
Vol.:(0123456789)

SN Computer Science (2020) 1:153
https://doi.org/10.1007/s42979-020-00160-9

SN Computer Science

ORIGINAL RESEARCH

Discovering Evolving Temporal Information: Theory and Application
to Clinical Databases

Pietro Sala1 · Carlo Combi1 · Matteo Mantovani1 · Romeo Rizzi1

Received: 10 March 2020 / Accepted: 9 April 2020 / Published online: 8 May 2020
© The Author(s) 2020

Abstract
Functional dependencies (FDs) allow us to represent database constraints, corresponding to requirements as “patients having
the same symptoms undergo the same medical tests.” Some research efforts have focused on extending such dependencies to
consider also temporal constraints such as “patients having the same symptoms undergo in the next period the same medi-
cal tests.” Temporal functional dependencies are able to represent such kind of temporal constraints in relational databases.
Another extension for FDs allows one to represent approximate functional dependencies (AFDs), as “patients with the same
symptoms generally undergo the same medical tests.” It enables data to deviate from the defined constraints according to a
user-defined percentage. Approximate temporal functional dependencies (ATFDs) merge the concepts of temporal functional
dependency and of approximate functional dependency. Among the different kinds of ATFD, the Approximate Pure Temporally
Evolving Functional Dependencies (APE-FDs for short) allow one to detect patterns on the evolution of data in the database
and to discover dependencies as “For most patients with the same initial diagnosis, the same medical test is prescribed after
the occurrence of same symptom.” Mining ATFDs from large databases may be computationally expensive. In this paper,
we focus on APE-FDs and prove that, unfortunately, verifying a single APE-FD over a given database instance is in general
NP-complete. In order to cope with this problem, we propose a framework for mining complex APE-FDs in real-world data
collections. In the framework, we designed and applied sound and advanced model-checking techniques. To prove the feasi-
bility of our proposal, we used real-world databases from two medical domains (namely, psychiatry and pharmacovigilance)
and tested the running prototype we developed on such databases.

Keywords Temporal data mining · Temporal functional dependencies · Temporal databases · Distributed algorithms ·
Complexity · Pharmacovigilance · Psychiatric case register

Introduction

Since some decades, in most of the real-world domains,
there is the need of storing and analyzing huge and often
overwhelming quantities of data, which are required both for
decision making and in the wider area of the management of

complex organizations [23, 29]. According to this scenario,
and without loss of generality, in this paper, we will focus on
the healthcare/medical domain, where such need arises, to
support clinical decision-making and healthcare policies [3].
Advanced techniques such as data mining and analysis allow
medical stakeholders to extract useful knowledge from these
data. In particular, it is often the case that such knowledge
is inherently temporal, as it is discovered when analyzing
data evolution, time series, and changes of information over
time. Temporal data mining is the research area focusing on
the analysis and discovery from data having some specific
temporal characterization [8, 9, 25].

Considering data stored according to the well-known
relational model, functional dependencies (FDs) are usu-
ally specified for expressing constraints on data and for
improving the quality of database schemata, by deriving
normal forms [2]. However, functional dependencies (FDs)

 * Carlo Combi
 carlo.combi@univr.it

 Pietro Sala
 pietro.sala@univr.it

 Matteo Mantovani
 matteo.mantovani@univr.it

 Romeo Rizzi
 romeo.rizzi@univr.it

1 Department of Computer Science, University of Verona,
Verona, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00160-9&domain=pdf

 SN Computer Science (2020) 1:153153 Page 2 of 30

SN Computer Science

could be used to derive some knowledge about the given
database. As an example, let us consider a simple relation
describing the adverse drug reactions patients may have
during a hospitalization. Such a relation stores patient
demographic data, together with drugs taken and the
adverse reactions possibly occurring. Moreover, a tempo-
ral attribute time-stamps the adverse reactions. Typically,
patients taking the same drug may have the same adverse
reaction. Thus, we can derive a functional dependency
between the patient drug and the adverse reaction. It may
also be that such functional dependencies hold on “most
tuples,” but not on all of them. Such dependencies have
been named approximate functional dependency (AFD)
[13, 16]. As an example, if we consider patients affected
by some allergies that make unpredictable the reaction to
a drug, the corresponding tuples will likely differ from all
the other ones as for the dependency between drugs and
adverse reactions.

Finer constraints may also be discovered. As for adverse
drug reactions, for example, further drug prescriptions may
follow, to mitigate these known effects. For example, suppose
that some drugs are prescribed just to mitigate some well-
known adverse reaction. Thus, the drug prescribed just after
a given adverse reaction will be related both to the adverse
reaction and to the drug previously taken by patients. In such
a case, prescribed drugs and related adverse reactions deter-
mine drugs administered next. We call this dependency a
temporal functional dependency (TFD).

Approximate functional dependencies have been exten-
sively considered, and some tools have been proposed for
deriving such dependencies [13, 14, 16, 19]. On the other
side, temporal functional dependencies have been proposed
according to different perspectives and considering different
kinds of temporal features [7, 15, 30–32]. To the best of our
knowledge, only some recent studies focused on approximate
temporal functional dependencies [4, 5, 11, 26].

In this paper, we continue such studies by considering a
different kind of approximate TFD and its application to data
from clinical domains. More specifically, we will adopt the
framework for temporal functional dependencies proposed
by Combi et al. in [7], which allows the specification of mul-
tiple kinds of temporal functional dependencies. Accord-
ing to this framework, we consider here the issue of mining
(approximate) temporal functional dependencies based on
tuple temporal evolution. Temporal evolution of tuples has
been originally proposed by Vianu [30] for the characteri-
zation of dynamic functional dependencies (DFDs), which
allow one to specify constraints on the evolution of tuples in
consecutive snapshots of a temporal database. Here, we con-
sider the characterization of DFDs introduced in [7], called
Pure Temporally Evolving TFDs (PE-FDs). In particular, we
consider the problem of extracting all Approximate PE-FDs,
called APE-FDs, from a given temporal medical database.

Before moving to the more experimental side of our work,
we provide a “negative,” yet interesting, result about the com-
plexity of checking APE-FDs. First, we prove that checking a
single APE-FD against a database instance is NP-Complete
in the size of the instance (i.e., data complexity). Moreover,
we noticed that the NP-completeness of this problem heav-
ily relies on instances that are fictitious and imply properties
of data that are unreasonable in many contexts such as the
clinical one. We thus came out with a series of optimizations
and heuristics that improve the performances with respect to
the more general problem of checking an APE-FD against a
database instance.

As we pointed out, mining APE-FDs introduces many
computational challenges that require techniques inherited
from different fields of Computer Science (e.g., model check-
ing and combinatorial optimization). We embedded such
techniques in a framework that has been implemented as a
running prototype and applied to data from pharmacovigi-
lance and psychiatry domains. With respect to the prelimi-
nary results presented in [10, 27], we focus here only on APE
-FDs and do not consider the related temporal association
rules [10, 27]. We propose here a new, stronger and more
focused definition of PE-FD and of the related APE-FD,
by introducing also a bounded version of temporal evolu-
tion of data. Moreover, we provide a detailed discussion and
proof of our theoretical results, by introducing a significantly
improved and extended presentation with new and more com-
plete examples. Furthermore, we introduce a completely new
section, in which we propose a couple of novel optimization
techniques for solving the problem of checking APE-FDs.

In the following, “Background and Related Work” section
describes the background and the related work. “Discovering
Pure Temporally Evolving Functional Dependencies” section
formally introduces the concepts of PE-FD and APE-FD.
“Some Motivating Clinical Scenarios” section introduces
some motivating clinical scenarios using PE-FDs and APE
-FDs. “The Computational Complexity of Checking APE-
FD” section proves the NP-Hardness of checking an APE-FD
against a given temporal database. “Algorithms for Checking
APE-FDs” section provides a description of the algorithm
that checks a single APE-FD against a given database plus a
series of optimizations and heuristics that may be generally
implemented in order to speed up such verification process.
“Mining APE-FDs” section provides a high-level descrip-
tion of the main features of our prototype for mining such
dependencies and the main ideas underlying its implementa-
tion; then, it provides interesting mined APE-FDs from the
psychiatry and pharmacovigilance domains; in the last part of
this section, we analyze the performances of the implemented
prototype. “Conclusions” section draws some conclusions
and sketches possible directions for future research.

SN Computer Science (2020) 1:153 Page 3 of 30 153

SN Computer Science

Background and Related Work

In this section, we introduce and discuss the main defini-
tions and concepts we will use through this paper. We first
recall the definition of functional dependency (FD). Then, we
introduce some extensions of FDs, i.e., temporal functional
dependencies (TFDs) and approximate functional dependen-
cies (AFDs). The definition of approximate temporal func-
tional dependency (ATFD) is grounded on these concepts.
Figure 1 depicts the relationships among such kinds of func-
tional dependencies.

Functional Dependencies and Their Temporal
Extensions

The concept of functional dependency (FD) comes from the
database theory [2].

Definition 1 Let � be a relation with schema R. Let X, Y be
sets of attributes of R. A functional dependency between X
and Y

represents the constraint that for all couples of tuples t and
t′ in having the same value(s) on attribute(s) X, the corre-
sponding value(s) on Y for those tuples are identical.

More formally, relation � satisfies functional dependency
X → Y if the following condition holds:

Temporal functional dependencies (TFDs) have been
proposed as extensions of (atemporal) functional dependen-
cies [33]. As an example, we may represent the constraint
that a pathology functionally determines a corresponding
drug, but only considers tuples month by month. In other
words, the patients with the same pathology are treated
with a common drug during some month, while in another
month the same patients affected by the same pathology

� ⊨ X → Y

∀t, t� ∈ �(t[X] = t�[X] → t[Y] = t�[Y])

take another (common) drug. Combi et al. proposed a
framework for TFDs that subsumes and extends previous
proposals [7]. They use a temporal relational data model,
allowing one to represent the notion of temporal relation.
Each relation is equipped with a time-stamping temporal
attribute VT, which represents the valid time, i.e., the time
when the fact is true in the represented real world [6]. VT
has values in domain T isomorphic to ℕ.

Two temporal views allow joining tuples that satisfy
specific temporal conditions, which represent relevant
cases of (temporal) evolution. On the basis of the intro-
duced data model, and leveraging such temporal views, we
may provide a definition for TFDs.

Definition 2 Let R = U ∪ {VT} be a relational schema where
attributes in U are atemporal and VT has domain T . A TFD
is expressed as

where E- Exp(R) is a relational expression on schema R,
called evolution expression, t- Group is a mapping T → 2T ,
called temporal grouping, and X → Y is a functional depend-
ency on the (atemporal) attributes U of E- Exp(R).

A TFD is a statement about admissible temporal relations.
A temporal relation � on a temporal schema R = U ∪ {VT}
satisfies a TFD [E- Exp(R), t- Group]X → Y , if it is not pos-
sible that the relation obtained from � by applying the expres-
sion E- Exp(R) features two tuples t, t′ such that

1. t[X] = t�[X],
2. t[VT] and t�[VT] (the same for t[VT] and t�[VT] , if attrib-

ute VT , obtained by renaming VT, appears in the relation
resulting from the evolution expression) belong to the
same temporal group, according to the mapping t- Group,

3. t[Y] ≠ t�[Y].

In other words, FD X → Y must be satisfied by each rela-
tion obtained from the evolution expression by selecting
those tuples whose valid times belong to the same tempo-
ral group. Temporal grouping enables us to group tuples
together over a set of temporal granules, based on VT. Four
different classes of TFD have been proposed in [7]:

• Pure temporally grouping TFD: E- Exp(R) returns the
original temporal relation � . These TFDs force FD
X → Y , where X, Y ⊆ U , to hold over each set of tuples
temporally grouped according to their VT;

• Pure temporally evolving TFD: E- Exp(R) specifies how
to derive the tuples modeling the evolution of objects.
No temporal grouping exists, i.e., all the tuples of � are
considered together;

[E- Exp(R), t- Group]X → Y

FD

AFD

TFD

ATFD

Fig. 1 A graphical account for the IS_A relationships between func-
tional dependency (FD), approximate functional dependency (AFD),
temporal functional dependency (TFD) and approximate temporal
functional dependency (ATFD)

 SN Computer Science (2020) 1:153153 Page 4 of 30

SN Computer Science

• Temporally mixed TFD: in this case, after evaluating the
expression E- Exp(R) , a temporal grouping t- Group is
performed;

• Temporally hybrid TFD s: first, the evolution expression
E- Exp(R) allows the selection of those tuples that are
needed to represent the evolution of real-world objects/
concepts; then, temporal grouping is applied to the
selected tuples.

In the remainder of the paper, we shall focus on Pure Tem-
porally Evolving TFDs only.

Approximate Functional Dependencies and Their
Temporal Extensions

The concept of approximate functional dependency (AFD) is
defined moving from the concept of plain FD. In fact, given
a relation � where an FD holds for most tuples in � , we may
identify some tuples, for which that FD does not hold. Con-
sequently, we can define some measurements of the error we
make in considering the FD to hold on �.

One measurement [16] we can apply is known as G1 ,
which considers the number of violating pairs of tuples.
Formally:

The related scaled measurement g1 is defined as follows:

where |r| is the cardinality of relation � , i.e., the number of
tuples belonging to relation �.

Another measurement [16] we can apply is known as G2 ,
which considers the number of tuples that violate the func-
tional dependency. Formally:

The related scaled measurement g2 is defined as follows:

Topics related to approximate functional dependencies have
been considered since some years [13, 14, 16, 19]. Instead,
to the best of our knowledge, very few studies focused on
approximate temporal functional dependencies [4, 5, 11,
26]. In [4], Combi et al. consider the problem of mining
approximate TFDs with different kinds of temporal group-
ing on clinical data. In [11, 26], Sala and Combi extend the
concept of approximate TFD to deal with interval-based
TFDs. In this paper, we continue such studies by considering
a different kind of approximate TFD and its application to
data from clinical domains.

G1(X → Y , �) = |{(t, t�) ∶ t, t� ∈ � ∧ t[X] = t�[X] ∧ t[Y] ≠ t�[Y]}|

g1(X → Y , �) = G1(X → Y , �)∕|�|2

G2(X → Y , �) = |{t ∶ t ∈ � ∧ ∃t�(t� ∈ � ∧ t[X]

= t
�[X] ∧ t[Y] ≠ t

�[Y])}|

g2(X → Y , �) = G2(X → Y , �)∕|�|

Discovering Pure Temporally Evolving
Functional Dependencies

In the following, we focus on Pure Temporally Evolving
Functional Dependencies (PE-FDs for short), as speci-
fied in the framework proposed in [7]. Our temporal func-
tional dependencies will be given on a temporal schema
R = U ∪ {VT} where U is a set of atemporal attributes and
VT is a special attribute denoting the valid time of each tuple.
Hereinafter, we assume tuples time-stamped with natural
numbers (i.e., Dom(VT) = ℕ). Let J ⊆ U be a nonempty sub-
set of U. We define the set W as W = U⧵J and set W , which
is basically a renaming of attributes in W. Formally, for each
attribute A ∈ W , we have A ∈ W (i.e., W = {A ∶ A ∈ W}).

Definition 3 (Views Evolution and Bounded Evolu-
tion) Given an instance � of R, an instance ��

J
 of schema

Rev = JWW{VT ,VT} is defined as follows:

Schema Rev is called the evolution schema of R. We will
denote as �R

J
 the view Evolution on R that is built by

expression ��
J
 for every instance � of R. View �R

J
 joins

two tuples t1 and t2 that agree on the values of the attrib-
utes in J (i.e. t1[J] = t2[J]), if t2 immediately follows t1 .
More precisely, such tuples are joined if t1[VT] < t2[VT]
and there does not exist a tuple t ∈ � with t[J] = t1[J] and
t1[VT] < t[VT] < t2[VT] (i.e., there does not exist a tuple
that holds at some point in between the valid times of such
tuples).

For application purposes, it would be important to con-
sider in an evolution schema only those pairs of consecutive
tuples whose difference between VT and VT is within some
given bound. Given a parameter k ∈ ℕ ∪ {+∞} , tuples of ��

J

are filtered by means of the selection �k(�
�

J
) = �

VT−VT≤k
(��

J
)

(notice that �+∞(�
�

J
) = ��

J
).

