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Abstract  

Background and Aims: The Cancer Genome Atlas (TGCA project has recently 

published a flagship paper reporting that Cell-of-Origin patterns dominate the 

molecular classification of 10,000 tumors from 33 types of cancer including hepato-

pancreatic and biliary (HPB) malignancies. The aim of the current project was to 

investigate the molecular landscape of HPB cancers to apply in the clinical practice 

the molecular classifications resulting from the TGCA analyses.  

Patients and Methods:  

Machine learning models (artificial neural network, ANN) were trained to predict the 

molecular subtypes and Cell-of-Origin (iCluster) of HPB cancers. A survival analysis 

was performed using Cox’s survival models and machine learning models (Random 

Survival Forest, RSF) to investigate impact of the molecular subtypes and iClusters 

classifications on prognosis of HPB patients. Whole exome sequencing (WES) data 

of TGCA patients with cholangiocarcinoma (CHOL), liver hepatocellular carcinoma 

(LIHC), and pancreatic adenocarcinoma (PAAD) were used to develop the ANNs. 

Two control groups including patients with gastrointestinal cancers and other type of 

cancers were used to train the ANNs. WES data of patients who underwent surgery at 

the Ohio State University (OSU) for HPB cancers and of patients participating to the 

International Cancer Gene Consortium (ICGC) were used to validate the ANNs. 

Results:  

The ANNs predicting the iClusters (i.e. from iCluster1 to iCluster28) demonstrated 

an accuracy of 99% in training set versus 74% in the test set. The ANNs predicting 

the molecular subtypes demonstrated an accuracy of 99% in training set versus 81% 

in the test set. The survival data of 362 (34 TGCA, 17 OSU, and 311 ICGC) CHOL 

patients were investigated using the RSF algorithm. The model identified the most 

important variables as AJCC stage, TP53 pathways status, molecular subtypes, lymph 

node status, and iCluster. In the multivariable Cox model, AJCC stage, TP53 

pathways status, molecular subtypes, and iCluster were associated with patients’ 

survival. Compared with METH-3 patients, patients in IDH and METH-2 subgroups 



had almost 2.5- and 5-fold risk of death (IDH, HR 2.47, p=0.037; METH-2, HR 4.85, 

p<0.001). The c-index of the final model integrating clinical and molecular data 

resulted 0.72.  

A total of 598 (341 TGCA, 30 OSU, and 227 ICGC) LIHC patients were investigated 

using the RSF algorithm. The model identified the most important variables as AJCC 

stage, molecular subtypes, AJCC T stages, TP53 pathway status, and TGF-beta 

pathway status. In the multivariable Cox model, AJCC stage, TP53 pathways status, 

and molecular subtypes were associated with patients’ survival. Compared with 

patients with other molecular subtypes, patients in i-Cluster2 had almost 2.2-fold 

increased risk of death (i-Cluster2, HR 2.18, p<0.001). The c-index of the final model 

was 0.63. 

The survival data of 1,022 (155 TGCA, 66 OSU, and 999 ICGC) PAAD patients 

were investigated using the RSF algorithm. The model identified the most important 

variables as age, AJCC stage, molecular subtypes, i-Cluster, TP53 pathway, MYC 

pathway, and Cell-cycle pathway status. In the multivariable Cox model, AJCC stage, 

TP53 pathways status, and molecular subtypes were associated with patients’ 

survival. Compared with patients with KRAS_wt molecular subtypes, patients with a 

KRAS_mut PAAD subtype had almost 1.4-fold increased risk of death (KRAS_mut, 

HR 1.38, p=0.031). The c-index of the final model integrating clinical and molecular 

data was 0.61. 

Conclusion:  

TGCA project have reported a complex and interconnected landscape describing the 

molecular biology of HPB cancers. In this preliminary work, the WES of patients 

with HPB cancers was used to predict the molecular classifications proposed in the 

TGCA papers. Moreover, the molecular classifications of HPB malignancies when 

integrated with the clinical staging system demonstrated to improve our ability to 

predict the prognosis of HPB patients.  

 



Introduction 

The Genome Cancer Atlas (TGCA) project 

Since 2005 the National Cancer Institute (NCI) and the National Human Genome 

Research Institute (NHGRI) have supported the Cancer Genome Atlas (TGCA) 

aiming to obtain a thorough understanding of the genomic alterations that underlie all 

major cancers. Recently, the TGCA project has published a flagship paper reporting 

that Cell-of-Origin patterns dominate the molecular classification of 10,000 tumors 

from 33 types of cancer including hepato-pancreatic and biliary (HPB) 

malignancies.(1)  Following “The Cancer Genome Atlas Pan-Cancer analysis 

project” papers published in 2014 that included 12 types of different cancers (Pan-

Cancer-12), in 2018 a novel TGCA Pan-Cancer analysis reclassified 33 human 

cancers types based on molecular similarity and reported that the Cell-of-Origin 

patterns did not completely determine cancers classification but might inform future 

clinical trial design and interpretation.(1-3) Moreover, several associated papers 

(Companion Papers) which focused on groups of cancers including gynecologic and 

breast, gastrointestinal, squamous, and renal cancers, revealed new insights into 

classifications and characterizations of these subgroups of malignancies.(4-7) In the 

new Pan-Cancer analysis, the authors performed multi-omics (chromosome-arm-level 

aneuploidy, DNA hypermethylation, reverse-phase protein arrays, mRNA, and 

miRNA) molecular clustering, resulting in 28 different integrative clusters (i-

Clusters). While i-Clusters were emphasized the dominant role of Cell-of-Origin 

patterns, clustering was primarily organized by histology, tissue type, or anatomic 

origin. Molecular similarities among histologically or anatomically related cancer 

types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, 

pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by 

stemness features, which in turn may inform strategies for future therapeutic 

development.(1)  

 



Driver Genes and Oncogenic Signaling Pathways 

In order to personalize the surgical and oncological treatment of patients with cancer, 

a precise classification of tumors and identification of molecular cancer drivers is a 

fundamental step towards precision oncology. Recently, Bailey and colleagues have 

reported a comprehensive characterization of cancer drive genes and mutations. The 

authors reported a PanCancer and PanSoftware analysis spanning 9,423 tumor 

exomes (comprising all 33 TGCA cancer types) and using 26 computational tools to 

catalogue driver genes and mutations identifying 299 driver genes with implications 

regarding their anatomical sites and cancer/cell types. The incidence of single driver 

genes among different cancer types demonstrated that about half of driver genes (142 

genes) were associated with a single cancer, 87 genes had driver roles in two or more 

cancer types, while about 10% of genes (29 genes) uniquely identified using 

PanCancer approaches on all samples combined. In particular, TP53 was identified as 

cancer driver gene in 27 cancer types, followed by PIK3CA, KRAS, PTEN, and 

ARID1A which were associated with 15 or more cancer types.(8) Moreover, 

Francisco Sanchez-Vega et colleagues investigated the Oncogenic Signaling 

Pathways in The Cancer Genome Atlas.(9) Common hallmarks of cancer included 

mutations in genes members of signaling pathways that control cell-cycle 

progression, apoptosis, and cell growth. The authors used mutations, copy-number 

variation, mRNA expression, gene fusions, and DNA methylation in 9,125 tumors 

included in TCGA to analyze the mechanisms and patterns of somatic alterations in 

ten canonical pathways including cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-

Kinase/Akt, RTK-RAS, TGFβ signaling, p53, and β-catenin/Wnt. The authors 

reported that among the 33 TGCA cancer types 89% of tumors had at least one driver 

gene mutated in one of the 10 pathways, and 57% of cancers had at least one 

mutation potentially targetable by currently available drugs while 30% percent of 

tumors had multiple targetable alterations amenable of combination therapies.(9) 

 



Molecular Analysis of Gastrointestinal Adenocarcinomas 

TGAC data were analyzed to provide a TumorMap with organ systems, integrating 

single tumors in comprehensive categories. In particular, Yang Liu et colleagues 

performed the comparative molecular analysis of gastrointestinal (GI) 

adenocarcinomas. The authors analyzed 921 adenocarcinomas of the esophagus 

(ESCA), stomach (STAD), colon (COAD), and rectum (READ) to examine shared 

and distinguishing molecular characteristics of GI tract adenocarcinomas. A total of 

five molecular subtypes were identified including subgroups of tumors characterized 

by a high Epstein-Barr virus (EBV) burden, by microsatellite instability (MSI), by 

hypermutated tumors with single-nucleotide variants (HM-SNV), by chromosomal 

instability (CIN), and by genome stable (GS). Tumors in the EBV subgroup was 

founded only in the stomach (n = 30) displaying the most extensive hypermethylation 

profile of any tumor type in TCGA. Hypermutated tumors (n = 157) were defined by 

mutation density >10 per megabase (Mb) and classified in two distinct subgroups 

distinct regardless of cancer type.  In particular, cancers enriched for 

insertions/deletions were included in the MIS subgroups representing microsatellite 

instability cases with epigenetic silencing of MLH1 in the context of CpG island 

methylator phenotype. Conversely, hypermutated malignancies characterized by 

elevated single-nucleotide variants (SNV) associated with mutations in polymerase 

epsilon(POLE) were included in the POLE/HM-SNV subtype. A total of 734 patients 

had low mutation density and were classified in the two subtypes CIN and GS. 

Chromosomal instability (CIN) tumors (n=625, 48% gastro-esophageal cancers; 52% 

colon-rectum cancers) exhibited marked aneuploidy, that was largely determined by 

chromosome- and arm-level losses. Finally, the authors identified a group of 109 

(47% gastro-esophageal cancers; 53% colon-rectum cancers) patients with a tumor in 

the colon and rectum lacking hypermutation and aneuploidy termed genome stable 

(GS) and enriched in DNA hypermethylation and mutations in KRAS, SOX9, and 

PCBP1.(5) 

 



Molecular Analysis of Hepato-Pancreatic and Biliary Cancers 

Even though the integrative analysis of GI cancers provided a classification of cancer 

overlapping the single tumors and molecular subtypes interconnected between the 

adenocarcinomas of the esophagus (ESCA), stomach (STAD), colon (COAD), and 

rectum (READ), this approach was not possible for the hepato-pancreatic and biliary 

(HPB) cancers. The analyses of the single HPB tumors including cholangiocarcinoma 

(CHOL), liver hepatocellular carcinoma (LIHC), and pancreatic ductal 

adenocarcinoma (PAAD) improved our understanding of the biology of these 

malignancies but did not identify potentially target therapies in common between 

these tumors as well as a comprehensive classification. The papers investigating 

single tumor type rather than regrouping these malignancies further subdivided the 

three HPB tumors (CHOL, LIHC, and PAAD) in 9 molecular subgroups and 15 

iClusters.  

Molecular Analysis of Cholangiocarcinoma 

Farshidfar et colleagues performed an integrative genomic analysis of 38 

cholangiocarcinoma (CHOL) identifying distinct IDH-Mutant molecular profiles.(10) 

The authors described the integrated analysis of gene-level mutations, fusions genes, 

copy number alterations, mRNA expression, miRNA, lncRNA, protein expression, 

and DNA methylation of a set of predominantly intrahepatic (32/38, 84%) CHOL  

cases and propose a molecular classification scheme. The authors identified four 

distinct molecular subgroups IDH, ECC, METH2, and METH3 subgroups. Isocitrate 

dehydrogenase (IDH) molecular subtype was characterized by the presence of IDH 

hotspot mutations (p<0.001). Three of four distal or perihilar cholangiocarcinoma 

were in the extrahepatic cholangiocarcinoma (ECC) molecular subtype which was 

characterized by a wild-type status for FGFR2, ARID1A, BAP1, and PBRM1, low 

methylation, and low incidence of copy number alterations. The methylation cluster 2 

(METH2) was enriched for tumors with CCND1 amplification and with the most 

highly hypermethylated profile. Finally, the methylation cluster 3 (METH3) was 



characterized by high incidence of tumors with BAP1 mutations (8/12; 67%; p=0.01) 

and all cases of tumors with FGFR2 fusion genes (5/5; p = 0.004). The study revealed 

insights into the molecular pathogenesis and heterogeneity of CHOL and provided a 

classification with potential therapeutic significance.(10)   

Molecular Analysis of Hepatocellular Carcinoma 

David A. Wheeler et colleagues analyzed 363 liver hepatocellular carcinoma (LIHC) 

patients with whole-exome sequencing and DNA copy number analyses, as well as a 

subgroup of 196 patients with available DNA methylation, RNA, miRNA, and 

proteomic expression data.(11) The authors performed an integrative molecular 

analysis with an unsupervised clustering of five data platforms (DNA copy number, 

DNA methylation, mRNA, miRNA, and proteomic expression) and in a joint 

multivariate regression approach identified three molecular subtypes (iClust1, 

iClust2, and iClust3).(12) A total of 65 patients were included in the iClust1, 

characterized by higher tumor grade and presence of macrovascular invasion, low 

frequency of CDKN2A silencing (32%) as compared to iClust2 (69%) and iClust3 

(63%). iClust1 was characterized by a low frequency of CTNNB1 mutation (12%) 

compared with iClust2 (38%) and iClust3 (43%), and low frequency of TERT 

promoter mutation as well as low TERT expression. miRNA expression demonstrated 

specific characteristics in iClust1 HCC as a high expression of miR-181a (a lipid 

metabolism regulator) and epigenetic silencing of miR-122. iClust1 was associated 

with overexpression of proliferation marker genes such as MYBL2, PLK1, and 

MKI67. A total of 55 and 66 patients were included in iClust2 and iClust3, 

respectively, and HCC in these subgroups exhibited a high frequency of CDKN2A 

silencing by DNA hypermethylation, a high frequency of TERT promoter mutations 

and CTNNB1 mutations, and enrichment for HNF1A mutation. While iClust2 was 

associated with low-grade tumors (p < 0.001) and less microvascular invasion (p = 

0.01), iClust3 was characterized by a higher degree of chromosomal instability with 

distinct 17p loss, high frequency of TP53 mutation, and hypomethylation of multiple 

CpG sites. 



