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Abstract

The effects of High-Intensity Functional Training (HIFT) on body composition and the rela-

tionship of the latter with performance are not well defined. In this work we investigated,

by means of Dual-energy X-ray Absorptiometry, the relative proportions of fat-, lean soft tis-

sue-, and mineral mass in CrossFit® (CF, a popular mode of HIFT) participants (n = 24; age,

28.2 ± 3.39 y; BMI, 25.3 ± 2.04 kg/m2) with at least 1 year of CF training experience and

weekly amount of training > 10 h/w (n = 13; Higher Training, HT) or < 10 h/w (n = 11; Lower

Training, LT) as well as age- matched and BMI-matched physically active controls (CHT,

CLT). Performance was assessed in the “Fran” workout. Data were analyzed by one-way or

repeated measures ANOVA where needed. Association between variables was assessed

with the Pearson’s correlation coefficient r. Partial correlation was used where needed.

Results showed that HT performed better than LT in the “Fran” (P < 0.001) and they had

higher whole-body bone mineral density (P = 0.026) and higher lean soft mass (P = 0.002),

and borderline lower percent fat mass (P = 0.050). The main difference between CF partici-

pants (HT, LT) and their respective controls (CHT, CLT) was a lower adiposity in the former.

In CF participants, performance positively correlated with appendicular lean soft tissue

mass (P = 0.030). It can be concluded that, in CF participants, a higher amount of weekly

training improves most notably lean body mass and increases performance in association

with increased skeletal muscle mass. CF participation is especially effective in reducing fat

mass vs. age- and BMI-matched physically active controls.

Introduction

Over the last several years, High-Intensity Functional Training (HIFT; [1]) has been constantly

gaining popularity, possibly due to a greater degree of enjoyment for the participants and

shorter training duration vs. conventional training methods, while improving fitness and

overall health [2,3]. CrossFit1 (CF; CrossFit, Inc., Washington, DC, USA) is a mode of

HIFT, which has gained a very large number of participants worldwide, with over 400,000
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participants in the 2018 CF Open [4]. CF encompasses many types of functional movement

patterns over a short duration (i.e., less than 30 minutes), with a high-volume, and high-inten-

sity exercise program [5] within a single exercise session, called “Workout of the Day” (WOD).

A typical WOD may involve a combination of cardiovascular activities (e.g., running, rowing

and cycling), weightlifting/powerlifting exercises (e.g., clean and jerk, squat, deadlift, push

press, bench press, and power clean), and elements of gymnastic exercises (e.g., handstand and

ring exercises) performed in a timed and/or circuit format with little to no rest periods [6–8].

WODs can be performed with the objective of the best time or can be performed in the “as

many rounds as possible” style using varying time domains, ranging from 10 to 20 minutes.

Although the structure of each WOD will vary between CF affiliated organizations, each ses-

sion typically lasts 1 hour and consists of a specific warm-up followed by a program of strength

or a conditioning workout for 10–30 minutes and finally a cool down and/or mobility work.

Despite its growing popularity, little research has been carried out on CF. A recent system-

atic review and meta-analysis aimed at an overview of CF’s outcomes [9] only included 31

papers in the systematic review. In particular, little investigation has been carried out of body

composition in CF participants. In the above quoted review paper [9] only four works deal

with the issue, among others, of body composition in CF. Interestingly enough, the results of

the meta-analysis revealed no “significant effect of CF training changes in body mass index,

relative body fat, fat mass, lean body mass, and waist circumference” [9]. Even less information

is available in the literature on the bone status in CF participants [10]. Moreover, to the best

of our knowledge there is no information available in the literature on possible associations

between body composition, amount of training and performance in CF. It is apparent that

research is needed to evaluate the effects of CF participation on body composition in more

depth, as well as the relationship of the latter with performance. To contribute towards filling

this gap of knowledge, the present cross-sectional study of male athletes with at least 1 year of

CF training experience was designed with a twofold aim. The first aim was to assess the effect

of different amounts of CF training on body composition and performance in male CF partici-

pants as well as the correlation between body composition components and performance. The

second aim was to assess whether body composition of CF participants is different from that

of controls, matched by age- and BMI. Body composition was evaluated using the three-com-

partment model yielded by dual-energy X-ray absorptiometry (DXA) thereby allowing insights

into the CF-related pattern of fat mass (FM), lean soft tissue mass (LSTM), and areal bone

mineral density (aBMD) at the whole-body (WB) and regional level. CF performance was eval-

uated using a typical WOD, known as “Fran”.

Materials and methods

Participants

The study conformed to the Declaration of Helsinki (revised 2013) and was approved by the

Verona University IRB. All participants gave written informed consent.