We will denote as �k(�
�

J
) the view Bounded Evolution. It

forces to consider only those tuples belonging to ��
J
 having

a temporal distance within the given threshold k. In the fol-
lowing, given a tuple t ∈ ��

J
 , we denote its temporal distance

t[VT] − t[VT] with �(t).

Let us now define, by using the introduced temporal view
Evolution, a slightly restricted version of Pure Temporally
Evolving Functional Dependency with respect to that defined
in [7]. Without loss of generality, such definition will allow
us to simplify the notation and to focus on a general kind of
temporal evolution of considered data.

𝜏�
J
=

⎧
⎪⎪⎨⎪⎪⎩

u

���������
∃t,t�

⎛⎜⎜⎜⎜⎜⎝

r(t)∧r(t�)∧t[J]=t�[J]=u[J]∧u[W]=t[W]∧

u[W]=t�[W]∧t[VT]=u[VT]∧t�[VT]=u[VT]

∧t[VT]<t�[VT]∧

∀t��((r(t��)∧t[VT]<t��[VT])→t�[VT]≤t��[VT])

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

SN Computer Science (2020) 1:153 Page 5 of 30 153

SN Computer Science

Definition 4 (Pure Temporally Evolving Functional Depend-
ency) A Pure Temporally Evolving Functional Dependency
over the temporal schema R = U ∪ {VT} , PE-FD for short,
is an expression of the form:

We have that X ⊆ W and Y ,Z ⊆ W with X ≠ ∅ and |Z| = 1
(Z contains a single attribute). An instance � of R fulfills
a PE-FD [�k(�

R
J
)]XY → Z , written � ⊧ [𝛥k(𝜏

R
J
)]XY → Z ,

if and only if for each pair of tuples t, t� ∈ �k(�
�

J
) we have

(t[X] = t�[X] ∧ t[Y] = t�[Y]) → t[Z] = t�[Z].

A PE-FD could express dependencies as “A common ther-
apy follows the same symptom for all patients.”

Now, we introduce two specializations of PE-FDs. Given a
PE-FD [�k(�

R
J
)]X Y → Z , if set Y = � (i.e., the dependency is

[�k(�
R
J
)]X → Z), we will say that the PE-FD is simple. Moreo-

ver, if the considered PE-FD is of the type [�k(�
R
J
)]XY → X ,

we will say that the PE-FD is an update. PE-FDs featuring
both the properties (i.e., PE-FDs of type [�k(�

R
J
)]X → X) are

called simple updates. A graphical account of such classes is
given in Fig. 2.

Approximate Pure Temporally Evolving Functional
Dependencies

We add approximation to PE-FDs in a very similar way we did
for FDs in “Background and Related Work” section. First, we
specialize the measurement G3 , which considers the minimum
number of tuples in � to be deleted for the FD to hold, to deal
with PE-FD as follows:

By means of G3 , we can define the relative scaled measure-
ment g3 as follows:

Now we are ready to define the Approximate Pure Tempo-
rally Evolving Functional Dependency.

Definition 5 (Approximate Pure Temporally Evolving Func-
tional Dependency) An Approximate Pure Temporally
Evolving Functional Dependency over the temporal schema
R = U ∪ {VT} , APE-FD for short, is an expression of the form:

[�k(�
R
J
)]XY → Z.

G3([𝛥k
(𝜏R

J
)]XY → Z, �) = |�| −max{|�| ∶

� ⊆ �, � ⊧ [𝛥
k
(𝜏R

J
)]XY → Z}

g3([�k(�
R
J
)]XY → Z, �)

=
G3([�k(�

R
J
)]XY → Z, �)

|�| .

[�k(�
R
J
)]XY

�
−→Z

with 0 ≤ � ≤ 1 , X ⊆ W and Y ,Z ⊆ W with X ≠ ∅ and
|Z| = 1.

An instance � of R satisfies the APE-FD [�k(�
R
J
)]X

Y
�
−→Z , written � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z , if and only if

g3([�k(�
R
J
)]XY → Z, �) ≤ �.

Some Motivating Clinical Scenarios

In this section, we describe and discuss two scenarios, bor-
rowed from the clinical domain, in order to provide exam-
ples of how PE-FDs and APE-FDs work. The first scenario
is taken from psychiatric case register. Let us consider the
temporal schema Contact = {Name,Phys,CT , Dur} ∪ {VT} .
Such a schema stores values about a phone-call service pro-
vided to psychiatric patients. This service is intended for
monitoring and helping psychiatric patients, who are not
hospitalized. Whenever a patient feels the need to talk to a
physician, she can call the service. Data about calls are col-
lected according to schema Contact. For the sake of sim-
plicity, temporal attribute VT identifies the day when the
call has been received. In addition, the service may be used
by people somehow related to patients, as, for instance,
relatives worried about the current condition of a patient.

More precisely, attribute Name identifies patients, Phys iden-
tifies physicians, CT (Contact Type) specifies the person who is
doing the call (e.g., value “self” stands for the patient himself,
“family” for a relative) and Dur stores information about total
duration of calls (value ∼ n means approximately n minutes).

Fig. 2 A graphical account of how different classes of PE-FDs are
related

 SN Computer Science (2020) 1:153153 Page 6 of 30

SN Computer Science

An instance � of R is provided in Fig. 3. Instance ��
Name

 , and ��
J

in general, may be seen as the output of a two-phase procedure.
First, table Contact is partitioned into subsets of tuples, one
for each value of Name. Then, each tuple is joined with its
immediate successor in its partition, w.r.t. VT values. The whole
relation ��

Name
 is provided in Fig. 4. In the following, we will

use t for referencing tuples of � and u for referencing tuples of
��
J
 . Moreover, in the following, each tuple u in ��

J
 will be identi-

fied by the pair of indexes of the tuples in � that generate u. For
instance, the first tuple of ��

J
 in Fig. 4 will be denoted by u1,2

since it is generated by the join of tuples t1 and t2 in �.
Going back to our example, it is worth noting that tuples

t2 and t7 are not joined in ��
Name

 , even if t7[VT] = t2[VT] + 2
and there is no tuple t with t[VT] = t7[VT] + 1 . This is due
to the fact that t7[Name] ≠ t2[Name] forbids the join in ��

Name
 .

Moreover, t1 and t3 are not joined in ��
Name

 . Indeed, the pres-
ence of tuple t2 with t1[Name] = t2[Name] = t3[Name] and
t1[VT] < t2[VT] < t3[VT] forbids the join in ��

Name
 . Figure 5

graphically depicts how pairs of tuples (t1, t2), (t2, t3), (t3, t4),
(t4, t5), (t5, t6) and (t7, t8), (t8, t9), (t9, t10), (t10, t11), (t11, t12) are
joined in ��

Name
 for the two patients, respectively. Basically,

each tuple u ∈ ��
Name

 corresponds to an edge in Fig. 5, while
we have a node for each tuple in �.

Let us now discuss some temporal dependencies we can
derive from such data. We could be interested in verifying
whether there is some relationship between some previous
features of patient’s call and the fact that the considered call
was either with him or with a relative. In our example, we
have that � ⊧ [𝛥5(𝜏

Contact
Name

)]Phys,Phys → CT .
In other words, given consecutive calls related to the same

patient within 5 days, the couple composed by the physician
of the first call and by the physician of the next one determines
the type of contact of the next call. And it holds for all patients.
However, if we consider a wider time window of 6 days,
we have that � ⊭ [𝛥6(𝜏

Contact
Name

)]Phys,Phys → CT , because
of pairs (t2, t3) and (t10, t11) . More precisely, we have that
t2[Name] = t3[Name] = “McMurphy”, t10[Name] = t11
[Name] = “Lowe”, t2[Phys] = t10[Phys] = “Sleepy”,
t3[Phys] = t11[Phys] = “Patel” , but t3[CT] ≠ t11[CT] (i.e.,
t3[CT] = “family” , and t11[CT] = “self”). In other words, we
have that the set of tuples {u2,3, u10,11} does not satisfy the
FD Phys,Phys → CT .

Fig. 3 An instance � of schema
Contact that stores the phone
contacts about two psychiatric
cases. Attribute # represents
the tuple number, and it is used
only for referencing tuples in
the text (i.e., # does not belong
to the schema Contact)

Fig. 4 The evolution expression ��
Name

SN Computer Science (2020) 1:153 Page 7 of 30 153

SN Computer Science

The two proposed PE-FDs differ only for the maxi-
mum temporal distance allowed. In particular, tuple u10,11
is one of the responsible ones for � ⊧ [𝛥6(𝜏

Contact
Name

)] Phys,
Phys → CT , but it does not belong to �5(�

Contact
Name

) because
𝛥(u10,11) > 5 . This allows us to point out a general prop-
erty of PE-FDs and of APE-FDs too. Given a PE-FD
[�k(�

R
J
)]XY → Z , if we have that for every instance � of R

it holds � ⊧ [𝛥k(𝜏
R
J
)]XY → Z , then for every h ≤ k it holds

� ⊧ [𝛥h(𝜏
R
J
)]XY → Z.

Moving to the problem of mining approximate depend-
encies, if we consider APE-FD [�6(�

R
Name

)]Phys,Phys
�
−→CT

with � = 1

12
 , we have that � ⊧ [𝛥6(𝜏

R
Name

)] Phys,Phys
�
−→CT .

Indeed, by considering relation �� = �⧵{t3} , this depend-
ency would hold without the need of approximation
(i.e., if tuple t3 is deleted from relation �). More pre-
cisely, we have ���

Name
= ��

Name
⧵{u2,3, u3,4} ∪ {u2,4} . Tuple

u2,4 was not originally in ��
Name

 because of tuple t3 . Fig-
ure 5 depicts this new scenario, by replacing edges (t2, t3)
and (t3, t4) with the dashed edge (t2, t4) . Moreover, we
have �� ⊧ [𝛥+∞(𝜏

R
Name

)]Phys,Phys → CT . Thus, it holds
� ⊧ [𝛥+∞(𝜏

R
Name

)]Phys, Phys
�
−→CT with � = 1

12
.

The second example we propose is borrowed from the
internal medicine domain. As another simple example of how
view �R

J
 works, let us consider the temporal schema

ThCy = {PatId,Phys,Dos} ∪ {VT} . Such a schema allows
one to store the values about cycles of therapies in which a
specific, fixed, drug is administered to a patient by a given
physician. Figure 6a depicts an instance � of R. Figure 6b
shows the result of view �ThCy

PatId
 to � . It is easy to see that tuples

t1 and t5 are not joined in ��
PatId

 . Even if t5[VT] = t1[VT] + 1
the fact that t1[PatId] ≠ t5[PatId] forbids the join in
��
PatId

 . Moreover t1 and t3 are not joined in ��
PatId

 . Even if
t1[PatId] = t3[PatId] , we have that the presence of
tup le t2 wi th t1[PatId] = t2[PatId] = t3[PatId] and
t1[VT] < t2[VT] < t3[VT] forbids the join in ��

PatId
 . In Fig. 7a,

we have a graphical account of how the pairs of tuples

(t1, t2), (t2, t3), (t3, t4), (t5, t6), (t6, t7) and (t7, t8) are joined in
��
PatId

 . In both the graphs depicted in Fig. 7a, nodes are
labeled with the tuple number and the value for Dos attribute
is reported above each node. Moreover, we recall from the
previous example that each edge (ti, tj) is labeled with the
value tj[VT] − ti[VT] (i.e., the temporal distance between two
tuples). In the scenario for ��

PatId
 the value for the attribute

Phys is reported below each node, while for ��
Phys

 the value of
PatId is reported below each node.

We would like to point out that it may be the case that a
tuple t ∈ � has a more than one immediate successor in ��

J

(i.e. is joined with more than one tuple). It is the case of
view ��

Phys
 shown in Fig. 7b, where tuples are joined with

respect to the values of attribute Phys. We have that, since
Dr. Shepherd makes two drug administrations at VT = 20 ,
tuple t1 has both tuples t3 and t7 as its immediate successors.
We will see that the number of immediate successors of a
tuple in ��

J
 will play a major role in some of the following

complexity results.
In this domain, we could be interested in understanding

whether there are dependencies among previous and cur-
rent drug dosages for a given patient, possibly considering
the physicians administering the drug.

In the example depicted in Figs. 6 and 7, we have
that � ⊧ [𝛥+∞(𝜏

R
PatId

)] Dos,Phys,Phys → Dos . It means
that the dosage and the couple of physicians related
to a drug administration and to the next one, respec-
tively, determine the next drug dosage. However,
� � ⊧ [𝛥∞(𝜏

R
PatId

)]Phys,Phys → Dos b e c a u s e b o t h
tuples u1,2 and u7,8 belong to �∞(�

R
PatId

) . More pre-
cisely, we have that Phys,Phys → Dos does not hold
on any instance of �k(�

R
PatId

) that contains both u1,2 and
u7,8 , s ince u1,2[Phys] = u7,8[Phys] = “Shepherd” and
u1,2[Phys] = u7,8[Phys] = “Stevens” but u1,2[Dos] = “60 mg”
is not equal to u7,8[Dos] = “20 mg”.

Fig. 5 A graph-based rep-
resentation of ��

Name
 . Nodes

represent tuples and are labeled
by the corresponding tuple
number. Values for attribute
Dur are reported above each
node. Values of Phys and CT
attributes are reported below
every node, respectively. Every
edge (ti, tj) is labeled by value
�(ui,j) = tj[VT] − ti[VT] (i.e.,
the temporal distance between
two tuples). The dashed edge
represents a different scenario
where t2 and t4 are joined, if t3
would be deleted, as explained
below for APE-FDs

 SN Computer Science (2020) 1:153153 Page 8 of 30

SN Computer Science

On the other hand, � ⊧ [𝛥4(𝜏
R
PatId

)]Phys,Phys → Dos
because having 4 as maximum allowed time distance
implies u7,8 ∉ �4(�

�

PatId
) (i.e., t8[VT] − t7[VT] > 4) and

thus the conflict between u1,2 and u7,8 no longer exists.
Furthermore, it is easy to see by considering the pairs u1,2
and u5,6 that � � ⊧ [𝛥+∞(𝜏

R
PatId

)]Dos,Phys → Dos . How-
ever, by shrinking the maximum allowed time distance

to 6, we obtain u5,6 ∉ �6(�
�

PatId
) and thus we have that

� ⊧ [𝛥6(𝜏
R
PatId

)]Dos,Phys → Dos.
Obviously, in an instance ��

J
 , there may be more than one

pair (u, u�) which generates a conflict. Let us consider the
simple update PE-FD [�+∞(�

R
PatId

)] Dos → Dos . Such PE-
FD does not hold on � (i.e., � � ⊧ [𝛥+∞(𝜏

R
PatId

)]Dos → Dos).
This can be shown using the pair u1,2 and u5,6 as a witness
for a conflict since u1,2[Dos] = u5,6[Dos] = “30 mg” and

Fig. 6 The instances ��
PatId

 (b)
and ��

Phys
 (c) obtained from

applying views �ThCy
PatId

 and �ThCy
Phys

to the instance � (a), respec-
tively

Fig. 7 A graphical account for
the instances ��

PatId
 (a) and ��

Phys

(b) related to the instance �
shown in Fig. 6a

SN Computer Science (2020) 1:153 Page 9 of 30 153

SN Computer Science

u1,2[Dos] ≠ u5,6[Dos] . However, in this case, we have that
the conflicting pairs are more than one. As a matter of fact,
all pairs (u1,2, u5,6) , (u2,3, u7,8) and (u3,4, u4,6) are conflict-
generating. If we want to rule all the conflicts out by playing
on the maximum allowed distance, we have to set it to 6 and
then we have � ⊧ [𝛥6(𝜏

R
PatId

)]Dos → Dos.

The Computational Complexity of Checking
APE‑FD

In this section, we address the complexity of checking an
APE-FD against an instance � . We call this problem Check-
APE-FD:

Problem 1 (Check-APE-FD). Given a temporal schema R, a
PE-FD [�k(�

R
J
)] XY → Z on R, an instance � of R, and a real

number 0 ≤ � ≤ 1 , determine whether � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z or

not.

