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Abstract
Functional dependencies (FDs) allow us to represent database constraints, corresponding to requirements as “patients having 
the same symptoms undergo the same medical tests.” Some research efforts have focused on extending such dependencies to 
consider also temporal constraints such as “patients having the same symptoms undergo in the next period the same medi-
cal tests.” Temporal functional dependencies are able to represent such kind of temporal constraints in relational databases. 
Another extension for FDs allows one to represent approximate functional dependencies (AFDs), as “patients with the same 
symptoms generally undergo the same medical tests.” It enables data to deviate from the defined constraints according to a 
user-defined percentage. Approximate temporal functional dependencies (ATFDs) merge the concepts of temporal functional 
dependency and of approximate functional dependency. Among the different kinds of ATFD, the Approximate Pure Temporally 
Evolving Functional Dependencies ( APE-FDs for short) allow one to detect patterns on the evolution of data in the database 
and to discover dependencies as “For most patients with the same initial diagnosis, the same medical test is prescribed after 
the occurrence of same symptom.” Mining ATFDs from large databases may be computationally expensive. In this paper, 
we focus on APE-FDs and prove that, unfortunately, verifying a single APE-FD over a given database instance is in general 
NP-complete. In order to cope with this problem, we propose a framework for mining complex APE-FDs in real-world data 
collections. In the framework, we designed and applied sound and advanced model-checking techniques. To prove the feasi-
bility of our proposal, we used real-world databases from two medical domains (namely, psychiatry and pharmacovigilance) 
and tested the running prototype we developed on such databases.

Keywords Temporal data mining · Temporal functional dependencies · Temporal databases · Distributed algorithms · 
Complexity · Pharmacovigilance · Psychiatric case register

Introduction

Since some decades, in most of the real-world domains, 
there is the need of storing and analyzing huge and often 
overwhelming quantities of data, which are required both for 
decision making and in the wider area of the management of 

complex organizations [23, 29]. According to this scenario, 
and without loss of generality, in this paper, we will focus on 
the healthcare/medical domain, where such need arises, to 
support clinical decision-making and healthcare policies [3]. 
Advanced techniques such as data mining and analysis allow 
medical stakeholders to extract useful knowledge from these 
data. In particular, it is often the case that such knowledge 
is inherently temporal, as it is discovered when analyzing 
data evolution, time series, and changes of information over 
time. Temporal data mining is the research area focusing on 
the analysis and discovery from data having some specific 
temporal characterization [8, 9, 25].

Considering data stored according to the well-known 
relational model, functional dependencies (FDs) are usu-
ally specified for expressing constraints on data and for 
improving the quality of database schemata, by deriving 
normal forms [2]. However, functional dependencies (FDs) 
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could be used to derive some knowledge about the given 
database. As an example, let us consider a simple relation 
describing the adverse drug reactions patients may have 
during a hospitalization. Such a relation stores patient 
demographic data, together with drugs taken and the 
adverse reactions possibly occurring. Moreover, a tempo-
ral attribute time-stamps the adverse reactions. Typically, 
patients taking the same drug may have the same adverse 
reaction. Thus, we can derive a functional dependency 
between the patient drug and the adverse reaction. It may 
also be that such functional dependencies hold on “most 
tuples,” but not on all of them. Such dependencies have 
been named approximate functional dependency (AFD) 
[13, 16]. As an example, if we consider patients affected 
by some allergies that make unpredictable the reaction to 
a drug, the corresponding tuples will likely differ from all 
the other ones as for the dependency between drugs and 
adverse reactions.

Finer constraints may also be discovered. As for adverse 
drug reactions, for example, further drug prescriptions may 
follow, to mitigate these known effects. For example, suppose 
that some drugs are prescribed just to mitigate some well-
known adverse reaction. Thus, the drug prescribed just after 
a given adverse reaction will be related both to the adverse 
reaction and to the drug previously taken by patients. In such 
a case, prescribed drugs and related adverse reactions deter-
mine drugs administered next. We call this dependency a 
temporal functional dependency (TFD).

Approximate functional dependencies have been exten-
sively considered, and some tools have been proposed for 
deriving such dependencies [13, 14, 16, 19]. On the other 
side, temporal functional dependencies have been proposed 
according to different perspectives and considering different 
kinds of temporal features [7, 15, 30–32]. To the best of our 
knowledge, only some recent studies focused on approximate 
temporal functional dependencies [4, 5, 11, 26].

In this paper, we continue such studies by considering a 
different kind of approximate TFD and its application to data 
from clinical domains. More specifically, we will adopt the 
framework for temporal functional dependencies proposed 
by Combi et al. in [7], which allows the specification of mul-
tiple kinds of temporal functional dependencies. Accord-
ing to this framework, we consider here the issue of mining 
(approximate) temporal functional dependencies based on 
tuple temporal evolution. Temporal evolution of tuples has 
been originally proposed by Vianu [30] for the characteri-
zation of dynamic functional dependencies (DFDs), which 
allow one to specify constraints on the evolution of tuples in 
consecutive snapshots of a temporal database. Here, we con-
sider the characterization of DFDs introduced in [7], called 
Pure Temporally Evolving TFDs ( PE-FDs). In particular, we 
consider the problem of extracting all Approximate PE-FDs, 
called APE-FDs, from a given temporal medical database.

Before moving to the more experimental side of our work, 
we provide a “negative,” yet interesting, result about the com-
plexity of checking APE-FDs. First, we prove that checking a 
single APE-FD against a database instance is NP-Complete 
in the size of the instance (i.e., data complexity). Moreover, 
we noticed that the NP-completeness of this problem heav-
ily relies on instances that are fictitious and imply properties 
of data that are unreasonable in many contexts such as the 
clinical one. We thus came out with a series of optimizations 
and heuristics that improve the performances with respect to 
the more general problem of checking an APE-FD against a 
database instance.

As we pointed out, mining APE-FDs introduces many 
computational challenges that require techniques inherited 
from different fields of Computer Science (e.g., model check-
ing and combinatorial optimization). We embedded such 
techniques in a framework that has been implemented as a 
running prototype and applied to data from pharmacovigi-
lance and psychiatry domains. With respect to the prelimi-
nary results presented in [10, 27], we focus here only on APE
-FDs and do not consider the related temporal association 
rules [10, 27]. We propose here a new, stronger and more 
focused definition of PE-FD and of the related APE-FD, 
by introducing also a bounded version of temporal evolu-
tion of data. Moreover, we provide a detailed discussion and 
proof of our theoretical results, by introducing a significantly 
improved and extended presentation with new and more com-
plete examples. Furthermore, we introduce a completely new 
section, in which we propose a couple of novel optimization 
techniques for solving the problem of checking APE-FDs.

In the following, “Background and Related Work” section 
describes the background and the related work. “Discovering 
Pure Temporally Evolving Functional Dependencies” section 
formally introduces the concepts of PE-FD and APE-FD. 
“Some Motivating Clinical Scenarios” section introduces 
some motivating clinical scenarios using PE-FDs and APE
-FDs. “The Computational Complexity of Checking APE-
FD” section proves the NP-Hardness of checking an APE-FD 
against a given temporal database. “Algorithms for Checking 
APE-FDs” section provides a description of the algorithm 
that checks a single APE-FD against a given database plus a 
series of optimizations and heuristics that may be generally 
implemented in order to speed up such verification process. 
“Mining APE-FDs” section provides a high-level descrip-
tion of the main features of our prototype for mining such 
dependencies and the main ideas underlying its implementa-
tion; then, it provides interesting mined APE-FDs from the 
psychiatry and pharmacovigilance domains; in the last part of 
this section, we analyze the performances of the implemented 
prototype. “Conclusions” section draws some conclusions 
and sketches possible directions for future research.
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Background and Related Work

In this section, we introduce and discuss the main defini-
tions and concepts we will use through this paper. We first 
recall the definition of functional dependency (FD). Then, we 
introduce some extensions of FDs, i.e., temporal functional 
dependencies (TFDs) and approximate functional dependen-
cies (AFDs). The definition of approximate temporal func-
tional dependency (ATFD) is grounded on these concepts. 
Figure 1 depicts the relationships among such kinds of func-
tional dependencies.

Functional Dependencies and Their Temporal 
Extensions

The concept of functional dependency (FD) comes from the 
database theory  [2].

Definition 1 Let � be a relation with schema R. Let X, Y be 
sets of attributes of R. A functional dependency between X 
and Y

represents the constraint that for all couples of tuples t and 
t′ in having the same value(s) on attribute(s) X, the corre-
sponding value(s) on Y for those tuples are identical.

More formally, relation � satisfies functional dependency 
X → Y  if the following condition holds:

Temporal functional dependencies (TFDs) have been 
proposed as extensions of (atemporal) functional dependen-
cies [33]. As an example, we may represent the constraint 
that a pathology functionally determines a corresponding 
drug, but only considers tuples month by month. In other 
words, the patients with the same pathology are treated 
with a common drug during some month, while in another 
month the same patients affected by the same pathology 

� ⊨ X → Y

∀t, t� ∈ �(t[X] = t�[X] → t[Y] = t�[Y])

take another (common) drug. Combi et  al. proposed a 
framework for TFDs that subsumes and extends previous 
proposals [7]. They use a temporal relational data model, 
allowing one to represent the notion of temporal relation. 
Each relation is equipped with a time-stamping temporal 
attribute VT, which represents the valid time, i.e., the time 
when the fact is true in the represented real world [6]. VT 
has values in domain T  isomorphic to ℕ.

Two temporal views allow joining tuples that satisfy 
specific temporal conditions, which represent relevant 
cases of (temporal) evolution. On the basis of the intro-
duced data model, and leveraging such temporal views, we 
may provide a definition for TFDs.

Definition 2 Let R = U ∪ {VT} be a relational schema where 
attributes in U are atemporal and VT has domain T  . A TFD 
is expressed as

where E- Exp(R) is a relational expression on schema R, 
called evolution expression, t- Group is a mapping T → 2T  , 
called temporal grouping, and X → Y is a functional depend-
ency on the (atemporal) attributes U of E- Exp(R).

A TFD is a statement about admissible temporal relations. 
A temporal relation � on a temporal schema R = U ∪ {VT} 
satisfies a TFD [E- Exp(R), t- Group]X → Y  , if it is not pos-
sible that the relation obtained from � by applying the expres-
sion E- Exp(R) features two tuples t, t′ such that 

1. t[X] = t�[X],
2. t[VT] and t�[VT] (the same for t[VT] and t�[VT] , if attrib-

ute VT , obtained by renaming VT, appears in the relation 
resulting from the evolution expression) belong to the 
same temporal group, according to the mapping t- Group,

3. t[Y] ≠ t�[Y].