Male participants (> 18 years old) were recruited by putting up information sheets at the

local CF gyms. Inclusion criteria were: 1) to be active members of a CF facility (i.e., attending

at least one class per week) and have at least 1 year of CF training experience; 2) not taking any

prescribed or over-the-counter medication for two weeks preceding the study; 3) to be in pos-

session of a certificate of suitability for competitive sports issued by a specialist in Sports Medi-

cine; 4) to pass the Physical Activity Readiness Questionnaire (PAR-Q; Canadian Society for

Exercise Physiology) [11]. Exclusion criteria were: 1) the presence of any current cardiovascu-

lar, respiratory, or musculoskeletal concerns that would limit the participant’s ability to per-

form high-intensity exercise; 2) the presence of injury in the previous six months.
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Overall, twenty-four CF athletes (age, 28.2 ± 3.39 y; body mass, 78.6 ± 8.00 kg; stature,

176.4 ± 4.36 cm; body mass index [BMI], 25.3 ± 2.04 kg/m2) from two CF training facilities ful-

filled all inclusion and exclusion criteria and volunteered in this study. The two CF training

facilities were supervised by the same group of coaches, so all participants followed an identical

program of workouts. Data collection took place on two separate sessions, which were 48h

apart. The first session consisted of administering and explaining the informed consent form

to the participants and then the PAR-Q as well as filling out a written questionnaire including

demographic data, total weekly hours of CF training, CF experience (i.e., years of CF participa-

tion) and injury history before or while practicing CF. Then, anthropometry and body compo-

sition analysis were carried out. In the second session, which took place at the participant’s

affiliated gym, participants performed the “Fran” CF workout. All participants were asked not

to significantly change their habits in terms of food intake and physical exercise in the week

preceding the workout as well as to abstain from caffeine and alcohol intake 12 hours prior.

Moreover, all participants were asked to complete the workout after no less than 48 hours of

recovery time from a previous workout.

The study was carried out in winter (December-February).

Anthropometry and body composition analysis

Body mass was taken at the nearest 0.1 kg with an electronic scale (Tanita electronic scale

BWB-800 MA); stature was measured with a Harpenden stadiometer (Holtain Ltd., Crymych,

Pembs. UK) at the nearest 0.01 m; BMI was calculated as weight (kg) / height (m2).

WB- and regional body composition (FM, %FM, LSTM, and aBMD) was evaluated by

means of DXA using a total body scanner (QDR Explorer W, Hologic, MA, USA; fan-bean

technology, software for Windows XP version 12.6.1) according to the manufacturer’s proce-

dures. Quality control was carried out daily against a reference phantom supplied by the man-

ufacturer to avoid possible baseline drift. In our lab, the in vivo short-term precision for total-

body DXA measurements, calculated by repeated scanning of subjects according to the con-

vention of the International Society for Clinical Densitometry (http://www.iscd.org/), is 2.3%,

2.8%, 0.5%, and 0.9% for FM, %FM, LSTM, and aBMD respectively. All analysis was per-

formed by the same operator to ensure consistency. Scans were performed in late morning, in

a post-absorptive state. Participants were asked to refrain from vigorous exercise and not to

consume alcohol for at least 24 h before they arrived at the laboratory. Participants wore light-

weight clothing with no metal or reflective material and removed all metal accessories. Velcro

restraints were applied around participants’ ankles to ensure there was no movement during

the scan.

For the standard regional body composition estimations, Hologic software readings divided

the body into trunk, entire arm (left and right), entire leg (left and right), and head. In addition

to the standard DXA output, the sum of arms and legs FM and LSTM were calculated (Appen-

dicular FM and Appendicular LSTM, respectively). Appendicular LSTM is a proxy of skeletal

muscle mass [12]. The Arms (average of right and left arm), Legs (average of right and left leg),

and Appendicular (average of right arm and leg, and left arm and leg) aBMD was calculated

as well. FM index (FMI) and LSTM index (LSTMI) were respectively calculated by dividing

DXA-derived FM (in kg) and LSTM (in kg) by squared height (in meters).

CF workout

The “Fran” workout is a fast WOD that has more anaerobic components and represents one of

the CF benchmark workouts which is commonly used as a dependent variable for the analysis

of performance [4]. Before the “Fran”, each participant performed a standardized warm-up
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consisting of running around the gym, multiple joint movements, skipping jumps, push-ups,

knee bends, arms swings, etc. The “Fran” workout involved performing barbell thrusters and

pull-ups following a 21-15-9 repetition scheme. The “Fran” scheme consisted in completing 21

thrusters and 21 pull-ups, then 15 thrusters and 15 pull-ups, then 9 thrusters and 9 pull-ups, as

fast as possible. Thrusters (a front squat to push press) were performed with 43.2 kg and varia-

tions of pull-ups (including butterfly and kipping) were encouraged. The time to complete

all repetitions was recorded and expressed in seconds. The CF workout was both supervised

and scored by a CF Level 1 trainer to ensure the movement and workout standards were met.

All participants performed the prescribed exercises and workouts with no modifications or

scaling.