 

Molecular Analysis of Pancreatic Ductal Adenocarcinoma 

Benjamin J. Raphael et colleagues investigated the genomic characteristic of 150 

patients with pancreatic ductal adenocarcinoma (PAAD).(13) Several authors have 

reported that PAADs are characterized by a low neoplastic cellularity (5-20%) with 

an important desmoplastic reaction  and that this characteristics might confound the 

molecular analyses of this cancers.(Iacobuzio-Donahue et al., 2002)(Wood and 

Hruban, 2012) For these reasons, the authors of the TGCA paper performed a whole-

exome sequencing (WES; mean coverage 405x) identified recurrent mutations in 

KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and 

PBRM1 but to improve the detection of KRAS mutations, codon 12, 13, and 61 

hotspots of KRAS were sequenced using a microfluidic PCR-based approach with 

very deep coverage (mean coverage about 30,000x). In addition, significantly 

mutated genes within the 150 TCGA patients, were sequenced to higher coverage 

(mean coverage about 644x). This deep sequencing approach identified that 93% of 

PAADs had a KRAS mutation.(13) 

Aims 

The aim of the current project was to investigate the molecular landscape of HPB 

cancers and to validate the current molecular classification resulting from the TGCA 

analyses. A machine learning algorithm – artificial neural network – was used to 

investigate the reproducibility of the molecular subtypes and Cell-of-Origin 

(iClusters) classifications for HPB tumors. Moreover, a survival analysis was 

performed using both the “classical” survival models (i.e. Kaplan Maier survival 

curves and Cox survival model) and machine learning based approach (Random 

Survival Forest) were used to analyze the prognostic impact of the molecular 

subtypes and Cell-of-Origin (iClusters) classifications for HPB cancers.  



Methods 

The Genome Cancer Atlas data 

The Genome Cancer Atlas (TGCA) data were retrieved trough the Multi-Center 

Mutation Calling in Multiple Cancers (MC3) project including over 10,000 tumor-

normal exome pairs across 33 different cancer types.(14) Whole exome sequencing 

data from patients with a diagnosis of cholangiocarcinoma (CHOL), colon 

adenocarcinoma (COAD), esophageal carcinoma (ESCA), liver hepatocellular 

carcinoma (LIHC),  pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma 

(READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal 

melanoma (UVM) were analyzed to identify somatic genes mutations. CHOL, LIHC, 

and PAAD patients were in the hepato-biliary-pancreatic (HPB) cohort, COAD, 

ESCA, READ, and STAD patients were in the gastrointestinal (GI) cohort while 

THCA and UVM patients were in the control cohort. In particular, 36 CHOL 

patients, 353 LIHC patients, 159 PAAD patients (HPB cohort, n= 548), 401 COAD 

patients, 153 ESCA patients, 148 READ patients, 398 STAD patients (GI cohort, n= 

1,100), 467 THCA patients, and 80 patients UVM (control cohort, n= 547) were 

included in the analyses. Genes mutated with a frequency greater than 3% in a single 

tumor type were included in the list of genes used as input of the artificial neural 

network (ANN). All 299 genes identified by Bailey et al. as cancers driver genes 

were also included in the list of genes for the ANN models.(8) Oncogenic signaling 

pathways were identified using the analyses of Sanchez-Vega et al. including (1) cell 

cycle, (2) Hippo signaling, (3) Myc signaling, (4) Notch signaling, (5) oxidative 

stress response/Nrf2, (6) PI-3-Kinase signaling, (7) receptor-tyrosine kinase 

(RTK)/RAS/MAP-Kinase signaling, (8) TGFb signaling, (9) p53 and (10) b-

catenin/Wnt signaling pathways.(9) All 334 genes involved in the ten pathways were 

also included in the list of genes for the ANN models. The mutational status of 5,079 

genes was selected as input variables for the ANN models.  

 



The Ohio State University data 

The first control cohort (the Ohio State University, OSU cohort) included CHOL, 

LIHC, and PAAD patients who participated at the Oncology Research Information 

Exchange Network (ORIEN) Avatar Data Collection and Integration Process at the 

Ohio State University. Whole exome sequencing data from patients in the OSU 

cohort were included in the analysis. The ORIEN Avatar Data Collection and 

Integration Process include nucleic acid extraction and a quality control of germline 

DNA and tumor DNA while library preparation includes a whole exome sequencing 

(WES) pipeline of the germline and tumor DNA to detect genetic mutation. For the 

tumor whole exome sequencing (WES T) frozen tissue was analyzed using the 

Qiagen QIASymphony for DNA and formalin-fixed paraffin-embedded (FFPE) 

tissue was analyzed using the Qiagen All prep FFPE DNA/RNA kit. Samples were 

converted to a sequencing-ready library for WES using the Roche Nimblegen SeqCap 

EZ Exome v3.0 (64Mb, Three Library Hyb) kit. Illumina HiSeq4000 was used to 

sequence the libraries with a target coverage/reads ratio of 100x for the germline 

whole exome sequencing (WES G) and 300x for the WES T. Sentieon (v. 201704.03) 

was the pipeline method for variant calling using the hg19/GRCh37 as reference 

genome.  

Molecular Data Quality Control Parameters for the OSU cohort 

Picard was used to generate quality control metrics. Desired depth was 300X for the 

WES T and samples were consider “failed” if the actual coverage after duplicate 

removal was less than 100X. A sample with >80% of bases with 20X or more 

coverage passed the threshold, otherwise, it was considered a “failed” sample. The 

number of quality variants called was required >20,000 with >20X read depth (to 

identify when a less complex library was constructed) and a sample “fails” if less 

than 20,000 variants were detected. 

Desired depth was 100X for the WES G and samples were consider “failed” if the 

actual coverage after duplicate removal is less than 50X. Predicted gender by X-



chromosome SNP heterozygosity and a sample was noted as “flag” if the predicted 

gender did not match the clinically reported gender. For WES data, single nucleotide 

polymorphism (SNP) concordance between tumor and germline samples from the 

same patients was “fail” if the SNP concordance was < 80% (mis-matched sample 

pair). A total of 96 samples were run per sequencing batch. Quality control was also 

performed at the batch level to catch any defects/mistakes not obvious at the 

individual sample level. 

The International Cancer Genome Consortium data 

The International Cancer Genome Consortium (ICGC) data were used as the second 

control cohort (ICGC cohort). ICGC cohort include WES data from patients in the 

Pancreatic Cancer – AU (PACA-AU), Pancreatic Cancer – CA (PACA-CA, Liver 

Cancer – CN (LICA-CN), Liver Cancer – FR (LICA-FR), Biliary Tract Cancer – JP 

(BTCA-JP), Biliary Tract Cancer – SG projects (BTCA-SG), and Thyroid Cancer - 

SA (THCA-SA) projects. In particular, 461 PACA-AU patients, 317 PACA-CA 

patients, 404 LICA-CN patients, 369 LICA- FR patients, 239 BTCA-JP patients, 71 

BTCA-SG patients, 243 THCA-SA patients, were included in the analyses. 

Artificial Neural Network 

The WES of TCGA patients was used as input of three artificial neural networks to 

predict anatomical site, i-Cluster, and cancers molecular subtypes. In a preliminary 

analysis the hyperparameters of the artificial neural network were tuned to identify 

the most accurate model. In particular, different values of batch size (100, 250, 350), 

epochs (100, 150, 250), dropout (0%, 10%, 20%, and 50%), kernel initializer 

(“uniform”, “normal”), optimizer (“Adam”, “Nadam”), activation (“relu”, “elu”), as 

well as the percentage of patients in the training and test sets (95%/5%, 90%/10%, 

and 80%/20%) were evaluated. The final hyperparameters resulted a batch size of 

250, 250 epochs, a dropout of 20%, a uniform kernel initializer, the Adam algorithm 

as optimizer, the relu function as activation, and 95% of patients in the training set 

versus 5% of patients in test sets. The Ohio Super Computer (OSC) center provides 



the computational power and storage to run the ANN analyses. OSC's Owens clusters 

were used to train and test the ANN.(15) 

Survival Analysis 

The TCGA, OSU, and ICGC data were merged and the survival analysis was 

performed using both the “classical” survival analysis (Kaplan Meier curves and Cox 

survival models) and machine learning algorithm (Random survival forest).  

Continuous variables were summarized as medians with interquartile ranges (IQR) 

while categorical variables were reported as whole numbers and percentages. The 

outcome for survival analyses was overall survival (OS), defined as the time interval 

between the date of surgery and the date of death. Time was censored at the date of 

last follow-up for living patients. OS estimates were calculated using the Kaplan-

Meier method. Cox proportional hazards models were used to evaluate associations 

between tumor stage and OS. The coefficients from the Cox models were 

subsequently reported as hazard ratio (HR) with corresponding 95% confidence 

intervals (CIs). In order to assess the performance of the survival models, the 

concordance index (C-index) was used.(16)   

Statistical Analysis 

Continuous variables were reported as median values with interquartile range (IQR), 

while discrete variables were reported as totals and frequencies. Univariate 

comparisons were performed using the chi-squared test or Fisher’s exact test as 

appropriate. A p-value of <0.05 (two-tailed) was considered statistically significant. 

All analyses were performed using R CRAN software, v. 3.5.1 and Python 3.6 with 

Anaconda 5.2. The R CRAN packages were used for the analyses included maftool, 

TCGAmutations. Python packages used for the analyses included keras, sklearn, and 

tensorflow. 

       



Results 

• Artificial Neural Network for Anatomical Types 

The artificial neural network (ANN) to predict the anatomical types (i.e. CHOL, 

COAD, ESCA, LIHC, PAAD, READ, STAD, THCA, and UVM) was trained on 

10,000 bootstrapped samples and validated on 106 samples. The ANN had 

77,937,079 total parameters with 77,937,079 trainable parameters. Overall the ANN 

had a loss value of 0.47 with an accuracy of 99% in the training set compared with 

loss value of 2.92 with an accuracy of 67% in the test set. 

Anatomical Types and Cholangiocarcinoma 

Among cholangiocarcinoma (CHOL) patients, 34 patients were in the training set and 

the model correctly classify all 34 (34/34; 100.0%) patients (Table 1a). Conversely, 

two patients were included in the test set and no patients (0/2; 0%) were correctly 

classified (Table 1b). Similarly, the ANN was used to predict the anatomical origin of 

17 CHOL patients in the OSU cohort and 311 CHOL patients in the ICGC cohort 

with no patients correctly classified (0/17; 0% and 0/311; 0%) (Table 2a and 2b). 