In other words, FD X → Y  must be satisfied by each rela-
tion obtained from the evolution expression by selecting 
those tuples whose valid times belong to the same tempo-
ral group. Temporal grouping enables us to group tuples 
together over a set of temporal granules, based on VT. Four 
different classes of TFD have been proposed in [7]:

• Pure temporally grouping TFD: E- Exp(R) returns the 
original temporal relation � . These TFDs force FD 
X → Y  , where X, Y ⊆ U , to hold over each set of tuples 
temporally grouped according to their VT;

• Pure temporally evolving TFD: E- Exp(R) specifies how 
to derive the tuples modeling the evolution of objects. 
No temporal grouping exists, i.e., all the tuples of � are 
considered together;

[E- Exp(R), t- Group]X → Y

FD

AFD

TFD

ATFD

Fig. 1  A graphical account for the IS_A relationships between func-
tional dependency (FD), approximate functional dependency (AFD), 
temporal functional dependency (TFD) and approximate temporal 
functional dependency (ATFD)
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• Temporally mixed TFD: in this case, after evaluating the 
expression E- Exp(R) , a temporal grouping t- Group is 
performed;

• Temporally hybrid TFD s: first, the evolution expression 
E- Exp(R) allows the selection of those tuples that are 
needed to represent the evolution of real-world objects/
concepts; then, temporal grouping is applied to the 
selected tuples.

In the remainder of the paper, we shall focus on Pure Tem-
porally Evolving TFDs only.

Approximate Functional Dependencies and Their 
Temporal Extensions

The concept of approximate functional dependency (AFD) is 
defined moving from the concept of plain FD. In fact, given 
a relation � where an FD holds for most tuples in � , we may 
identify some tuples, for which that FD does not hold. Con-
sequently, we can define some measurements of the error we 
make in considering the FD to hold on �.

One measurement [16] we can apply is known as G1 , 
which considers the number of violating pairs of tuples. 
Formally:

The related scaled measurement g1 is defined as follows:

where |r| is the cardinality of relation � , i.e., the number of 
tuples belonging to relation �.

Another measurement [16] we can apply is known as G2 , 
which considers the number of tuples that violate the func-
tional dependency. Formally:

The related scaled measurement g2 is defined as follows:

Topics related to approximate functional dependencies have 
been considered since some years [13, 14, 16, 19]. Instead, 
to the best of our knowledge, very few studies focused on 
approximate temporal functional dependencies [4, 5, 11, 
26]. In [4], Combi et al. consider the problem of mining 
approximate TFDs with different kinds of temporal group-
ing on clinical data. In [11, 26], Sala and Combi extend the 
concept of approximate TFD to deal with interval-based 
TFDs. In this paper, we continue such studies by considering 
a different kind of approximate TFD and its application to 
data from clinical domains.

G1(X → Y , �) = |{(t, t�) ∶ t, t� ∈ � ∧ t[X] = t�[X] ∧ t[Y] ≠ t�[Y]}|

g1(X → Y , �) = G1(X → Y , �)∕|�|2

G2(X → Y , �) = |{t ∶ t ∈ � ∧ ∃t�(t� ∈ � ∧ t[X]

= t
�[X] ∧ t[Y] ≠ t

�[Y])}|

g2(X → Y , �) = G2(X → Y , �)∕|�|

Discovering Pure Temporally Evolving 
Functional Dependencies

In the following, we focus on Pure Temporally Evolving 
Functional Dependencies ( PE-FDs for short), as speci-
fied in the framework proposed in [7]. Our temporal func-
tional dependencies will be given on a temporal schema 
R = U ∪ {VT} where U is a set of atemporal attributes and 
VT is a special attribute denoting the valid time of each tuple. 
Hereinafter, we assume tuples time-stamped with natural 
numbers (i.e., Dom(VT) = ℕ ). Let J ⊆ U be a nonempty sub-
set of U. We define the set W as W = U⧵J and set W , which 
is basically a renaming of attributes in W. Formally, for each 
attribute A ∈ W , we have A ∈ W (i.e., W = {A ∶ A ∈ W}).

Definition 3 (Views Evolution and Bounded Evolu-
tion)  Given an instance � of R, an instance ��

J
 of schema 

Rev = JWW{VT ,VT} is defined as follows:

Schema Rev is called the evolution schema of R. We will 
denote as �R

J
 the view Evolution on R that is built by 

expression ��
J
 for every instance � of R. View �R

J
 joins 

two tuples t1 and t2 that agree on the values of the attrib-
utes in J (i.e. t1[J] = t2[J] ), if t2 immediately follows t1 . 
More precisely, such tuples are joined if t1[VT] < t2[VT] 
and there does not exist a tuple t ∈ � with t[J] = t1[J] and 
t1[VT] < t[VT] < t2[VT] (i.e., there does not exist a tuple 
that holds at some point in between the valid times of such 
tuples).

For application purposes, it would be important to con-
sider in an evolution schema only those pairs of consecutive 
tuples whose difference between VT  and VT is within some 
given bound. Given a parameter k ∈ ℕ ∪ {+∞} , tuples of ��

J
 

are filtered by means of the selection �k(�
�

J
) = �

VT−VT≤k
(��

J
) 

(notice that �+∞(�
�

J
) = ��

J
).

We will denote as �k(�
�

J
) the view Bounded Evolution. It 

forces to consider only those tuples belonging to ��
J
 having 

a temporal distance within the given threshold k. In the fol-
lowing, given a tuple t ∈ ��

J
 , we denote its temporal distance 

t[VT] − t[VT] with �(t).

Let us now define, by using the introduced temporal view 
Evolution, a slightly restricted version of Pure Temporally 
Evolving Functional Dependency with respect to that defined 
in [7]. Without loss of generality, such definition will allow 
us to simplify the notation and to focus on a general kind of 
temporal evolution of considered data.

𝜏�
J
=

⎧
⎪⎪⎨⎪⎪⎩

u

���������
∃t,t�

⎛⎜⎜⎜⎜⎜⎝

r(t)∧r(t�)∧t[J]=t�[J]=u[J]∧u[W]=t[W]∧

u[W]=t�[W]∧t[VT]=u[VT]∧t�[VT]=u[VT]

∧t[VT]<t�[VT]∧

∀t��((r(t��)∧t[VT]<t��[VT])→t�[VT]≤t��[VT])

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭
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Definition 4 (Pure Temporally Evolving Functional Depend-
ency) A Pure Temporally Evolving Functional Dependency 
over the temporal schema R = U ∪ {VT} , PE-FD for short, 
is an expression of the form:

We have that X ⊆ W  and Y ,Z ⊆ W  with X ≠ ∅ and |Z| = 1 
(Z contains a single attribute). An instance � of R fulfills 
a PE-FD [�k(�

R
J
)]XY → Z  , written � ⊧ [𝛥k(𝜏

R
J
)]XY → Z  , 

if and only if for each pair of tuples t, t� ∈ �k(�
�

J
) we have 

(t[X] = t�[X] ∧ t[Y] = t�[Y]) → t[Z] = t�[Z].

A PE-FD could express dependencies as “A common ther-
apy follows the same symptom for all patients.”

Now, we introduce two specializations of PE-FDs. Given a 
PE-FD [�k(�

R
J
)]X Y → Z , if set Y = � (i.e., the dependency is 

[�k(�
R
J
)]X → Z ), we will say that the PE-FD is simple. Moreo-

ver, if the considered PE-FD is of the type [�k(�
R
J
)]XY → X , 

we will say that the PE-FD is an update. PE-FDs featuring 
both the properties (i.e., PE-FDs of type [�k(�

R
J
)]X → X ) are 

called simple updates. A graphical account of such classes is 
given in Fig. 2.

Approximate Pure Temporally Evolving Functional 
Dependencies

We add approximation to PE-FDs in a very similar way we did 
for FDs in “Background and Related Work” section. First, we 
specialize the measurement G3 , which considers the minimum 
number of tuples in � to be deleted for the FD to hold, to deal 
with PE-FD as follows:

By means of G3 , we can define the relative  scaled measure-
ment g3 as follows:

Now we are ready to define the Approximate Pure Tempo-
rally Evolving Functional Dependency.

Definition 5 (Approximate Pure Temporally Evolving Func-
tional Dependency) An Approximate Pure Temporally 
Evolving Functional Dependency over the temporal schema 
R = U ∪ {VT} , APE-FD for short, is an expression of the form:

[�k(�
R
J
)]XY → Z.

G3([𝛥k
(𝜏R

J
)]XY → Z, �) = |�| −max{|�| ∶

� ⊆ �, � ⊧ [𝛥
k
(𝜏R

J
)]XY → Z}

g3([�k(�
R
J
)]XY → Z, �)

=
G3([�k(�

R
J
)]XY → Z, �)

|�| .

[�k(�
R
J
)]XY

�
−→Z

with 0 ≤ � ≤ 1 , X ⊆ W  and Y ,Z ⊆ W  with X ≠ ∅ and 
|Z| = 1.

An instance � of R satisfies the APE-FD [�k(�
R
J
)]X 

Y
�
−→Z  ,  written � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z  ,  if and only if 

g3([�k(�
R
J
)]XY → Z, �) ≤ �.

Some Motivating Clinical Scenarios

In this section, we describe and discuss two scenarios, bor-
rowed from the clinical domain, in order to provide exam-
ples of how PE-FDs and APE-FDs work. The first scenario 
is taken from psychiatric case register. Let us consider the 
temporal schema Contact = {Name,Phys,CT , Dur} ∪ {VT} . 
Such a schema stores values about a phone-call service pro-
vided to psychiatric patients. This service is intended for 
monitoring and helping psychiatric patients, who are not 
hospitalized. Whenever a patient feels the need to talk to a 
physician, she can call the service. Data about calls are col-
lected according to schema Contact. For the sake of sim-
plicity, temporal attribute VT identifies the day when the 
call has been received. In addition, the service may be used 
by people somehow related to patients, as, for instance, 
relatives worried about the current condition of a patient.

More precisely, attribute Name identifies patients, Phys iden-
tifies physicians, CT (Contact Type) specifies the person who is 
doing the call (e.g., value “self” stands for the patient himself, 
“family” for a relative) and Dur stores information about total 
duration of calls (value ∼ n means approximately n minutes). 