Let us consider, for example, the PE -FD
[�+∞(�

ThCy

PatId
)]Phys,Phys → Dos . We have proved above that

� ∖ ⊧ fd . Figure 8 graphically reports all the possible ��′
PatId

where �′ is obtained from � by deleting exactly one tuple.
For example, if �� = �⧵{t1} , it means that the dotted edge
(t1, t2) has been removed. This means that t1 and t2 are not
joined in ��′

PatId
 . Moreover, if we take �� = �⧵{t2} we have

that both the edges (t1, t2) and (t2, t3) are removed and the
dashed edge (t1, t3) turns out to be “active.” This means that
t1 and t2 are not joined in ��′

PatId
 as well as t2 and t3 , but t1

and t3 turn out to be joined in ��′
PatId

 due to the absence of t2 .
Let us observe that in this case, the join operation involv-
ing t1 and t3 belongs to ��′

PatId
 and not to ��

PatId
 . This specific

behavior, in which the deletion of a tuple introduces addi-
tional, possibly different, constraints as a side effect, instead
of just removing existing ones, gives us a hint on the prob-
lem Check- APE-FD. Such problem is not so easy to solve.
Notice that �⧵{t1} � ⊧ [𝛥+∞(𝜏

ThCy

PatId
)]Phys,Phys → Dos

as well, because of the pairs (t2, t3) and (t6, t7) . However,
�⧵{t2} ⊧ [𝛥+∞(𝜏

ThCy

PatId
)]Phys,Phys → Dos and thus we have

that � ⊧ [𝛥+∞(𝜏
ThCy

PatId
)]Phys,Phys

𝜖
−→Dos with � = 1

8
.

Therefore, problem Check- APE -FD belongs to the com-
plexity class NP. In order to prove that, it suffices to apply
a guess-and-check algorithm. First, this algorithm guesses
a set �′ with |�′| ≤ � ⋅ |�| . Then, if �⧵�� ⊧ [𝛥k(𝜏

R
J
)]XY → Z ,

the algorithm returns YES, otherwise NO. In the procedure
above, we implicitly make use of a function that verifies,
given an instance � of R and a PE-FD [�k(�

R
J
)]XY → Z ,

whether � ⊧ [𝛥k(𝜏
R
J
)]XY → Z holds or not. We can call this

problem Check- PE-FD. Since there is no approximation,

checking if � ⊧ [𝛥k(𝜏
R
J
)]XY → Z may be performed in poly-

nomial time [7]. For this reason, we can conclude that Check-
APE-FD belongs to the complexity class NP. In the follow-
ing, we will prove that Check-APE-FD is NP-hard even in
the case of the most constrained kind of APE-FDs, which is
represented by the class of simple update APE-FDs. From
now on, we will consider Problem 1 only for simple update
APE-FDs. Considering the inclusions shown in Fig. 2, we
can immediately conclude that our hardness result directly
propagates to the other classes of APE-FDs.

In this section, we will make use of finite words w on a
finite nonempty alphabet � (i.e., w ∈ �∗). We will use the
standard notation w[i] for denoting the ith symbol of word w.
Given a word w, we denote with first(w) and last(w) its first
and its last element, respectively (i.e., first(w) = w[1] and
last(w) = w[|w|]). Moreover, a finite increasing sequence
of ℕ (ℕ>-sequence) is a finite word s on (ℕ⧵{0})∗ , where
for every i, i′ , with 1 ≤ i < i′ ≤ |s| , we have s[i] < s[i�].1
Given a ℕ>-sequence s we denote with first(s) and last(s)
its first and its last element, respectively (i.e., first(s) = s[1]
and last(s) = s[|s|]). A ℕ>-sequence s, for which for every
i, with 1 ≤ i < |s| , we have w[i + 1] = w[i] + 1 , is called
strict and we denote it with [b, e], where b = first(s) and
e = last(s) . Given a word w and a ℕ>-sequence s, we
denote with w‖s the word w‖s = w[first(s)]…w[last(s)]
(for a graphical account of how a word is filtered by a
sequence please refer to Fig. 9). Given a word w and a
pair (b, e), with 1 ≤ b ≤ e ≤ |w| , we call the word w‖[b,e]
a slice of w. Given two words w1,w2 ∈ �∗ we say that

Fig. 8 A graphical account for the possible changes on the view ��
PatId

considering the possible deletions of at most one tuple

1 a ℕ>-sequence is nothing more than a different representation for a
finite set of positive naturals, but it turns out for our purposes to see it
as a particular kind of word over positive naturals.

 SN Computer Science (2020) 1:153153 Page 10 of 30

SN Computer Science

w1 is a subsequence of w2 (written w1 ⊑ w2) if and only
if there exists an ℕ>-sequence s for which w1 = w2‖s .
For instance, w1 = abaabba is a subsequence of
w2 = bbabbabbabaabababa with s = 3 4 6 9 10 14 15 . A
word w is repetition free if and only if for every a ∈ � we
have |{i ∶ w[i] = a}| ≤ 1 . A word w is a permutation of �
if and only if w is repetition free and |w| = |�|.

The proof that Check- APE-FD is NP-hard is done in two
steps. First, we describe a known NP-Complete problem
called Common Permutation Problem (CP -P for short).
Then, we introduce a problem called Periodic Repair Prob-
lem (PR-P) and we prove that CP -P may be reduced to it
using logarithmic space. Finally, we reduce the PR -P to
Check-APE -FD using logarithmic space.

Let us begin with the Common Permutation Problem
which has been proved to be NP-Complete in [12].

Problem 2 (CP-P). Given a finite alphabet � and two words
w1,w2 over it, is there a permutation wp of � for which
wp ⊑ w1 and wp ⊑ w2?

Consider � = {a, b, c} we have that the pair w1 = bcbab
and w2 = accaacb is a positive instance of Problem 2
because cab ⊑ w1 and cab ⊑ w2 . On the other hand, the pair
w1 = bcbac and w2 = acab is a negative instance of Prob-
lem 2 since both words do not share any permutation of � as
their subsequence. More precisely, w1 contains the permuta-
tions bca, bac and cba while w2 contains the permutations
acb and cab.

A word w is periodic if and only if for every pair of
indexes (i, i�) , with 1 ≤ i, i′ < |w| , we have that w[i] = w[i�]
implies w[i + 1] = w[i� + 1] . Let us observe that if w is rep-
etition-free, then it is periodic. Moreover, if w is periodic for

Fig. 9 An example of a word
w‖s obtained by applying a
sequence s to a word w

Fig. 10 A graphical account of
how s1

n
, sw1

, s2
n
, sw2

, and s3
n
 filter

blocks of w

SN Computer Science (2020) 1:153 Page 11 of 30 153

SN Computer Science

every pair (b, e), with 1 ≤ b ≤ e ≤ |w| , we have that w‖[b,e] is
periodic (i.e., every slice of a periodic word is itself periodic).
The following lemma turns out to be useful for our reduction.

Lemma 1 Given a periodic word w, if w is not repe-
tition-free, then there exists an index i < |w| such that
last(w) = w[i].

Proof Since w is not repetition free, there exists two indexes
i, i′ , with 1 ≤ i < i′ ≤ |w| , such that w[i] = w[i�] . We prove
the claim by induction on � = |w| − i� . For the base of the
induction, we have � = 0 and thus the claim trivially holds
since i is the index we were looking for. Let us consider
� = n + 1 . Since w is periodic and w[i] = w[i�] , we have that
w[i + 1] = w[i� + 1] . Thus, positions i + 1 and i� + 1 witness
a repetition and since |w| − (i� + 1) < |w| − i� = 𝛥 we can
apply the inductive hypothesis and prove our claim. ◻

In order to prove that Check- APE -FD is NP-Complete
even for simple update PE-FD [�k(�

R
J
)]X → X , we introduce

the following intermediate problem called Periodic Repair
Problem (PR -P for short):

Problem 3 (PR-P) Given a word w = a1 … an , a finite alpha-
bet � and a natural number k, determine whether a periodic
word w′ ⊑ w exists such that |w′| ≥ k.

Problem 3 belongs to the complexity class NP. A sim-
ple nondeterministic algorithm for PR -P guesses an ℕ>

-sequence s such that |s| ≥ k and last(s) ≤ |w| (i.e., s
“chooses” only positions in 1… |w|). Then, it suffices to
check whether or not w‖s is periodic (periodicity checking
may be performed in logarithmic space).

In the following, we describe how to reduce CP -P to PR
-P. Let us consider two words w1 and w2 on an alphabet �
with length n1 and n2 , respectively. We assume without loss
of generality that � is a finite subset of the negative integers
(i.e., 𝛴 ⊆ ℤ

−). Let n = max(n1, n2) and � = |�| . Let us con-
sider the following word w over the alphabet � ∪ {1,… , n}
(⋅ is the classical word concatenation operator):

Finally, we put k = 3n + 2� . Such reduction operates in log-
arithmic space. The following two lemmas prove the sound-
ness and completeness of the above reduction.

Lemma 2 If there exists a permutation wp of � which is a com-
mon subsequence of w1,w2 , then there exists a ℕ>-sequence s,
with |s| ≥ 3n + 2� and last(s) ≤ 3n + |w1| + |w2| , such that
w‖s is periodic.

w = 1 ⋅… ⋅ n ⋅ w1 ⋅ 1 ⋅… ⋅ n ⋅ w2 ⋅ 1 ⋅… ⋅ n.

Proof First, let us recall that wp is a repetition-free sequence
of symbols in ℤ− . By hypothesis, we have wp ⊑ w1 and
wp ⊑ w2 and thus there exists a pair of ℕ>-sequence s1 and s2
with |s1| = � , |s2| = � and w1‖s1 = w2‖s2 = wp.

Let sj with j ∈ {1, 2} be the ℕ>-sequence such that |sj| = �
and for every 1 ≤ i ≤ � , we have sj[i] = sj[i] + nj + �(j − 1) .
Let us observe that sj is a simple shift of the indexes in the
sequence sj with j ∈ {1, 2} . Then, we may define s as follows:

By construction, we have w‖s = 1… n ⋅ wp ⋅ 1… n ⋅ wp ⋅ 1… n .
Since � ∩ {1,… n} = � there are not “conflicts” between the
blocks 1… n and wp , we can conclude that w‖s is periodic.
 ◻

Lemma 3 I f there exists a sequence s with
3n + 2� ≤ |s| ≤ 3n + |w1| + |w2| for which w‖s is periodic,
then there exists a permutation wp of � which is a common
subsequence of w1,w2.

Proof First, we define s1
n
, sw1

, s2
n
, sw2

, s3
n
 such that s = s

1

n
⋅ s

w1

⋅s
2

n
⋅ s

w2
⋅ s

3

n
 and last(s1

n
) ≤ n , n + 1 ≤ s

w1
[1] ≤ last(s

w1
)

≤ n + |w1| , n + |w1| + 1 ≤ s2
n
[1] ≤ last(s2

n
) ≤ 2n + |w1| ,

2n + |w1| + 1 ≤ sw2
[1] ≤ last(sw2

) ≤ 2n + |w1| + |w2| and
n + |w1| + |w2| + 1 ≤ s3

n
[1] . Informally s1

n
, sw1

, s2
n
, sw2

, s3
n
 are

the indexes in s that concern the subwords 1… n (first block),
w1 , 1… n (second block), w2 and 1… n (third block) respec-
tively. A graphical account of this decomposition of w‖s is
given in Fig. 10. This means that we may retrieve the subse-
quence selected by s on w restricted to the first block by
means of the operation w‖s1

n
 . If we want to retrieve the sub-

sequence selected by s on w restricted to the w1 block, we
write w‖sw1 , and so on, for the second block 1… n (i.e., w‖s2

n
),

the block w2 (i.e., w‖sw2) and the third block 1… n (i.e., w‖s3
n
).

Let us notice that w‖s is equal to w‖
s1
n

⋅ w‖
s
w1

⋅

w‖
s2
n

⋅ w‖
s
w2

⋅ w‖
s3
n

.
Suppose by contradiction that |s2

n
| = 0 . Then, we have that

w� = w‖sw1 ⋅ w‖sw2 is a slice of w‖s and thus w′ is periodic.
Moreover, we have that w�� = w�

⋅ (w‖s3
n
) is a slice of w‖s and

thus w′′ is periodic. Two cases may arise, i.e., either |s3
n
| = 0

or not.
If |s3

n
| = 0 we have that w‖s ⊑ 1… n ⋅ w� and by a counting

argument we have that �w‖s� ≤ 3n which is a contradiction
since 3n + 2� ≤ �w‖s� and 𝜎 > 0 by definition.

If |s3
n
| > 0 , we prove that w′′ is repetition free. Again by

contradiction, from Lemma 1, we will have that, since w′′
is periodic, there must exist an index i < |w′′| for which
w��[i] = w��[n] . However, |s3

n
| > 0 implies w��[n] ∈ {1,… , n}

and thus, since � ∩ {1,… , n} = � , such i′ cannot exist

s =
[1, n] ⋅ s1 ⋅ [n + |w1| + 1, 2n + |w1|] ⋅ s2
⋅[2n + |w1| + |w2| + 1, 3n + |w2| + |w1|]

 SN Computer Science (2020) 1:153153 Page 12 of 30

SN Computer Science

(contradiction). If w′′ is repetition free, we have that
|w��| ≤ � + n , and since w‖s ⊑ 1… n ⋅ w�� , we have that
�w‖s� ≤ 2n + � , which contradicts �w‖s� ≥ 3n + 2�.

We have now that |s2
n
| > 0 . Consider the slice

w� = w‖sw1 ⋅ w‖s2n : we have just proved that �w‖s2
n
� > 0 and we

have that w′ is periodic being a slice of w‖s . By applying
Lemma 1 as we did above, we can claim that w‖sw1 is repeti-
tion free and thus �w‖sw1 � ≤ � . Suppose now by contradiction
that w‖sw2 is not repetition free. If |s3

n
| > 0 we reach immedi-

ately a contradiction by applying Lemma 1 on the word
w‖sw2 ⋅ w‖s3n . Then, we have |s3

n
| = 0 and by definition

�w‖sw2 � ≤ n . This implies w‖s ⊑ 1… n ⋅ w‖sw1 ⋅ 1… n ⋅ w‖sw2
which means �w‖s� ≤ 3n + � (contradiction).

At this point, we have that both w‖sw1 and w‖sw2 are repetition
free and thus �w‖sw1 � ≤ � and �w‖sw2 � ≤ � . Since
3n + 2� ≤ �w‖s� , we have that �w‖sw1 � = � and �w‖sw2 � = � and
thus both w‖sw1 and w‖sw2 are permutations of � . It remains to
prove that they are the same permutation. Let us observe that,
since �w‖sw1 � = �w‖sw2 � = � and �w‖s� ≥ 3n + 2� , by a count-
ing argument we have that w‖s1

n
= w‖s2

n
= w‖s3

n
= 1… n. and

thus w‖s = 1… n ⋅ w‖sw1 ⋅ 1… n ⋅ w‖s2
n
⋅ 1… n.

Suppose by contradiction that there exists i, with
1 ≤ i ≤ � , such that w‖sw1 [i] ≠ w‖sw2 [i] , and let i be the mini-
mum index that fulfills such a property. Two cases may arise:

1. If i = 1 we have that w‖s[n + 1] = w‖sw1 [i] and
w‖s[2n + � + 1] = w‖sw2 [i] . Let us recal l that
w‖s[n] = w‖s[2n + �] = n , and thus by periodicity of
w‖s , we have w‖s[n + 1] = w‖s[2n + � + 1] (contradic-
tion).