 

 

 

 

 

 

 

 

 



Table 1a. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - cholangiocarcinoma (CHOL), 34 (100.0%), training set, n= 34 
 

CHOL, n=33 Predicted Correct 
   CHOL 34 (100.0%) 34 (100.0%) 
   COAD   
   ESCA   
   LIHC   
   PAAD   
   READ   
   STAD   
   THCA   
   UVM   
Total 34 (100.0%) 34 (100.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 1b. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - cholangiocarcinoma (CHOL), test set, n=2 
 

CHOL, n=1 Predicted Correct 
   CHOL   
   COAD   
   ESCA 1 (50.0%)  
   LIHC 1 (50.0%)  
   PAAD   
   READ   
   STAD   
   THCA   
   UVM   
Total 2 (100.0%) 0 (0.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

 



 

 

Table 2a. The Ohio State University - artificial neural network predicting anatomical 
types - cholangiocarcinoma (CHOL), n=17 
 

CHOL, n=17 Predicted Correct 
   CHOL   
   COAD 4 (23.5%)  
   ESCA 1 (5.9%)  
   LIHC 4 (23.5%)  
   PAAD 1 (5.9%)  
   READ   
   STAD   
   THCA 7 (41.2%)  
   UVM   
Total 17 (100.0%) 0 (0.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 2b. The International Cancer Genome Consortium - artificial neural network 
predicting anatomical types - cholangiocarcinoma (CHOL), n=311 
 

CHOL, n=311 Predicted Correct 
   CHOL 0 (0.0%) 0 (0.0%) 
   COAD 38 (12.2%)  
   ESCA 17 (5.5%)  
   LIHC 94 (30.2%)  
   PAAD 26 (8.4%)  
   READ 34 (10.9%)  
   STAD 68 (21.9%)  
   THCA 32 (10.3%)  
   UVM 1 (0.3%)  
Total 311 (100.0%) 0 (0.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 



Anatomical Types and Hepatocellular Carcinoma 

Among hepatocellular carcinoma (LIHC) patients, 319 were in the training set and 

the model correctly classify 318 (318/319; 99.7%) patients (Table 3a). A total of 23 

patients were in test set and the ANN was able to correctly classify 17 (17/23; 73.9%) 

patients (Table 3b). Among the 30 OSU LIHC patients, the ANN correctly classified 

22 (22/39; 73.3%) patients (Table 4a). In the ICGC cohort, 651 patients had LIHC 

and the ANN model was able to correctly classify 275 (275/651; 42.2%) patients 

(Table 4b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3a. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - liver hepatocellular carcinoma (LIHC), training set, n=319 
 

LIHC, n=319 Predicted Correct 
   CHOL   
   COAD   
   ESCA   
   LIHC 318 (99.7%) 318 (99.7%) 
   PAAD   
   READ   
   STAD 1 (0.3%)  
   THCA   
   UVM   
Total 319 (100.0%) 318 (99.7%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

 

Table 3b. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - liver hepatocellular carcinoma (LIHC), test set, n=23 
 

LIHC, n=23 Predicted Correct 
   CHOL   
   COAD   
   ESCA 2 (8.7%)  
   LIHC 17 (73.9%) 17 (73.9%) 
   PAAD   
   READ   
   STAD 2 (8.7%)  
   THCA 2 (8.7%)  
   UVM   
Total 23 (100.0%) 17 (73.9%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 



 

Table 4a. The Ohio State University - artificial neural network predicting anatomical 
types - liver hepatocellular carcinoma (LIHC), n=30 
 

LIHC, n=30 Predicted Correct 
   CHOL   
   COAD 2 (6.7%)  
   ESCA   
   LIHC 22 (73.3%) 22 (73.3%) 
   PAAD   
   READ 1 (3.3%)  
   STAD 1 (3.3%)  
   THCA 4 (13.3%)  
   UVM   
Total 30 (100.0%) 22 (73.3%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

Table 4b. The International Cancer Genome Consortium - artificial neural network 
predicting anatomical types - liver hepatocellular carcinoma (LIHC), n=651 
 

LIHC, n=651 Predicted Correct 
   CHOL   
   COAD 98 (15.1%)  
   ESCA 20 (3.1%)  
   LIHC 275 (42.2%) 275 (42.2%) 
   PAAD 24 (3.7%)  
   READ 16 (2.5%)  
   STAD 153 (23.5%)  
   THCA 60 (9.2%)  
   UVM 5 (0.8%)  
Total 651 (100.0%) 275 (42.2%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 



Anatomical Types and Pancreatic Ductal Adenocarcinoma 

Among pancreatic ductal adenocarcinoma (PAAD) patients, 145 were in the training 

set and the model correctly classify 143 (143/145; 98.6%) patients (Table 5a). A total 

of 10 patients were included in the test set and the ANN was able to correctly classify 

7 (7/10; 70.0%) patients (Table 5b). Among the 67 OSU PAAD patients, the ANN 

correctly classified 25 (25/67; 37.3%) patients (Table 6a). In the ICGC cohort, 1,033 

patients had PAAD and the ANN model was able to correctly classify 261 

(261/1,033; 25.3%) patients (Table 6b). 

  



Table 5a. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - pancreatic adenocarcinoma (PAAD), training set, n=145 
 

PAAD, n=145 Predicted Correct 
   CHOL   
   COAD   
   ESCA   
   LIHC   
   PAAD 143 (98.6%) 143 (98.6%) 
   READ 2 (1.4%)  
   STAD   
   THCA   
   UVM   
Total 145 (100.0%) 143 (98.6%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 5b. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - pancreatic adenocarcinoma (PAAD), test set, n=10 
 

PAAD, n=10 Predicted Correct 
   CHOL 

 
 

   COAD 
 

 
   ESCA   
   LIHC 1 (10.0%)  
   PAAD 7 (70.0%) 7 (70.0%) 
   READ   
   STAD 1 (10.0%)  
   THCA 1 (10.0%)  
   UVM   
Total 10 (100.0%) 7 (70.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



Table 6a. The Ohio State University - artificial neural network predicting anatomical 
types - pancreatic adenocarcinoma (PAAD), n=67 
 

PAAD, n=67 Predicted Correct 
   CHOL   
   COAD   
   ESCA   
   LIHC 3 (4.5%)  
   PAAD 25 (37.3%) 25 (37.3%) 
   READ   
   STAD 3 (4.5%)  
   THCA 36 (53.7%)  
   UVM   
Total 67 (100.0%) 25 (37.3%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

Table 6b. The International Cancer Genome Consortium - artificial neural network 
predicting anatomical types - pancreatic adenocarcinoma (PAAD), n=1,033 
 

PAAD, n=1,033 Predicted Correct 
   CHOL   
   COAD 137 (13.3%)  
   ESCA 153 (14.8%)  
   LIHC 62 (6.0%)  
   PAAD 261 (25.3%) 261 (25.3%) 
   READ 24 (2.3%)  
   STAD 374 (36.2%)  
   THCA 24 (2.1%)  
   UVM   
Total 1,033 (100.0%) 261 (25.3%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



Anatomical Types and Gastrointestinal Cancers 

Anatomical Types and Esophagus Cancers 

Among esophagus cancers (ESCA) patients, 145 were in the training set and the 

model correctly classify 145 (145/145; 100.0%) patients (Table 7a). A total of 8 

patients were included in the test set and the ANN was able to correctly classify 2 

(2/8; 25.0%) patients (Table 7b). 

Anatomical Types and Gastric Adenocarcinoma 

Among gastric adenocarcinoma (STAD) patients, 382 were in the training set and the 

model correctly classify 382 (382/382; 100.0%) patients (Table 8a). A total of 13 

patients were included in the test set and the ANN was able to correctly classify 5 

(5/13; 38.5%) patents (Table 8b). 

Anatomical Types and Colon Adenocarcinoma 

Among colon adenocarcinoma (COAD) patients, 344 were in the training set and the 

model correctly classify 343 (343/344; 99.7%) patients (Table 9a). A total of 20 

patients were included in the test set and the ANN was able to correctly classify 17 

(17/20; 85.0%) patients (Table 9b).  

Anatomical Types and Rectal Adenocarcinoma 

Among rectal adenocarcinoma (READ) patients, 126 were in the training set and the 

model correctly classify 125 (125/126; 99.2%) patients (Table 10a). A total of 5 

patients were included in the test set and no patients were correctly classified by the 

ANN (0/5; 0%)(Table 10b). 

 

 

  



 

Table 7a. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - esophageal carcinoma (ESCA), training set, n=145 
 

ESCA, n=145 Predicted Correct 
   CHOL   
   COAD   
   ESCA 145 (100.0%) 145 (100.0%) 
   LIHC   
   PAAD   
   READ   
   STAD   
   THCA   
   UVM   
Total 145 (100.0%) 145 (100.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 7b. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - esophageal carcinoma (ESCA), test set, n=8 
 

ESCA, n=8 Predicted Correct 
   CHOL   
   COAD   
   ESCA 2 (25.0%) 2 (25.0%) 
   LIHC 3 (37.5%)  
   PAAD   
   READ   
   STAD 3 (37.5%)  
   THCA   
   UVM   
Total 8 (100.0%) 2 (25.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



 

Table 8a. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - stomach adenocarcinoma (STAD), training set, n=382 
 

STAD, n=382 Predicted Correct 
   CHOL   
   COAD   
   ESCA   
   LIHC   
   PAAD   
   READ   
   STAD 382 (100.0%) 382 (100.0%) 
   THCA   
   UVM   
Total 382 (100.0%) 382 (100.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 8b. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - stomach adenocarcinoma (STAD), test set, n=13 
 

STAD, n=13 Predicted Correct 
CHOL   
COAD 2 (15.4%)  
ESCA 3 (23.1%)  
LIHC 3 (23.1%)  
PAAD   
READ   
STAD 5 (38.5%) 5 (38.5%) 
THCA   
UVM   
Total 13 (100.0%) 5 (38.5%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



 

Table 9a. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - colon adenocarcinoma (COAD), training set, n=344 
 

COAD, n=344 Predicted Correct 
   CHOL   
   COAD 343 (99.7%) 343 (99.7%) 
   ESCA   
   LIHC   
   PAAD   
   READ 1 (0.3%)  
   STAD   
   THCA   
   UVM   
Total 344 (100.0%) 343 (99.7%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 9b. The Cancer Genome Atlas - artificial neural network predicting anatomical 
types - colon adenocarcinoma (COAD), test set, n=20 
 

COAD, n=20 Predicted Correct 
   CHOL   
   COAD 17 (85.0%) 17 (85.0%) 
   ESCA   
   LIHC   
   PAAD 1 (5.0%)  
   READ 1 (5.0%)  
   STAD 1 (5.0%)  
   THCA   
   UVM   
Total 20 (100.0%) 17 (85.0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



 

Table 10a. The Cancer Genome Atlas - artificial neural network predicting 
anatomical types - rectum adenocarcinoma (READ), training set, n=126 
 

READ, n=126  Predicted Correct 
   CHOL   
   COAD   
   ESCA 1 (0.8%)  
   LIHC   
   PAAD   
   READ 125 (99.2%) 125 (99.2%) 
   STAD   
   THCA   
   UVM   
Total 126 (100.0%) 125 (99.2%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 10b. The Cancer Genome Atlas - artificial neural network predicting 
anatomical types - rectum adenocarcinoma (READ), test set, n=5 

 

READ, n=7  Predicted Correct 
   CHOL   
   COAD 5 (100.0%) 0 (0%) 
   ESCA   
   LIHC   
   PAAD   
   READ   
   STAD   
   THCA   
   UVM   
Total 5 (100.0%) 0 (0%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



Anatomical Types and Control Cancers 

Anatomical Types and Thyroid Carcinoma  

Among thyroid carcinoma (THCA) patients, 439 were in the training set and the 

model correctly classify 439 (439/1439; 100%) patients (Table 11a). A total of 22 

patients were included in the test set and no patients were correctly classified by the 

ANN (21/22; 95.5%)(Table 11b). In the ICGC cohort, 239 patients had THCA and 

the ANN model was able to correctly classify 216 (216/239; 90.4%) patients (Table 

12). 

Anatomical Types and Uveal Melanoma 

Among uveal melanoma (UVM) patients, 77 were in the training set and the model 

correctly classify 125 (76/77; 98.7%) patients (Table 13a). A total of 3 patients were 

included in the test set and two patients (2/3; 66.7%) were correctly classified by the 

ANN (Table 13b). 

 

  



Table 11a. The Cancer Genome Atlas - artificial neural network predicting 
anatomical types - thyroid carcinoma (THCA), training set, n=439 
 

THCA, n=439 Predicted Correct 
   CHOL   
   COAD 1 (0.2%)  
   ESCA   
   LIHC 1 (0.2%)  
   PAAD   
   READ   
   STAD   
   THCA 437 (99.5%) 437 (99.5%) 
   UVM   
Total 439 (100.0%) 437 (99.5%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 11b. The Cancer Genome Atlas - artificial neural network predicting 
anatomical types - thyroid carcinoma (THCA), test set, n=22 
 

THCA, n=22 Predicted Correct 
   CHOL   
   COAD   
   ESCA   
   LIHC   
   PAAD 1 (5.5%)  
   READ   
   STAD   
   THCA 21 (95.5%) 21 (95.5%) 
   UVM   
Total 22 (100.0%) 21 (95.5%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



 

Table 12. The International Cancer Genome Consortium - artificial neural network 
predicting anatomical types - thyroid carcinoma (THCA), n=239 
 

THCA, n=239 Predicted Correct 
   CHOL   
   COAD   
   ESCA   
   LIHC 13 (5.4%)  
   PAAD 7 (2.9%)  
   READ 1 (0.4%)  
   STAD   
   THCA 216 (90.4%) 216 (90.4%) 
   UVM 2 (0.8%)  
Total 239 (100.0%) 216 (90.4%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

  



 

Table 13a. The Cancer Genome Atlas - artificial neural network predicting 
anatomical types - uveal melanoma (UVM), training set, n=77 
 

UVM, n=77 Predicted Correct 
   CHOL   
   COAD   
   ESCA 1 (1.3%)  
   LIHC   
   PAAD   
   READ   
   STAD   
   THCA   
   UVM 76 (98.7%) 76 (98.7%) 
Total 77 (100.0%) 76 (98.7%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

 

Table 13b. The Cancer Genome Atlas - artificial neural network predicting 
anatomical types - uveal melanoma (UVM), test set, n=3 
 

UVM, n=3 Predicted Correct 
   CHOL   
   COAD   
   ESCA   
   LIHC   
   PAAD   
   READ   
   STAD 1 (33.3%)  
   THCA   
   UVM 2 (66.7%) 2 (66.7%) 
Total 3 (100.0%) 2 (66.7%) 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), and uveal melanoma (UVM) 
 

  



• Artificial Neural Network for iClusters 

The artificial neural network (ANN) to predict the iCluster (i.e. from iCluster 1 to 

iCluster 28) was trained on 10,000 bootstrapped samples and validated on 106 

samples. The ANN had 77,579,658 total parameters with 77,579,658 trainable 

parameters. Overall the ANN had a loss value of 0.41 with an accuracy of 99% in the 

training set compared with a loss value of 2.82 with and an accuracy of 74% in the 

test set. 

iClusters among Cholangiocarcinoma 

A total of 10 iClusters were identified for cholangiocarcinoma (CHOL) patients. 