Fig. 2  A graphical account of how different classes of PE-FDs are 
related
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An instance � of R is provided in Fig. 3. Instance ��
Name

 , and ��
J
 

in general, may be seen as the output of a two-phase procedure. 
First, table Contact is partitioned into subsets of tuples, one 
for each value of Name. Then, each tuple is joined with its 
immediate successor in its partition, w.r.t. VT values. The whole 
relation ��

Name
 is provided in Fig. 4. In the following, we will 

use t for referencing tuples of � and u for referencing tuples of 
��
J
 . Moreover, in the following, each tuple u in ��

J
 will be identi-

fied by the pair of indexes of the tuples in � that generate u. For 
instance, the first tuple of ��

J
 in Fig. 4 will be denoted by u1,2 

since it is generated by the join of tuples t1 and t2 in �.
Going back to our example, it is worth noting that tuples 

t2 and t7 are not joined in ��
Name

 , even if t7[VT] = t2[VT] + 2 
and there is no tuple t with t[VT] = t7[VT] + 1 . This is due 
to the fact that t7[Name] ≠ t2[Name] forbids the join in ��

Name
 . 

Moreover, t1 and t3 are not joined in ��
Name

 . Indeed, the pres-
ence of tuple t2 with t1[Name] = t2[Name] = t3[Name] and 
t1[VT] < t2[VT] < t3[VT] forbids the join in ��

Name
 . Figure 5 

graphically depicts how pairs of tuples (t1, t2), (t2, t3), (t3, t4), 
(t4, t5), (t5, t6) and (t7, t8), (t8, t9), (t9, t10), (t10, t11), (t11, t12) are 
joined in ��

Name
 for the two patients, respectively. Basically, 

each tuple u ∈ ��
Name

 corresponds to an edge in Fig. 5, while 
we have a node for each tuple in �.

Let us now discuss some temporal dependencies we can 
derive from such data. We could be interested in verifying 
whether there is some relationship between some previous 
features of patient’s call and the fact that the considered call 
was either with him or with a relative. In our example, we 
have that � ⊧ [𝛥5(𝜏

Contact
Name

)]Phys,Phys → CT .
In other words, given consecutive calls related to the same 

patient within 5 days, the couple composed by the physician 
of the first call and by the physician of the next one determines 
the type of contact of the next call. And it holds for all patients. 
However, if we consider a wider time window of 6 days, 
we have that � ⊭ [𝛥6(𝜏

Contact
Name

)]Phys,Phys → CT  , because 
of pairs (t2, t3) and (t10, t11) . More precisely, we have that  
t2[Name] = t3[Name] = “McMurphy”,  t10[Name] = t11 
[Name] = “Lowe”,  t2[Phys] = t10[Phys] = “Sleepy”, 
t3[Phys] = t11[Phys] = “Patel” , but t3[CT] ≠ t11[CT] (i.e., 
t3[CT] = “family” , and t11[CT] = “self” ). In other words, we 
have that the set of tuples {u2,3, u10,11} does not satisfy the 
FD Phys,Phys → CT .

Fig. 3  An instance � of schema 
Contact that stores the phone 
contacts about two psychiatric 
cases. Attribute # represents 
the tuple number, and it is used 
only for referencing tuples in 
the text (i.e., # does not belong 
to the schema Contact)

Fig. 4  The evolution expression ��
Name
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The two proposed PE-FDs differ only for the maxi-
mum temporal distance allowed. In particular, tuple u10,11 
is one of the responsible ones for �  ⊧ [𝛥6(𝜏

Contact
Name

)] Phys,  
Phys → CT  , but it does not belong to �5(�

Contact
Name

) because 
𝛥(u10,11) > 5 . This allows us to point out a general prop-
erty of PE-FDs and of APE-FDs too. Given a PE-FD 
[�k(�

R
J
)]XY → Z , if we have that for every instance � of R 

it holds � ⊧ [𝛥k(𝜏
R
J
)]XY → Z , then for every h ≤ k it holds 

� ⊧ [𝛥h(𝜏
R
J
)]XY → Z.

Moving to the problem of mining approximate depend-
encies, if we consider APE-FD [�6(�

R
Name

)]Phys,Phys
�
−→CT  

with � = 1

12
 , we have that � ⊧ [𝛥6(𝜏

R
Name

)] Phys,Phys
�
−→CT  . 

Indeed, by considering relation �� = �⧵{t3} , this depend-
ency would hold without the need of approximation 
(i.e., if tuple t3 is deleted from relation � ). More pre-
cisely, we have ���

Name
= ��

Name
⧵{u2,3, u3,4} ∪ {u2,4} . Tuple 

u2,4 was not originally in ��
Name

 because of tuple t3 . Fig-
ure 5 depicts this new scenario, by replacing edges (t2, t3) 
and (t3, t4) with the dashed edge (t2, t4) . Moreover, we 
have �� ⊧ [𝛥+∞(𝜏

R
Name

)]Phys,Phys → CT  . Thus, it holds 
� ⊧ [𝛥+∞(𝜏

R
Name

)]Phys, Phys
�
−→CT  with � = 1

12
.

The second example we propose is borrowed from the 
internal medicine domain. As another simple example of how 
view �R

J
 works, let us consider the temporal schema 

ThCy = {PatId,Phys,Dos} ∪ {VT} . Such a schema allows 
one to store the values about cycles of therapies in which a 
specific, fixed, drug is administered to a patient by a given 
physician. Figure 6a depicts an instance � of R. Figure 6b 
shows the result of view �ThCy

PatId
 to � . It is easy to see that tuples 

t1 and t5 are not joined in ��
PatId

 . Even if t5[VT] = t1[VT] + 1 
the fact that t1[PatId] ≠ t5[PatId] forbids the join in  
��
PatId

 . Moreover t1 and t3 are not joined in ��
PatId

 . Even if 
t1[PatId] = t3[PatId] , we have that the presence of  
tup le  t2  wi th  t1[PatId] = t2[PatId] = t3[PatId] and 
t1[VT] < t2[VT] < t3[VT] forbids the join in ��

PatId
 . In Fig. 7a, 

we have a graphical account of how the pairs of tuples 

(t1, t2), (t2, t3), (t3, t4), (t5, t6), (t6, t7) and (t7, t8) are joined in 
��
PatId

 . In both the graphs depicted in Fig. 7a, nodes are 
labeled with the tuple number and the value for Dos attribute 
is reported above each node. Moreover, we recall from the 
previous example that each edge (ti, tj) is labeled with the 
value tj[VT] − ti[VT] (i.e., the temporal distance between two 
tuples). In the scenario for ��

PatId
 the value for the attribute 

Phys is reported below each node, while for ��
Phys

 the value of 
PatId is reported below each node.

We would like to point out that it may be the case that a 
tuple t ∈ � has a more than one immediate successor in ��

J
 

(i.e. is joined with more than one tuple). It is the case of 
view ��

Phys
 shown in Fig. 7b, where tuples are joined with 

respect to the values of attribute Phys. We have that, since 
Dr. Shepherd makes two drug administrations at VT = 20 , 
tuple t1 has both tuples t3 and t7 as its immediate successors. 
We will see that the number of immediate successors of a 
tuple in ��

J
 will play a major role in some of the following 

complexity results.
In this domain, we could be interested in understanding 

whether there are dependencies among previous and cur-
rent drug dosages for a given patient, possibly considering 
the physicians administering the drug.

In the example depicted in Figs.  6 and 7, we have 
that � ⊧ [𝛥+∞(𝜏

R
PatId

)] Dos,Phys,Phys → Dos . It means 
that the dosage and the couple of physicians related 
to a drug administration and to the next one, respec-
tively, determine the next drug dosage. However, 
� � ⊧ [𝛥∞(𝜏

R
PatId

)]Phys,Phys → Dos  b e c a u s e  b o t h 
tuples u1,2 and u7,8 belong to �∞(�

R
PatId

) . More pre-
cisely, we have that Phys,Phys → Dos does not hold 
on any instance of �k(�

R
PatId

) that contains both u1,2 and 
u7,8 ,  s ince  u1,2[Phys] = u7,8[Phys] = “Shepherd” and 
u1,2[Phys] = u7,8[Phys] = “Stevens” but u1,2[Dos] = “60 mg” 
is not equal to u7,8[Dos] = “20 mg”.

Fig. 5  A graph-based rep-
resentation of ��

Name
 . Nodes 

represent tuples and are labeled 
by the corresponding tuple 
number. Values for attribute 
Dur are reported above each 
node. Values of Phys and CT 
attributes are reported below 
every node, respectively. Every 
edge (ti, tj) is labeled by value 
�(ui,j) = tj[VT] − ti[VT] (i.e., 
the temporal distance between 
two tuples). The dashed edge 
represents a different scenario 
where t2 and t4 are joined, if t3 
would be deleted, as explained 
below for APE-FDs
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On the other hand, � ⊧ [𝛥4(𝜏
R
PatId

)]Phys,Phys → Dos 
because having 4 as maximum allowed time distance 
implies u7,8 ∉ �4(�

�

PatId
) (i.e., t8[VT] − t7[VT] > 4 ) and 

thus the conflict between u1,2 and u7,8 no longer exists. 
Furthermore, it is easy to see by considering the pairs u1,2 
and u5,6 that � � ⊧ [𝛥+∞(𝜏

R
PatId

)]Dos,Phys → Dos . How-
ever, by shrinking the maximum allowed time distance 

to 6, we obtain u5,6 ∉ �6(�
�

PatId
) and thus we have that 

� ⊧ [𝛥6(𝜏
R
PatId

)]Dos,Phys → Dos.
Obviously, in an instance ��

J
 , there may be more than one 

pair (u, u�) which generates a conflict. Let us consider the 
simple update PE-FD [�+∞(�

R
PatId

)] Dos → Dos . Such PE-
FD does not hold on � (i.e., � � ⊧ [𝛥+∞(𝜏

R
PatId

)]Dos → Dos ). 
This can be shown using the pair u1,2 and u5,6 as a witness 
for a conflict since u1,2[Dos] = u5,6[Dos] = “30 mg” and 

Fig. 6  The instances ��
PatId

 (b) 
and ��

Phys
 (c) obtained from 

applying views �ThCy
PatId

 and �ThCy
Phys

 
to the instance � (a), respec-
tively

Fig. 7  A graphical account for 
the instances ��

PatId
 (a) and ��

Phys
 

(b) related to the instance � 
shown in Fig. 6a



SN Computer Science (2020) 1:153 Page 9 of 30 153

SN Computer Science

u1,2[Dos] ≠ u5,6[Dos] . However, in this case, we have that 
the conflicting pairs are more than one. As a matter of fact, 
all pairs (u1,2, u5,6) , (u2,3, u7,8) and (u3,4, u4,6) are conflict-
generating. If we want to rule all the conflicts out by playing 
on the maximum allowed distance, we have to set it to 6 and 
then we have � ⊧ [𝛥6(𝜏

R
PatId

)]Dos → Dos.