2. If i > 1 since w‖s is periodic, we have that
w‖sw1 [i − 1] ≠ w‖sw2 [i − 1] but this contradicts the mini-
mality in the choice of i. ◻

Now we reduce Problem PR -P to Check- APE -FD in loga-
rithmic space. Suppose that we have an instance of PR -P con-
sisting of a word w ∈ �∗ and a natural number k. We define the
instance �w on the temporal schema R = {J,X} ∪ VT as
�w = {t | t[J] = 0 ∧ ∃i(t[X] = w[i] ∧ t[VT] = i)} , and we put
�w,k =

|w|−k
|w| . The pair w, k is a positive instance of PR -P if and

only if the triple [�+∞(�
R
J
)]X → X , �w and �w,k is a positive

instance of Check- APE -FD . [�+∞(�
R
J
)]X → X , �w and �w,k may

be built using logarithmic space on the input w, k. Finally, we
can conclude this section by explicitly providing the desired
result.

Theorem 1 Problem Check-APE -FD is NP-Complete.

Algorithms for Checking APE‑FDs

As we proved in “The Computational Complexity of Check-
ing APE-FD” section, given an APE-FD [�k(�

R
J
)]XY

�
−→Z and

an instance � of R, the problem Check-APE-FD is NP-Com-
plete in |�| . Then, in principle, there is no asymptotically
better algorithm than exploring the whole set of possible
subsets �′ of � with |�|−|�

�|
|�| ≤ �.

In the following, we provide two algorithms that make use
of heuristics, for pruning the search space in order to achieve
the tractability for many cases.

The first algorithm is the more general one, and it may be
applied without assumptions on the input instance � . Such
algorithm makes use of two optimization techniques. The
first one consists of trying, whenever it is possible, to split
the current subset of � into two subsets, on which the problem
may be solved independently (i.e., choices in one subset do
not affect those in the other one and vice versa). The latter
optimization technique consists of checking whether the cur-
rent partial solution may not lead to an optimal solution (i.e.,
a solution �′ where |�′| is the maximum possible number of
tuples that may be kept). If this happens, the subtree is pruned
immediately (i.e., we are looking only for optimal solutions).

The second algorithm is applicable under the assumption
that we have a bounded and relatively small number of tuples
that share the same values for both VT and J which is often
the case in clinical domains, as we will discuss later on. In
this setting, we show how to provide an upper bound value
for all the candidate solutions that contain the current par-
tial solution and thus we can apply a pure branch-and-bound
approach in order to speed up the algorithm even more.

Before discussing in detail the algorithms and their prop-
erties, we need to introduce some basic concepts and fea-
tures for the representation of tuples through graph-based
structures.

Graph‑Based Structures for Tuple Representation

To this regard, we use a suitable graph representation of
tuples. A directed graph is a pair G = (V ,E) , where V is a

finite set of nodes and E ⊆

(
V

2

)
 is its edge set. Our graphs

are simple, i.e., there are no loops and no parallel edges.
Let U ⊆ V : we denote by G|U = (U,E|U) the subgraph of
G induced by U, that is, the graph on node set U such that,
for every u, v ∈ U , (u, v) is an edge in G|U if and only if
(u, v) is an edge in G. A Layered Directed Acyclic Graph
(L-DAG for short) is a triple LG = (V ,E, l) where (V, E) is
a DAG and l is a function l ∶ V → {1,… , p} for some p ∈ ℕ
where for every (u, v) ∈ E we have l(u) < l(v) . We define
t h e j u m p v a l u e o f a n e d ge (u, v) ∈ E a s
jump(u, v) = l(v) − l(u) . For each i ∈ {1,… , p} , we denote

SN Computer Science (2020) 1:153 Page 13 of 30 153

SN Computer Science

with Li the set Li = {v ∈ V ∶ l(v) = i} . Obviously, the
notion of induced subgraph naturally extends to L-DAG.
Given an L-DAG LG = (V ,E, l) and a subset U, we define
the L-DAG induced by U as LG|U = (U,E|U , l|U) where
(U,E|U) is the U-induced subgraph of the graph (V, E) and
l|U ∶ U → ℕ with l|U(v) = l(v) for every v ∈ U . An example
of L-DAG LG = (V ,E, l) is given in Fig. 11. Edges
(v2, v7), (v2, v9), (v3, v7) and (v3, v9) have jump value equal to
3. For instance, for LG , we may change the layering func-
tion l into l′ where Li = L�

i
 for every i = 1,… 4 , L�

5
= L5⧵{v7}

and L�
6
= L6 ∪ {v7}.

We extend the notion of L-DAG with weights, denoting
it as wL-DAG. A wL-DAG is expressed through the tuple
WLG = (V ,E, l,W) , where LG = (V ,E, l) is an L-DAG and
W is a function W ∶ V → ℕ

+ . Let us notice that in our
notion of weighted L-DAG, weights are associated with
nodes. Let us now introduce a general problem on L-DAG,
called k-Thick Path (k-TP for short).

Problem 4 (k-TP). Given an L-DAG LG = (V ,E, l) and a nat-
ural number k, determine whether or not there exists a node
subset V ′ ⊆ V , such that |V ′| ≥ k and for every u, v ∈ V � , with
l(u) < l(v) , there exists a directed path from u to v in LG|V ′.

For instance, if we consider the L-DAG in Fig. 11,
we have that the set V � = {v1, v2, v3, v7, v9, v8, v11}
is a possible solution for k-TP with k ≤ 7 while
V �� = {v1, v2, v3, v4, v7, v8, v11} is not a candidate solution
since there is no path from v3 to v4 and l(v3) < l(v4) . In a
solution, we may choose to take more than one node per
layer as well as completely ignore all the nodes in a layer.
Then, we may see a candidate solution V ′ as the result of a
two-step nondeterministic guess:

1. F i r s t we se l ec t a s e t o f p′ ≤ p l aye r s
{l1,… lp� } ⊆ {1,… , p} (let us assume li < lj for every
1 ≤ i < j ≤ p′), which will be all and only the layers
which contain at least one node in our solution;

2. For 1 ≤ i ≤ p′ we select a nonempty set Vi ⊆ V such that
l(v) = li for every v ∈ Vi and for every (v�, v) ∈ Vi−1 × Vi ,
we have (v�, v) ∈ E.

Going back to the example in Fig. 11, in V ′′ condition 2
is violated because by choosing v4 we choose layer 3 as
the nonempty layer following layer 2 but (v3, v4) ∉ E . As a
matter of fact, V ��⧵{v3} (i.e., we choose only v2 in the layer
2) turns out to be candidate solution. In V ′ , we ignore lay-
ers 3 and 4 by not choosing any node in them. Instead, we
choose layer 5 as the nonempty layer following layer 2 and
everything works just fine.

The k-TP problem may naturally be extended to wL-
DAG by imposing the set V ′ to satisfy �v∈V �W(v) ≥ k . In
[10], we prove that the k-TP problem on wL-DAG is NP-
hard. Our proof can be naturally extended to prove that the
nonweighted version of the problem is NP-hard too.

The First Algorithm

Both algorithms rely on the concept of color that we will
explain through an example in the following. Given an APE-
FD [�k(�

R
J
)]XY

�
−→Z and an instance � of R, let us suppose that

we are solving the problem Check-APE-FD on such instance
with a simple guess-and-check procedure, which makes use
of two, initially empty, subsets �+ (the tuples to be kept in the
solution) and �− (the tuples to be deleted in the solution) of � .
At each step, the procedure guesses a tuple t in �⧵(�+ ∪ �

−)
and decides nondeterministically (guessing phase) either
to update �+ to �+ ∪ {t} (i.e., t is kept in the current par-
tial solution) or to update �− to �− ∪ {t} (i.e., t is deleted
in the current partial solution). When � = �

+ ∪ �
− (checking

phase), the procedure returns YES if �+ ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z and

|�−| ≤ � ⋅ |�| , otherwise it returns NO. Hereinafter, we call
partial solution a triple (�, �+, �−) , such that (�+ ∪ �

−) ⊆ �
and �+ ∩ �

− = � . If � = �
+ ∪ �

− we simply say that (�, �+, �−)
is a solution. A solution (�, �+, �−) is consistent if and only if
�
+ ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z . Given two partial solutions (�, �+

1
, �−

1
)

and (�, �+
2
, �−

2
) , we say that (�, �+

2
, �−

2
) extends (�, �+

1
, �−

1
) if

and only if �+
1
⊆ �

+
2

 and �−
1
⊆ �

−
2
.

Is there a way to check whether we are generating an
inconsistent solution, possibly without guessing all tuples
in � ? Violations of the latter constraint (i.e., |�−| ≤ � ⋅ |�|)
are fairly simple to detect during the guessing phase. Indeed,
it suffices to check after each insertion in �− if |�−| exceeds
� ⋅ |�| . If it is the case, the procedure may return NO imme-
diately without guessing any further. Violations of the first
constraint (i.e., �+ ⊧ [𝛥k(𝜏

R
J
)]XY → Z) during the guessing

phase are trickier to detect.
When two tuples t, t′ share the same value for attribute J

(i.e., t[J] = t�[J]), we say that they are in the same J-group
and t[J] is the value of the J-group containing t and t′ . For
the sake of brevity, for a given j ∈ Dom(J) we will use

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

L1 L2 L3 L4 L5 L6 L7

Fig. 11 An example of L-DAG

 SN Computer Science (2020) 1:153153 Page 14 of 30

SN Computer Science

j-group for denoting the J-group with value j. An ordered
pair, written o-pair, is a pair (t, t�) ∈ � × � such that t and t′
are in the same J-group and t[VT] < t�[VT] . We say that a
pair (t, t�) is an edge if and only if 0 < t�[VT] − t[VT] ≤ k .
Given a triple (�, �+, �−) , an o-pair (t, t�) is active if and only
if t, t� ∈ �

+ and for every tuple t in the same J-group of t
if t[VT] < t[VT] < t�[VT] , we have t ∈ �

− (i.e., t and t′ are
selected in the current partial solution and all the tuples
between t and t′ in the same J-group have been deleted). Given
two valid times vt, vt� ∈ Dom(VT) and a value j ∈ Dom(J) ,
vt and vt′ are consecutive in the j-group if and only if there
exists an active o-pair (t, t�) with t[VT] = vt , t�[VT] = vt� and
t[J] = j . It is important to observe that we may have two
distinct values j, j� ∈ Dom(J) and two distinct valid times
vt, vt� ∈ Dom(VT) which are consecutive in j-group and not
consecutive in j′-group. Moreover, we may have edges (t, t�)
that are not active and active pairs (t, t�) that are not edges;
such is the case of active pairs (t, t�) with t�[VT] − t[VT] > k .
A color is a tuple c on the schema C = XYZ , and we say that
two colors (x, y, z) and (x�, y�, z�) are conflicting if and only
if x = x� , y = y� , and z ≠ z′ . Given an o-pair (t, t�) , its color,
denoted by c(t, t�) , is the tuple c(t, t�) = (t[X], t�[Y], t�[Z]) .
Two o-pairs (t, t�), (t��, t���) are conflicting if and only if c(t, t�)
and c(t��, t���) are conflicting.

Theorem 2 Given an APE-FD [�k(�
R
J
)]XY

�
−→Z , an instance

� of R, and a partial solution (�, �+, �−) , if there exist two
active and conflicting edges (t, t�) and (t��, t���) , then for every
solution (�, �+

f
, �−

f
) that extends (�, �+, �−) it holds

�
+
f
̸⊧ [𝛥k(𝜏

R
J
)]XY → Z (i.e., the solution is inconsistent).

The above theorem guarantees that from a partial solution
(�, �+, �−) that features at least two conflicting edges, we can-
not reach a consistent solution (�, �+

f
, �−

f
) . In such a case, we

may return immediately NO without considering any further
(�, �+, �−) . The colors of a partial solution (�, �+, �−) are rep-
resented by the set colors(�, �+, �−) = {(t[X], t�[Y], t�[Z]) ∶

(t, t�) is an active edge in (�, �+, �−)} . Clearly, the hypothesis
of Theorem 2 applies if and only if set colors(�, �+, �−) con-
tains at least two conflicting colors.

Then, by means of colors, our above guess-and-check
procedure may be improved by adding the control on the
size of �− and by keeping updated the current set of colors
colors(�, �+, �−) . Once an insertion of a tuple in either �+ or
�
− introduces a color c that is conflicting with at least one

color in (�, �+, �−) , the procedure answers NO immediately.
An example of how the procedure works is given in Fig. 12,
where we have an instance of five tuples with � = 0.2 (i.e.,
we may delete at most one tuple) and k = 6 (all the tuples
are in the same window). The execution depicted in Fig. 12
guesses the values of tuples from the oldest (t1) to the new-
est one (t2) according to the value of VT. First, it tries to put

the current tuple t in �+ ; if no violation arises, it continues;
if some violation arises, it tries to insert tuple t in �− ; if no
violation arises, it continues; otherwise, it goes back to the
previous choice (i.e., backtracking). Every internal node is
labeled with the current tuple, which will be guessed next;
every leaf is labeled either with YES (i.e., the current branch
is a solution) or NO (i.e., a violation has arisen); the current
set of colors is reported within the node. Nodes are numbered
according to their order of appearance. We have that the root
is n1 followed by the introduction of nodes n2 … n4 in this
precise order. If we introduce t4 in the partial solution associ-
ated to n4 , we violate the first constraint. Since in n4 adding
t4 in �− does not generate any violation, node n5 is created as
child of n4 . However, node n5 cannot be extended without
introducing a violation in the above constraints. Indeed, if
we put t5 in �+ , we introduce a conflicting color; if we put t5
in �− , we exceed the maximum number of allowed deletions.
We backtrack to n4 . As all the possible choices have been
explored, we backtrack to n3 , where the choice of adding t3
to �− is attempted, generating node n6 . From n6 , we put t5 in
�
+ without violating any constraint and thus we have that

{t1, t2, t4, t5} ⊧ [𝛥6(𝜏
R
J
)]XY

0.2
−−→Z.

Let us now consider in some more detail the first algo-
rithm. Basically, the algorithm works similarly to the previ-
ous procedure, except for some trivial technicalities. Two
more heuristics have been introduced, to possibly stop earlier,
during the exploration of a branch in the tree of computation.
The main procedure of the algorithm is reported in Fig. 15,
while auxiliary procedures are reported in Figs. 13 and 14.
The algorithm is implemented by function TupleWiseMin
that takes four arguments. The first argument is G

�
 , which

is derived from � considering the APE-FD [�k(�
R
J
)]XY

�
−→Z

that has to be checked. More precisely, G
�
 is an instance

of schema J, X, Y, Z, VT, count, with Dom(count) = ℕ .
We have that t ∈ G

�
 if and only if there exists t� ∈ � for

which (t�[J], t�[X], t�[Y], t�[Z]) = (t[J], t[X], t[Y], t[Z]) and
t[count] = |{t� ∈ � ∶ (t�[J], t�[X], t�[Y], t�[Z]) = (t[J], t[X], t[Y], t[Z])}| ,
that is, we count how many tuples in � share the same values
for attributes J, X, Y and Z, respectively. The input parameter
k is the length for the grouping sliding window. Sets G+

�
 and

G−
�
 , originally initialized to ∅ , represent the tuples of G

�
 that

are either kept or deleted in the current solution, respectively.
On instances s of schema J, X, Y, Z, VT, count, we denote
with ||r|| the sum on the count attribute for the tuples in s
(i.e., ��s�� = ∑

t∈s t[count]). Finally, C is a set of colors which
is initially set to ∅ . A color c is a tuple on the schema X, Y, Z.
As we will see, C keeps track via colors of the constraints
introduced so far in the construction of the solution.

Procedure TupleWiseMin returns the minimum number
of tuples that has to be deleted from � in order to obtain
an instance �′ such that �� ⊧ [𝛥k(𝜏

R
J
)]XY → Z . Then, if

such minimum is less or equal than � ⋅ |�| we can conclude
� ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→ Z , else we have � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z .

SN Computer Science (2020) 1:153 Page 15 of 30 153

SN Computer Science

Given G
�
 , G+

�
 , G−

�
 and a set of colors C we say that an edge

(t, t�) ∈ G
�
× G

�
 is pending if and only if the following con-

ditions hold:

1. t, t� ∉ G−
�
 and (t[X], t�[Y], z) ∉ C for every z ∈ Dom(Z);

2. for every t′′ with t��[J] = t[J] and t[VT] < t��[VT] < t�[VT]
we have t�� ∉ G+

�
;

3. t here ex is t s t�� ∈ (G
�
∪ {t, t�})⧵(G−

�
∪ G+

�
) wi th

t��[J] = t[J] and t[VT] ≤ t��[VT] ≤ t�[VT].