Among CHOL patients, 34 patients were in the training set and the model correctly 

classify all 33 (33/34; 97.1%) patients (Table 14a). The training set includes patients 

in 10 iClusters and the ability to predict the correct iCluster ranged between 100% 

(iClusters 3, 8, 10, 14, 19, 25, 26, and 28) to 85.7% (iCluster 20)(Table 14a). 

Conversely, two patients were included in the test and one (1/2; 50%) patient was 

correctly classified (Table 14b). The test set includes patients in 2 iClusters and the 

ability to predict the correct iCluster ranged was 100% for iClusters 10 while one 

(1/2; 50%) patients was predicted to be in an “unexpected” iCluster (iCluster 4). 

Among the 17 OSU CHOL patients, the ANN predicted two patients in “expected” 

iClusters (2/17; 11.8%; iClusters 10 and 20) while 15 (15/17; 88.2%) patients were in 

“unexpected iClusters (iClusters 4 and 18)(Table 15a). In the ICGC cohort, 311 

patients had CHOL and the ANN model was able to classify in “expected” iCluster 

44 (44/311; 14.1%) patients while 267 (267/311; 85.8%) patients were in 

“unexpected iClusters (iClusters 4, 18, and 27)(Table 15b). 

 

  



Table 14a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- cholangiocarcinoma (CHOL), 34 (100.0%), training set, n= 34 
 

CHOL, n=34 Actual Predicted Correct 
   1    
   2    
   3 1 (2.9%) 1 1 (100.0%) 
   4    
   5    
   7    
   8 2 (5.9%) 2 2 (100.0%) 
   9    
   10 1 (2.9%) 1 1 (100.0%) 
   12    
   13    
   14 10 (29.4%) 10 10 (100.0%) 
   15    
   17    
   18    
   19 2 (5.9%) 3 2 (100.0%) 
   20 7 (20.6%) 6 6 (85.7%%) 
   21    
   22    
   25 4 (11.8%)) 4 4 (100%) 
   26 2 (5.9%) 2 2 (100%) 
   27    
   28 5 (14.7%) 5 5 (100%) 
Total 34 (100.0%)  33 (97.1%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

 

  



Table 14b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- cholangiocarcinoma (CHOL), test set, n=2 

 

CHOL, n=2 Actual Predicted Correct 
   1    
   2    
   3    
   4  1  
   5    
   7 1 (50%)   
   8    
   9    
   10 1 (50%) 1 1 (100%) 
   12    
   13    
   14    
   15    
   17    
   18    
   19    
   20    
   21    
   22    
   25    
   26    
   27    
   28    
Total 2 (100.0%)  1 (50%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 15a. The Ohio State University - artificial neural network predicting iClusters - 
cholangiocarcinoma (CHOL), n=17 
 

CHOL, n=17 Predicted Correct 
   1   
   2   
   3   
   4 13 (76.5%)  
   5   
   7   
   8   
   9   
   10 1 (5.9%) 1 
   12   
   13   
   14   
   15   
   17   
   18 2 (11.8%)  
   19   
   20 1 (5.9%) 1 
   21   
   22   
   25   
   26   
   27   
   28   
Total 17 (100%) 2 (11.8%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

  



Table 15b. The International Cancer Genome Consortium - artificial neural network 
predicting iClusters - cholangiocarcinoma (CHOL), n=311 
 

CHOL, n=311 Predicted Correct 
   1   
   2   
   3   
   4 188 (60.5%)  
   5   
   7   
   8   
   9   
   10 13 (4.2%) 13 (4.2%) 
   12   
   13   
   14 7 (2.3%) 7 (2.3%) 
   15   
   17   
   18 72 (23.2%)  
   19 1 (0.3%) 1 (0.3%) 
   20 13 (4.2%) 13 (4.2%) 
   21   
   22   
   25 6 (1.9%) 6 (1.9%) 
   26   
   27 7 (2.3%)  
   28 4 (1.3%) 4 (1.3%) 
Total 311 (100%) 44 (14.1%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

 

 

 

 

 

 



iClusters among Hepatocellular Carcinoma 

A total of 11 iClusters were identified for hepatocellular carcinoma (LIHC) patients. 

Among LIHC patients, 319 patients were in the training set and the model correctly 

classify all 33 (318/319; 99.7%) patients (Table 16a). The training set includes 

patients in 11 iClusters and the ability to predict the correct iCluster ranged between 

100% (iClusters 3, 7, 10, 13, 14, 17, 20, 22, 25, and 26) to 50% (iCluster 1)(Table 

16a). A total of 23 patients were included in the test set and 21 (21/23; 91.3%) 

patients were correctly classified (Table 16b). The test set included patients in 2 

iClusters and the ability to predict the correct iCluster was 100% for iCluster 26 

while no patients were predicted to be in an “unexpected” iClusters. Among the 30 

OSU LIHC patients, the ANN predicted 30 patients in “expected” iClusters (30/30; 

100%; iClusters 3 and 26) and no patient was in “unexpected iCluster (Table 17a). In 

the ICGC cohort, 651 patients had LIHC and the ANN model was able to classify in 

“expected” iClusters 420 (420/651; 64.5%) patients while 231 (231/651; 35.5%) 

patients were in “unexpected” iClusters (iClusters 4 and 18)(Table 17b). 

  



Table 16a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- liver hepatocellular carcinoma (LIHC), training set, n=319 
 

LIHC, n=319 Actual Predicted Correct 
   1 2 (0.6%) 1 1 (50%) 
   2    
   3 4 (1.3%) 4 4 (100%) 
   4    
   5    
   7 2 (0.6%) 2 2 (100%) 
   8    
   9    
   10 1 (0.3%) 1 1 (100%) 
   12    
   13 1 (0.3%) 1 1 (100%) 
   14 4 (1.3%) 4 4 (100%) 
   15    
   17 1 (0.3%) 1 1 (100%) 
   18    
   19    
   20 11 (3.4%) 12 11 (100%) 
   21    
   22 2 (0.6%) 2 2 (100%) 
   25 5 (1.6%) 5 5 (100%) 
   26 286 (89.7%) 286 286 (100%) 
   27    
   28    
Total 319 (100.0%)  318 (99.7%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 16b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- liver hepatocellular carcinoma (LIHC), test set, n=23 

 

LIHC, n=23 Actual Predicted Correct 
   1    
   2    
   3    
   4    
   5    
   7    
   8    
   9    
   10    
   12    
   13    
   14    
   15    
   17    
   18    
   19    
   20 2 (8.7%)   
   21    
   22    
   25    
   26 21 (91.3%) 23 21 (100%) 
   27    
   28    
Total 23 (100.0%)  21 (91.3%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 17a. The Ohio State University - artificial neural network predicting iClusters - 
liver hepatocellular carcinoma (LIHC), n=30 
 

LIHC, n=30 Predicted Correct 
   1   
   2   
   3 1 (3.3%) 1 (3.3%) 
   4   
   5   
   7   
   8   
   9   
   10   
   12   
   13   
   14   
   15   
   17   
   18   
   19   
   20   
   21   
   22   
   25   
   26 29 (96.7%) 29 (96.7%) 
   27   
   28   
Total 30 (100%) 30 (100%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

  



Table 17b. The International Cancer Genome Consortium - artificial neural network 
predicting iClusters - liver hepatocellular carcinoma (LIHC), n=651 

 

LIHC, n=651 Predicted Correct 
   1   
   2   
   3   
   4 52 (8%)  
   5   
   7   
   8   
   9   
   10   
   12   
   13   
   14   
   15   
   17   
   18 179 (27.5%)  
   19   
   20 15 (2.3%) 15 (2.3%) 
   21   
   22   
   25   
   26 405 (62.2%) 405 (62.2%) 
   27   
   28   
Total 651 (100%) 420 (64.5%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

 

  



iClusters among Pancreatic Ductal Adenocarcinoma 

A total of 11 iClusters were identified for pancreatic ductal adenocarcinoma (PAAD) 

patients. Among PAAD patients, 145 patients were in the training set and the model 

correctly classify 144 (144/145; 99.3%) patients (Table 18a). The training set 

includes patients in 11 iClusters and the ability to predict the correct iCluster ranged 

between 100% (iClusters 2, 3, 4, 5, 7, 9, 10, 13, 18, and 22) to 99.2% (iCluster 

20)(Table 18a). A total of 10 patients were included in the test set and 9 (9/10; 90%) 

patients were correctly classified (Table 18b). The test set includes patients in 2 

iClusters and the ability to predict the correct iCluster was 100% for iClusters 20 

while no patients were predicted to be in an “unexpected” iClusters. Among the 67 

OSU PAAD patients, the ANN predicted 66 patients in “expected” iClusters (66/67; 

98.5%; iCluster 20) and one patient was in “unexpected” iCluster (iCluster 26)(Table 

19a). In the ICGC cohort, 1,033 patients had PAAD and the ANN model was able to 

classify in “expected” iClusters 1,016 (1,016/1,033; 98.4%) patients while 17 patients 

were in “unexpected” iClusters (iCluster 26)(Table 19b). 

 

  



Table 18a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- pancreatic adenocarcinoma (PAAD), training set, n=145 
 

PAAD, n=145 Actual Predicted Correct 
   1    
   2 1 (0.7%) 1 1 (100%) 
   3 1 (0.7%) 1 1 (100%) 
   4 1 (0.7%) 1 1 (100%) 
   5 3 (2.1%) 3 3 (100%) 
   7 3 (2.1%) 3 3 (100%) 
   8    
   9 1 (0.7%) 1 1 (100%) 
   10 2 (1.4%) 2 2 (100%) 
   12    
   13 1 (0.7%) 1 1 (100%) 
   14    
   15    
   17    
   18 1 (0.7%) 1 1 (100%) 
   19    
   20 128 (88.3%) 127 127 (99.2%) 
   21    
   22 3 (2.1%) 3 3 (100%) 
   25    
   26  1  
   27    
   28    
Total 145 (100.0%)  144 (99.3%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 18b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- pancreatic adenocarcinoma (PAAD), test set, n=10 
 

PAAD, n=10 Actual Predicted Correct 
   1    
   2    
   3    
   4  1  
   5    
   7    
   8    
   9    
   10    
   12    
   13 1 (10%)   
   14    
   15    
   17    
   18    
   19    
   20 9 (90%) 9 9 (100%) 
   21    
   22    
   25    
   26    
   27    
   28    
Total 10 (100.0%)  9 (90%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

 

  



Table 19a. The Ohio State University - artificial neural network predicting iClusters - 
pancreatic adenocarcinoma (PAAD), n=67 

 

PAAD, n=67 Predicted Correct 
   1   
   2   
   3   
   4   
   5   
   7   
   8   
   9   
   10   
   12   
   13   
   14   
   15   
   17   
   18   
   19   
   20 66 (98.5%) 66 (98.5%) 
   21   
   22   
   25   
   26 1 (1.5%)  
   27   
   28   
Total 67 (100%) 66 (98.5%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

  



Table 19b. The International Cancer Genome Consortium - artificial neural network 
predicting iClusters - pancreatic adenocarcinoma (PAAD), n=1,033 

 

PAAD, n=1,033 Predicted Correct 
   1   
   2 1 (0.1%) 1 (0.1%) 
   3   
   4 111 (10.7%) 111 (10.7%) 
   5   
   7   
   8   
   9   
   10   
   12   
   13   
   14   
   15   
   17   
   18 587 (56.8%) 587 (56.8%) 
   19   
   20 317 (30.7%) 317 (30.7%) 
   21   
   22   
   25   
   26 17 (1.6%) 17 (1.6%) 
   27   
   28   
Total 1,033 (100%) 1,016 (98.4%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

  



iClusters among Gastrointestinal Cancers 

iClusters among Esophagus Cancers 

A total of 10 iClusters were identified for esophagus cancers (ESCA) patients. 