The Computational Complexity of Checking 
APE‑FD

In this section, we address the complexity of checking an 
APE-FD against an instance � . We call this problem Check- 
APE-FD:

Problem 1 (Check-APE-FD). Given a temporal schema R, a 
PE-FD [�k(�

R
J
)] XY → Z on R, an instance � of R, and a real 

number 0 ≤ � ≤ 1 , determine whether � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z or 

not.

Let  us  consider,  for  example,  the PE -FD 
[�+∞(�

ThCy

PatId
)]Phys,Phys → Dos . We have proved above that 

� ∖ ⊧ fd . Figure 8 graphically reports all the possible ��′
PatId

 
where �′ is obtained from � by deleting exactly one tuple. 
For example, if �� = �⧵{t1} , it means that the dotted edge 
(t1, t2) has been removed. This means that t1 and t2 are not 
joined in ��′

PatId
 . Moreover, if we take �� = �⧵{t2} we have 

that both the edges (t1, t2) and (t2, t3) are removed and the 
dashed edge (t1, t3) turns out to be “active.” This means that 
t1 and t2 are not joined in ��′

PatId
 as well as t2 and t3 , but t1 

and t3 turn out to be joined in ��′
PatId

 due to the absence of t2 . 
Let us observe that in this case, the join operation involv-
ing t1 and t3 belongs to ��′

PatId
 and not to ��

PatId
 . This specific 

behavior, in which the deletion of a tuple introduces addi-
tional, possibly different, constraints as a side effect, instead 
of just removing existing ones, gives us a hint on the prob-
lem Check- APE-FD. Such problem is not so easy to solve. 
Notice that �⧵{t1} � ⊧ [𝛥+∞(𝜏

ThCy

PatId
)]Phys,Phys → Dos 

as well, because of the pairs (t2, t3) and (t6, t7) . However, 
�⧵{t2} ⊧ [𝛥+∞(𝜏

ThCy

PatId
)]Phys,Phys → Dos and thus we have 

that � ⊧ [𝛥+∞(𝜏
ThCy

PatId
)]Phys,Phys

𝜖
−→Dos with � = 1

8
.

Therefore, problem Check- APE -FD belongs to the com-
plexity class NP. In order to prove that, it suffices to apply 
a guess-and-check algorithm. First, this algorithm guesses 
a set �′ with |�′| ≤ � ⋅ |�| . Then, if �⧵�� ⊧ [𝛥k(𝜏

R
J
)]XY → Z , 

the algorithm returns YES, otherwise NO. In the procedure 
above, we implicitly make use of a function that verifies, 
given an instance � of R and a PE-FD [�k(�

R
J
)]XY → Z , 

whether � ⊧ [𝛥k(𝜏
R
J
)]XY → Z holds or not. We can call this 

problem Check- PE-FD. Since there is no approximation, 

checking if � ⊧ [𝛥k(𝜏
R
J
)]XY → Z may be performed in poly-

nomial time [7]. For this reason, we can conclude that Check- 
APE-FD belongs to the complexity class NP. In the follow-
ing, we will prove that Check-APE-FD is NP-hard even in 
the case of the most constrained kind of APE-FDs, which is 
represented by the class of simple update APE-FDs. From 
now on, we will consider Problem 1 only for simple update 
APE-FDs. Considering the inclusions shown in Fig. 2, we 
can immediately conclude that our hardness result directly 
propagates to the other classes of APE-FDs.

In this section, we will make use of finite words w on a 
finite nonempty alphabet � (i.e., w ∈ �∗ ). We will use the 
standard notation w[i] for denoting the ith symbol of word w. 
Given a word w, we denote with first(w) and last(w) its first 
and its last element, respectively (i.e., first(w) = w[1] and 
last(w) = w[|w|] ). Moreover, a finite increasing sequence 
of ℕ ( ℕ>-sequence) is a finite word s on (ℕ⧵{0})∗ , where 
for every i, i′ , with 1 ≤ i < i′ ≤ |s| , we have s[i] < s[i�].1  
Given a ℕ>-sequence s we denote with first(s) and last(s) 
its first and its last element, respectively (i.e., first(s) = s[1] 
and last(s) = s[|s|] ). A ℕ>-sequence s, for which for every 
i, with 1 ≤ i < |s| , we have w[i + 1] = w[i] + 1 , is called 
strict and we denote it with [b, e], where b = first(s) and 
e = last(s) . Given a word w and a ℕ>-sequence s, we 
denote with w‖s the word w‖s = w[first(s)]…w[last(s)] 
(for a graphical account of how a word is filtered by a 
sequence please refer to Fig. 9). Given a word w and a 
pair (b, e), with 1 ≤ b ≤ e ≤ |w| , we call the word w‖[b,e] 
a slice of w. Given two words w1,w2 ∈ �∗ we say that 

Fig. 8  A graphical account for the possible changes on the view ��
PatId

 
considering the possible deletions of at most one tuple

1 a ℕ>-sequence is nothing more than a different representation for a 
finite set of positive naturals, but it turns out for our purposes to see it 
as a particular kind of word over positive naturals.
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w1 is a subsequence of w2 (written w1 ⊑ w2 ) if and only 
if there exists an ℕ>-sequence s for which w1 = w2‖s . 
For instance, w1 = abaabba is a subsequence of 
w2 = bbabbabbabaabababa with s = 3 4 6 9 10 14 15 . A 
word w is repetition free if and only if for every a ∈ � we 
have |{i ∶ w[i] = a}| ≤ 1 . A word w is a permutation of � 
if and only if w is repetition free and |w| = |�|.

The proof that Check- APE-FD is NP-hard is done in two 
steps. First, we describe a known NP-Complete problem 
called Common Permutation Problem ( CP -P for short). 
Then, we introduce a problem called Periodic Repair Prob-
lem ( PR-P) and we prove that CP -P may be reduced to it 
using logarithmic space. Finally, we reduce the PR -P to 
Check-APE -FD using logarithmic space.

Let us begin with the Common Permutation Problem 
which has been proved to be NP-Complete in [12].

Problem 2 (CP-P). Given a finite alphabet � and two words 
w1,w2 over it, is there a permutation wp of � for which 
wp ⊑ w1 and wp ⊑ w2?

Consider � = {a, b, c} we have that the pair w1 = bcbab 
and w2 = accaacb is a positive instance of Problem  2 
because cab ⊑ w1 and cab ⊑ w2 . On the other hand, the pair 
w1 = bcbac and w2 = acab is a negative instance of Prob-
lem 2 since both words do not share any permutation of � as 
their subsequence. More precisely, w1 contains the permuta-
tions bca, bac and cba while w2 contains the permutations 
acb and cab.

A word w is periodic if and only if for every pair of 
indexes (i, i�) , with 1 ≤ i, i′ < |w| , we have that w[i] = w[i�] 
implies w[i + 1] = w[i� + 1] . Let us observe that if w is rep-
etition-free, then it is periodic. Moreover, if w is periodic for 

Fig. 9  An example of a word 
w‖s obtained by applying a 
sequence s to a word w 

Fig. 10  A graphical account of 
how s1

n
, sw1

, s2
n
, sw2

, and s3
n
 filter 

blocks of w 
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every pair (b, e), with 1 ≤ b ≤ e ≤ |w| , we have that w‖[b,e] is 
periodic (i.e., every slice of a periodic word is itself periodic). 
The following lemma turns out to be useful for our reduction.

Lemma 1 Given a periodic word w, if w  is not repe-
tition-free, then there exists an index i < |w| such that 
last(w) = w[i].

Proof Since w is not repetition free, there exists two indexes 
i, i′ , with 1 ≤ i < i′ ≤ |w| , such that w[i] = w[i�] . We prove 
the claim by induction on � = |w| − i� . For the base of the 
induction, we have � = 0 and thus the claim trivially holds 
since i is the index we were looking for. Let us consider 
� = n + 1 . Since w is periodic and w[i] = w[i�] , we have that 
w[i + 1] = w[i� + 1] . Thus, positions i + 1 and i� + 1 witness 
a repetition and since |w| − (i� + 1) < |w| − i� = 𝛥 we can 
apply the inductive hypothesis and prove our claim.   ◻

In order to prove that Check- APE -FD is NP-Complete 
even for simple update PE-FD [�k(�

R
J
)]X → X , we introduce 

the following intermediate problem called Periodic Repair 
Problem ( PR -P for short):

Problem 3 (PR-P) Given a word w = a1 … an , a finite alpha-
bet � and a natural number k, determine whether a periodic 
word w′ ⊑ w exists such that |w′| ≥ k.

Problem 3 belongs to the complexity class NP. A sim-
ple nondeterministic algorithm for PR -P guesses an ℕ>

-sequence s such that |s| ≥ k and last(s) ≤ |w| (i.e., s 
“chooses” only positions in 1… |w| ). Then, it suffices to 
check whether or not w‖s is periodic (periodicity checking 
may be performed in logarithmic space).

In the following, we describe how to reduce CP -P to PR
-P. Let us consider two words w1 and w2 on an alphabet � 
with length n1 and n2 , respectively. We assume without loss 
of generality that � is a finite subset of the negative integers 
(i.e., 𝛴 ⊆ ℤ

− ). Let n = max(n1, n2) and � = |�| . Let us con-
sider the following word w over the alphabet � ∪ {1,… , n} 
( ⋅ is the classical word concatenation operator):

Finally, we put k = 3n + 2� . Such reduction operates in log-
arithmic space. The following two lemmas prove the sound-
ness and completeness of the above reduction.

Lemma 2 If there exists a permutation wp of � which is a com-
mon subsequence of w1,w2 , then there exists a ℕ>-sequence s, 
with |s| ≥ 3n + 2� and last(s) ≤ 3n + |w1| + |w2| , such that 
w‖s  is periodic.

w = 1 ⋅… ⋅ n ⋅ w1 ⋅ 1 ⋅… ⋅ n ⋅ w2 ⋅ 1 ⋅… ⋅ n.

Proof First, let us recall that wp is a repetition-free sequence 
of symbols in ℤ− . By hypothesis, we have wp ⊑ w1 and 
wp ⊑ w2 and thus there exists a pair of ℕ>-sequence s1 and s2 
with |s1| = � , |s2| = � and w1‖s1 = w2‖s2 = wp.