Informally speaking, a pending edge is an edge that is not
active in the current partial solution but it may become active
during the computation and, if it happens, it introduces a new
color in C . In our algorithm, pending edges for the current
partial solution are retrieved by procedure E?, while active
edges are retrieved by procedure E!.

Procedure TupleWiseMin (Fig. 15) works as follows. If
G+

�
∪ G−

�
= G

�
 , it means that we have obtained a solution

without violating any constraint and thus we can return ||G−
�
||

(i.e., the number of deleted tuples). If G+
�
∪ G−

�
≠ G

�
 , the

algorithm guesses a tuple t ∈ G
�
⧵(G+

�
∪ G−

�
) and proceeds

as follows. First, it checks whether inserting t into G+
�
 does

not cause any violation of constraints. If so, it stores in mt the
value of the recursive call to TupleWiseMin where t belongs
to G+

�
 and C has been updated accordingly. By inserting a

tuple t in G+
�
 , the algorithm is asserting that t belongs to the

current partial solution, while by inserting t in G−
�
 the algo-

rithm is asserting that t does not belong to the current partial
solution. If a constraint is violated, the algorithm stores in
mt the value +∞ , which means that t may not be kept in the
current solution.

Then, it checks whether inserting t into G−
�
 does not cause

any violation in the constraints. If it is the case, it stores in m⧵t
the value of the recursive call to TupleWiseMin, where G−

�
 and

C are updated accordingly. If a constraint is violated, the algo-
rithm stores in m⧵t the value +∞ , which means that t must
be kept in the current partial solution. In procedure Tuple-
WiseMin, the only way in which a constraint may be violated
is that, after the insertion a tuple t in G+

�
 (resp. G−

�
), an edge

(t�, t��) turns out to be active and its color (t�[X], t��[Y], t��[Z])
turns out to be conflicting with at least one color in C.

As pointed out by the example in Fig. 12, checking each
step for consistency is itself an optimization, even if it is
trivial, since it allows us to prune entire subtrees in the
tree of computations without exploring them. We propose

Fig. 12 An example of how the use of colors improves a guess and check procedure for solving the problem Check-APE-FD

 SN Computer Science (2020) 1:153153 Page 16 of 30

SN Computer Science

here two further optimizations for this procedure. The first
one allows us to restrict the search space by splitting the
problem into independent subproblems in a divide-and-
conquer fashion. Let us suppose that at a certain step of
our computation, there exists a value j ∈ {t[J] ∶ t ∈ G

�
} ,

for which for each pair of conflicting pending edges (t, t�)
and (t, t�) we have that either all t, t′, t , and t′ belong to the
j-group or all t, t′, t and t′ do not belong to the j-group (such
condition is verified by subprocedure Group Independ-
ent? reported in Fig. 14.) Let G

�
= {t ∶ t[J] = j} . As every

edge involving tuples in the j-group is not conflicting with
every edge that may be introduced outside the j-group,
then we can split the problem into the two subproblems
(G

�
, k,G+

�
∩ G

�
,G−

�
∩ G

�
) and (G

�
⧵G

�
, k,G+

�
⧵G

�
,G−

�
⧵G

�
) .

Such problems are independent and may be solved sepa-
rately. The resulting value for the solution is the sum of
the values returned by TupleWiseMin applied to both
the two subproblems. Let H = |G

�
⧵(G+

�
∪ G−

�
)| and

h = |{t ∈ (G
�
⧵(G+

�
∪ G−

�
)) ∶ t[J] = j}| . In this case, the upper

bound of the complexity at the current step of computation
drops from O(2H) to O(2H−h + 2h).

The second optimization allows us to prune a sub-
tree of computation even before a contradiction arises.
It verifies, in many cases, whether every possible solu-
tion that may be built starting from the current partial
one turns to be not minimal. Suppose that there exists
an active o-pair (t, t�) in a partial solution (G

�
,G+

�
,G−

�
) ,

such that there exists t ∈ G
�
 in the same J-group of t with

t[VT] < t[VT] < t�[VT] . By definition of active o-pair, we
have that t belongs to G−

�
 as well as every tuple t′ in the

same J-group of t with t[VT] < t
�
[VT] < t�[VT] . Here, the

additional condition is that there exists at least one of such
tuples. Given a partial solution (G

�
,G+

�
,G−

�
) , we define set

colors(G
�
,G+

�
,G−

�
) = {(x, y, z) ∶ there exists an active edge (t, t�)

with c(t, t�) = (x, y, z)} . Let us define the set of colors
pending(G

�
,G+

�
,G−

�
) = {(x, y, z) ∶ there exists a pending edge (t, t�) with

c(t, t�) = (x, y, z)} , which collects all and only the colors that
may be introduced later on in the current computation.

A color (x, y, z) is safe in (vt, vt�, j) if and only if one of
the following three conditions hold:

1. (x, y, z) ∈ colors(G
�
,G+

�
,G−

�
);

2. Every color (x, y, z�) ∈ pending(G
�
,G+

�
,G−

�
) satisfies

z� = z (i.e., (x, y, z) is a pending color and there is no
pending color that is conflicting with (x, y, z));

3. The color is not conflicting with any color in
colors(G

�
,G+

�
,G−

�
) ∪ pending(G

�
, G+

�
,G−

�
) and do not

exist two tuples t, t� ∈ (G+
�
∪ G

−
�
) ∩ {t

��
∈ G

�
∶ t

��
[J] =

j ∧ vt ≤ t
��
≤ vt�} , such that (t, t�) is an edge and the color

(t[X], t
�
[Y], t

�
[Z]) is conflicting with (x, y, z).

The three conditions above imply that if a color is safe
in (vt, vt�, j) , then it is neither in conflict with a color in

Fig. 13 Auxiliary procedures
used by procedures presented in
Figs. 14, 15 and 17

SN Computer Science (2020) 1:153 Page 17 of 30 153

SN Computer Science

colors(G
�
,G+

�
,G−

�
) nor with a color in pending(G

�
, G+

�
,

G−
�
) . However, this is just a necessary but not sufficient con-

dition. Let us consider the example shown in Fig. 16 and
assume that k ≥ 7 (i.e., every o-pair in the example is also an
edge). We have that the active edges are (t1, t2), (t2, t3), (t3,

t4), and (t4, t5) for the j1-group and (t7, t12), (t8, t12) for
the j2-group, since we have t9, t10, t11 ∈ G−

�
 . Thus, we

h ave colors(G
�
,G+

�
,G−

�
) = {(x1, y4, z4), (x2, y5, z6), (x5,

y6, z6), (x4, y6, z5), (x1, y6, z6), (x2, y6, z6)} and, since we have
to decide the status of tuple t6 , we have pending(G

�
,G+

�
,

Fig. 14 Auxiliary procedures
used by procedure TupleWi-
seMin (Fig. 15)

 SN Computer Science (2020) 1:153153 Page 18 of 30

SN Computer Science

G−
�
) = {(x1, y3, z2)} . Suppose that we are interested

in the colors which are safe in (1, 5, j2) . For instance,
c(t7, t9) = (x1, y3, z3) (i.e., the dotted edge in the j2-group
in Fig. 16) is not safe in (1, 5, j2) because it does not belong
neither to colors(G

�
,G+

�
,G−

�
) nor to pending(G

�
,G+

�
,G−

�
)

(conditions 1 and 2) and it is in conflict with the unique
color (x1, y3, z2) ∈ pending(G

�
,G+

�
,G−

�
) . On the other

hand, colors c(t8, t9) = (x2, y3, z3) , c(t8, t10) = (x2, y4, z4)
and c(t10, t11) = (x4, y5, z5) (i.e., the dashed edges in Fig. 16)
are safe in (1, 5, j2) , because they are neither in conflict with
colors either in colors(G

�
,G+

�
, G−

�
) or in pending(G

�
,G+

�
,G−

�
)

and there are no other edges in j2 with valid times between
1 and 5 that exhibit either (x2, y3) , or (x4, y5) , or (x2, y3)

as first two components of their colors (thus condition 3
applies to these colors). Colors c(t7, t10) = (x1, y4, z4) and
c(t11, t12) = (x5, y6, z6) (i.e., the continuous edges in j2-
group in Fig. 16) are safe in (1, 5, j2) , because they belong to
colors(G

�
,G+

�
,G−

�
) and thus both satisfy condition 1. Finally,

colors c(t8, t11) = (x2, y5, z5) , and c(t8, t10) = (x4, y6, z6) are not
safe in (1, 5, j2) (i.e., the X-labeled edges in Fig. 16), because
they are in conflict with two colors in colors(G

�
,G+

�
,G−

�
) ; more

precisely, (x2, y5, z5) is in conflict with (x2, y5, z6) and (x4, y6, z6)
is in conflict with (x4, y6, z5).

Given a partial solution (G
�
,G+

�
,G−

�
) and the triple

(vt, vt�, j) , a (vt, vt�, j)-replace DAG is a DAG (V, E) where
V = {t ∈ G+

�
∶ t[VT] = vt ∧ t[J] = j} ∪ {t ∈ G−

�
∶ vt < t

[VT] < vt� ∧ t[J] = j} ∪ {t ∈ G+
�
∶ t[VT] = vt� ∧ t[J] = j}

and

Fig. 15 The main procedure for
a tuple-wise check of APE-FD s.
Notice that we use a compact
notation for the recursive pro-
cedure which is initially called
TupleWiseMin(G

�
, k) . Here,

when G+
�
 , G−

�
 and C are omitted

in the procedure call, they get
their respective default values
specified in the procedure dec-
laration (i.e., ∅ for each of them
in this case)

SN Computer Science (2020) 1:153 Page 19 of 30 153

SN Computer Science

A node t ∈ V is a starting node (resp. ending node) if and
only if vt < t[VT] < vt� and, for every t� ∈ V with t�[VT] = vt
(resp. t�[VT] = vt�), we have (t�, t) ∈ E (resp. (t, t�) ∈ E). A
replace path in a (vt, vt�, j)-replace DAG (V, E) is any path
t1 … tm in (V, E) for which t1 is a starting node and tm is an
ending node. We say that vt and vt′ in j can be safely replaced
if and only if there exists a replace path in the (vt, vt�, j)
-replace DAG (V, E). Figure 16 depicts the (1, 5, j2)-replace
DAG, where t10 is the only initial node that is not an ending
one, and t11 is the only ending node that is not a starting one.
Since t10 is connected to t11 , we have that t10t11 is a replace
path in the (1, 5, j2)-replace DAG and thus 1 and 5 can be
safely replaced in j2 . Using the above definitions of replace
DAGs/paths, we can provide the following result.

Theorem 3 Given a partial solution (G
�
,G+

�
,G−

�
) , if there

exists a group j with two consecutive valid times vt and vt′
such that vt and vt′ can be safely replaced in j, then every
consistent solution that follows (G

�
,G+

�
,G−

�
) is not optimal.

The proof of the theorem is straightforward. Let us suppose
that t1 … tm is a replace path in the (vt, vt�, j)-replace DAG.
By definition, we have t1,… , tm ∈ G−

�
 . It suffices to take any

consistent solution (G
�
,G

+

�
,G

−

�
) that follows (G

�
,G+

�
,G−

�
)

and such that (G
�
,G

+

�
∪ {t1,… , tm},G

−

�
⧵{t1,… , tm}) is still

a consistent solution. Nonoptimality immediately follows.
We take advantage of Theorem 3 by pruning every com-

putation rooted in a partial solution (G
�
,G+

�
,G−

�
) that fea-

tures a J-group j-group and two consecutive valid times
vt and vt′ in the j-group, such that vt and vt′ can be safely

E =

{
(t, t�) ∈ V × V ∶

(t[VT] ≠ vt ∨ t�[VT] ≠ vt�) ∧ t[VT] < t�[VT]∧

c(t, t�) is safe in (vt, vt�, j)

}

∪

{(t, t�) ∈ V × V ∶ (t[VT] ≠ vt ∨ t�[VT] ≠ vt�) ∧ t�[VT] − t[VT] > k}

replaced in j. Verifying whether such condition applies or
not may be performed in polynomial time. In procedure
TupleWiseMin, this optimization is realized by subpro-
cedures Maximal Paths? and Replace Path? reported in
Figs. 14 and 15, respectively.

The Second Algorithm

Let us now propose another algorithm with some aux-
iliary procedures, reported in Figs. 17 and 18, for solving
problem Check-APE-FD. Such an algorithm, whose main
procedure is called EdgeWiseMin, strongly differs from
TupleWiseMin in approaching the problem. In principle, it
works better, but it may work only under a quite reasonable
assumption on the input, which we will discuss in detail
later on.

At every step, procedure EdgeWiseMin, instead of guess-
ing if a tuple belongs to the current partial solution, guesses if
a color is forbidden or allowed in the current partial solution.
Informally, forbidding a color (x, y, z) means avoiding all the
active edges (t, t�) ∈ G

�
× G

�
 for which c(t, t�) = (x, y, z) . On

the other hand, allowing a color (x, y, z) means forbidding all
the active edges (t, t�) ∈ G

�
× G

�
 whose colors are conflicting

with (x, y, z). In order to do that, we introduce the concept
of color-partial solution. A color-partial solution is a triple
(G

�
, C+, C−) , such that C+, C− ⊆ Dom(X) × Dom(Y) × Dom(Z)

are disjoint subsets of colors (i.e., C+ ∩ C
− = �) and for every

pair of colors (x, y, z), (x�, y�, z�) ∈ C
+ (x, y, z) is not conflicting

with (x�, y�, z�) (i.e., if x� = x and y� = y then z� = z).

Fig. 16 An example of how
a partial solution may be
improved

 SN Computer Science (2020) 1:153153 Page 20 of 30

SN Computer Science

Let CPS = (G
�
, C+, C−) be a color-partial solution: we say

that a solution (G
�
,G

�
⧵G−

�
,G−

�
) is induced by CPS if and only

if the two following conditions hold:

1. for every color (x, y, z) in C+ and for each edge
(t, t�) ∈ G

�
× G

�
 for which c(t, t�) = (x, y, z�) , if (t, t�) is

active then z� = z.
2. for every color (x, y, z) in C− and for each edge

(t, t�) ∈ G
�
× G

�
 , if c(t, t�) = (x, y, z) then (t, t�) is not

active in (G
�
,G+

�
,G−

�
) . It means that one of the follow-

ing two conditions holds:

• t ∈ G−
�
 or t� ∈ G−

�
;

• there exists a tuple t�� ∈ G+
�

 such that
t[VT] < t��[VT] < t�[VT] and t��[J] = t[J] (t[VT] and
t�[VT] are not consecutive in the current partial solu-
tion for the J-group with value t[J]).

An induced solution (G
�
,G

�
⧵G−

�
,G−

�
) by CPS is minimal

if and only if an induced solution (G
�
,G

�
⧵G

−

�
,G

−

�
) by CPS

does not exist with |G−
�
| > |G−

�
| . In this case, we say that

(G
�
,G

�
⧵G−

�
,G−

�
) is an induced minimal solution. Since all

the induced minimal solutions by CPS have the same size,
we say that the value of CPS, denoted by val(CPS), is the
value ||G−

�
|| , where (G

�
,G

�
⧵G−

�
,G−

�
) is a minimal induced

partial solution.