Capillary blood analysis and heart rate measurement

Capillary blood lactate was evaluated with a portable analyzer (Lactate Plus; Nova Biomedical

Waltham, MA, USA) on a drop of blood collected from the index finger of the participant’s

hand. Capillary blood glucose levels were measured with a portable monitor (Terumo Fine-

touch; Tokyo, Japan), on a drop of blood collected in the same way. All measurements were

taken at three different times: at rest, 5 min before the start of the performance and after the

participant had been lying on the ground for 15 min (Baseline), immediately after the end of

the “Fran” workout (WODend), and 15 min after its conclusion (Recovery). Heart rate was

measured with a Polar RS800 device and a Polar chest strap (Polar Electro OY, Kempele, Fin-

land). Age-predicted maximal heart rate was estimated according to Tanaka et al. [13].

According to the first aim of this study, body composition was first compared between CF

participants who had been subdivided according to the amount of weekly CF training and

then the relationship between body composition and performance of the “Fran” workout. Par-

ticipants training for� 10 hours a week over the course of the last year were the Higher-Train-

ing (HT, n = 13) group and those training for < 10 hours a week were the Lower-Training

(LT, n = 11) group. Then, according to the second aim of the study, body composition of CF

participants in each group (HT and LT) was compared with that of an age-matched (±6 y) and

BMI-matched (±1 kg/m2) control group. According to recommendations for this type of study

[14], control participants were physically active subjects extracted from a database including

undergraduate and graduate kinesiology students as well as staff of the kinesiology departmen-

tal section accessing the sport facilities at the University. They all practiced sports (soccer,

cycling, basketball, swimming, tracking etc.) at recreational level. Overall, four groups were

created namely, the HT, control HT (CHT), LT, and control LT (CLT) group.

Statistical analysis

Data were assessed for normality with the Shapiro-Wilk test. In the case of non-normal distri-

bution, data were log10 transformed, resulting in normalized distribution. Between-group

comparisons for anthropometry, body composition, performance, and blood variables were

carried out with univariate One-way ANOVA in the General Linear Model according to the

study design (HT vs. LT, HT vs. CHT, LT vs. CLT). Blood variables were compared at three

time-points (Baseline, WODend, Recovery) using repeated-measure ANOVA in the General

Linear Model. Effect size was calculated as partial eta squared (ηp
2) and evaluated according to

published reference [15] as small (0.01), medium (0.06) and large (0.14). Correlation between

variables was assessed calculating Pearson’s r. Partial correlation analysis was also used where

needed. The strength of correlation was rated as per Hopkins [16]: small (0–0.30), moderate

(0.31–0.49), large (0.50–0.69), very large (0.70–0.89), and almost perfect (0.90–1). All analysis
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was performed with SPSS v. 25 (IBM Corp., Armonk, New York, USA). The alpha value was

set at P = 0.05.

Results

The characteristics of the two groups of CF participants are presented in Table 1.

The HT and LT groups showed no statistically significant difference for age (F = 0.153,

P = 0.700, ηp
2 = 0.007, power = 0.066) and stature (F = 0.260, P = 0.615, ηp

2 = 0.012, power =

0.078). The HT group showed higher body mass (F = 8.824, P = 0.007, ηp
2 = 0.286, power =

0.810) and longer CF experience (F = 3.091, P = 0.047, ηp
2 = 0.167). The amount of training

was higher in HT vs. LT by design (P < 0.001). The HT group showed lower “Fran” time

(F = 16.655, P< 0.001, ηp
2 = 0.431, power = 0.521; Fig 1). After including the amount of train-

ing or Appendicular LSTMI as a covariate in the model, the group effect respectively became

borderline statistically significant (F = 3.696, P = 0.068, ηp
2 = 0.150, power = 0.450) and

remained statistically significant (F = 4.982, P = 0.038, ηp
2 = 0.190, power = 0.563).

The HT and CHT group as well as the LT and CLT group had similar age (P = 0.926; P =

0.448, respectively) and BMI (P = 0.736; P = 0.805, respectively) by design.

Table 1. Characteristics of participants in the Higher Training (HT) and Lower Training (LT) groups. Data are means ± SD (Minimum-Maximum). One-way

ANOVA.

Group Age (y) Body mass (kg) Stature (cm) CF experience (y) Amount of training (h/w)

HT (n = 13) 28.5 ± 3.50 (22–35) 82.0 ± 5.93� (70.5–91.5) 175.9 ± 4.10 (170.1–182.7) 2.5 ± 0.75� (1.0–3.5) 12.0 ± 2.16� (10–18)

LT (n = 11) 27.9 ± 3.93 (23–36) 74.6 ± 6.17 (66.2–83.5) 176.9 ± 4.86 (172.2–186.9) 1.8 ± 0.93 (1.0–3.5) 7.3 ± 1.10 (6–9)

CF, CrossFit.