Let sj with j ∈ {1, 2} be the ℕ>-sequence such that |sj| = � 
and for every 1 ≤ i ≤ � , we have sj[i] = sj[i] + nj + �(j − 1) . 
Let us observe that sj is a simple shift of the indexes in the 
sequence sj with j ∈ {1, 2} . Then, we may define s as follows:

By construction, we have w‖s = 1… n ⋅ wp ⋅ 1… n ⋅ wp ⋅ 1… n . 
Since � ∩ {1,… n} = � there are not “conflicts” between the 
blocks 1… n and wp , we can conclude that w‖s is periodic.  
 ◻

Lemma 3 I f  there exists  a  sequence s  with 
3n + 2� ≤ |s| ≤ 3n + |w1| + |w2| for which w‖s  is periodic, 
then there exists a permutation wp of � which is a common 
subsequence of w1,w2.

Proof First, we define s1
n
, sw1

, s2
n
, sw2

, s3
n
 such that s = s

1

n
⋅ s

w1

⋅s
2

n
⋅ s

w2
⋅ s

3

n
 and last(s1

n
) ≤ n ,  n + 1 ≤ s

w1
[1] ≤ last(s

w1
)

≤ n + |w1| ,  n + |w1| + 1 ≤ s2
n
[1] ≤ last(s2

n
) ≤ 2n + |w1| , 

2n + |w1| + 1 ≤ sw2
[1] ≤ last(sw2

) ≤ 2n + |w1| + |w2| and 
n + |w1| + |w2| + 1 ≤ s3

n
[1] . Informally s1

n
, sw1

, s2
n
, sw2

, s3
n
 are 

the indexes in s that concern the subwords 1… n (first block), 
w1 , 1… n (second block), w2 and 1… n (third block) respec-
tively. A graphical account of this decomposition of w‖s is 
given in Fig. 10. This means that we may retrieve the subse-
quence selected by s on w restricted to the first block by 
means of the operation w‖s1

n
 . If we want to retrieve the sub-

sequence selected by s on w restricted to the w1 block, we 
write w‖sw1 , and so on, for the second block 1… n (i.e., w‖s2

n
 ), 

the block w2 (i.e., w‖sw2 ) and the third block 1… n (i.e., w‖s3
n
 ). 

Let us notice that w‖s is equal to w‖
s1
n

⋅ w‖
s
w1

⋅

w‖
s2
n

⋅ w‖
s
w2

⋅ w‖
s3
n

.
Suppose by contradiction that |s2

n
| = 0 . Then, we have that 

w� = w‖sw1 ⋅ w‖sw2 is a slice of w‖s and thus w′ is periodic. 
Moreover, we have that w�� = w�

⋅ (w‖s3
n
) is a slice of w‖s and 

thus w′′ is periodic. Two cases may arise, i.e., either |s3
n
| = 0 

or not.
If |s3

n
| = 0 we have that w‖s ⊑ 1… n ⋅ w� and by a counting 

argument we have that �w‖s� ≤ 3n which is a contradiction 
since 3n + 2� ≤ �w‖s� and 𝜎 > 0 by definition.

If |s3
n
| > 0 , we prove that w′′ is repetition free. Again by 

contradiction, from Lemma 1, we will have that, since w′′ 
is periodic, there must exist an index i < |w′′| for which 
w��[i] = w��[n] . However, |s3

n
| > 0 implies w��[n] ∈ {1,… , n} 

and thus, since � ∩ {1,… , n} = � , such i′ cannot exist 

s =
[1, n] ⋅ s1 ⋅ [n + |w1| + 1, 2n + |w1|] ⋅ s2
⋅[2n + |w1| + |w2| + 1, 3n + |w2| + |w1|]
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(contradiction). If w′′ is repetition free, we have that 
|w��| ≤ � + n , and since w‖s ⊑ 1… n ⋅ w�� , we have that 
�w‖s� ≤ 2n + � , which contradicts �w‖s� ≥ 3n + 2�.

We have now that |s2
n
| > 0 . Consider the slice 

w� = w‖sw1 ⋅ w‖s2n : we have just proved that �w‖s2
n
� > 0 and we 

have that w′ is periodic being a slice of w‖s . By applying 
Lemma 1 as we did above, we can claim that w‖sw1 is repeti-
tion free and thus �w‖sw1 � ≤ � . Suppose now by contradiction 
that w‖sw2 is not repetition free. If |s3

n
| > 0 we reach immedi-

ately a contradiction by applying Lemma 1 on the word 
w‖sw2 ⋅ w‖s3n . Then, we have |s3

n
| = 0 and by definition 

�w‖sw2 � ≤ n . This implies w‖s ⊑ 1… n ⋅ w‖sw1 ⋅ 1… n ⋅ w‖sw2 
which means �w‖s� ≤ 3n + � (contradiction).

At this point, we have that both w‖sw1 and w‖sw2 are repetition 
free and thus �w‖sw1 � ≤ �  and �w‖sw2 � ≤ �  . Since 
3n + 2� ≤ �w‖s� , we have that �w‖sw1 � = � and �w‖sw2 � = � and 
thus both w‖sw1 and w‖sw2 are permutations of � . It remains to 
prove that they are the same permutation. Let us observe that, 
since �w‖sw1 � = �w‖sw2 � = � and �w‖s� ≥ 3n + 2� , by a count-
ing argument we have that w‖s1

n
= w‖s2

n
= w‖s3

n
= 1… n. and 

thus w‖s = 1… n ⋅ w‖sw1 ⋅ 1… n ⋅ w‖s2
n
⋅ 1… n.

Suppose by contradiction that there exists i, with 
1 ≤ i ≤ � , such that w‖sw1 [i] ≠ w‖sw2 [i] , and let i be the mini-
mum index that fulfills such a property. Two cases may arise: 

1. If i = 1 we have that w‖s[n + 1] = w‖sw1 [i] and 
w‖s[2n + � + 1] = w‖sw2 [i] .  Let  us  recal l  that 
w‖s[n] = w‖s[2n + �] = n , and thus by periodicity of 
w‖s , we have w‖s[n + 1] = w‖s[2n + � + 1] (contradic-
tion).

2. If i > 1 since w‖s is periodic, we have that 
w‖sw1 [i − 1] ≠ w‖sw2 [i − 1] but this contradicts the mini-
mality in the choice of i.  ◻

Now we reduce Problem PR -P to Check- APE -FD in loga-
rithmic space. Suppose that we have an instance of PR -P con-
sisting of a word w ∈ �∗ and a natural number k. We define the 
instance �w on the temporal schema R = {J,X} ∪ VT  as 
�w = {t | t[J] = 0 ∧ ∃i(t[X] = w[i] ∧ t[VT] = i)} , and we put 
�w,k =

|w|−k
|w|  . The pair w, k is a positive instance of PR -P if and 

only if the triple [�+∞(�
R
J
)]X → X , �w and �w,k is a positive 

instance of Check- APE -FD . [�+∞(�
R
J
)]X → X , �w and �w,k may 

be built using logarithmic space on the input w, k. Finally, we 
can conclude this section by explicitly providing the desired 
result.

Theorem 1 Problem Check-APE -FD  is NP-Complete.

Algorithms for Checking APE‑FDs

As we proved in “The Computational Complexity of Check-
ing APE-FD” section, given an APE-FD [�k(�

R
J
)]XY

�
−→Z and 

an instance � of R, the problem Check-APE-FD is NP-Com-
plete in |�| . Then, in principle, there is no asymptotically 
better algorithm than exploring the whole set of possible 
subsets �′ of � with |�|−|�

�|
|�| ≤ �.

In the following, we provide two algorithms that make use 
of heuristics, for pruning the search space in order to achieve 
the tractability for many cases.

The first algorithm is the more general one, and it may be 
applied without assumptions on the input instance � . Such 
algorithm makes use of two optimization techniques. The 
first one consists of trying, whenever it is possible, to split 
the current subset of � into two subsets, on which the problem 
may be solved independently (i.e., choices in one subset do 
not affect those in the other one and vice versa). The latter 
optimization technique consists of checking whether the cur-
rent partial solution may not lead to an optimal solution (i.e., 
a solution �′ where |�′| is the maximum possible number of 
tuples that may be kept). If this happens, the subtree is pruned 
immediately (i.e., we are looking only for optimal solutions).

The second algorithm is applicable under the assumption 
that we have a bounded and relatively small number of tuples 
that share the same values for both VT and J which is often 
the case in clinical domains, as we will discuss later on. In 
this setting, we show how to provide an upper bound value 
for all the candidate solutions that contain the current par-
tial solution and thus we can apply a pure branch-and-bound 
approach in order to speed up the algorithm even more.

Before discussing in detail the algorithms and their prop-
erties, we need to introduce some basic concepts and fea-
tures for the representation of tuples through graph-based 
structures.

Graph‑Based Structures for Tuple Representation

To this regard, we use a suitable graph representation of 
tuples. A directed graph is a pair G = (V ,E) , where V is a 

finite set of nodes and E ⊆

(
V

2

)
 is its edge set. Our graphs 

are simple, i.e., there are no loops and no parallel edges. 
Let U ⊆ V  : we denote by G|U = (U,E|U) the subgraph of 
G induced by U, that is, the graph on node set U such that, 
for every u, v ∈ U , (u, v) is an edge in G|U if and only if 
(u, v) is an edge in G. A Layered Directed Acyclic Graph 
(L-DAG for short) is a triple LG = (V ,E, l) where (V, E) is 
a DAG and l is a function l ∶ V → {1,… , p} for some p ∈ ℕ 
where for every (u, v) ∈ E we have l(u) < l(v) . We define 
t h e  j u m p  v a l u e  o f  a n  e d ge  (u, v) ∈ E  a s 
jump(u, v) = l(v) − l(u) . For each i ∈ {1,… , p} , we denote 
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with Li the set Li = {v ∈ V ∶ l(v) = i} . Obviously, the 
notion of induced subgraph naturally extends to L-DAG. 
Given an L-DAG LG = (V ,E, l) and a subset U, we define 
the L-DAG induced by U as LG|U = (U,E|U , l|U) where 
(U,E|U) is the U-induced subgraph of the graph (V, E) and 
l|U ∶ U → ℕ with l|U(v) = l(v) for every v ∈ U . An example 
of L-DAG LG = (V ,E, l) is given in Fig.  11. Edges 
(v2, v7), (v2, v9), (v3, v7) and (v3, v9) have jump value equal to 
3. For instance, for LG , we may change the layering func-
tion l into l′ where Li = L�

i
 for every i = 1,… 4 , L�

5
= L5⧵{v7} 

and L�
6
= L6 ∪ {v7}.

We extend the notion of L-DAG with weights, denoting 
it as wL-DAG. A wL-DAG is expressed through the tuple 
WLG = (V ,E, l,W) , where LG = (V ,E, l) is an L-DAG and 
W  is a function W ∶ V → ℕ

+ . Let us notice that in our 
notion of weighted L-DAG, weights are associated with 
nodes. Let us now introduce a general problem on L-DAG, 
called k-Thick Path (k-TP for short).