Fig. 17 Auxiliary procedures
for the main ones in Fig. 18.
Procedure BuildDag builds a
single-source, single-sink DAG
whose nodes are nonempty
subsets of G

�
 . Each subset is

formed by tuples sharing the
same value for VT, and thus
function Time is well defined.
Procedure SourceSinkShort-
estPath returns the shortest
path from source to sink on the
DAG provided by BuildDag.
The solution is given as a set of
nodes (i.e., subsets of G

�
), and it

omits source and sink nodes

SN Computer Science (2020) 1:153 Page 21 of 30 153

SN Computer Science

In an opposite way from TupleWiseMin, in this algorithm
color-partial solutions induce complete minimal solutions.
However, such solutions may be inconsistent. The algorithm
tries to obtain consistency by either forcing or forbidding
one color at a time. This is done by means of sets C+ and C− ,
which are both initialized to ∅ at the beginning of the proce-
dure. As we informally said above, if a color (x, y, z) belongs
to C+ , it means that the current partial solution must avoid
all the active edges (t, t�) such that t[X] = x , t�[Y] = y , and
t�[Z] ≠ z ; if a color (x, y, z) belongs to C− , it means that the
current partial solution must avoid all the active edges (t, t�)
such that t[X] = x , t�[Y] = y , and t�[Z] = z.

As a general overview of the algorithm, let us consider the
following simplified procedure (let CPS = (G

�
, C+, C−) to be

the current color-partial solution):

1. compute a minimal solution (G
�
,G

�
⧵G−

�
,G−

�
) induced by

CPS;
2. if (G

�
,G

�
⧵G−

�
,G−

�
) is consistent, return val(CPS) = ||G−

�
||

;
3. if (G

�
,G

�
⧵G−

�
,G−

�
) is inconsistent, let (t, t�) be an active

edge in (G
�
,G

�
⧵G−

�
, G−

�
) , such that there exists an active

edge (t��, t���) in (G
�
,G

�
⧵G−

�
,G−

�
) , which is conflicting

with (t, t�) . Then, return the minimum value between
those returned by two recursive calls, one where C+ is
updated to C+ ∪ {(t[X], t�[Y], t�[Z])} , and the other one
where C− is updated to C− ∪ {(t[X], t�[Y], t�[Z])}.

Two observations are omitted in the above procedure w.r.t.
function EdgeWiseMin. The first one is that the procedure
does not take into account the fact that the value ||G−

�
|| of the

color-partial solution computed at point 1 is a lower bound
for the optimal solution that may be achieved in the current
branch of the computation. Procedure EdgeWiseMin uses it
in a classical branch-and-bound fashion by propagating the
value of the current optimal solution (if any) in the tree of
recursive calls (in Fig. 18 this is done by means of parameter
optimal). In step 1., if the computed value ||G−

�
|| is greater

than the optimal one, we immediately return from the recur-
sive call, because no better solution may be found.

The last omitted observation regards how the value
of the color-partial solution val(CPS) is computed,
where CPS = (G

�
, C+, C−) . For every J-group in G

�
 , i.e.

any set of tuples having value j for attribute J, we build

Fig. 18 Main procedure for the
edge-wise checking of a APE
-FD [�k(�

XYZcount
G

�

)]XY
�
−→Z .

The procedure returns the
minimum number of tuples to
delete in � in order to obtain
an instance �′ ⊆ � such that
�
� ⊧ [𝛥k(𝜏

R
�
)]XY → Z . Like

procedure TupleWiseMin of
Figure 15, the initial call to
the recursive procedure is
EdgeWiseMin(G

�
, k) with C+ ,

C
− , and optimal initialized to

their respective default values

 SN Computer Science (2020) 1:153153 Page 22 of 30

SN Computer Science

the following wL-DAG Lj

CPS
= (Vj,Ej,Lj,Wj) where

Vj = {t ∈ G
�
∶ t[J] = j} . For each t ∈ Vj , we have

W
j(t) = t[count] and Lj(t) = t[VT] , and

Let J(G
�
) be the set {j ∶ ∃t(t ∈ G

�
∧ t[J] = j)} = {j1,… , jh} .

For every 1 ≤ i ≤ h , let Mi
CPS

 be the maximum value for
which the wL-DAG Lji

CPS
 admits an Mi

CPS
-thick path. The

following result is straightforward.

Theorem 4 For ever y co lor-par t ia l so lu t ion
CPS = (G

�
, C+, C−) we have

Theorem 4 tells us that for computing val(CPS), we need
to compute for every j ∈ J(G

�
) the maximum value Mj

CPS
 , for

which Lj

CPS
 admits an Mj

CPS
-thick path. Given a wL-DAG LG ,

we will call MAX-ThickPath (Max-TP for short) the problem
of finding the maximum M for which LG admits a M-Thick
Path. Max-TP may be solved by a simple dichotomic search
having a decision procedure that solves the problem M-TP
(Problem 4), which is NP-Complete [10]. Here, our assump-
tion comes into play and allows us to find Mj

CPS
 for every

j ∈ J(G
�
) in a “reasonable” time. Indeed, in the instances

that are used to prove the NP-completeness, the number of
nodes in any layer, roughly corresponding to the number of
tuples of the given relation at a corresponding time point,
is supposed to increase as the number of time points/layers
increases.

This is not the case in many daily applications, espe-
cially in the clinical domain, where we may have a
great number of tuples but scattered along the time-
line. In thefollowing, we will provide a formal
definition of our assumption. Given j ∈ J(G

�
) we

define VT(G
�
, j) = {vt ∶ ∃t(t ∈ G

�
∧ t[VT] = vt ∧ t[J] = j)} ,

MaxLevel(G
�
, j) = maxvt∈VT(G

�
,j) |{t ∶ t[J] = j ∧ t[VT] = vt}| ,

MaxCount(G
�
, j) = maxvt∈VT(G

�
,j)

�∑
t∈G

�
∧t[VT]=v∧t[J]=j ��t��

� ,

and the value space (j,G
�
) as the value 2MaxLevel(G

�
,j)

⋅|VT(G
�
, j)| ⋅ log2(MaxCount(G

�
, j)) . Let MaxSpace(G

�
)

= max
j∈J(G

�
) space(j,G�

) . We will see that EdgeWiseMin is
applicable to our instance, if we have O(MaxSpace(G

�
)2)

bits for computing it. The problem with MaxSpace(G
�
) is

that it is exponential in MaxLevel(G
�
, j) , but this value

depends on the maximum number of tuples that shares the
same values for attributes VT and J and differs on at least

Ej =

{(t, t�) ∈ Vj × Vj ∶ t�[VT] − t[VT] > k}

∪

{(t, t�) ∈ Vj × Vj ∶ 0 < t�[VT] − t[VT] ≤ k ∧ c(t, t�) ∈ C
+}

∪{
(t, t�) ∈ Vj × Vj ∶

0 < t�[VT] − t[VT] ≤ k ∧ c(t, t�) ∉ C
−∧

∀x∀y∀z((x,y,z)∈C+→c(t,t�) is not conflicting with (x,y,z)

}

val(CPS) = ||G
�
|| − ∑

j J(G
�
)

M
j

CPS

one among the attributes X, Y and Z in the original instance
� . As we say above, we assume this value to be manageable
as it happens in many real-world applications. Hereinafter,
we will suppose to have O(MaxSpace(G

�
)2) bits for per-

forming our computation.
Let us suppose to have a wL-DAG LG = (V ,E,L,W) ,

and we want to solve MAX-TP on it. Given a wL-DAG
LG = (V ,E,L,W) , a subset V ′ ⊆ V is a level-subset if
and only if V ′ ≠ ∅ and L(v) = L(v�) for every v, v� ∈ V � .
Let V = {V � ⊆ V ∶ V � is a level-subset} . By definition
of level subset, the function L� ∶ V → ℕ , such that for
every V � ∈ V we have L�(V �) = L(v) for some v ∈ V � ,
turns out to be well defined. We define the unfolding
of wL-DAG LG = (V ,E,L,W) as the weighted DAG
U(LG) = (V ∪ {source, sink},E�,WE�) , where

For every (source,V �) ∈ E� , we have

For every (V �, sink) ∈ E� , we have

And for every (V �,V ��) ∈ E� with V �,V �� ∈ V we have

For instance, the DAG in Fig. 19 is the result of unfolding the
wL-DAG in Fig. 11. The unfolding of a wL-DAG, in the worst-
case scenario, is exponential in the size of LG . Given a wL-
DAG LG = (V ,E,L,W) , we define Wall(LG) =

∑
v∈V W(v) as

the sum of all the weights associated with nodes in V. It is
straightforward to prove that the union of all the internal nodes
in a source-to-sink path in the unfolding of a wL-DAG LG is a
thick path in LG and, on the other hand, every thick path in LG
may be associated with a source-to-sink path in its unfolding.
Moreover, for every source-to-sink path p in the unfolding of
LG , let wp be its weight. The weight of the thick path associ-
ated with p is exactly Wall(LG) − wp (i.e., LG admits a thick
path with value Wall(LG) − wp). With these premises, we can
prove the following result.

Theorem 5 Given a wL-DAG LG = (V ,E,L,W) , let w the
value of the shortest source-to-sink path in its unfolding. We
have that the value of MAX-TP on LG = (V ,E,L,W) is equal
to Wall − w.

Given a color-partial solution CPS = (G
�
, C+, C−) , pro-

cedure EdgeWise computes the value val(CPS) (performed

E� =
{(source,V �) ∶ V � ∈ V} ∪ {(V �, sink) ∶ V � ∈ V}∪

{(V �,V ��) ∈ V × V ∶ ∀v∀v�(v ∈ V � ∧ v� ∈ V ��
→ (v, v�) ∈ E)}

,

W
�(source,V �) =

∑
v∈V⧵V �∶L(v)≤L(V �)

W(v),

W
�(V �, sink) =

∑
v∈VL�(V �)<L(v)

W(v),

W
�(V �,V ��) =

∑
v∈V⧵V ��∶L�(V �)<L(v)L�(V ��)

W(v).

SN Computer Science (2020) 1:153 Page 23 of 30 153

SN Computer Science

by procedure PartialSolution in Fig. 18) summing up all
the values Mj

CPS
 for every j ∈ J(G

�
) . Each Mj

CPS
 is com-

puted as value of a source-to-sink shortest path (performed
by procedure SourceSinkShortestPath in Figure 17) on
the unfolding of Lj

CPS
 (built by procedure BuildDag in

Fig. 17). For building U(L
j

CPS
) , on which we will com-

pute value of a source-to-sink shortest path, we may need
O(MaxSpace(G

�
)2) bits.

Finally, let us observe that procedure PartialSolution
does not return only the value val(CPS) of the current
color-partial solution CPS = (G

�
, C+, C−) . Since it effec-

tively computes a minimal solution (G
�
,G+

�
,G−

�
) induced

by CPS in order to provide val(CPS), it returns the set
colors(G

�
,G

�
⧵G−

�
,G−

�
) , that is, the set of all and only the

colors associated with active edges in (G
�
,G

�
⧵G−

�
,G−

�
) .

If such a set does not contain two colors (x, y, z) and
(x, y, z�) such that z ≠ z′ , then we have that (G

�
, C+, C−) is

a consistent solution and we may return val(CPS). Oth-
erwise, procedure EdgeWiseMin takes a color (x, y, z) in
colors(G

�
,G

�
⧵G−

�
,G−

�
) such that there exists (x, y, z�) in

colors(G
�
,G

�
⧵G−

�
, G−

�
) with z ≠ z′ and performs two recur-

sive calls, one in which C+ is updated to C+ ∪ {(x, y, z)} and
the other in which C− is updated to C− ∪ {(x, y, z)}.

Mining APE‑FDs

In this section, we consider the problem of mining APE
-FDs on a given instance � of a temporal schema R from a
practical point of view. We will describe a prototype that
performs such task. In particular, we point out two big
computational challenges we addressed in the implemen-
tation of our prototype.

Let us start with the formal definition of our problem.
Given a temporal schema R = U ∪ {VT} , an instance � of
R, a nonempty set J ⊆ U , a threshold 0 ≤ � ≤ 1 , and a value
k ∈ ℕ , we denote as PE(�, k, �) the set of all the APE-FDs
[�k(�

R
J
)]XY

�
−→Z , formally introduced in “Discovering Pure

Temporally Evolving Functional Dependencies” section,
such that � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z.

A set S of APE-FDs is complete if and only if for every
[�k(�

R
J
)] XY

�
−→Z belonging to S , there exists X′ ⊆ X and

Y
′
⊆ Y such that [�k(�

R
J
)] X�Y

� �
−→Z ∈ PE(�, k, �) . A com-

plete APE-FD-set PE(�, k, �) is minimal if and only if for
every [�k(�

R
J
)] XY

�
−→Z ∈ S , set S⧵{[�k(�

R
J
)]XY

�
−→Z} is not

complete anymore. Given a complete minimal APE-FD-set
PE(�, k, �) , every subset PE(�, k, 𝜖) ⊆ PE(�, k, 𝜖) is called a
minimal partial.

Given a temporal schema R = U ∪ {VT} , an instance � of
R, a nonempty set J ⊆ U , a threshold 0 ≤ � ≤ 1 and a value
k ∈ ℕ , we are interested in finding a minimal complete set

Fig. 19 The unfolding of the
wL-DAG of Figure 11 into a
weighted DAG for solving the
MAX-TP problem. The table
below the graph provides the
weights for source-to-node
edges and node-to-sink edges,
which are both represented by
dashed lines. Continuous edges
without labels have weight 0.
P = source{v1}{v2, v3}{v7, v9}{v8}{v11}sink
is a source-sink shortest path
with value 4

 SN Computer Science (2020) 1:153153 Page 24 of 30

SN Computer Science

PE(�, k, �) . However, in order to do that, we have to deal
with two computational problems:

• the smallest minimal complete set S may be exponential
in the size of U with respect to some given temporal
schemata R = U ∪ {VT} , instances � of R, nonempty
sets J ⊆ U , thresholds 0 ≤ � ≤ 1 , and values k ∈ ℕ;

• given a single APE-FD [�k(�
R
J
)]XY

�
−→Z on a schema

R = U ∪ {VT} , and an instance � of R, deciding whether
or not � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z is a NP-complete problem.

The first result may be derived by leveraging a result of
Kivinen et al. [16] on approximate functional dependen-
cies. The second result is proved in “The Computational
Complexity of Checking APE-FD” section. However, such
theoretical bounds are both difficult to achieve in real-world
domains. For instance, the size of PE(�, k, �) could be expo-
nential in |U|, but in real-case scenarios, we have that |U| is
often less than 50/60 elements. Moreover, the instance built
in [16] for achieving the exponential lower bound does not
occur in real-world instances. The complexity of checking
a single APE-FD is even worse. Indeed, checking a single
APE-FD is NP-Complete in the number of tuples, which
may be very high and increasing time after time. This prob-
lem is known as the curse of cardinality, and its relevance
has been recently considered for temporal inference of
sequential patterns in [18]. Even in this case, the instance
specified in “The Computational Complexity of Checking
APE-FD” section for proving the NP-hardness result has
been built in a very complex and constrained way. Such an
instance does not even remotely resemble some real-world
scenario. Thus, we are allowed to design and implement a
prototype for the practical mining of such dependencies on
real-world datasets and evaluate its performances.

Prototype Overview

Even though the results reported in “The Computational
Complexity of Checking APE-FD” section are not com-
pletely encouraging and according to the last comments in
the previous section, we developed a prototype. Given a tem-
poral schema R = U ∪ {VT} , an instance � of R, a nonempty
set J ⊆ U , a threshold 0 ≤ � ≤ 1 and a value k ∈ ℕ , it returns
a minimal complete set PE(�, k, �) . The prototype is named
Attila(Approximate Temporal Tailored Inference Lean Appli-
cation). In the following, after providing a high-level descrip-
tion of Attilamodules and their interaction, we focus with
a detailed description on novel ideas underlying the design
of the prototype. Attilawas implemented according to the
principles of distributed programming. Different tasks are
executed by different processes (possibly executed on differ-
ent machines). Attila is composed by three main processes:

• Worker is responsible for maintaining a representation
of the minimal partial PE(�, k, �) of PE(�, k, �) . Thus,
Worker maintains a compact representation both of the
set of the APE-FDs already checked and of the APE-FDs
that remain to be checked. It updates its state accord-
ing to the last APE-FD [�k(�

R
J
)]XY

�
−→Z that has been

checked. The next state depends on the fact that either
� ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z or � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z . In both

cases, Worker marks [�k(�
R
J
)]XY

�
−→Z to not be checked

anymore. In this way, it can determine precisely the next
APE-FD to check;

• Contributor has to check a single APE-FD against the
instance �.It retrieves APE-FD from Worker. When Con-
tributor gets an APE-FD [�k(�

R
J
)]XY

�
−→Z , it schedules jobs

among the computational units that will effectively check
the given APE-FD;

• Sub-Contributor is the basic computational unit and
depends on Contributor. Sub-Contributor leverages the
graph representation generated by Contributor for resolv-
ing a subproblem of the original one. More precisely, it
receives a subproblem of the one stored by Contributor
for checking a given [�k(�

R
J
)]XY

�
−→Z against it. During

the computation, Contributor may send a reduction of
the subproblem Sub-Contributor is dealing with. Indeed,
Contributor may assign portions of a problem to several
Sub-Contributors.