�, P < 0.05 vs. LT.

https://doi.org/10.1371/journal.pone.0237887.t001

Fig 1. Performance in the “Fran” workout of the day in two groups of CrossFit participants. HT, higher training

group; LT, lower training group. �, P< 0.05 vs. LT.

https://doi.org/10.1371/journal.pone.0237887.g001
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Body composition analysis

Fig 2 shows aBMD, FM, and LSTM variables in the HT, LT, CHT, and CLT group. All mean

absolute values of aBMD variables were higher in the HT vs. LT group (Fig 2, Panel A). How-

ever, One-way ANOVA showed statistically significant difference at the WB (F = 5.676,

P = 0.026, ηp
2 = 0.205, power = 0.625), trunk (F = 6.251, P = 0.020, ηp

2 = 0.221, power = 0.666),

Arms (F = 12.924, P = 0.002, ηp
2 = 0.370, power = 0.930), and Appendicular site (F = 4.346,

P = 0.049, ηp
2 = 0.165, power = 0.513), but not at Legs (F = 0.231, P = 0.231, ηp

2 = 0.065,

power = 0.218). After adjusting for CF experience, the difference remained significant for

Arms aBMD (F = 7.640, P = 0.012, ηp
2 = 0.267, power = 0.750).

Participants in the HT group had lower mean FM and %FM values vs. LT (Fig 2, Panel B,

D), the difference being statistically significant for WB %FM (F = 4.300, P = 0.050, ηp
2 = 0.164,

power = 0.509) and, at the limit of statistical significance for the trunk %FM (F = 3.708,

P = 0.067, ηp
2 = 0.144, power = 0.453). LSTM (Fig 2, Panel C) was higher in the HT group at

Fig 2. Whole-body and regional body composition in CF participants at higher (HT) and lower (LT) amounts of training, and

in their age-matched and BMI-matched controls (CHT, CLT). aBMD, areal bone mineral density; FM, fat mass; LSTM, lean soft

tissue mass.

https://doi.org/10.1371/journal.pone.0237887.g002
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both the WB and appendicular level (F = 13.040, P = 0.002, ηp
2 = 0.372, power = 0.932 and

F = 13.504, P = 0.001, ηp
2 = 0.380, power, = 0.939, respectively). These differences remained

statistically significant after adjusting for CF experience (F = 7.714, P = 0.011, ηp
2 = 0.269,

power = 0.754 and F = 7.957, P = 0.010, ηp
2 = 0.275, power = 0.767, respectively). Percent

LSTM (Fig 2, Panel E) was higher in the HT group, the difference being borderline statistically

significant at WB (F = 4.141, P = 0.054, ηp
2 = 0.158, power = 0.494) and statistically significant

at the Appendicular level (F = 4.387, P = 0.048, ηp
2 = 0.166, power = 0.517). After adjusting

for CF experience, the latter difference became borderline statistically significant (F = 3.316,

P = 0.083, ηp
2 = 0.136, power = 0.412).

Comparison of the HT and CHT groups (Fig 2) showed that WB and regional aBMD, and

LSTM were not significantly different in the two groups. %LSTM was higher in HT at the

WB- and appendicular levels (F = 86.085, P< 0.001, ηp
2 = 0.782, power = 1.000; F = 66.551,

P<0.001, ηp
2 = 0.735, power = 1.000, respectively). The HT group had lower FM and %FM at

the WB- and regional levels (F> 51.000, P < 0.001, ηp
2 > 650, power = 1.000 for all). Compar-

ison of the LT and CLT group (Fig 2) showed non-statistically significant differences in aBMD

and LSTM at the WB- and regional level. %LSTM was higher in LT at the WB- and Appendic-

ular levels (F = 5.746, P = 0.026, ηp
2 = 0.223, power = 0.626; F = 5.550, P = 0.029, ηp

2 = 0.217,

power = 0.611, respectively). The LT group had lower FM and %FM at the WB- and regional

levels (F> 4.300, P ranging 0.050–0.020, ηp
2 > 0.180, power> 0.500).

For both LSTM and FM, the Appendicular value was only reported in Fig 2 because of con-

sensual between-group changes in either the left and right arms or the left and right legs.

Fig 3 shows FMI and LSTMI in the four groups of study participants (HT, LT, CHT, CLT).

WB FMI was similar in HT and LT group (F = 0.413, P = 0.527, ηp
2 = 0.018, power = 0.094).

Similar results were found for Appendicular FMI. WB- and Appendicular LSTMI was higher

in HT vs. LT (F = 28.705, P < 0.001, ηp
2 = 0.566, power = 0.999; F = 27.718, P< 0.001, ηp

2 =

0.558, power = 0.999, respectively) also after adjusting for CF experience (P< 0.001 for both).