Among ESCA patients, 145 patients were in the training set and the model correctly 

classify 145 (145/145; 100%) patients (Table 20a). The training set includes patients 

in 10 iClusters and the ability to predict the correct iCluster was 100% (iClusters 2, 4, 

7, 10, 13, 17, 18, 20, 25, and 27)(Table 20a). A total of 8 patients were included in 

the test set and 2 (2/8; 25.0%) patients were correctly classified (Table 20b). The test 

set includes patients in 5 iClusters and the ability to predict the correct iCluster was 

100% for iCluster 18 while 2 patients were predicted to be in an “unexpected” 

iClusters (iCluster 26)(Table 20b).  

iClusters among Gastric Adenocarcinoma 

A total of 15 iClusters were identified for gastric adenocarcinoma (STAD) patients. 

Among STAD patients, 382 patients were in the training set and the model correctly 

classify 380 (380/382; 99.5%) patients (Table 21a). The training set includes patients 

in 16 iClusters and the ability to predict the correct iCluster ranged from 100% 

(iClusters 1, 2, 3, 4, 7, 10, 13, 14, 17, 18, 20, 21, 22, 25, and 27) to 80% (iCluster 

10)(Table 21a). A total of 13 patients were included in the test set and 7 (7/13; 

53.8%) patients were correctly classified (Table 21b). The test set includes patients in 

6 iClusters and the ability to predict the correct iCluster ranged from 100% (iCluster 

4) to 50% (iCluster 18) while no patients were predicted to be in an “unexpected” 

iClusters. 

iClusters among Colon Adenocarcinoma 

A total of 5 iClusters were identified for colon adenocarcinoma (COAD) patients. 

Among COAD patients, 344 patients were in the training set and the model correctly 

classify 341 (341/344; 99.1%) patients (Table 22a). The training set includes patients 

in 5 iClusters and the ability to predict the correct iCluster ranged from 100% 

(iClusters 2, 4, and 14) to 97.5% (iClusters 18 and 20)(Table 22a). A total of 20 

patients were included in the test set and 12 (12/20; 60%) patients were correctly 



classified (Table 22b). The test set includes patients in 4 iClusters and the ability to 

predict the correct iCluster was 85.7% (iClusters 4) while no patients was predicted 

to be in an “unexpected” iClusters. 

iClusters among Rectal Adenocarcinoma 

A total of 4 iClusters were identified for rectal adenocarcinoma (READ) patients. 

Among READ patients, 126 patients were in the training set and the model correctly 

classify 126 (126/126; 100%) patients (Table 23a). The training set includes patients 

in 4 iClusters and the ability to predict the correct iCluster was 100% (iClusters 2, 4, 

18, and 20)(Table 23a). A total of 5 patients were included in the test set and 3 (3/5; 

60%) patients were correctly classified (Table 23b). The test set includes patients in 2 

iClusters and the ability to predict the correct iCluster was 100% (iCluster 4) while 

no patients was predicted to be in an “unexpected” iClusters. 

  



Table 20a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- esophageal carcinoma (ESCA), training set, n=145 
 

ESCA, n=145 Actual Predicted Correct 
   1    
   2 2 (1.4%) 2 2 (100%) 
   3    
   4 5 (3.4%) 5 5 (100%) 
   5    
   7 3 (2.1%) 3 3 (100%) 
   8    
   9    
   10 27 (18.6%) 27 27 (100%) 
   12    
   13 1 (0.7%) 1 1 (100%) 
   14    
   15    
   17 2 (1.4%) 2 2 (100%) 
   18 40 (27.6%) 40 40 (100%) 
   19    
   20 17 (11.7%) 17 17 (100%) 
   21    
   22    
   25 40 (27.6%) 40 40 (100%) 
   26    
   27 8 (5.5%) 8 8 (100%) 
   28    
Total 145 (100.0%)  145 (100%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 20b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- esophageal carcinoma (ESCA), test set, n=8 

 

ESCA, n=8 Actual Predicted Correct 
   1    
   2    
   3    
   4  1  
   5    
   7 1 (12.5%)   
   8    
   9    
   10 2 (25%) 1  
   12    
   13    
   14    
   15    
   17    
   18 2 (25%) 4 2 (100%) 
   19    
   20 1 (12.5%)   
   21    
   22    
   25    
   26  2  
   27 2 (25%)   
   28    
Total 8 (100.0%)  2 (25%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 21a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- stomach adenocarcinoma (STAD), training set, n=382 
 

STAD, n=382 Actual Predicted Correct 
   1 31 (8.1%) 32 31 (100%) 
   2 14 (3.7%) 14 14 (100%) 
   3 1 (0.3%) 1 1 (100%) 
   4 23 (6%) 23 23 (100%) 
   5    
   7 11 (2.9%) 11 11 (100%) 
   8    
   9    
   10 10 (2.6%) 8 8 (80%) 
   12    
   13 1 (0.3%) 1 1 (100%) 
   14 1 (0.3%) 1 1 (100%) 
   15    
   17 1 (0.3%) 1 1 (100%) 
   18 110 (28.8%) 110 110 (100%) 
   19    
   20 165 (43.2%) 166 165 (100%) 
   21 1 (0.3%) 1 1 (100%) 
   22 4 (1%) 4 4 (100%) 
   25 7 (1.8%) 7 7 (100%) 
   26    
   27 2 (0.5%) 2 2 (100%) 
   28    
Total 382 (100.0%)  380 (99.5%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 21b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- stomach adenocarcinoma (STAD), test set, n=13 
 

STAD, n=13 Actual Predicted Correct 
   1 1 (7.7%)   
   2 2 (15.4%)   
   3    
   4 1 (7.7%) 4 1 (100%) 
   5    
   7    
   8    
   9    
   10    
   12    
   13    
    14    
   15    
   17    
   18 2 (15.4%) 1 1 (50%) 
   19    
   20 6 (46.2%) 8 5 (83.3%) 
   21    
   22    
   25 1 (7.7%)   
   26    
   27    
   28    
Total 13 (100.0%)  7 (53.8%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 22a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- colon adenocarcinoma (COAD), training set, n=344 

 

COAD, n=344 Actual Predicted Correct 
   1    
   2 2 (0.6%) 2 2 (100%) 
   3    
   4 238 (69.2%) 239 238 (100%) 
   5    
   7    
   8    
   9    
   10    
   12  1  
   13    
   14 1 (0.3%) 1 1 (100%) 
   15    
   17    
   18 80 (23.3%) 79 78 (97.5%) 
   19    
   20 23 (6.7%) 22 22 (95.7%) 
   21    
   22    
   25    
   26    
   27    
   28    
Total 344 (100.0%)  341 (99.1%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 22b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- colon adenocarcinoma (COAD), test set, n=20 

 

COAD, n=20 Actual Predicted Correct 
   1    
   2    
   3    
   4 14 (70%) 16 12 (85.7%) 
   5    
   7 1 (5%)   
   8    
   9    
   10    
   12    
   13    
   14    
   15    
   17    
   18 1 (5%) 4  
   19    
   20 4 (20%)   
   21    
   22    
   25    
   26    
   27    
   28    
Total 20 (100.0%)  12 (60%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 



Table 23a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- rectum adenocarcinoma (READ), training set, n=126 

 

READ, n=126 Actual Predicted Correct 
   1    
   2 2 (1.6%) 2 2 (100%) 
   3    
   4 112 (88.9%) 112 112 (100%) 
   5    
   7    
   8    
   9    
   10    
   12    
   13    
    14    
   15    
   17    
   18 4 (3.2%) 4 4 (100%) 
   19    
   20 8 (2.3%) 8 8 (100%) 
   21    
   22    
   25    
   26    
   27    
   28    
Total 126 (100.0%)  126 (100%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 23b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- rectum adenocarcinoma (READ), test set, n=5 
 

READ, n=5 Actual Predicted Correct 
   1    
   2    
   3    
   4 3 (60%) 5 3 (100%) 
   5    
   7    
   8    
   9    
   10    
   12    
   13    
    14    
   15    
   17    
   18    
   19    
   20 2 (10%)   
   21    
   22    
   25    
   26    
   27    
   28    
Total 5 (100.0%)  3 (60%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

 

  



iClusters among Control Cancers 

iClusters among Thyroid Carcinoma  

A total of 4 iClusters were identified for thyroid carcinoma (THCA) patients. Among 

THCA patients, 439 patients were in the training set and the model correctly classify 

438 (438/439; 99.8%) patients (Table 24a). The training set includes patients in 4 

iClusters and the ability to predict the correct iCluster ranged from 100% (iClusters 

12, 14, and 22) to 67% (iCluster 20)(Table 24a). A total of 22 patients were included 

in the test set and 22 (22/22; 100%) patients were correctly classified (Table 24b). 

The test set includes patients in one iCluster and the ability to predict the correct 

iCluster was 100% (iCluster 12) while no patients were predicted to be in an 

“unexpected” iClusters. In the ICGC cohort, 239 patients had THCA and the ANN 

model was able to classify in “expected” iCluster 234 (234/239; 97.9%) patients 

while one patient was in “unexpected” iClusters (iCluster 15)(Table 25). 

iClusters among Uveal Melanoma 

A total of 3 iClusters were identified for uveal melanoma (UVM) patients. Among 

UVM patients, 77 patients were in the training set and the model correctly classify 76 

(76/77; 98.7%) patients (Table 26a). The training set includes patients in 3 iClusters 

and the ability to predict the correct iCluster ranged from 100% (iClusters 3 and 15) 

to 93% (iClusters 5) (Table 26a). A total of 3 patients were included in the test set 

and 1 (1/3; 33.3%) patients was correctly classified (Table 26b). The test set includes 

patients in 3 iClusters and the ability to predict the correct iCluster was 33.3% 

(iCluster 15) while one patient was predicted to be in an “unexpected” iCluster 

(iCluster 12). 

  



Table 24a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- thyroid carcinoma (THCA), training set, n=439 

 

THCA, n=439 Actual Predicted Correct 
   1    
   2    
   3    
   4    
   5    
   7    
   8    
   9    
   10    
   12 433 (98.6%) 433 433 (100%) 
   13    
   14 2 (0.5%) 2 2 (100%) 
   15    
   17    
   18    
   19    
   20 3 (0.7%) 2 2 (66.7%) 
   21    
   22 1 (0.2%) 1 1 (100%) 
   25  1  
   26    
   27    
   28    
Total 439 (100.0%)  438 (99.8%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 24b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- thyroid carcinoma (THCA), test set, n=22 
 

THCA, n=22 Actual Predicted Correct 
   1    
   2    
   3    
   4    
   5    
   7    
   8    
   9    
   10    
   12 22 (100%) 22 22 (100%) 
   13    
   14    
   15    
   17    
   18    
   19    
   20    
   21    
   22    
   25    
   26    
   27    
   28    
Total 22 (100.0%)  22 (100%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



Table 25. The International Cancer Genome Consortium - artificial neural network 
predicting iClusters - thyroid carcinoma (THCA), n=239 

 

THCA, n=239 Predicted Correct 
   1 1 (0.4%)  
   2   
   3   
   4 3 (1.3%)  
   5   
   7   
   8   
   9   
   10   
   12 234 (97.9%) 234 (97.9%) 
   13   
   14   
   15 1 (0.4%)  
   17   
   18   
   19   
   20   
   21   
   22   
   25   
   26   
   27   
   28   
Total 239 (100.0%) 234 (97.9%) 
In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 

 

  



Table 26a. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- uveal melanoma (UVM), training set, n=77 
 

UVM, n=77 Actual Predicted Correct 
   1    
   2    
   3 5 (6.5%) 5 5 (100%) 
   4    
   5 15 (19.5%) 14 14 (93.3%) 
   7    
   8    
   9    
   10    
   12    
   13    
   14    
   15 57 (74%) 58 57 (100%) 
   17    
   18    
   19    
   20    
   21    
   22    
   25    
   26    
   27    
   28    
Total 77 (100.0%)  76 (98.7%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

 

  



Table 26b. The Cancer Genome Atlas - artificial neural network predicting iClusters 
- uveal melanoma (UVM), test set, n=3 
 

STAD, n=3 Actual Predicted Correct 
   1    
   2    
   3    
   4    
   5  1  
   7    
   8    
   9    
   10    
   12  1  
   13    
   14    
   15 3 (100%) 1 1 (33.3%) 
   17    
   18    
   19    
   20    
   21    
   22    
   25    
   26    
   27    
   28    
Total 3 (100.0%)  1 (33.3%) 

In gray the iClusters identified in Hoadley KA et al. Cell. 2018;173(2):291-304 e6. 
 

  



• Artificial Neural Network for Molecular Subtypes 

The artificial neural network (ANN) was trained to predict the HPB molecular 

subtypes (i.e.  ECC, IDH, METH-2, METH-3, iClust1, iClust2, iClust3, KRAS_mut, 

and KRAS _wt) while the integrative GI molecular subtypes (i.e. CIN, MSI, GS, 

ESCC, POLE, and EBV) were used as control groups in the ANN. The ANN was 

trained on 10,000 bootstrapped samples and validated on 67 samples. The ANN had 

77,578,345 total parameters with 77,578,345 trainable parameters. Overall the ANN 

had a loss value of 0.54 with an accuracy of 99% in the training set compared with 

loss value of 1.98 with an accuracy of 81% in the training set. 