Processes composing Attilaare hierarchically organized. A
Worker could manage minimal partial PE(�, k, �) , but more
Contributors are needed for checking multiple dependen-
cies at the time. Each Contributor may have several Sub-
Contributors in order to speed up the checking procedure.

Now, let us consider in some detail each process type, in
order to give a general idea of how computations are handled.
Worker has to manage the minimal partial PE(�, k, �) . At
the end of computation, PE(�, k, �) turns out to be a mini-
mal complete set, according to the goal of our distributed
procedure. Worker interacts only with its pool of Contribu-
tors. Figure 20 depicts how such interaction happens, by a
BPMN choreography [22]. A Contributor can register to
the Worker at any time incrementing by one the number
of APE-FDs that may be checked simultaneously. Worker
may receive APE-FD request only by registered Contribu-
tors. To this regard, it keeps two auxiliary APE-FD-sets
Pending and Assigned ⊆ Pending . Pending is a minimal
set of APE-FDs such that Pending ∩ PE(�, k, �) = � and,
if for every [�k(�

R
J
)]XY

�
−→Z ∈ Pending � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z ,

then Pending ∪ PE(�, k, �) is a minimal complete APE
-FD-set. Pending contains all APE-FDs among whom
Worker must choose every time it is asked for an APE-FD
by some of its Contributors. Assigned represents all APE
-FDs in Pending already assigned to Contributors. Every
time a Contributor returns the result of APE-FD-check

SN Computer Science (2020) 1:153 Page 25 of 30 153

SN Computer Science

on an element of Assigned, Pending and PE(�, k, �) are
updated according to the fact that either � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z

or � � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z . More precisely, we have that

[�k(�
R
J
)]XY

�
−→Z is removed from both Pending and Assigned,

and

• if � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z , then Worker inserts such APE-FD

in PE(�, k, �);
• if � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z , then for each attribute

W ∈ U⧵(X ∪ Y ∪ {Z}) , dependencies [�k(�
R
J
)]XWY

�
−→Z

and XYW
�
−→Z are inserted in Pending.

The main operations Worker performs are:

1. (i) it pulls an APE-FD [�k(�
R
J
)] XY

�
−→Z out of Pending,

2. it updates PE(�, k, �) if needed, and
3. (iii) it updates Pending and Assigned as soon as the status

of a new dependency is discovered.

We use Ordered Binary Decision Diagrams (OBDDs) [1] as
data structures allowing an efficient execution of such opera-
tions. An OBDD is a single-rooted directed acyclic graph
that represents a propositional formula � . A propositional
variable is associated with every node as a label, except for
the only terminal node 1.2 Any nonterminal node v may have
at most two outgoing edges low(v) (dotted line, depicted in
Fig. 21) and high(v) (solid lines, depicted in Fig. 21). low(v)
(high(v)) means that variable v is taken with value 0 (1).
A variable truth assignment is represented by a path from
the root to terminal node 1. Thus, an OBDD represents the
set of all truth assignments for a given formula � . Worker
uses three different OBDDs corresponding to formulas
�
PE
,�P and �A , to keep track of sets PE(�, k, �) , Pending and

Assigned, respectively. APE-FDs in PE(�, k, �) correspond to
all and only the solutions of formula �

PE
 (and the same for

APE-FDs in Pending with respect to formula �P and for APE
-FDs in Assigned with respect to �A). Hereinafter, we will use
� for denoting both the formula and the OBDD correspond-
ing to all its possible solutions. Informally, updates of these
three sets are implemented by adding conjuncts/disjuncts to
their respective formulas.

For representing set PE(�, k, �) as all and only the
solutions of a formula, it suffices to assign to each attrib-
ute Xi ∈ U three variables xi, xi, �⃗xi . Then, formula �

PE

has be satisfied by assignments � ∶ {x1,… , xn, x1,… ,
xn, �⃗xi,… , �⃗xn} → {0, 1} . An APE-FD [�k(�

R
J
)]XY

�
−→Z belongs

to PE(�, k, �) if and only if the assignment �(xi) = 1 ∀Xi ∈ X ,
�(yj) = 1 ∀Yj ∈ Y , and 𝜎(z⃗) = 1 satisfies �

PE
 . According to

this approach, for instance, a1 ∧ a2 ∧ a3 ∧ �⃗a4 represents APE-
FD[�k(�

R
J
)]A1A2A3 → A4 . Clearly, if a formula �

PE
 represents

all the possible APE-FDs, an OBDD for �
PE

 represents them
as well. The same approach may be used for sets Pending and
Assigned. Hereinafter, we refer to � as the OBDD represent-
ing all and only the assignments � such that 𝜎 ⊧ 𝜓.

A Worker begins the APE-FD mining task by initializing
two OBBDs representing 𝜓

PE
= 𝜓A = ⊥ . Initially, 𝜓

PE
= ⊥

(i.e., PE(�, k, �) = �) since the distributed procedure has not
discovered any valid APE-FD yet. �P is true only for those
assignments that represent well-formed APE-FDs. In order
to extract from �P an APE-FD to be tested, we take the solu-
tion associated with any root-to-terminal path in the OBDD
for �P ∧ ¬�A . For inserting an APE-FD [�k(�

R
J
)]XY

�
−→Z

Fig. 20 A BPMN choreography
showing the interaction between
a Worker and its (possibly)
many Contributors

Register Contributor
Unregistered Contributor

Worker

Set Complete

Worker

Registered Contributor

Request APEFD
Registered Contributor

Worker

New Dependency Checked
Registered Contributor

Worker

APEFD Set Complete?

Free to work on
a new APEFD

StopSend APEFD Status

Register to Worker

Yes

No

Fig. 21 The update of the set
PE(�, k, �) = {[�

k
(�Contact

PatId
)]GAF,

Phys
�
−→CT} (left) into the set

PE
�
(�, k, �) = {[�

k
(�Contact

PatId
)]GAF,

Phys
�
−→CT , [�k(�

Contact
PatId

)]GAF,Phys
�
−→CT}

(right)

2 We use OBDD without the 0 terminal node.

 SN Computer Science (2020) 1:153153 Page 26 of 30

SN Computer Science

in PE(�, k, �) , it suffices to update �
PE

 to �
PE

∨ � where
𝜓 =

⋀
Xi∈X

xi ∧
⋀

Xi∈Y
xi ∧ z⃗ . Moreover, for deleting a solu-

tion from Pending it suffices to update �P:

• if we have that � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z , then we update �P to

�P ∧ ¬�;
• if we have that � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z , then we update �P

to �P ∧ � where 𝜓 = z⃗ → (
⋁

Xi∈U⧵X xi ∨
⋁

Xi∈U⧵Y xi) (i.e.,
if z⃗ holds, then at least one of variables not contained in
the formula for the given APE-FD must hold).

It is worth noting that we have a search operation for APE
-FDs that is linear in |U|. Moreover, Boolean operations on
OBDDs are implemented in very efficient way by many pack-
ages on the market (in our prototype, we used BuDDy [17]).
This solution allows us to have a compact representation of
sets of APE-FDs that can be manipulated efficiently.

Figure 21 shows an example of how PE(�, k, �) is updated
if we represent it through formula �

PE
 . In this example, we

borrow two dependencies from the psychiatric case reg-
ister introduced in a simplified way in “Discovering Pure
Temporally Evolving Functional Dependencies” section
and discussed in detail in “Mining APE-FDs on Clinical
Domains” section. The real-world schema differs from the
example since patients are identified by PatId attribute in
place of their names. Furthermore, several attributes are
used for storing information regarding registered calls.
The most significant attribute is Global Assessment of
Functioning (GAF): it is a numeric value provided by the
physician at the end of the call, and it scores the patient’s
mental health status. Figure 21 shows an update opera-
t i o n o n PE(�, k, �) = {[�k(�

Contact
PatId

)]GAF,Phys
�
−→CT} ,

w h e r e PE(�, k, �) i s u p d a t e d t o PE
�
(�, k, �)

= {[�k(�
Contact
PatId

)]GAF,Phys
�
−→CT , [�k(�

Contact
PatId

)]GAF,Phys
�
−→CT} .

As one may notice, each node v has at most two outgoing
edges, one solid and one dashed representing high(v) and
low(v) respectively. Taking a solid edge high(v) in a root-to-
terminal path denotes that the attribute corresponding to v
belongs to the dependency. Taking a dashed edge low(v) in a
root-to-terminal path denotes that the attribute correspond-
ing to v does not belong to the dependency. As an example,
the OBDD shown in Fig. 21 (right) features two paths from
the root node, labeled Phys, to terminal node 1. Since the
edge (Phys,Phys) is dashed, the path Phys,Phys,GAF, ����⃗CT , 1
represents the dependency [�+∞(�

Contact
PatId

)]GAF,Phys
�
−→CT .

Such dashed edge implies that attribute Phys is not taken in
X while it is taken in Y because the outgoing edge the path
takes from Phys is a continuous one.

Let us consider now the Contributor process. Until
now we just considered it as a process which asks
Worker for a dependency and eventually answers whether
� ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z holds or not, as shown by the BPMN

choreography in Fig. 20. Thus, Contributor is responsible
for checking a single APE-FD at a time. Since the complexity
is intractable (recall that the problem in NP-Complete), Con-
tributor does not deal directly with the computation. Indeed,
as mentioned before, it splits a problem among several com-
putational units called Sub-Contributor s.

The way in which a Contributor deals with its pool of
Sub-Contributors is very close to the interaction between
Worker and its Contributors, and it is described by the
BPMN choreography diagram provided in Fig. 22. The
status of the problem is managed by Contributor, and it
is represented by a binary tree, where each node is labeled
with a tuple and its two children represent either the case
in which the tuple is inserted in the current solution or it is
removed from it. Subproblems are generated by asserting
that a tuple belongs or not to the final solution. This proce-
dure generates a tree. Initially, the whole tree is given to a
single Sub-Contributor to visit. Suppose that a new Sub-
Contributor registers himself to the same Contributor during
a computation. Such Contributor selects the subproblem of
a Sub-Contributor and a tuple t in � . Contributor splits the
subproblem into two parts, one in which t must belong to the
solution and the other in which t does not belong to the solu-
tion. One portion is given to the new Sub-Contributor and
the “old” Sub-Contributor is notified to reduce its problem
to the other portion. Usually, we have multiple Sub-Con-
tributors that work in a subtree rooted at the node where the
reduce operation happens, and thus, as reported in Fig. 22,
we have to notify all of them about the reduction.

Figure 23 shows an example of how Contributor works.
Suppose that there is exactly one Sub-Contributor sc1 that
is exploring the tree (a) on the top of Fig. 23. At a certain
point, a new Sub-Contributor sc2 registers himself to the
Contributor and requests a subproblem. Now Contributor
looks at the active subproblem and chooses the one of sc1 .
At the root of such problem, there is tuple t1 . Therefore, Con-
tributor splits the subproblem into two more subproblems:
one where t1 is forced to be deleted (tree (b) in Fig. 23), and
the other where t1 is kept (tree (c) in Fig. 23). Finally, the
exploration of subtree (c) is given to sc2 and sc1 is notified
that its exploration of the tree (a) is reduced to the exploration
of the subtree (b).

Sub-Contributor is the minimal computation unit: it sim-
ply performs tasks assigned by its master Contributor. Sub-
Contributor listens constantly to its Contributor in order to
receive reduction of its current subproblem for speeding up
the process; meanwhile, it explores its current subproblem
searching for a solution. Sub-Contributor operates in two
symmetric ways that may be seen as two concurrent threads.
The first thread assumes that its subproblem contains the
solution and performs a depth-first search of the tree in order
to find it. The other thread assumes that the subproblem does
not contain the solution and tries to find a counterexample.

SN Computer Science (2020) 1:153 Page 27 of 30 153

SN Computer Science

In order to deal with the latter task, the Sub-Contributor
translates the subproblem into a linear programming problem
and verifies its feasibility. This symmetric approach turns out
to be very efficient. Attilamakes use of the open-source linear
programming library GNU Linear Programming Kit (GLPK)
[24] to perform such linear programming tasks.

Mining APE‑FDs on Clinical Domains

In this section, we discuss APE-FDs obtained through Attila .
These results may be also considered as an early validation of
our prototype. As we already mentioned, we focused on two
different clinical domains. The first one is that of psychiatry.
In this domain, one of the main sources of information con-
sists of data acquired during the (mainly, telephonic) contacts

between patients and psychiatrists. “Discovering Pure Tem-
porally Evolving Functional Dependencies” section provides
a detailed description of this domain. Attila allowed us to
extract the following APE-FDs from relation Contact:

• [�+∞(�
Contact
PatId

)]GAF
�
−→numPsychologists with � = 0.1 .

This dependency represents the fact that, considering two
consecutive calls of the same patient, the number of psy-
chologists involved in the second call uniquely depends
on the GAF score of the patient during the first call. It
may highlight that some (maybe implicit) policy deter-
mines the number of psychologists required for a contact,
according to the conditions the given patient showed in
the previous call.

• [�+∞(�
Contact
PatId

)]Service,GAF
�
−→CT with � = 0.1 . Infor-

mally, it means that for each pair of consecutive calls for
the same patient, the previous patient’s GAF score and
Service (clinical psychiatry, medical psychology, psy-
chotherapy, ...) uniquely determines the next contact type
(family member, a neighbor, the police, ...).

• [�+∞(�
Contact
PatId

)]GAF,Physician
�
−→Request with � = 0.1 .

This dependency says that the next actions on patients are
mainly based on the previous GAF score and physician.
For each pair of consecutive calls, the request (it could be
group psychotherapy, family psychotherapy, legal medical
evaluation, ...) decided during the second call depends on
the physician and on the GAF score of the given patient
during the first call.

The second clinical domain is that of pharmacovigilance,
which is the science related to the management and preven-
tion of suspected adverse reactions induced by drugs [34].
Premarketing trials are not able to discover all adverse reac-
tions induced by the investigated drug. This is due to trial

Register SubContributor
Unregistered SubContributor

Registered Contributor

Set Complete

Worker

Registered Contributor

Request sub-problem
Registered SubContributor

Registered Contributor

sub-problem Closed
Registered SubContributor

Registered Contributor

APEFD checked?