Considering the HT and CHT group, FMI was lower in HT (F = 54.736, P< 0.001, ηp
2 =

0.695, power = 1.000). LSTMI was higher in the HT group at the WB- level (F = 19.524,

Fig 3. Whole-body and Appendicular Fat Mass Index (FMI, Panel A) and Lean Soft Tissue Mass Index (LSTMI, Panel B) in CF participants at

higher (HT) and lower (LT) amounts of training, and in their age-matched and BMI-matched controls (CHT, CLT).

https://doi.org/10.1371/journal.pone.0237887.g003
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P< 0.001, ηp
2 = 0.449, power = 0.989) and appendicular level (F = 14.027, P = 0.001, ηp

2 =

0.369, power = 0.949). Considering the LT and CLT groups, WB FMI and Appendicular FMI

were not statistically different (F = 3.861, P = 0.063, ηp
2 = 0.162, power = 0.464; F = 3.990,

P = 0.060, ηp
2 = 0.166, power = 0.477, respectively). WB LSTMI and Appendicular LSTMI

were not statistically different either (F = 1.320, P = 0.195, ηp
2 = 0.062, power = 0.264)

(F = 0.630, P = 0.118, ηp
2 = 0.031, power = 0.437, respectively).

Correlation analysis

In the whole sample of CF participants (HT + LT), negative, statistically significant, moderate

to large correlation was found between “Fran” time and both Appendicular LSTM (r = -0.454,

P = 0.030) and Appendicular LSTMI (r = -0.645, P = 0.001; Fig 4A), but not between “Fran”

time and WB FM (r = 0.124, P = 0.565), WB %FM (r = 0.322, P = 0.124) or WB FMI

(r = 0.097, P = 0.654). The correlation between “Fran” time and Appendicular LSTMI

remained statistically significant after adjusting for CF experience (r = -0.632, P = 0.002) and

borderline statistically significant after adjusting for amount of training (r = -0.394, P = 0.070).

Positive, moderate to very large correlations were found between aBMD variables and Appen-

dicular LSTMI, which reached statistical significance for trunk aBMD (r = 0.443, P = 0.030),

Arms aBMD (r = 0.742, P < 0.001), and Appendicular aBMD (r = 0.500, P = 0.013). After

adjusting for CF experience, only the correlation between Arms aBMD and appendicular

LSTMI remained significant (r = 0.549, P = 0.007). A negative large, statistically significant

correlation was found between “Fran” time and weekly amount of training (r = -0.659,

P = 0.001; Fig 4B). This correlation remained significant after adjusting for CF experience (r =

-0.569, P = 0.005), body mass (r = -0.477, P = 0.021), stature (r = -0.583, P = 0.004), WB LSTM

(r = -0.444, P = 0.034), and WB FM (r = -0574, P = 0.004).

Capillary blood analysis

The results of lactate and glucose measurements are summarized in Table 2. Capillary blood

lactate and capillary blood glucose at Baseline were in the normal range for resting people at

fast (about 2.0 mmol/L and about 70 mg/dL, respectively).

The HT and LT groups showed similar capillary blood lactate and capillary blood glucose at

Baseline (F = 0.000, P = 0.987; F = 0.604, P = 0.445, respectively). On average, capillary blood

lactate markedly increased from rest (Baseline) to the end of the “Fran” workout (WODend) in

both groups (HT, + 740%; LT, + 730%) and moderately decreased from WODend to Recovery

(HT, -6.8%; LT, -12.0%). Capillary blood glucose showed a moderate increase from Baseline to

Fig 4. Association between performance in the “Fran” workout and either the amount of Appendicular Lean Soft Tissue Mass Index (LSTMI,

Panel A) or the amount of weekly training (Panel B) in CF participants.

https://doi.org/10.1371/journal.pone.0237887.g004
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WODend in both groups (HT, + 30.8%; LT, + 31.1%) and increased even further from Baseline

to Recovery (HT, + 41.1%; LT, + 46.4%). Repeated-measure ANOVA showed no significant

interaction between group and metabolite pattern for either capillary blood lactate (F = 0.448,

P = 0.642, ηp
2 = 0.020, power = 0.118) or capillary blood glucose (F = 0.215, P = 0.807, ηp

2 =

0.010, power = 0.082). Average heart rate during the “Fran” workout was 92.7 ± 5.38% and

94.06 ± 3.72% of age-predicted maximal heart rate in the HT and LT groups, with a maximum

of 97.4 ± 5.31% and 98.3 ± 3.65%, respectively. Both differences were not statistically signifi-

cant (F = 0.460, P = 0.505; ηp
2 = 0.020, power = 0.099 and F = 0.220, P = 0.644, ηp

2 = 0.010,

power = 0.073, respectively).

Discussion

The first aim of this study was to assess the effect of different amounts of HIFT training on

body composition and its association with CF performance. Results showed a statistically

significant main effect of the amount of training (12 h/w on the average in HT; 7 h/w on

the average in LT; duration of at least 1 y) on several body composition variables as well as a

statistically significant, positive association of Appendicular LSTM (a proxy of skeletal muscle

mass) with performance of the “Fran” WOD.

Results in CF participants came from subjects with a sustained, continuative participation

in HIFT (1–3.5 years of CF participation; 6–18 h/w of training). Therefore, findings should

be considered representative of a maintenance stage and reflect stable training status and CF

ability. To the best of our knowledge, this is the first study investigating CF athletes at “steady

state” body composition. Previous work [17–19,10] investigated changes in body composition

on a reduced timespan (5–16 w), which may not have led to a steady state.