Molecular Subtypes of Cholangiocarcinoma 

A total of 4 molecular subtypes were identified for cholangiocarcinoma (CHOL) 

patients including ECC, IDH, METH 2, and METH-3. Among CHOL patients, 33 

patients were in the training set and the model correctly classify all 32 (32/33; 97.0%) 

patients (Table 27a). The training set includes patients in 4 molecular subtypes and 

the ability to predict the correct cluster ranged between 100% (ECC, IDH, and 

METH-2) to 90.9% (METH-3) (Table 27a). Conversely, one patient was included in 

the test set and was wrongly classified (0/1; 0%)(Table 27b). The test set included 

patients in one molecular subtype and no patients was predicted to be in an 

“unexpected” molecular subtype. Among the 17 OSU CHOL patients, the ANN 

predicted 8 patients in “expected” molecular subtypes (8/17; 47.1%; METH-3) while 

no patients were in “unexpected” molecular subtypes (Table 28a). In the ICGC 

cohort, 311 patients had CHOL and the ANN model was able to classify in 

“expected” molecular subtypes 93 (93/311; 29.9%) patients while 224 (224/311; 

72.0%) patients were in “unexpected” molecular subtypes (CIN, MSI, GS, POLE, 

and ESCC)(Table 28b). 

  



 

Table 27a. The Cancer Genome Atlas - artificial neural network predicting molecular 
subtypes - cholangiocarcinoma (CHOL), training set, n=33 
 

CHOL, n=33 Actual Predicted Correct 
   ECC 6 (18.2%) 6 6 (100.0%) 
   IDH 9 (27.3%) 9 9 (100.0%) 
   METH-2 7 (21.2%) 7 7 (100.0%) 
   METH-3 11(33.3%) 10 10 (90.9%) 
   iCluster-2  1  
Total 33 (100.0%)  32 (97.0%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 27b. The Cancer Genome Atlas - artificial neural network predicting 
molecular subtypes - cholangiocarcinoma (CHOL), test set, n=1 

 

CHOL, n=1 Actual Predicted Correct 
   ECC    
   IDH    
   METH-2  1  
   METH-3 1(100.0%)   
Total 1(100.0%)  0 (0.0%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

  



 

Table 28a. The Ohio State University - artificial neural network predicting molecular 
subtypes - cholangiocarcinoma (CHOL), n=17 

 

CHOL, n=17 Predicted Correct 
   METH-3 8 (47.1%) 8 (47.1%) 
   ESCC 1 (5.9%)  
   MSI 2 (11.8%)  
   CIN 6 (35.3%)  
Total 17 (100.0%) 8 (47.1%) 

high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), 
hypermutated tumors with single-nucleotide variants (HM-SNV/POLE), 

chromosomal instability (CIN), genome stable (GS), extrahepatic 
cholangiocarcinoma (ECC), Isocitrate dehydrogenase (IDH), methylation cluster 2 

(METH2), methylation cluster 3 (METH3), HCC integrative cluster 1 (iClust1), 
HCC integrative cluster 2 (iClust2),  HCC integrative cluster 3 (iClust3), PAAD 

KRAS mutated cluster (KRAS_mut), PAAD KRAS wild type cluster (KRAS_wt) 
 

 

Table 28b. The International Cancer Genome Consortium - artificial neural network 
predicting molecular subtypes - cholangiocarcinoma (CHOL), n=311 

 

CHOL, n=311 Predicted Correct 
   CIN 116 (37.3%)  
   MSI 45 (14.5%)  
   GS 2 (0.6%)  
   POLE 51 (16.4%)  
   ESCC 4 (1.3%)  
   ECC 7 (2.3%) 7 (2.3%) 
   IDH 8 (2.6%) 8 (2.6%) 
   METH-2 6 (1.9%) 6 (1.9%) 
   METH-3 72 (23.2%) 72 (23.2%) 
Total 311 (100.0%) 93 (29.9%) 

high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), 
hypermutated tumors with single-nucleotide variants (HM-SNV/POLE), 

chromosomal instability (CIN), genome stable (GS), extrahepatic 
cholangiocarcinoma (ECC), Isocitrate dehydrogenase (IDH), methylation cluster 2 

(METH2), methylation cluster 3 (METH3), HCC integrative cluster 1 (iClust1), 
HCC integrative cluster 2 (iClust2),  HCC integrative cluster 3 (iClust3), PAAD 

KRAS mutated cluster (KRAS_mut), PAAD KRAS wild type cluster (KRAS_wt) 
 

 



Molecular Subtypes of Hepatocellular Carcinoma 

A total of 3 molecular subtypes (iClust1, iClust2, and iClust3) were identified for 

liver hepatocellular carcinoma (LIHC) patients. Among LIHC patients, 161 patients 

were in the training set and the model correctly classify 158 (158/161; 98.1%) 

patients (Table 29a). The training set includes patients in 3 molecular subtypes and 

the ability to predict the correct molecular subtype ranged between 100% (iClust1 

and iClust3) to 93.9% (iClust2)(Table 29a). A total of 7 patients were included in the 

test and 3 (3/7; 42.9%) patients were correctly classified (Table 29b). The test set 

includes patients in 3 molecular subtypes and the ability to predict the correct 

molecular subtype was 100% for iClust1 while one patient was predicted to be in an 

“unexpected” molecular subtype (CIN). Among the 30 OSU LIHC patients, the ANN 

predicted 26 patients in “expected” molecular subtypes (26/30; 86.7%; iClust1, 

iClust2, and iClust3) and 4 patients were in “unexpected” molecular subtypes (Table 

30a). In the ICGC cohort, 651 patients had LIHC and the ANN model was able to 

classify in “expected” molecular subtypes 380 (380/651; 58.4%) patients while 271 

(271/651; 41.6%) patients were in “unexpected” molecular subtypes (CIN, MSI, GS, 

POLE, ESCC, EBV, KRAS_mut, and KRAS_wt)(Table 30b). 

  



 

Table 29a. The Cancer Genome Atlas - artificial neural network predicting molecular 
subtypes - liver hepatocellular carcinoma (LIHC), training set, n=161 
 

LIHC, n=161 Actual Predicted Correct 
   iCluster-1 58 (36.0%) 58 58 (100.0%) 
   iCluster-2 49 (30.4%) 46 46 (93.9%) 
   iCluster-3 54 (33.5%) 56 54 (100.0%) 
   MSI  1  
Total 161 (100.0%)  158 (98.1%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 29b. The Cancer Genome Atlas - artificial neural network predicting 
molecular subtypes - liver hepatocellular carcinoma (LIHC), test set, n=7 
 

LIHC, n=7 Actual Predicted Correct 
   iClust1 1 (14.3%) 2 1 (100.0%) 
   iClust2 2 (28.6%) 1 0 (0.0%) 
   iClust3 4 (57.1%) 3 2 (50.0%) 
   CIN  1  
Total 7 (100.0%)  3 (42.9%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

  



Table 30a. The Ohio State University - artificial neural network predicting molecular 
subtypes - liver hepatocellular carcinoma (LIHC), n=30 

 

LIHC, n=30 Predicted Correct 
   iClust1 10 (33.3%) 10 (33.3%) 
   iClust2 9 (30.0%) 9 (30.0%) 
   iClust3 7 (23.3) 7 (23.3) 
   MSI 1 (3.3%)  
   CIN 2 (6.7%)  
   KRAS _wt 1 (3.3%)  
Total 30 (100.0%) 26 (86.7%) 

high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), 
hypermutated tumors with single-nucleotide variants (HM-SNV/POLE), 

chromosomal instability (CIN), genome stable (GS), extrahepatic 
cholangiocarcinoma (ECC), Isocitrate dehydrogenase (IDH), methylation cluster 2 

(METH2), methylation cluster 3 (METH3), HCC integrative cluster 1 (iClust1), 
HCC integrative cluster 2 (iClust2),  HCC integrative cluster 3 (iClust3), PAAD 

KRAS mutated cluster (KRAS_mut), PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 30b. The International Cancer Genome Consortium - artificial neural network 
predicting molecular subtypes - liver hepatocellular carcinoma (LIHC), n=651 

 

LIHC, n=651 Predicted Correct 
   CIN 23 (3.5%)  
   MSI 84 (12.9%)  
   KRAS_mut 2 (0.4%)  
   GS 1 (0.2%)  
   POLE 152 (23.3%)  
   ESCC 2 (0.4%)  
   EBV 2 (0.4%)  
   KRAS _wt 5 (0.8%)  
   iClust1 173 (26.6%) 173 (26.6%) 
   iClust2 93 (14.3%) 93 (14.3%) 
   iClust3 114 (17.5%) 114 (17.5%) 
Total 651 (100.0%) 380 (58.4%) 

high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), 
hypermutated tumors with single-nucleotide variants (HM-SNV/POLE), 

chromosomal instability (CIN), genome stable (GS), extrahepatic 
cholangiocarcinoma (ECC), Isocitrate dehydrogenase (IDH), methylation cluster 2 

(METH2), methylation cluster 3 (METH3), HCC integrative cluster 1 (iClust1), 
HCC integrative cluster 2 (iClust2),  HCC integrative cluster 3 (iClust3), PAAD 

KRAS mutated cluster (KRAS_mut), PAAD KRAS wild type cluster (KRAS_wt) 
  



Molecular Subtypes of Pancreatic Ductal Adenocarcinoma 

A total of 2 molecular subtypes (KRAS_wt and KRAS_mut) were identified for 

pancreatic ductal adenocarcinoma (PAAD) patients. Among PAAD patients, 148 

patients were in the training set and the model correctly classify 146 (146/148; 

98.6%) patients (Table 31a). The training set included patients in 2 molecular 

subtypes and the ability to predict the correct molecular subtypes ranged between 

99% (KRAS_mut) to 97.7% (KRAS_wt)(Table 31a). A total of 7 patients were 

included in the test set and 6 (6/7; 85.7%) patients were correctly classified (Table 

31b). The test set included patients in 2 molecular subtypes and the ability to predict 

the correct molecular subtypes ranged from 100% for the KRAS_wt subgroup to 75% 

for the KRAS_mut subgroups while one patient was predicted to be in an 

“unexpected” molecular subtype (CIN). Among the 67 OSU PAAD patients, the 

ANN predicted 67 patients in “expected” molecular subtypes (67/67; 100%; 

KRAS_mut and KRAS_wt) and no patient was in a “unexpected” molecular subtype 

(Table 32a). In the ICGC cohort, 1,033 patients had PAAD and the ANN model was 

able to classify in “expected” molecular subtypes 302 (302/1,033; 29.2%) patients 

while 731 (731/1,033; 70.8%) patients were in “unexpected” molecular subtypes 

(CIN, MSI, POLE, and iClust1)(Table 32b). 

  



Table 31a. The Cancer Genome Atlas - artificial neural network predicting molecular 
subtypes - pancreatic adenocarcinoma (PAAD), training set, n=148 
 

PAAD, n=148 Actual Predicted Correct 
   KRAS_mut 104 (70.3%) 103 103 (99.0%) 
   KRAS _wt 44 (29.7%) 43 43 (97.7%) 
   iClust2  1  
   MSI  1  

Total 148 
(100.0%)  146 (98.6%) 

high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 
tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 

(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 31b. The Cancer Genome Atlas - artificial neural network predicting 
molecular subtypes - pancreatic adenocarcinoma (PAAD), test set, n=7 
 

PAAD, n=7 Actual Predicted Correct 
   KRAS_mut 4 (57.1%) 3 3 (75.0%) 
   KRAS _wt 3 (42.9%) 3 3 (100.0%) 
   CIN  1  
Total 7 (100.0%)  6 (85.7%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

  



Table 32a. The Ohio State University - artificial neural network predicting molecular 
subtypes - pancreatic adenocarcinoma (PAAD), n=67 
 

PAAD, n=67 Predicted Correct 
   KRAS_mut 17 (25.4%) 17 (25.4%) 
   KRAS _wt 50 (74.6%) 50 (74.6%) 
Total 67 (100.0%) 67 (100.0%) 

high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), 
hypermutated tumors with single-nucleotide variants (HM-SNV/POLE), 

chromosomal instability (CIN), genome stable (GS), extrahepatic 
cholangiocarcinoma (ECC), Isocitrate dehydrogenase (IDH), methylation cluster 2 

(METH2), methylation cluster 3 (METH3), HCC integrative cluster 1 (iClust1), 
HCC integrative cluster 2 (iClust2),  HCC integrative cluster 3 (iClust3), PAAD 

KRAS mutated cluster (KRAS_mut), PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 32b. The International Cancer Genome Consortium - artificial neural network 
predicting molecular subtypes - pancreatic adenocarcinoma (PAAD), n=1,033 

 

PAAD, n=1,033 Predicted Correct 
   KRAS_mut 259 (25.1%) 259 (25.1%) 
   KRAS _wt 43 (4.2%) 43 (4.2%) 
   CIN 42 (4.1%)  
   MSI 25 (2.4%)  
   iClust1 1 (0.1%)  
   POLE 663 (64.2%)  
Total 1,033 (100.0%) 302 (29.2%) 

high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), 
hypermutated tumors with single-nucleotide variants (HM-SNV/POLE), 

chromosomal instability (CIN), genome stable (GS), extrahepatic 
cholangiocarcinoma (ECC), Isocitrate dehydrogenase (IDH), methylation cluster 2 

(METH2), methylation cluster 3 (METH3), HCC integrative cluster 1 (iClust1), 
HCC integrative cluster 2 (iClust2),  HCC integrative cluster 3 (iClust3), PAAD 

KRAS mutated cluster (KRAS_mut), PAAD KRAS wild type cluster (KRAS_wt) 
 

  



Molecular Subtypes of Gastrointestinal Cancers 

Molecular Subtypes of Esophagus Cancers 

A total of 5 molecular subtypes (CIN, MSI, GS, POLE, and ESCC) were identified 

for esophagus cancers (ESCA) patients. Among ESCA patients, 140 patients were in 

the training set and the model correctly classify 140 (140/140; 100%) patients (Table 

33a). The training set included patients in 5 molecular subtypes and the ability to 

predict the correct molecular subtypes was 100% (CIN, MSI, GS, POLE, and 

ESCC)(Table 33a). A total of 11 patients were included in the test set and 8 (8/11; 

72.7%) patients were correctly classified (Table 33b). The test set included patients in 

2 molecular subtypes and the ability to predict the correct molecular subtype ranged 

from 100% for the CIN subgroup to 62.5% for the ESCC subgroup while no patients 

was predicted to be in an “unexpected” molecular subtype. 