Free to work on
a new sub-problem

Stop

Send sub-problem Status

Register to Contributor

Reduce Problem

Update Problem Status

Registered Contributor

Registered SubContributor

Request APEFD
Registered Contributor

Worker

Free to work on
a new APEFD

Set Complete

Contributor

Registered SubContributor

Stop

Yes

No

Fig. 22 A BPMN choreography showing the interaction between a Contributor and its (possibly) many Sub-Contributors

Fig. 23 A graphical account of how the tree is split among Sub-Con-
tributors

 SN Computer Science (2020) 1:153153 Page 28 of 30

SN Computer Science

limitations, e.g., short timespan of the study, highly selected
test groups, and so on. Adverse drug reactions (ADRs) may,
indeed, go undetected and become evident when the drug
is already on the market [28]. Therefore, marketed drugs
require a continuous monitoring of their possible effects. The
spontaneous reporting of ADRs allows healthcare stakehold-
ers to identify unexpected reactions and to inform regulating
authorities about them. This practice is extremely important,
provides early warnings and requires limited economic and
organizational efforts and resources [21]. Among its mul-
tiple advantages, spontaneous reporting allows one to con-
sider every drug on the market and any category of patients.
It investigates possible relationships between one or more
adverse reactions and one or more drugs. physicians, chem-
ists or citizens are allowed to submit reports. The analysis
focuses on unknown or completely undocumented relation-
ships and may suggest a potential cause–effect link between
ADRs and drugs, classified as “suspected” or “concomitant.”
Any report contains both demographic and specific pharma-
covigilance data, as patient information (age, nationality,
gender, weight, outcome of reactions, and so on), drug(s)
involved in the suspected reaction(s) (identified by their Ana-
tomical Therapeutic Chemical - ATC - classification, brand
name, dosage), and the description of the occurred adverse
reaction(s) encoded by means of the MedDRA classifica-
tion [20], the entry date, the period of the adverse reaction
and the periods of drug administrations. These temporal data
are then processed and analyzed to possibly discover any
cause–effect relationship among drugs and reaction(s) in dif-
ferent time periods, or according to the exposure timespan. In
this case, we consider the evolution of reports for the same
drug (by using PhProd (Pharmaceutical Product, i.e., active
principle) for performing the join in the evolution expres-
sion). This way, we may observe whether the therapy decided
by physicians is influenced by previous adverse reactions. As
an example, the fact that physicians are aware of past cases
of adverse events could determine changes in drug dosages.
Changing the prescribed drug quantities for patients because
of previously suspected drugs could be considered as attempt
of avoiding such adverse reactions.

Among APE-FDs extracted from a recent instance of
Reports schema of the Italian Network of Pharmacovigilance,
we introduce here the following APE-FD.

• [�+∞(�
Reports

PhProd
)]PhProd,Dos

�
−→Dos with � = 0.2 . Such a

dependency may highlight that, when an ADR is reported,
the dose is usually adjusted in the same way for most
patients, depending on the previous administrations. Such
APE-FD may suggest that Italian physicians methodically
consider the Italian Network of Pharmacovigilance in
managing drug therapies.

Performance Analysis

In this section, we present a short and preliminary perfor-
mance analysis of Attila and of its components. We exe-
cuted two kinds of test. The first test was done using a single
machine. This way, we obtained a first evaluation of the time
required for mining multiple APE-FDs on a large real-world
database. The second test focused on a single APE-FD, but
considering some distributed architecture, using a server and
at most two distinct remote machines. This test allows us to
observe whether the time required for checking a single APE
-FD decreases, when the problem is distributed among dif-
ferent computational units.

We started by analyzing the performances of the whole
system, when the computation is entirely done by a single
machine. We tested Attila on an instance of schema Con-
tact, consisting of approximately 1.5 ⋅ 106 rows. APE-FDs
as [�+∞(�

Contact
PatId

)]XY
�
−→Z were extracted, with a threshold

� = 0.1 . Figure 24 depicts the result of this first experiment.
Attilaverified almost 4500 APE-FDs in about 10 days. Fig-
ure 24 shows through a pie chart that checked APE-FDs
(i.e., holding and not holding) are less than half of possible
APE-FDs. Indeed, many APE-FDs denoted as superset are
subsumed by the checked and holding APE-FDs. Thus, they
have not been tested (i.e., only minimal APE-FDs have been
tested). Moreover, Worker is often idling, as Contributors
perform most of the computation. As described in “Mining
APE-FDs” section, a Contributor has to visit a tree, which is
exponentially large w.r.t. the instance size. Even though this
operation is theoretically unfeasible for large instances, by
employing simple pruning conditions (as, for example, too
many tuples deleted, existence of violated constraints, and so
on), the tree size may be reduced.

Finally, we analyzed the interactions between Con-
tributor and Sub-Contributors by checking APE-FD
[�+∞(�

Reports

PhProd
)]PhProd,Dos

�
−→Dos with � = 0.2 , discussed in

“Mining APE-FDs on Clinical Domains” section and related
to the pharmacovigilance domain. Figure 25a depicts some
comparisons between various configurations of Sub-Con-
tributors when checking the given dependency. We consid-
ered five possible situations:

(1) a single local Sub-Contributor(Server), running on the
same machine where Contributor is running;

(2) a single local Sub-Contributor, and a remote Sub-
Contributor(Remote);

(3) two local Sub-Contributors and a single remote Sub-
Contributor,

(4) two remote Sub-Contributors, i.e., two separate physi-
cal machines with identical hardware/specs running a
Sub-Contributor each;

(5) a single local Sub-Contributor, and two remote Sub-
Contributors.

SN Computer Science (2020) 1:153 Page 29 of 30 153

SN Computer Science

As expected, we observed that performances improved when
distributing the task among different machines.

Figure 25b depicts the number of closed branches, which
increases according to the size of the instance. These results
confirm that our database instance is easier to evaluate than
the artificial instances we built to prove NP-hardness results.

Conclusions

In this paper, we proposed a framework for discovering
Approximate Pure Temporally Evolving Functional Depend-
encies (APE-FDs for short) from a temporal database. We
have addressed in depth the data complexity of such problem.
Unfortunately, this complexity turns out to be NP-Complete
even for a single dependency. Moreover, moving to min-
ing the set of APE-FDs holding on an instance � , the size
of the result set depends also on the number of attributes
of the schema of � . For some instances, the lower bound
of such size is exponential. We faced these problems in a
real-world context, by proposing the use of model checking
techniques, distributed computations and linear programming

techniques. The implemented prototype Attila was tested on
two real-world clinical scenarios and proved to be efficient.
Moreover, we discussed the meaning of some interesting
APE-FDs mined from the databases in the psychiatry and
pharmacovigilance domains, previously introduced. These
results may provide (clinical) stakeholders with some new,
previously unknown, understanding of the underlying data.
We plan to further improve and extend our prototype, by inte-
grating it in a platform allowing the discovery of different
types of (temporal) approximate functional dependencies.
Finally, we plan to perform an extended validation of mined
APE-FDs with clinical experts.

Compliance with Ethical Standards

Conflict of interest On behalf of all authors, the corresponding author
states that there are no conflict of interest.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

Fig. 24 Result of the execution
of Attila on a single machine
(Intel Core i3(TM) CPU M 330
2.13 GHz, 4GB) on an instance
of table Contact (∼ 1.5 ⋅ 106
rows)

Dependencies Tested: 4427
Execution Time (hours): 218

Superset (not checked and holding)

28%

Not Checked and not holding

24%

Checked and not holding

47%

Checked and holding
1%

0 200 400 600 800 1,000 1,200 1,400

1,397

1,102

953

1,021

836

Time (sec.)

(a) (b)

1 Server+2 Remote
2 Remote
2 Server+1 Remote
1 Server+1 Remote
1 Server

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

rows(x 1000)

Time (sec.) Branch Closed (x 100)

Fig. 25 a Result of Attilaexecution varying Sub-Contributors con-
figurations on the same instance of the schema Reports consisting of
∼ 1.5 ∗ 105 rows (Server: 6 Core AMD Opteron(TM) 4284 3GHz,
8GB, Remote: AMD Phenom(TM) II X6 1055T Processor 2.8 GHz,

8GB). b Number of closed branches considering incremental portions
of the same instance of schema Reports (the time refers to the execu-
tion on a Intel Core i3(TM) CPU M 330 2.13GHz, 4GB machine)

 SN Computer Science (2020) 1:153153 Page 30 of 30

SN Computer Science

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creat iveco mmons
.org/licen ses/by/4.0/.

References

 1. Bryant RE. Graph-based algorithms for Boolean function manip-
ulation. IEEE Trans Comput. 1986;35(8):677–91. https ://doi.
org/10.1109/TC.1986.16768 19.

 2. Codd EF. Normalized data base structure: a brief tutorial. In: Pro-
ceedings of the 1971 ACM SIGFIDET (now SIGMOD) workshop
on data description, access and control. ACM; 1971, pp. 1–17.

 3. Combi C, Keravnou-Papailiou E, Shahar Y. Temporal information
systems in medicine. Berlin: Springer; 2010.

 4. Combi C, Mantovani M, Sabaini A, Sala P, Amaddeo F, Moretti
U, Pozzi G. Mining approximate temporal functional dependencies
with pure temporal grouping in clinical databases. Comput Biol
Med. 2014;62:306–24.

 5. Combi C, Mantovani M, Sala P. Discovering quantitative temporal
functional dependencies on clinical data. In: 2017 IEEE interna-
tional conference on healthcare informatics, ICHI 2017, Park City,
UT, USA, Aug 23–26, 2017. IEEE Computer Society; 2017. pp.
248–257. https ://doi.org/10.1109/ICHI.2017.80.

 6. Combi C, Montanari A, Pozzi G. The T4SQL temporal query lan-
guage. In: Silva MJ, Laender AHF, Baeza-Yates RA, McGuinness
DL, Olstad B, Olsen ØH, Falcão AO, editors. CIKM. ACM; 2007.
pp. 193–202.

 7. Combi C, Montanari A, Sala P. A uniform framework for temporal
functional dependencies with multiple granularities. In: Advances
in spatial and temporal databases. Springer; 2011. pp. 404–421.

 8. Combi C, Oliboni B, Pozzi G. Modeling and querying temporal
semistructured data. In: New trends in data warehousing and data
analysis. Springer; 2009. pp. 1–25.

 9. Combi C, Pozzi G, Rossato R. Querying temporal clinical data-
bases on granular trends. J Biomed Inform. 2012;45(2):273–91.

 10. Combi C, Rizzi R, Sala P. The price of evolution in temporal data-
bases. In: Grandi F, Lange M, Lomuscio A, editors, 22nd interna-
tional symposium on temporal representation and reasoning, TIME
2015, Kassel, Germany, Sept 23–25, 2015. IEEE Computer Soci-
ety; 2015. pp. 47–58. https ://doi.org/10.1109/TIME.2015.24.

 11. Combi C, Sala P. Mining approximate interval-based tempo-
ral dependencies. Acta Inf. 2016;53(6–8):547–85. https ://doi.
org/10.1007/s0023 6-015-0246-x.

 12. Dvorský M. Common permutation problem. CoRR; 2008. arXiv
:abs/0803.4261.

 13. Huhtala Y, Karkkainen J, Porkka P, Toivonen H. Efficient dis-
covery of functional and approximate dependencies using parti-
tions. In: Proceedings of the 14th international conference on
data engineering, 1998. IEEE; 1998. pp. 392–401.

 14. Huhtala Y, Kärkkäinen J, Porkka P, Toivonen H. TANE: an
efficient algorithm for discovering functional and approximate
dependencies. Comput J. 1999;42(2):100–11.

 15. Jensen CS, Snodgrass RT, Soo MD. Extending existing depend-
ency theory to temporal databases. IEEE Trans Knowl Data Eng.
1996;8(4):563–82.

 16. Kivinen J, Mannila H. Approximate inference of func-
tional dependencies from relations. Theor Comput Sci.
1995;149(1):129–49.

 17. Lind-Nielsen J. BuDDy—a binary decision diagram package.
http://vlsic ad.eecs.umich .edu/BK/Slots /cache /www.itu.dk/resea
rch/buddy /. Accessed 3 Mar 2020.

 18. Liu C, Zhang K, Xiong H, Jiang G, Yang Q. Temporal skeletoni-
zation on sequential data: patterns, categorization, and visualiza-
tion. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM;
2014. pp. 1336–1345.

 19. Lopes S, Petit JM, Lakhal L. Functional and approximate
dependency mining: database and fca points of view. J. Exp.
Theor. Artif. Intell. 2002;14(2–3):93–114.

 20. MedDRA. Medical Dictionary for Regulatory Activities. https
://www.meddr a.org/. Accessed 23 Apr 2020.

 21. Meyboom R, Lindquist M, Egberts A, Edwards I. Signal
selection and follow-up in pharmacovigilance. Drug Saf.
2002;25(6):459–65.

 22. Object Management Group: Business Process Model and Nota-
tion (BPMN), v2.0.2. http://www.omg.org/spec/BPMN/2.0.2/
PDF/. Accessed 3 Mar 2020.

 23. Olson DL, Lauhoff G. Descriptive data mining. Computational
risk management. 2nd ed. Berlin: Springer; 2019. https ://doi.
org/10.1007/978-981-13-7181-3.

 24. Pryor J, Chinneck JW. Faster integer-feasibility in mixed-integer
linear programs by branching to force change. Comput Oper Res.
2011;38(8):1143–52. https ://doi.org/10.1016/j.cor.2010.10.025.

 25. Sacchi L, Larizza C, Combi C, Bellazzi R. Data mining with temporal
abstractions: learning rules from time series. Data Min Knowl Discov.
2007;15(2):217–47. https ://doi.org/10.1007/s1061 8-007-0077-7.

 26. Sala P. Approximate interval-based temporal dependencies: the com-
plexity landscape. In: 2014 21st international symposium on temporal
representation and reasoning (TIME). IEEE; 2014. pp. 69–78.

 27. Sala P, Combi C, Cuccato M, Galvani A, Sabaini A. A frame-
work for mining evolution rules and its application to the clini-
cal domain. In: Balakrishnan P, Srivatsava J, Fu W, Harabagiu
SM, Wang F, editors. 2015 International conference on healthcare
informatics, ICHI 2015, Dallas, TX, USA, Oct 21–23, 2015. IEEE
Computer Society; 2015. pp. 293–302. https ://doi.org/10.1109/
ICHI.2015.42.

 28. Sordo M, Ochoa G, Murphy SN. A PSO/ACO approach to knowl-
edge discovery in a pharmacovigilance context. In: GECCO (Com-
panion); 2009. pp. 2679–2684.

 29. Vaisman AA, Zimányi E. Data warehouse systems—design and
implementation. Data-centric systems and applications. Berlin:
Springer; 2014. https ://doi.org/10.1007/978-3-642-54655 -6.

 30. Vianu V. Dynamic functional dependencies and database aging. J
ACM (JACM). 1987;34(1):28–59.

 31. Wang XS, Bettini C, Brodsky A, Jajodia S. Logical design for tem-
poral databases with multiple granularities. ACM Trans. Database
Syst. (TODS). 1997;22(2):115–70.

 32. Wijsen J. Temporal FDs on complex objects. ACM Trans Database
Syst. 1999;24(1):127–76.

 33. Wijsen J. Temporal dependencies. In: Liu L, Özsu MT, editors.
Encyclopedia of database systems. Berlin: Springer; 2009. p.
2960–6. https ://doi.org/10.1007/978-0-387-39940 -9_396.

 34. World Health Organization and WHO Collaborating Centre for
International Drug Monitoring: The Importance of Pharmacovig-
ilance. Safety monitoring of medicinal products. World Health
Organization; 2002.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/ICHI.2017.80
https://doi.org/10.1109/TIME.2015.24
https://doi.org/10.1007/s00236-015-0246-x
https://doi.org/10.1007/s00236-015-0246-x
http://arxiv.org/abs/abs/0803.4261
http://arxiv.org/abs/abs/0803.4261
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
https://www.meddra.org/
https://www.meddra.org/
http://www.omg.org/spec/BPMN/2.0.2/PDF/
http://www.omg.org/spec/BPMN/2.0.2/PDF/
https://doi.org/10.1007/978-981-13-7181-3
https://doi.org/10.1007/978-981-13-7181-3
https://doi.org/10.1016/j.cor.2010.10.025
https://doi.org/10.1007/s10618-007-0077-7
https://doi.org/10.1109/ICHI.2015.42
https://doi.org/10.1109/ICHI.2015.42
https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1007/978-0-387-39940-9_396

	Discovering Evolving Temporal Information: Theory and Application to Clinical Databases
	Abstract
	Introduction
	Background and Related Work
	Functional Dependencies and Their Temporal Extensions
	Approximate Functional Dependencies and Their Temporal Extensions

	Discovering Pure Temporally Evolving Functional Dependencies
	Approximate Pure Temporally Evolving Functional Dependencies

	Some Motivating Clinical Scenarios
	The Computational Complexity of Checking APE-FD
	Algorithms for Checking -FDs
	Graph-Based Structures for Tuple Representation
	The First Algorithm
	The Second Algorithm

	Mining APE-FDs
	Prototype Overview
	Mining APE-FDs on Clinical Domains
	Performance Analysis

	Conclusions
	References