Comparison of aBMD in HT and LT showed that higher weekly amount of training is asso-

ciated with higher aBMD at all sites but Legs, with a large effect size. Accordingly, it could be

envisaged that a higher amount of CF training is beneficial to bone health. Nevertheless, the

HT group showed statistically significant longer CF experience (Table 1). After controlling for

CF experience, a significant difference persisted between HT and LT for Arms aBMD only

(P = 0.012); this indicates that cumulative exposure to impact training exercise was more effec-

tive than amount of training on aBMD in the weight-bearing skeleton. Actually, Arms aBMD

was 11.9% higher in HT vs. LT. Taking into account that a 5.4% increase in aBMD is equal to a

64% increase in ultimate force and 94% increase in energy to failure in experimental animals

[20], it is suggested that higher amount of CF training had an important effect on bone health

of non-weight bearing parts of the skeleton, which was independent of body mass and dura-

tion of CF participation. It is well known that when bone is mechanically loaded, a response

will occur in that specific bone [21–24]. Accordingly, a higher amount of CF training could

have led to differential mineralization of upper limb bones due to a high mechanical load on

the arms through several multicompartment exercises such as thrusters, push-ups, wall balls,

Table 2. Capillary blood lactate and capillary blood glucose in the two groups of CF participants at rest (Baseline), at the end of the “Fran” workout (WODend) and

after a 15-min recovery (Recovery). Data are means ± SD. One-way ANOVA.

Group Blood analysis Baseline WODend Recovery

HT (n = 13) Lactate (mmol/L) 2.0 ± 0.91 14.8 ± 2.30 13.8 ± 2.22

Glucose (mg/dL) 69.4 ± 13.78 90.8 ± 31.06 97.9 ± 23.36

LT (n = 11) Lactate (mmol/L) 2.0 ± 1.02 14.6 ± 2.37 12.8 ± 1.97

Glucose (mg/dL) 74.3 ± 17.04 97.4 ± 27.14 108.8 ± 24.12

HT, Higher Training; LT, Lower Training.

https://doi.org/10.1371/journal.pone.0237887.t002
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clean, deadlift and kettle-bell swings, all of which are currently performed in CF practice.

Interestingly, a statistically significant relationship was found between Arms aBMD and

Appendicular LSTMI, which remained significant even after adjusting for CF experience.

LSTMI has been positively associated with aBMD at the WB- and regional levels in young men

[25,26], indicating that increasing skeletal muscle mass may contribute to increased aBMD at

the upper limb. The hypothesis that the non-weight bearing parts of the skeleton respond to

CF participation in a dose-dependent manner deserves further investigation.

In our sample of CF participants, WB LSTM was higher in HT vs. LT (+12.8%, P = 0.002)

with a large effect size; such an effect was independent of CF experience i.e., the cumulative

amount of previous training, which was on the average 39% longer in HT. WB %LSTM was

also higher in HT (+2.1%) at the limit of statistical significance (P = 0.054) with a large effect

size. More interestingly, Appendicular LSTM (a proxy of body skeletal muscle) was higher

in HT (+14.2%, P = 0.001) independent of CF experience (P = 0.010) and Appendicular %

LSTM was higher in HT as well (+2.4, P = 0.048). Overall, these findings indicate that a higher

amount of training benefits the body’s lean mass as a whole in CF participants, especially by

enhancing skeletal muscle accrual. As shown by LSTMI analysis (Fig 3), this effect was inde-

pendent of stature, the major determinant of body lean mass. Interestingly, statistically

significant, positive correlations were found between Appendicular LSTM and Appendicular

LSTMI, and performance of the “Fran” WOD (P = 0.030; P = 0.001, respectively) suggesting

that increasing amounts of skeletal muscle lead to better performance. When interpreting

these results, it should however be kept in mind that skeletal muscle mass and strength may

not parallel in individuals [27]. We did not assess muscle function in this work and, therefore,

cannot comment on possible differences in muscle quality between CF participants training

at different weekly amounts. Indirect evidence that better muscle function was present in the

HT group comes from the discovery that the difference between HT and LT in “Fran” time

(P< 0.001) remained significant after adjusting for Appendicular LSTMI (P = 0.038) and

became borderline significant (P = 0.068) after adjusting for weekly amount of training.

In our sample of CF participants (HT and LT groups combined) %FM ranged 8.6–16.9.

This range includes values at or below the 50th percentile in different athletic populations [28],

showing that CF participation (� one year) was effective in achieving excellent fitness. Com-

parison of the HT and LT group showed that different weekly amount of training has limited

impact on the fat component of body composition, the difference in both FM and FMI being

not statistically different and WB %FM being lower in HT at the limit of statistical significance

(P = 0.050). These findings indicate that higher amounts of training over a sustained (� one

year) period did not convey substantial additional benefits to participants in terms of body

adiposity.