Problem 4 (k-TP). Given an L-DAG LG = (V ,E, l) and a nat-
ural number k, determine whether or not there exists a node 
subset V ′ ⊆ V , such that |V ′| ≥ k and for every u, v ∈ V � , with 
l(u) < l(v) , there exists a directed path from u to v in LG|V ′.

For instance, if we consider the L-DAG in Fig.  11, 
we have that  the set  V � = {v1, v2, v3, v7, v9, v8, v11} 
is a possible solution for k-TP with k ≤ 7 while 
V �� = {v1, v2, v3, v4, v7, v8, v11} is not a candidate solution 
since there is no path from v3 to v4 and l(v3) < l(v4) . In a 
solution, we may choose to take more than one node per 
layer as well as completely ignore all the nodes in a layer. 
Then, we may see a candidate solution V ′ as the result of a 
two-step nondeterministic guess: 

1. F i r s t  we  se l ec t  a  s e t  o f  p′ ≤ p  l aye r s 
{l1,… lp� } ⊆ {1,… , p} (let us assume li < lj for every 
1 ≤ i < j ≤ p′ ), which will be all and only the layers 
which contain at least one node in our solution;

2. For 1 ≤ i ≤ p′ we select a nonempty set Vi ⊆ V  such that 
l(v) = li for every v ∈ Vi and for every (v�, v) ∈ Vi−1 × Vi , 
we have (v�, v) ∈ E.

Going back to the example in Fig. 11, in V ′′ condition 2 
is violated because by choosing v4 we choose layer 3 as 
the nonempty layer following layer 2 but (v3, v4) ∉ E . As a 
matter of fact, V ��⧵{v3} (i.e., we choose only v2 in the layer 
2) turns out to be candidate solution. In V ′ , we ignore lay-
ers 3 and 4 by not choosing any node in them. Instead, we 
choose layer 5 as the nonempty layer following layer 2 and 
everything works just fine.

The k-TP problem may naturally be extended to wL-
DAG by imposing the set V ′ to satisfy �v∈V �W(v) ≥ k . In 
[10], we prove that the k-TP problem on wL-DAG is NP-
hard. Our proof can be naturally extended to prove that the 
nonweighted version of the problem is NP-hard too.

The First Algorithm

Both algorithms rely on the concept of color that we will 
explain through an example in the following. Given an APE-
FD [�k(�

R
J
)]XY

�
−→Z and an instance � of R, let us suppose that 

we are solving the problem Check-APE-FD on such instance 
with a simple guess-and-check procedure, which makes use 
of two, initially empty, subsets �+ (the tuples to be kept in the 
solution) and �− (the tuples to be deleted in the solution) of � . 
At each step, the procedure guesses a tuple t in �⧵(�+ ∪ �

−) 
and decides nondeterministically (guessing phase) either 
to update �+ to �+ ∪ {t} (i.e., t is kept in the current par-
tial solution) or to update �− to �− ∪ {t} (i.e., t is deleted 
in the current partial solution). When � = �

+ ∪ �
− (checking 

phase), the procedure returns YES if �+ ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z and 

|�−| ≤ � ⋅ |�| , otherwise it returns NO. Hereinafter, we call 
partial solution a triple (�, �+, �−) , such that (�+ ∪ �

−) ⊆ � 
and �+ ∩ �

− = � . If � = �
+ ∪ �

− we simply say that (�, �+, �−) 
is a solution. A solution (�, �+, �−) is consistent if and only if 
�
+ ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z . Given two partial solutions (�, �+

1
, �−

1
) 

and (�, �+
2
, �−

2
) , we say that (�, �+

2
, �−

2
) extends (�, �+

1
, �−

1
) if 

and only if �+
1
⊆ �

+
2

 and �−
1
⊆ �

−
2
.

Is there a way to check whether we are generating an 
inconsistent solution, possibly without guessing all tuples 
in � ? Violations of the latter constraint (i.e., |�−| ≤ � ⋅ |�| ) 
are fairly simple to detect during the guessing phase. Indeed, 
it suffices to check after each insertion in �− if |�−| exceeds 
� ⋅ |�| . If it is the case, the procedure may return NO imme-
diately without guessing any further. Violations of the first 
constraint (i.e., �+ ⊧ [𝛥k(𝜏

R
J
)]XY → Z ) during the guessing 

phase are trickier to detect.
When two tuples t, t′ share the same value for attribute J 

(i.e., t[J] = t�[J] ), we say that they are in the same J-group 
and t[J] is the value of the J-group containing t and t′ . For 
the sake of brevity, for a given j ∈ Dom(J) we will use 

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

L1 L2 L3 L4 L5 L6 L7

Fig. 11  An example of L-DAG 
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j-group for denoting the J-group with value j. An ordered 
pair, written o-pair, is a pair (t, t�) ∈ � × � such that t and t′ 
are in the same J-group and t[VT] < t�[VT] . We say that a 
pair (t, t�) is an edge if and only if 0 < t�[VT] − t[VT] ≤ k . 
Given a triple (�, �+, �−) , an o-pair (t, t�) is active if and only 
if t, t� ∈ �

+ and for every tuple t in the same J-group of t 
if t[VT] < t[VT] < t�[VT] , we have t ∈ �

− (i.e., t and t′ are 
selected in the current partial solution and all the tuples 
between t and t′ in the same J-group have been deleted). Given 
two valid times vt, vt� ∈ Dom(VT) and a value j ∈ Dom(J) , 
vt and vt′ are consecutive in the j-group if and only if there 
exists an active o-pair (t, t�) with t[VT] = vt , t�[VT] = vt� and 
t[J] = j . It is important to observe that we may have two 
distinct values j, j� ∈ Dom(J) and two distinct valid times 
vt, vt� ∈ Dom(VT) which are consecutive in j-group and not 
consecutive in j′-group. Moreover, we may have edges (t, t�) 
that are not active and active pairs (t, t�) that are not edges; 
such is the case of active pairs (t, t�) with t�[VT] − t[VT] > k . 
A color is a tuple c on the schema C = XYZ , and we say that 
two colors (x, y, z) and (x�, y�, z�) are conflicting if and only 
if x = x� , y = y� , and z ≠ z′ . Given an o-pair (t, t�) , its color, 
denoted by c(t, t�) , is the tuple c(t, t�) = (t[X], t�[Y], t�[Z]) . 
Two o-pairs (t, t�), (t��, t���) are conflicting if and only if c(t, t�) 
and c(t��, t���) are conflicting.

Theorem 2 Given an APE-FD [�k(�
R
J
)]XY

�
−→Z , an instance 

� of R, and a partial solution (�, �+, �−) , if there exist two 
active and conflicting edges (t, t�) and (t��, t���) , then for every 
solution (�, �+

f
, �−

f
) that extends (�, �+, �−) it holds 

�
+
f
̸⊧ [𝛥k(𝜏

R
J
)]XY → Z (i.e., the solution is inconsistent).

The above theorem guarantees that from a partial solution 
(�, �+, �−) that features at least two conflicting edges, we can-
not reach a consistent solution (�, �+

f
, �−

f
) . In such a case, we 

may return immediately NO without considering any further 
(�, �+, �−) . The colors of a partial solution (�, �+, �−) are rep-
resented by the set colors(�, �+, �−) = {(t[X], t�[Y], t�[Z]) ∶

(t, t�) is an active edge in (�, �+, �−)} . Clearly, the hypothesis 
of Theorem 2 applies if and only if set colors(�, �+, �−) con-
tains at least two conflicting colors.

Then, by means of colors, our above guess-and-check 
procedure may be improved by adding the control on the 
size of �− and by keeping updated the current set of colors 
colors(�, �+, �−) . Once an insertion of a tuple in either �+ or 
�
− introduces a color c that is conflicting with at least one 

color in (�, �+, �−) , the procedure answers NO immediately. 
An example of how the procedure works is given in Fig. 12, 
where we have an instance of five tuples with � = 0.2 (i.e., 
we may delete at most one tuple) and k = 6 (all the tuples 
are in the same window). The execution depicted in Fig. 12 
guesses the values of tuples from the oldest ( t1 ) to the new-
est one ( t2 ) according to the value of VT. First, it tries to put 

the current tuple t in �+ ; if no violation arises, it continues; 
if some violation arises, it tries to insert tuple t in �− ; if no 
violation arises, it continues; otherwise, it goes back to the 
previous choice (i.e., backtracking). Every internal node is 
labeled with the current tuple, which will be guessed next; 
every leaf is labeled either with YES (i.e., the current branch 
is a solution) or NO (i.e., a violation has arisen); the current 
set of colors is reported within the node. Nodes are numbered 
according to their order of appearance. We have that the root 
is n1 followed by the introduction of nodes n2 … n4 in this 
precise order. If we introduce t4 in the partial solution associ-
ated to n4 , we violate the first constraint. Since in n4 adding 
t4 in �− does not generate any violation, node n5 is created as 
child of n4 . However, node n5 cannot be extended without 
introducing a violation in the above constraints. Indeed, if 
we put t5 in �+ , we introduce a conflicting color; if we put t5 
in �− , we exceed the maximum number of allowed deletions. 
We backtrack to n4 . As all the possible choices have been 
explored, we backtrack to n3 , where the choice of adding t3 
to �− is attempted, generating node n6 . From n6 , we put t5 in 
�
+ without violating any constraint and thus we have that 

{t1, t2, t4, t5} ⊧ [𝛥6(𝜏
R
J
)]XY

0.2
−−→Z.

Let us now consider in some more detail the first algo-
rithm. Basically, the algorithm works similarly to the previ-
ous procedure, except for some trivial technicalities. Two 
more heuristics have been introduced, to possibly stop earlier, 
during the exploration of a branch in the tree of computation. 
The main procedure of the algorithm is reported in Fig. 15, 
while auxiliary procedures are reported in Figs. 13 and 14. 
The algorithm is implemented by function TupleWiseMin 
that takes four arguments. The first argument is G

�
 , which 

is derived from � considering the APE-FD [�k(�
R
J
)]XY

�
−→Z 

that has to be checked. More precisely, G
�
 is an instance 

of schema J,  X,  Y,  Z,  VT,  count, with Dom(count) = ℕ . 
We have that t ∈ G

�
 if and only if there exists t� ∈ � for 

which (t�[J], t�[X], t�[Y], t�[Z]) = (t[J], t[X], t[Y], t[Z]) and 
t[count] = |{t� ∈ � ∶ (t�[J], t�[X], t�[Y], t�[Z]) = (t[J], t[X], t[Y], t[Z])}| , 
that is, we count how many tuples in � share the same values 
for attributes J, X, Y  and Z, respectively. The input parameter 
k is the length for the grouping sliding window. Sets G+

�
 and 

G−
�
 , originally initialized to ∅ , represent the tuples of G

�
 that 

are either kept or deleted in the current solution, respectively. 
On instances s of schema J, X, Y, Z, VT, count, we denote 
with ||r|| the sum on the count attribute for the tuples in s 
(i.e., ��s�� = ∑

t∈s t[count] ). Finally, C is a set of colors which 
is initially set to ∅ . A color c is a tuple on the schema X, Y, Z. 
As we will see, C keeps track via colors of the constraints 
introduced so far in the construction of the solution.