Molecular Subtypes of Gastric Adenocarcinoma 

A total of 5 molecular subtypes (CIN, MSI, GS, POLE, and EBV) were identified for 

gastric adenocarcinoma (STAD) patients. Among STAD patients, 352 patients were 

in the training set and the model correctly classify 349 (349/352; 99.1%) patients 

(Table 34a). The training set included patients in 5 molecular subtypes and the ability 

to predict the correct molecular subtypes ranged between 100% (MSI, GS, and 

POLE) to 92.9% (EBV)(Table 34a). A total of 23 patients were included in the test 

set and 20 (20/23; 87.0%) patients were correctly classified (Table 34b). The test set 

included patients in 2 molecular subtypes and the ability to predict the correct 

molecular subtypes ranged from 100% for the CIN and MSI subgroups to 0% for the 

GS and EBV subgroups while no patients was predicted to be in an “unexpected” 

molecular subtype. 

Molecular Subtypes of Colon Adenocarcinoma 

A total of 4 molecular subtypes (CIN, MSI, GS, and POLE) were identified for 

COAD patients. Among colon adenocarcinoma (COAD) patients, 327 patients were 



in the training set and the model correctly classify 327 (327/327; 100%) patients 

(Table 35a). The training set includes patients in 4 molecular subtypes and the ability 

to predict the correct molecular subtypes was 100% (CIN, MSI, GS, and 

POLE)(Table 35a). A total of 11 patients were included in the test set and 11 (11/11; 

100%) patients were correctly classified (Table 35b). The test set included patients in 

2 molecular subtypes and the ability to predict the correct molecular subtypes was 

100% for the CIN and MSI subgroup while no patients was predicted to be in an 

“unexpected” molecular subtype. 

Molecular Subtypes of Rectal Adenocarcinoma 

A total of 4 molecular subtypes (CIN, MSI, GS, and POLE) were identified for 

READ patients. Among rectal adenocarcinoma (READ) patients, 110 patients were 

in the training set and the model correctly classify 110 (110/110; 100%) patients 

(Table 36a). The training set includes patients in 4 molecular subtypes and the ability 

to predict the correct molecular subtypes was 100% (CIN, MSI, GS, and 

POLE)(Table 36a). A total of 7 patients were included in the test set and 6 (6/7; 

85.7%) patients were correctly classified (Table 36b). The test set included patients in 

2 molecular subtypes and the ability to predict the correct molecular subtypes ranged 

from 100% for the CIN subgroup to 0% for the GS subgroup while no patients were 

predicted to be in an “unexpected” molecular subtype. 

  



Table 32a. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - esophageal carcinoma (ESCA), training set, n=140 

 

ESCA, n=140 Actual Predicted Correct 
   CIN 64 (45.7%) 64 64 (100.0%) 
   MSI 2 (1.4%) 2 2 (100.0%) 
   GS 1 (0.7%) 1 1 (100.0%) 
   ESCC 71 (50.7%) 71 71 (100.0%) 
   POLE 2 (1.4%) 2 2 (100.0%) 
Total 140 (100.0%)  140 (100.0%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 32b. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - esophageal carcinoma (ESCA), test set, n=11 
 

ESCA, n=11 Actual Predicted Correct 
   CIN 3 (27.3%) 6 3 (100.0%) 
   ESCC 8 (72.7%) 5 5 (62.5%) 
Total 11 (100.0%)  8 (72.7%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

  



 

Table 33a. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - stomach adenocarcinoma (STAD), training set, n=352 
 

STAD, n=352 Actual Predicted Correct 
   CIN 204 (58.0%) 203 203 (99.5%) 
   MSI 70 (19.9%) 72 70 (100.0%) 
   GS 43 (12.2%) 43 43 (100.0%) 
   POLE 7 (2.0%) 7 7 (100.0%) 
   EBV 28 (8.0%) 26 26 (92.9%) 
   iClust3  1  
Total 352 (100.0%)  349 (99.1%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 33b. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - stomach adenocarcinoma (STAD), test set, n=23 
 

STAD, n=23 Actual Predicted Correct 
   CIN 18 (78.3%) 21 18 (100.0%) 
   MSI 2 (8.7%) 2 2 (100.0%) 
   GS 1 (4.3%)  0 (0.0%) 
   EBV 2 (8.7%)  0 (0.0%) 
Total 23 (100.0%)  20 (87.0%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

  



 

Table 34a. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - colon adenocarcinoma (COAD), training set, n=327 

 

COAD, n=327 Actual Predicted Correct 
   CIN 218 (66.7%) 218 218 (100.0%) 
   MSI 56 (17.1%) 56 56 (100.0%) 
   GS 48 (14.7%) 48 48 (100.0%) 
   POLE 5 (1.5%) 5 5 (100.0%) 
Total 327 (100.0%)  327 (100.0%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 34b. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - colon adenocarcinoma (COAD), test set, n=11 
 

COAD, n=11 Actual Predicted Correct 
   CIN 8 (72.7%) 8 8 (100.0%) 
   MSI 3 (27.3%) 3 3 (100.0%) 
Total 11 (100.0%)  11 (100.0%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

  



 

Table 35a. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - rectum adenocarcinoma (READ), training set, n=110 
 

READ, n=110  Actual Predicted Correct 
   CIN 95 (86.4%) 95 95 (100.0%) 
   MSI 3 (2.7%) 3 3 (100.0%) 
   GS 8 (7.3%) 8 8 (100.0%) 
   POLE 4 (3.6%) 4 4 (100.0%) 
Total 110 (100.0%)  110 (100.0%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

Table 35b. The Cancer Genome Atlas  - artificial neural network predicting 
molecular subtypes - rectum adenocarcinoma (READ), test set, n=7 
 

READ, n=7  Actual Predicted Correct 
   CIN 6 (85.7%) 7 6 (100.0%) 
   GS 1 (14.3%)  0 (0.0%) 
Total 7 (100.0%)  6 (85.7%) 
high Epstein-Barr virus (EBV) burden, microsatellite instability (MSI), hypermutated 

tumors with single-nucleotide variants (HM-SNV/POLE), chromosomal instability 
(CIN), genome stable (GS), extrahepatic cholangiocarcinoma (ECC), Isocitrate 
dehydrogenase (IDH), methylation cluster 2 (METH2), methylation cluster 3 

(METH3), HCC integrative cluster 1 (iClust1), HCC integrative cluster 2 (iClust2),  
HCC integrative cluster 3 (iClust3), PAAD KRAS mutated cluster (KRAS_mut), 

PAAD KRAS wild type cluster (KRAS_wt) 
 

  



Survival Analysis 

Survival Analysis of Cholangiocarcinoma Patients 

The survival outcome of 362 (34 TGCA, 17 OSU, and 311 ICGC) patients who 

underwent surgery for cholangiocarcinoma (CHOL) was investigated using the 

Random Survival Forest algorithm. The model identified the most important 

variables as AJCC stage, TP53 pathways status, molecular subtypes, lymph node 

status, and iCluster (Figure 1). In the multivariable Cox model, AJCC stage, TP53 

pathways status, molecular subtypes, and iCluster were confirmed as independent 

predictor of survival (Table 36). In particular, patients with mutations in the TP53 

pathways had a 48% increased risk of death compared with patients without 

mutations in the TP53 pathways (HR 1.48, 95% CI, 1.02-2.15, p=0.037). Compared 

with the METH-3 subgroup, patients in IDH and METH-2 subgroups had almost 2.5- 

and 5-fold risk of death (IDH, HR 2.47, 95% CI, 1.06-5.78, p=0.037; METH-2, HR 

4.85, 95% CI, 2.20-10.7, p<0.001). The c-index of the final model integrating clinical 

and molecular data resulted 0.72.  

  



 

 

Figure 1. Variable importance rank resulting from the Random Survival Forest 

model for cholangiocarcinoma patients. 

  



Table 36. Multivariable survival analysis: Cox model for cholangiocarcinoma 
patients 

 
Variable Multivariable Analysis 
 HR 95% CI p-value 
AJCC  
   Stage I 
   Stage II 
   Stage III 
   Stage IV 
   Not Staged 

 
Ref. 
1.89 
4.31 
6.92 
4.50 

 
- 

0.99-3.62 
2.24-8.31 
3.76-12.7 
1.26-16.1 

 
- 

0.053 
<0.001 
<0.001 
0.021 

iCluster  
   Other CHOL iClusters 
   Non-CHOL iClusters 
   iCluster 14 
   iCluster 20 
   iCluster 26 

 
Ref. 
0.56 
0.66 
0.55 
4.51 

 
- 

0.36-0.88 
0.25-1.76 
0.25-1.21 
0.92-22.0 

 
- 

0.013 
0.41 
0.14 

0.063 
TP53_ptw 
   No 
   Yes 

 
Ref. 
1.48 

  
- 

1.02-2.15 

 
- 

0.037 
Molecular Subtypes 
   METH-3 
   IDH 
   METH-2 
   ECC 
   Non-CHOL Subtypes 

 
Ref. 
2.47 
4.85 
1.99 
1.96 

 
- 

1.06-5.78 
2.20-10.67 
0.76-5.26 
1.21-3.16 

 
- 

0.037 
<0.001 

0.16 
0.006 

 

 

  



Survival Analysis of Hepatocellular Carcinoma Patients 

The survival outcome of 598 (341 TGCA, 30 OSU, and 227 ICGC) patients who 

underwent surgery for liver hepatocellular carcinoma (LIHC) was investigated using 

the Random Survival Forest algorithm. The model identified the most important 

variables as AJCC stage, molecular subtypes, AJCC T stages, TP53 pathway status, 

and TGF-beta pathway status (Figure 2). In the multivariable Cox model, AJCC 

stage, TP53 pathways status, and molecular subtypes were confirmed as independent 

predictor of survival (Table 37). In particular, patients with mutations in the TP53 

pathways had a 52% increased risk of death compared with patients without 

mutations in the TP53 pathways (HR 1.52, 95% CI, 1.15-2.01, p=0.003). Compared 

with patients with other molecular subtypes, patients in iClust2 had almost 2.2-fold 

increased risk of death (iClust2, HR 2.18, 95% CI, 1.35-3.52, p<0.001). The c-index 

of the final model integrating clinical and molecular data resulted 0.63. 

  



 

 

Figure 2. Variable importance rank resulting from the Random Survival Forest 

model for hepatocellular carcinoma patients. 