In this work we assessed the relationship between body composition and CF performance

using a typical CF WOD (the “Fran”). The average score of HT participants (Fig 1) was

superimposable to that obtained by a sample of male CF participants (237.9 ± 83.9 s; n = 12;

age = 29.0 ± 5.6; CF experience = 49.0 ± 32.7 months; [29]). Normative data collected on CF

benchmark workout performance [30] indicate that participants in the present study ranked

between the 50th and 60th percentile (HT group), and the 10th and 20th percentile (LT group).

Accordingly, CF participants in this study were representative of recreational (LT) or interme-

diate (HT) CF practitioners.

Correlation analysis showed no association between “Fran” time and FM, %FM, and FMI

showing that body adiposity was not a factor in performance. Instead, “Fran” time improved

with increasing LSTMI, this association showing large strength (r = -0.645, P = 0.001). The sta-

tistical significance of such an association was almost identical after adjusting for CF experi-

ence but lost statistically significance after adjusting for the amount of training, indicating that
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the intensity of CF participation benefits the utilization of skeletal muscle to a greater degree

than a longer exposure to CF practice. Accordingly, a statistically significant negative correla-

tion was found between the weekly amount of training and the time employed to carry out the

“Fran” WOD (P = 0.003), which was independent of anthropometry, body composition, and

CF experience. Overall, results showed that a positive relationship exists between the amount

of training and the performance in CF, similar to that found in other sports settings [31–33].

During the “Fran” WOD, average heart rate was > 92% maximal estimated heart rate in

both HT and LT, indicating that participants were performing at high intensity. According to

repeated-measures ANOVA, the patterns of capillary blood lactate and capillary blood glucose

at baseline, at the end of the “Fran” WOD and after 15 min of recovery were similar in the HT

and LT group. Capillary blood lactate showed a sharp increase at the end of the “Fran” WOD

similar to that attained in similar bouts of HIFT [34–37], which was followed by a moderate

decline during recovery. According to findings in previous studies [34,38] a steeper decrease

in blood lactate was expected. While differences in the metabolic requirement of HIFT exer-

cises could explain such a discrepancy, investigation of lactate kinetics is to be carried out to

clarify lactate clearance after the “Fran” WOD. Capillary blood glucose showed a moderate

increase at the end of the “Fran” WOD followed by a further, modest increase after the 15 min

recovery period. This is consistent with the pattern of blood glucose found in endurance ath-

letes after intense exercise [39,40]. During intense exercise, glucose production rises seven- to

eightfold with glucose utilization rising three- to fourfold and, therefore, glycemia increases; at

the end of exercise, glucose utilization initially decreases more than glucose production, lead-

ing to greater hyperglycemia [41]. The lack of a statistically significant difference in the pattern

of capillary lactate and capillary glucose in the HT and LT groups over the course of the “Fran”

WOD shows that different amounts of training did not induce relevant modulation of the met-

abolic response to an HIFT challenge in CF participants.

The second aim of this work was to assess whether CF participation is associated with dif-

ferences in body composition vs. age-matched and BMI-matched physically active controls.

Results partially confirmed this hypothesis by showing several statistically significant differ-

ences in FM but not in LSTM or aBMD for the HT and LT groups vs. their respective controls.

HT and LT did not have statistically different WB- and regional aBMD vs. CHT and CLT,

respectively, with small between-group mean differences and small to medium effect size. This

is consistent with similar findings of mean WB- and regional aBMD in nine recreationally

active men (34.2 ± 9.1 y; 91.5 ± 17.7 kg; 178.5 ± 5.4 cm) after a 16-week HIFT participation

(minimum twice a week; [10]). Accordingly, it is suggested that CF participation for at least

one year is generally not associated with better bone characteristics vs. age-matched and BMI-

matched controls. However, a high percentage difference between mean aBMD values was

found in Arms aBMD (HT vs. CHT, +6.6% and LT vs. CLT, +3.7%). The effect size was large

for HT vs. CHT (ηp
2 = 0.370) and moderate for LT vs. CLT (ηp

2 = 0.075), indicating that CF

participation may have a positive effect on upper limb bone mineralization at both higher and

lower amounts of training.

Appendicular LSTM was not statistically different in the HT or LT groups and their respec-

tive controls, suggesting that CF participation had no major effect on the absolute amount of

skeletal muscle mass at similar age and BMI irrespective of the amount of weekly training.

However, normalizing data for body mass (%LSTM) or stature (LSTMI) revealed statistically

significant or borderline statistically significant differences between both the HT and LT

groups, and their respective controls (Fig 2, Panel C and E; Fig 3, Panel A) showing that CF

participation might have a positive impact on relative body lean soft tissue mass. Once again, it

should be mentioned that we did not perform muscle function testing in this study and, conse-

quently cannot comment on possible effects of CF participation on muscle quality vs. control.
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HT and LT had statistically significant or borderline statistically significant lower WB and

regional FM, %FM, and FMI vs. CHT and CLT, respectively, (Fig 2, Panel B and D; Fig 3,

Panel A) the effect size being large for all comparisons (ηp
2, 0.162–0.792). Accordingly, CF par-

ticipation for at least one year led to an improvement of absolute and relative body adiposity

vs. age-matched and BMI-matched controls. It was found that between-group mean differ-

ences are markedly larger in HT vs. CHT than LT vs. CLT. This is explained by the inclusion

of several participants with BMI > 25 kg/m2 in the CHT group, in order to match HT partici-

pants for BMI. Despite being physically active, these controls had higher adiposity than those

in the CLT group, hence the larger mean difference of FM and %FM in HT vs. CHT than LT

vs. CLT.