Procedure TupleWiseMin returns the minimum number 
of tuples that has to be deleted from � in order to obtain 
an instance �′ such that �� ⊧ [𝛥k(𝜏

R
J
)]XY → Z  . Then, if 

such minimum is less or equal than � ⋅ |�| we can conclude 
� ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→ Z  , else we have � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z  . 
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Given G
�
 , G+

�
 , G−

�
 and a set of colors C we say that an edge 

(t, t�) ∈ G
�
× G

�
 is pending if and only if the following con-

ditions hold: 

1. t, t� ∉ G−
�
 and (t[X], t�[Y], z) ∉ C for every z ∈ Dom(Z);

2. for every t′′ with t��[J] = t[J] and t[VT] < t��[VT] < t�[VT] 
we have t�� ∉ G+

�
;

3. t here  ex is t s  t�� ∈ (G
�
∪ {t, t�})⧵(G−

�
∪ G+

�
) wi th 

t��[J] = t[J] and t[VT] ≤ t��[VT] ≤ t�[VT].

Informally speaking, a pending edge is an edge that is not 
active in the current partial solution but it may become active 
during the computation and, if it happens, it introduces a new 
color in C . In our algorithm, pending edges for the current 
partial solution are retrieved by procedure E?, while active 
edges are retrieved by procedure E!.

Procedure TupleWiseMin (Fig. 15) works as follows. If 
G+

�
∪ G−

�
= G

�
 , it means that we have obtained a solution 

without violating any constraint and thus we can return ||G−
�
|| 

(i.e., the number of deleted tuples). If G+
�
∪ G−

�
≠ G

�
 , the 

algorithm guesses a tuple t ∈ G
�
⧵(G+

�
∪ G−

�
) and proceeds 

as follows. First, it checks whether inserting t into G+
�
 does 

not cause any violation of constraints. If so, it stores in mt the 
value of the recursive call to TupleWiseMin where t belongs 
to G+

�
 and C has been updated accordingly. By inserting a 

tuple t in G+
�
 , the algorithm is asserting that t belongs to the 

current partial solution, while by inserting t in G−
�
 the algo-

rithm is asserting that t does not belong to the current partial 
solution. If a constraint is violated, the algorithm stores in 
mt the value +∞ , which means that t may not be kept in the 
current solution.

Then, it checks whether inserting t into G−
�
 does not cause 

any violation in the constraints. If it is the case, it stores in m⧵t 
the value of the recursive call to TupleWiseMin, where G−

�
 and 

C are updated accordingly. If a constraint is violated, the algo-
rithm stores in m⧵t the value +∞ , which means that t must 
be kept in the current partial solution. In procedure Tuple-
WiseMin, the only way in which a constraint may be violated 
is that, after the insertion a tuple t in G+

�
 (resp. G−

�
 ), an edge 

(t�, t��) turns out to be active and its color (t�[X], t��[Y], t��[Z]) 
turns out to be conflicting with at least one color in C.

As pointed out by the example in Fig. 12, checking each 
step for consistency is itself an optimization, even if it is 
trivial, since it allows us to prune entire subtrees in the 
tree of computations without exploring them. We propose 

Fig. 12  An example of how the use of colors improves a guess and check procedure for solving the problem Check-APE-FD
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here two further optimizations for this procedure. The first 
one allows us to restrict the search space by splitting the 
problem into independent subproblems in a divide-and-
conquer fashion. Let us suppose that at a certain step of 
our computation, there exists a value j ∈ {t[J] ∶ t ∈ G

�
} , 

for which for each pair of conflicting pending edges (t, t�) 
and (t, t�) we have that either all t, t′, t , and t′ belong to the 
j-group or all t, t′, t and t′ do not belong to the j-group (such 
condition is verified by subprocedure Group Independ-
ent? reported in Fig. 14.) Let G

�
= {t ∶ t[J] = j} . As every 

edge involving tuples in the j-group is not conflicting with 
every edge that may be introduced outside the j-group, 
then we can split the problem into the two subproblems 
(G

�
, k,G+

�
∩ G

�
,G−

�
∩ G

�
) and (G

�
⧵G

�
, k,G+

�
⧵G

�
,G−

�
⧵G

�
) . 

Such problems are independent and may be solved sepa-
rately. The resulting value for the solution is the sum of 
the values returned by TupleWiseMin applied to both 
the two subproblems. Let H = |G

�
⧵(G+

�
∪ G−

�
)| and 

h = |{t ∈ (G
�
⧵(G+

�
∪ G−

�
)) ∶ t[J] = j}| . In this case, the upper 

bound of the complexity at the current step of computation 
drops from O(2H) to O(2H−h + 2h).

The second optimization allows us to prune a sub-
tree of computation even before a contradiction arises. 
It verifies, in many cases, whether every possible solu-
tion that may be built starting from the current partial 
one turns to be not minimal. Suppose that there exists 
an active o-pair (t, t�) in a partial solution (G

�
,G+

�
,G−

�
) , 

such that there exists t ∈ G
�
 in the same J-group of t with 

t[VT] < t[VT] < t�[VT] . By definition of active o-pair, we 
have that t belongs to G−

�
 as well as every tuple t′ in the 

same J-group of t with t[VT] < t
�
[VT] < t�[VT] . Here, the 

additional condition is that there exists at least one of such 
tuples. Given a partial solution (G

�
,G+

�
,G−

�
) , we define set 

colors(G
�
,G+

�
,G−

�
) = {(x, y, z) ∶ there exists an active edge (t, t�) 

with c(t, t�) = (x, y, z)} . Let us define the set of colors  
pending(G

�
,G+

�
,G−

�
) = {(x, y, z) ∶ there exists a pending edge (t, t�) with 

c(t,  t�) = (x, y, z)} , which collects all and only the colors that 
may be introduced later on in the current computation.

A color (x, y, z) is safe in (vt, vt�, j) if and only if one of 
the following three conditions hold: 

1. (x, y, z) ∈ colors(G
�
,G+

�
,G−

�
);

2. Every color (x, y, z�) ∈ pending(G
�
,G+

�
,G−

�
) satisfies 

z� = z (i.e., (x, y, z) is a pending color and there is no 
pending color that is conflicting with (x, y, z));

3. The color is not conflicting with any color in  
colors(G

�
,G+

�
,G−

�
) ∪ pending(G

�
, G+

�
,G−

�
) and do not  

exist two tuples t, t� ∈ (G+
�
∪ G

−
�
) ∩ {t

��
∈ G

�
∶ t

��
[J] =

j ∧ vt ≤ t
��
≤ vt�} , such that (t, t�) is an edge and the color 

(t[X], t
�
[Y], t

�
[Z]) is conflicting with (x, y, z).

The three conditions above imply that if a color is safe 
in (vt, vt�, j) , then it is neither in conflict with a color in 

Fig. 13  Auxiliary procedures 
used by procedures presented in 
Figs. 14, 15 and 17
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colors(G
�
,G+

�
,G−

�
) nor with a color in pending(G

�
, G+

�
, 

G−
�
) . However, this is just a necessary but not sufficient con-

dition. Let us consider the example shown in Fig. 16 and 
assume that k ≥ 7 (i.e., every o-pair in the example is also an 
edge). We have that the active edges are (t1, t2), (t2, t3), (t3, 

t4), and (t4, t5) for the j1-group and (t7, t12), (t8, t12) for 
the j2-group, since we have t9, t10, t11 ∈ G−

�
 . Thus, we 

h ave  colors(G
�
,G+

�
,G−

�
) = {(x1, y4, z4), (x2, y5, z6), (x5, 

y6, z6), (x4, y6, z5), (x1, y6, z6), (x2, y6, z6)} and, since we have 
to decide the status of tuple t6 , we have pending(G

�
,G+

�
, 

Fig. 14  Auxiliary procedures 
used by procedure TupleWi-
seMin (Fig. 15)



 SN Computer Science (2020) 1:153153 Page 18 of 30

SN Computer Science

G−
�
) = {(x1, y3, z2)} . Suppose that we are interested 

in the colors which are safe in (1, 5, j2) . For instance, 
c(t7, t9) = (x1, y3, z3) (i.e., the dotted edge in the j2-group 
in Fig. 16) is not safe in (1, 5, j2) because it does not belong 
neither to colors(G

�
,G+

�
,G−

�
) nor to pending(G

�
,G+

�
,G−

�
) 

(conditions 1 and 2) and it is in conflict with the unique 
color (x1, y3, z2) ∈ pending(G

�
,G+

�
,G−

�
) . On the other 

hand, colors c(t8, t9) = (x2, y3, z3) , c(t8, t10) = (x2, y4, z4) 
and c(t10, t11) = (x4, y5, z5) (i.e., the dashed edges in Fig. 16) 
are safe in (1, 5, j2) , because they are neither in conflict with 
colors either in colors(G

�
,G+

�
, G−

�
) or in pending(G

�
,G+

�
,G−

�
) 

and there are no other edges in j2 with valid times between 
1 and 5 that exhibit either (x2, y3) , or (x4, y5) , or (x2, y3) 

as first two components of their colors (thus condition 3 
applies to these colors). Colors c(t7, t10) = (x1, y4, z4) and 
c(t11, t12) = (x5, y6, z6) (i.e., the continuous edges in j2-
group in Fig. 16) are safe in (1, 5, j2) , because they belong to 
colors(G

�
,G+

�
,G−

�
) and thus both satisfy condition 1. Finally, 

colors c(t8, t11) = (x2, y5, z5) , and c(t8, t10) = (x4, y6, z6) are not 
safe in (1, 5, j2) (i.e., the X-labeled edges in Fig. 16), because 
they are in conflict with two colors in colors(G

�
,G+

�
,G−

�
) ; more 

precisely, (x2, y5, z5) is in conflict with (x2, y5, z6) and (x4, y6, z6) 
is in conflict with (x4, y6, z5).

