48 h post-treatment indicate an active synthesis of glycerol from glucose
and an accelerated triacylglycerol turnover. A massive efflux of free glycerol has been reported in
white AT with low lipogenic activity and accelerated triacylglycerol turnover, where most fatty acids
were recycled by mature adipocytes [48]. The decreased glutamine level observed at 48 h may be
explained by its active transport into cells, where it is converted to glutamate that in turn enters the
tricarboxylic acid (TCA) cycle.

In order to evaluate the effect of O3 treatment on explanted AT, a targeted inspection of metabolite
levels was performed at 48 h (Figure 5B). The glucose level was higher in the medium of O3-treated
samples as compared with the control. In the presence of oxidative stress, adipocytes demonstrate
a lower uptake of glucose due to translocation of glucose transporter type 4 and decreased activity
of phosphatidylinositol 3 kinase [49]. A similar effect has been reported by Saleh et al. [50] in rats
systemically administered O3. The marked decrease of free glycerol in the medium after treatment
with O2 or 10 µg O3 suggests that the low level of oxidative stress slows down glycerol efflux from
adipocytes. In particular, a key role in limiting glycerol loss could be played by the O3-induced
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pro-adipogenic activity of Nrf2 [8,9,51–54]. In contrast, the same samples showed decreased amounts
of glutamine in the medium, suggesting a higher glutamine consumption rate. Glutamine uptake
has been shown to be significantly enhanced to maintain TCA cycle function, in which acetyl-CoA
is formed from glutamine via reductive carboxylation [55]. Low O3 concentrations may therefore be
involved in the metabolic regulation of the TCA cycle under stress conditions. Interestingly, it has been
hypothesized that a protective mechanism related to enhanced uptake of glutamine may be mediated
by Hsp70 [56], a protein previously shown to be upregulated by treatment with low O3 concentrations
both in vivo and in vitro [18,57].
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4. Conclusions

The multimodal approach used in the present study to monitor explanted AT maintained in vitro
showed that progressive functional and structural alterations occur in adipocytes, such as increased
lipid catabolism, low lipogenic activity and, finally, lipid loss. However, in our experimental model,
exposure to low O3 concentrations administered as O2-O3 gas mixtures was found to protect the
explanted AT from this progressive degradation. Both 10 µg O3 and 20 µg O3—but not O2—were able
to increase Nrf2 protein levels; moreover, 10 µg O3 induced also a significant upregulation of Hmox1,
belonging to the ARE-regulated genes, suggesting that the Nrf2/Keap1 cytoprotective pathway was
activated. These results support the notion of the primary role of low O3 concentrations in the induction
of the antioxidant response. Despite some cell lysis observed immediately after gas exposure, neither
10 µg O3 nor 20 µg O3 caused additional cell damage until 48 h, while inducing metabolic adaptations
related to oxidative stress. It is worth noting that 10 µg O3 was especially effective in preserving
adipocytes in comparison to 20 µg O3, causing a lower cell death rate immediately after exposure,
maintaining excellent mitochondrial structure and preventing lipid loss until 48 h. Therefore, under
our experimental conditions, the concentration of 10 µg O3 was found to be optimal for adipocytes in



Antioxidants 2020, 9, 989 12 of 15

terms of cell viability, structural and functional preservation, and lipid stock maintenance. This O3

concentration likely induced an oxidative “eustress” [58] able to stimulate Nrf2-mediated metabolic
pathways responsible for the cytoprotective response, without adverse cytological consequences.
In addition, the finding that 10 µg O3 exerts an adipogenic effect on human adipose-derived adult stem
cells [10] supports the hypothesis that the mild oxidative stress induced by this low O3 concentration
is able to promote adipogenesis via the Nrf2/Keap1 pathway.

It is known that murine AT and human AT share several structural and functional similarities but
differ in some species-specific peculiarities that characterize the visceral and subcutaneous fat pads [59].
However, it is worth noting that, to our knowledge, no study has been carried out to evaluate at the
cellular level the effects of mild O3 treatment on AT in both rodents and humans. Therefore, this pilot
work, although performed in an animal explant model, provides a solid scientific background for
further studies on human AT aimed at validating the potential of mild O3 treatment in reconstructive
medicine. Clinical studies are ultimately warranted to test the efficacy of O3 adjuvant treatment in
improving graft survival in patients submitted to autologous fat transplantation, and to guide the
selection of the most appropriate protocols for pre-implant AT treatment and/or post-graft local or
systemic O3 administration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/10/989/s1,
Figure S1. SEM (A) and TEM (B) micrographs of adipocytes after 2 h from treatment with 100 µg O3; Figure S2.
Representative NMR spectra recorded on culture media after 2 h (green), 24 h (magenta) and 48 h (blue) from
gas treatment; Figure S3. NMR-based metabolomic analysis of culture medium samples; Table S1. Coefficient of
variation (CV% = standard deviation / mean × 100) for each metabolite analysed (n = 2).
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