In this work, CF participants and controls were matched for BMI according to current

practice in sports science [42–45] especially when bone-related variables are to be compared.

This may have affected results to some extent as specified in the paragraph above. In order to

put the current results on body composition in CF participants into a more complete perspec-

tive, comparison is made in the following to the reference general population.

In our sample of CF participants, the range of %FM (8.6%– 16.9%) was well below the

mean DXA-measured value for a reference population (20.3% for age range 18–24 y; 25,6% for

age range 25–34 y; [46], thereby confirming that CF exposure has a positive effect on the par-

ticipant’s fitness. It should also be considered that HT had higher BMI vs. LT (+1.7 kg/m2,

P< 0.001) with 11 out of 13 HT subjects and two out of 11 LT participants showing BMI > 25

kg/m2 i.e., the current cut-off for overweight (WHO, [47]). However, it is well known that

BMI does not take into account body composition and, accordingly, a man with an overweight

BMI can have an infinite variety of FM to lean mass ratios i.e., he may have only a little FM

and a large amount of lean mass [48–50]. In our sample of CF participants, individuals with

BMI> 25 kg/m2 presented higher proportions of lean mass. As far as lean mass is concerned,

comparison of WB LSTM with DXA-measured values available for a male Italian population

[46], showed that an average value in HT (68.6 kg) and LT (60.8 kg) was close to the 90th per-

centile (67.46 kg for age range 18–24 y; 73.10 kg for age range 25–34 y) for the former and

between the 50th (56.90 for age range 18–24 y and 58.00 for age range 25–34 y) and 75th per-

centile (62.70 for age range 18–24 y and 64.80 for age range 125–34 y) for the latter. In compar-

ison with DXA measurements available for an Italian population [51], Appendicular LSTM in

HT (32.37 kg) was near the 95th percentile (35.32 kg for age range 20–29 y; 34.31 kg for age

range 30–39). In LT, Appendicular LSTM (28.35 kg) was close to the 50th percentile (28.30 kg

for age range 20–29 y and 27.75 kg for age range 30–39). Since LSTM is closely related to stat-

ure [50], it could be argued that differences in this anthropometric variable affected result.

Instead, analysis of Appendicular LSTMI (kg/m2) confirmed LSTM results by showing values

in HT and LT (10.4 kg/m2 and 9.0 kg/m2, respectively) which were close to the 95th percentile

(10.33 kg/m2 for age range 20–29 y; 11.23 kg/m2 for age range 30–39 y) and the 50th percentile

(8.74 kg/m2 for age range 20–29 y; 8.78 kg/m2 for age range 30–39 y) of a reference population

[51], respectively. Therefore, CF participation with a weekly amount of training < 10 h/w for

at least one year (mean participation time, 1.8 y) did not lead to skeletal muscle mass accrual

beyond that of the general population.

There are some limitations of this study that should be mentioned. First, only 24 young

adult male athletes were recruited, which limits the ability to generalize results to the entire

population of CF participants. Further research is needed to explore whether the current

results can be extended to other populations of CF athletes such as females and younger ath-

letes. Second, we were not able to collect precise information on the dose and type of training

carried out by participants or their dietary regimen, which could affect their body composi-

tion. Third, we only assessed CF performance with the “Fran” WOD. Future studies will need
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to explore the relationship between the amount of training, body composition and perfor-

mance by including other WODs.

Conclusions

To best of our knowledge this is the first study investigating the impact of different amounts

of training on body composition and performance of CF participants. Overall, our findings

showed that in athletes with CF experience > 1y, a higher amount of weekly training (> 10 h/

w) is associated with better body composition, especially in terms of lean mass and upper limb

bone density, as well as better performance in a typical CF workout. This is of importance in

athletic performance, providing CF coaches withuseful information to define the amount of

weekly training necessary to enable positive effects on body composition and performance.

Another finding of this study was that CF participation� 6 h/w determines a better body com-

position profile (i.e. higher lean mass and lower FM) in comparison with age-matched and

BMI-matched physically active controls. This could help fitness trainers using CF as a fitness

strategy in prescribing suitable amounts of training able to improve body composition. Further

investigation of the relationships between CF participation, body composition and anaerobic

power and capacity as well as functional strength will give better insight into the determinants

of CF performance. Given the increasing usage of CF as a training modality in different sport

and fitness settings, research is also needed to further explore the effects of CF on specific

health and performance outcomes.
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