  



Table 37. Multivariate survival analysis for LIHC 

 
Variable Multivariable Analysis 
 HR 95% CI p-value 
AJCC  
   Stage I 
   Stage II 
   Stage III 
   Stage IV 
   Not Staged 

 
Ref. 
1.04 
1.72 
2.71 
2.73 

 
- 

0.72-1.51 
1.25-2.38 
1.61-4.59 
0.94-7.91 

 
- 

0.82 
<0.001 
<0.001 
0.064 

TP53_ptw 
   No 
   Yes 

 
Ref. 
1.52 

  
- 

1.15-2.01 

 
- 

0.003 
Molecular Subtypes 
   Other Molecular Subtypes 
   iClust1 
   iClust2 
   iClust3 

 
Ref. 
1.78 
2.18 
1.98 

 
- 

1.14-2.79 
1.35-3.52 
1.22-3.21 

 
- 

0.011 
<0.001 
<0.001 

 

 

  



Survival Analysis of Pancreatic Ductal Adenocarcinoma Patients 

The survival outcome of 1,022 (155 TGCA, 66 OSU, and 999 ICGC) patients who 

underwent surgery for pancreatic ductal adenocarcinoma (PAAD) was investigated 

using the Random Survival Forest algorithm. The model identified the most 

important variables as age, AJCC stage, molecular subtypes, i-Cluster, TP53 pathway 

status, MYC pathway status, and Cell-cycle pathway status (Figure 3). In the 

multivariable Cox model, AJCC stage, TP53 pathways status, and molecular subtypes 

were confirmed as independent predictor of survival (Table 38). In particular, patients 

with mutations in the TP53 pathways had a 62% increased risk of death compared 

with patients without mutations in the TP53 pathways (HR 1.62, 95% CI, 1.32-1.99, 

p<0.001). Compared with patients with KRAS_wt molecular subtypes, patients with 

a KRAS_mut PAAD subtype had almost 1.4-fold increased risk of death 

(KRAS_mut, HR 1.38, 95% CI, 1.03-1.85, p=0.031). The c-index of the final model 

integrating clinical and molecular data resulted 0.61. 

  



 

Figure 3. Variable importance rank resulting from the Random Survival Forest 

model for pancreatic ductal adenocarcinoma patients. 

  



Table 38. Multivariate survival analysis for PAAD 

 
Variable Multivariable Analysis 
 HR 95% CI p-value 
Age 1.02 1.01-1.03 <0.001 
AJCC  
   Stage I 
   Stage II 
   Stage III 
   Stage IV 
   Not Staged 

 
Ref. 
1.53 
2.19 
1.92 
1.36 

 
- 

1.23-1.91 
1.44-3.33 
1.25-2.96 
1.10-1.68 

 
- 

<0.001 
<0.001 
0.002 
0.004 

TP53_ptw 
   No 
   Yes 

 
Ref. 
1.62 

  
- 

1.32-1.99 

 
- 

<0.001 
Molecular Subtypes 
   KRAS_wt 
   KRAS_mut 
   Other Molecular Subtypes 

 
Ref. 
1.38 
1.42 

 
- 

1.03-1.85 
1.06-1.89 

 
- 

0.031 
0.019 

 

 

  



Discussion 

Three artificial neural networks (ANNs) were developed to predict the anatomical 

types (i.e. CHOL, COAD, ESCA, LIHC, PAAD, READ, STAD, THCA, and UVM), 

the iClusters (i.e. from iCluster 1 to iCluster 28) representing the Cell-of-Origin, and 

the tumor molecular subtypes (i.e.  ECC, IDH, METH-2, METH-3, iClust1, iClust2, 

iClust3, KRAS_mut, and KRAS _wt, CIN, MSI, GS, ESCC, POLE, and EBV). The 

networks were training using 10,000 bootstrapped samples and validated on 106 

samples (67 samples for the molecular subtypes) from the TGCA dataset. While the 

input of the ANN was the whole exome sequencing of TGCA patients (plus the 

origin of tissue for the iClusters and the tumor molecular subtypes ANNs) with 

almost 5,100 variables, the final models had about 78,000,000 parameters. As 

expected, the accuracy of the three ANNs was 99% in training set but in the test set 

the accuracy decreased to 67% and 74% for the anatomical type and iClusters ANNs, 

respectively. Conversely, the ANN for the molecular subtypes demonstrated an 

accuracy of 81% in the training set. 

Cholangiocarcinoma 

A total of 38 patients with cholangiocarcinoma (CHOL) were included in the original 

TGCA paper and whole exome sequencing data which were used to train/test the 

ANN was available for 34 patients. A total of 10 iClusters and 4 molecular subtypes 

(ECC, IDH, METH 2, and METH-3) were identified for CHOL patients. In the 

training set, the ANNs for anatomical types, iClusters, and for the tumor molecular 

subtypes demonstrated an accuracy of 100% (34/34 patients), 97.1% (33/34 patients), 

and 97.0% (32/33 patients), respectively. In the test set, the ANNs demonstrated a 

very low ability to predict the correct anatomical origin (0%, 0/2 patients), molecular 

subtype (0%, 0/1 patients), and the correct iCluster (50%, 1/2 patients). The iCluster 

classification for cholangiocarcinoma included 10 clusters for 34 patients, the training 

set included patients in all the 10 clusters and the ability to predict the correct cluster 

ranged between 100% (iClusters 3, 8, 10, 14, 19, 25, 26, and 28) to 86% (iCluster 



20). Conversely, two patients were included in the test but only one (50%, 1/2 

patients) patient was correctly classified. The training set includes patients in 4 

molecular subtypes and the ability to predict the correct cluster ranged between 100% 

(ECC, IDH, and METH-2) to 91% (METH-3). Conversely, one patient was included 

in the test and was wrongly classified (0%, 0/1 patient). The test set includes patients 

in one cluster and no patients were predicted to be in an “unexpected” molecular 

subtype. Interesting, the correct anatomical origin was predicted in 0% of patients 

among the OSU and ICGC cohorts (OSU, 0/17; ICGC 0/311). Among the OSU and 

ICGC patients, less than the 15% of patients (OSU, 2/17; 11.8%; ICGC 44/311; 

14.1%) was in “expected” iClusters, while half of OSU (OSU cohort, 47%, 8/17) and 

one third of ICGC (ICGC cohort, 30%, 93/311) cholangiocarcinoma patients were in 

“expected” molecular subtypes. In the survival analysis, the predicted iClusters and 

molecular subtypes were used to investigate the impact of the biological 

characteristics of CHOL on the prognosis of patients undergoing surgery. A total of 

362 (34 TGCA, 17 OSU, and 311 ICGC) patients were included in the final 

multivariable Cox model and the a mutation in genes of the TP53 pathways, the 

iCluster classification, as well as the CHOL molecular subtype demonstrated to 

improve the ability of the AJCC staging system in predicting the prognosis of CHOL 

patients. Of note, while in several publications the c-index of AJCC staging system 

for CHOL has been reported to range between 0.55 and 0.65, the Cox model 

integrating clinical and molecular characteristics of CHOL resulted in a c-index of 

0.72.(17-32) 

 

 

 

 

 



Hepatocellular Carcinoma 

A total of 363 patients with liver hepatocellular carcinoma (LIHC) were included in 

the original TGCA paper and whole exome sequencing data which were used to 

train/test the ANN was available for 334 patients. A total of 11 iClusters and 3 

molecular subtypes (iClust1, iClust2, and iClust3) were identified for LIHC patients. 

In the training set, the ANNs for anatomical types, iClusters, and for the tumor 

molecular subtypes demonstrated an accuracy of 100% (318/319 patients), 100% 

(318/319 patients), and 98% (158/161 patients), respectively. In the test set, the 

ANNs demonstrated a moderate to good ability to predict the correct anatomical 

origin (74%, 17/23 patients) and iCluster (93%, 21/23 patients). Conversely, only 3 

(43%) patients among the 7 patients in the test set were assigned to the correct 

molecular subtype. The iCluster classification for hepatocellular carcinoma included 

11 iClusters for 363 patients, the training set included patients in all the 11 clusters 

and the ability to predict the correct cluster ranged between 100% (iClusters 3, 7, 10, 

13, 14, 17, 20, 22, 25, and 26) to 50% (iCluster 1). The test set includes patients in 2 

iClusters and the ability to predict the correct iClusters was 100% for iClusters 26 

while no patients were predicted to be in an “unexpected” iCluster. The training set 

includes patients in 3 molecular subtypes and the ability to predict the correct cluster 

ranged between 100% (iClust1 and iClust3) to 94% (iClust2). Interesting, the correct 

anatomical origin was predicted in 73% and 42% of patients among the OSU and 

ICGC cohorts (OSU, 22/39 patients: ICGC 275/651 patients), respectively. All 

patients in the OSU cohort (100%, OSU 30/30 patients) were assigned to “expected” 

iClusters compared with two third (65%; ICGC 420/651 patients) of ICGC patients. 

Among the OSU and ICGC patients, 87% of OUS patients and 58% of ICGC patients 

were in “expected” molecular subtypes. A total of 598 (341 TGCA, 30 OSU, and 227 

ICGC) patients were included in the final multivariable Cox model and the mutation 

status of genes in the TP53 pathways, the LIHC molecular subtype demonstrated to 

improve the ability of the AJCC staging system in predicting the prognosis of LIHC 

patients. Of note, while in several publications AJCC staging system demonstrated to 



be sub-optima to stage LIHC patients, the Cox model integrating clinical and 

molecular characteristics of LIHC resulted in a c-index of 0. 63.(32-35) 

 

Pancreatic Ductal Adenocarcinoma  

A total of 150 patients with pancreatic ductal adenocarcinoma (PAAD) were included 

in the original TGCA paper and whole exome sequencing data which were used to 

train/test the ANN was available for 155 patients. A total of 11 iClusters and 2 

molecular subtypes (KRAS_wt and KRAS_mut) were identified for PAAD patients. 

In the training set, the ANNs for anatomical types, iClusters, and for the tumor 

molecular subtypes demonstrated an accuracy of 99% (143/145 patients), 99% 

(144/145 patients), and 98% (146/148 patients), respectively. In the test set, the 

ANNs demonstrated a good to optimal ability to predict the correct anatomical origin 

(70%, 7/10 patients), iClusters (90%, 9/10 patients), and molecular subtypes (86%, 

6/7 patients). The iCluster classification for pancreatic ductal adenocarcinoma 

included 11 iClusters for 155 patients, the training set included patients in all the 11 

clusters and the ability to predict the correct cluster ranged between 100% (iClusters 

2, 3, 4, 5, 7, 9, 10, 13, 18, and 22) to 99.2% (iCluster 20). The test set includes 

patients in 2 clusters and the ability to predict the correct cluster was 100% for 

iClusters 20 while no patients were predicted to be in an “unexpected” iClusters. The 

training set includes patients in 2 molecular subtypes and the ability to predict the 

correct molecular subtypes ranged between 99% (KRAS_mut) to 98% (KRAS_wt). 

The test set includes patients in 2 molecular subtypes and the ability to predict the 

correct molecular subtypes ranged from 100% for the KRAS_wt subgroup to 75% for 

the KRAS_mut subgroups while one patient was predicted to be in an “unexpected” 

molecular subtype (CIN). Interesting, the correct anatomical origin was predicted 

only in 37% and 25% of patients among the OSU and ICGC cohorts (OSU, 25/67 

patients; ICGC 261/1,033 patients), respectively. Almost all patients in the OSU and 

ICGC cohorts (99%, OSU 66/67 patients; 98%; ICGC 1,016/1,033 patients) were 



assigned to “expected” iClusters. While among the OSU PAAD patients, the ANN 

predicted all patients (100%, 67/67 patients) in “expected” molecular subtype, in the 

ICGC cohort, the ANN predicted only 29% (302/1,033 patients) of patients in 

“expected” molecular subtypes. A total of 1,022 (155 TGCA, 66 OSU, and 999 

ICGC) patients were included in the final multivariable Cox model and the mutation 

status of genes in the TP53 pathways as well as the PAAD molecular subtype 

demonstrated to improve the ability of the AJCC staging system in predicting the 

prognosis of PAAD patients. Of note, while several publications reported that several 

factors (i.e. lymph node, tumor grade, tumor size, Ca 19-9 level) are associated with 

the prognosis of patients with PAAD undergoing surgery, the Cox model integrating 

clinical and molecular characteristics of PAAD resulted in a c-index of 0. 61.(36-41) 

Limitations: 

Several limitations should be considered when interpreting the results. While WES 

TGCA data for HPB malignancies provide a consistent and reliable starting point to 

develop the artificial neuron network (ANN), when in the preliminary analysis the 

ANN hyperparameters were tuned to identify the most accurate model, up to 95% of 

patients were needed in the training set with only 5% of patients in test set. This 

approach resulted in a low number of patients in the test set for several disease (i.e. 

only two CHOL patients in the testing set) which might influence the results. For this 

reason, further analysis is needed to check the concordance between the results of 

ANN and the molecular characteristics of caners (i.e. driver mutations and altered 

pathways).       

Conclusion:  

TGCA project have reported a complex and interconnected landscape describing the 

molecular biology of HPB cancers. While these results data might guide physicians 

towards a personalized approach in the management of patients with HPB cancers, 

the TGCA analyses were  based on multi-omics (i.e. chromosome-arm-level 

aneuploidy, DNA hypermethylation, reverse-phase protein arrays, mRNA, and 

miRNA) data and might not be easily translated in the clinical practice. Conversely, 



the reduction in the price of WES as well as the diffusion of genes panels 

investigating the mutational status of hundreds of genes are revolutionizing the 

decision-making process for the treatment of cancers. In this preliminary work, the 

WES of patients with HPB cancers was used to predict the molecular classifications 

proposed in the TGCA papers. Moreover, the molecular classifications of HPB 

malignancies when integrated with the clinical staging system demonstrated to 

improve our ability to predict the prognosis of HPB patients. 
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