Given a partial solution (G
�
,G+

�
,G−

�
) and the triple 

(vt, vt�, j) , a (vt, vt�, j)-replace DAG is a DAG (V, E) where 
V = {t ∈ G+

�
∶ t[VT] = vt ∧ t[J] = j} ∪ {t ∈ G−

�
∶ vt < t

[VT] < vt� ∧ t[J] = j} ∪ {t ∈ G+
�
∶ t[VT] = vt� ∧ t[J] = j} 

and

Fig. 15  The main procedure for 
a tuple-wise check of APE-FD s. 
Notice that we use a compact 
notation for the recursive pro-
cedure which is initially called 
TupleWiseMin(G

�
, k) . Here, 

when G+
�
 , G−

�
 and C are omitted 

in the procedure call, they get 
their respective default values 
specified in the procedure dec-
laration (i.e., ∅ for each of them 
in this case)
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A node t ∈ V  is a starting node (resp. ending node) if and 
only if vt < t[VT] < vt� and, for every t� ∈ V with t�[VT] = vt 
(resp. t�[VT] = vt� ), we have (t�, t) ∈ E (resp. (t, t�) ∈ E ). A 
replace path in a (vt, vt�, j)-replace DAG (V, E) is any path 
t1 … tm in (V, E) for which t1 is a starting node and tm is an 
ending node. We say that vt and vt′ in j can be safely replaced 
if and only if there exists a replace path in the (vt, vt�, j)
-replace DAG (V, E). Figure 16 depicts the (1, 5, j2)-replace 
DAG, where t10 is the only initial node that is not an ending 
one, and t11 is the only ending node that is not a starting one. 
Since t10 is connected to t11 , we have that t10t11 is a replace 
path in the (1, 5, j2)-replace DAG and thus 1 and 5 can be 
safely replaced in j2 . Using the above definitions of replace 
DAGs/paths, we can provide the following result.

Theorem 3 Given a partial solution (G
�
,G+

�
,G−

�
) , if there 

exists a group j with two consecutive valid times vt and vt′ 
such that vt and vt′ can be safely replaced in j, then every 
consistent solution that follows (G

�
,G+

�
,G−

�
)  is not optimal.

The proof of the theorem is straightforward. Let us suppose 
that t1 … tm is a replace path in the (vt, vt�, j)-replace DAG. 
By definition, we have t1,… , tm ∈ G−

�
 . It suffices to take any 

consistent solution (G
�
,G

+

�
,G

−

�
) that follows (G

�
,G+

�
,G−

�
) 

and such that (G
�
,G

+

�
∪ {t1,… , tm},G

−

�
⧵{t1,… , tm}) is still 

a consistent solution. Nonoptimality immediately follows.
We take advantage of Theorem 3 by pruning every com-

putation rooted in a partial solution (G
�
,G+

�
,G−

�
) that fea-

tures a J-group j-group and two consecutive valid times 
vt and vt′ in the j-group, such that vt and vt′ can be safely 

E =

{
(t, t�) ∈ V × V ∶

(t[VT] ≠ vt ∨ t�[VT] ≠ vt�) ∧ t[VT] < t�[VT]∧

c(t, t�) is safe in (vt, vt�, j)

}

∪

{(t, t�) ∈ V × V ∶ (t[VT] ≠ vt ∨ t�[VT] ≠ vt�) ∧ t�[VT] − t[VT] > k}

replaced in j. Verifying whether such condition applies or 
not may be performed in polynomial time. In procedure 
TupleWiseMin, this optimization is realized by subpro-
cedures Maximal Paths? and Replace Path? reported in 
Figs. 14 and 15, respectively.

The Second Algorithm

Let us now propose another algorithm with some aux-
iliary procedures, reported in Figs. 17 and 18, for solving 
problem Check-APE-FD. Such an algorithm, whose main 
procedure is called EdgeWiseMin, strongly differs from 
TupleWiseMin in approaching the problem. In principle, it 
works better, but it may work only under a quite reasonable 
assumption on the input, which we will discuss in detail 
later on.

At every step, procedure EdgeWiseMin, instead of guess-
ing if a tuple belongs to the current partial solution, guesses if 
a color is forbidden or allowed in the current partial solution. 
Informally, forbidding a color (x, y, z) means avoiding all the 
active edges (t, t�) ∈ G

�
× G

�
 for which c(t, t�) = (x, y, z) . On 

the other hand, allowing a color (x, y, z) means forbidding all 
the active edges (t, t�) ∈ G

�
× G

�
 whose colors are conflicting 

with (x, y, z). In order to do that, we introduce the concept 
of color-partial solution. A color-partial solution is a triple 
(G

�
, C+, C−) , such that C+, C− ⊆ Dom(X) × Dom(Y) × Dom(Z) 

are disjoint subsets of colors (i.e., C+ ∩ C
− = � ) and for every 

pair of colors (x, y, z), (x�, y�, z�) ∈ C
+ (x, y, z) is not conflicting 

with (x�, y�, z�) (i.e., if x� = x and y� = y then z� = z).

Fig. 16  An example of how 
a partial solution may be 
improved
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Let CPS = (G
�
, C+, C−) be a color-partial solution: we say 

that a solution (G
�
,G

�
⧵G−

�
,G−

�
) is induced by CPS if and only 

if the two following conditions hold: 

1. for every color (x,  y,  z) in C+ and for each edge 
(t, t�) ∈ G

�
× G

�
 for which c(t, t�) = (x, y, z�) , if (t, t�) is 

active then z� = z.
2. for every color (x,  y,  z) in C− and for each edge 

(t, t�) ∈ G
�
× G

�
 , if c(t, t�) = (x, y, z) then (t, t�) is not 

active in (G
�
,G+

�
,G−

�
) . It means that one of the follow-

ing two conditions holds:

• t ∈ G−
�
 or t� ∈ G−

�
;

• there  exists  a  tuple  t�� ∈ G+
�

 such that 
t[VT] < t��[VT] < t�[VT] and t��[J] = t[J] (t[VT] and 
t�[VT] are not consecutive in the current partial solu-
tion for the J-group with value t[J]).

An induced solution (G
�
,G

�
⧵G−

�
,G−

�
) by CPS is minimal 

if and only if an induced solution (G
�
,G

�
⧵G

−

�
,G

−

�
) by CPS 

does not exist with |G−
�
| > |G−

�
| . In this case, we say that 

(G
�
,G

�
⧵G−

�
,G−

�
) is an induced minimal solution. Since all 

the induced minimal solutions by CPS have the same size, 
we say that the value of CPS, denoted by val(CPS), is the 
value ||G−

�
|| , where (G

�
,G

�
⧵G−

�
,G−

�
) is a minimal induced 

partial solution.

Fig. 17  Auxiliary procedures 
for the main ones in Fig. 18. 
Procedure BuildDag builds a 
single-source, single-sink DAG 
whose nodes are nonempty 
subsets of G

�
 . Each subset is 

formed by tuples sharing the 
same value for VT, and thus 
function Time is well defined. 
Procedure SourceSinkShort-
estPath returns the shortest 
path from source to sink on the 
DAG provided by BuildDag. 
The solution is given as a set of 
nodes (i.e., subsets of G

�
 ), and it 

omits source and sink nodes
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In an opposite way from TupleWiseMin, in this algorithm 
color-partial solutions induce complete minimal solutions. 
However, such solutions may be inconsistent. The algorithm 
tries to obtain consistency by either forcing or forbidding 
one color at a time. This is done by means of sets C+ and C− , 
which are both initialized to ∅ at the beginning of the proce-
dure. As we informally said above, if a color (x, y, z) belongs 
to C+ , it means that the current partial solution must avoid 
all the active edges (t, t�) such that t[X] = x , t�[Y] = y , and 
t�[Z] ≠ z ; if a color (x, y, z) belongs to C− , it means that the 
current partial solution must avoid all the active edges (t, t�) 
such that t[X] = x , t�[Y] = y , and t�[Z] = z.

As a general overview of the algorithm, let us consider the 
following simplified procedure (let CPS = (G

�
, C+, C−) to be 

the current color-partial solution): 

1. compute a minimal solution (G
�
,G

�
⧵G−

�
,G−

�
) induced by 

CPS;
2. if (G

�
,G

�
⧵G−

�
,G−

�
) is consistent, return val(CPS) = ||G−

�
||

;
3. if (G

�
,G

�
⧵G−

�
,G−

�
) is inconsistent, let (t, t�) be an active 

edge in (G
�
,G

�
⧵G−

�
, G−

�
) , such that there exists an active 

edge (t��, t���) in (G
�
,G

�
⧵G−

�
,G−

�
) , which is conflicting 

with (t, t�) . Then, return the minimum value between 
those returned by two recursive calls, one where C+ is 
updated to C+ ∪ {(t[X], t�[Y], t�[Z])} , and the other one 
where C− is updated to C− ∪ {(t[X], t�[Y], t�[Z])}.

Two observations are omitted in the above procedure w.r.t. 
function EdgeWiseMin. The first one is that the procedure 
does not take into account the fact that the value ||G−

�
|| of the 

color-partial solution computed at point 1 is a lower bound 
for the optimal solution that may be achieved in the current 
branch of the computation. Procedure EdgeWiseMin uses it 
in a classical branch-and-bound fashion by propagating the 
value of the current optimal solution (if any) in the tree of 
recursive calls (in Fig. 18 this is done by means of parameter 
optimal). In step 1., if the computed value ||G−

�
|| is greater 

than the optimal one, we immediately return from the recur-
sive call, because no better solution may be found.

The last omitted observation regards how the value 
of the color-partial solution val(CPS) is computed, 
where CPS = (G

�
, C+, C−) . For every J-group in G

�
 , i.e. 

any set of tuples having value j for attribute J, we build 

Fig. 18  Main procedure for the 
edge-wise checking of a APE
-FD [�k(�

XYZcount
G

�

)]XY
�
−→Z . 

The procedure returns the 
minimum number of tuples to 
delete in � in order to obtain 
an instance �′ ⊆ � such that 
�
� ⊧ [𝛥k(𝜏

R
�
)]XY → Z . Like 

procedure TupleWiseMin of 
Figure 15, the initial call to 
the recursive procedure is 
EdgeWiseMin(G

�
, k) with C+ , 

C
− , and optimal initialized to 

their respective default values
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the following wL-DAG Lj

CPS
= (Vj,Ej,Lj,Wj) where 

Vj = {t ∈ G
�
∶ t[J] = j} .  For each t ∈ Vj  ,  we have 

W
j(t) = t[count] and Lj(t) = t[VT] , and

Let J(G
�
) be the set {j ∶ ∃t(t ∈ G

�
∧ t[J] = j)} = {j1,… , jh} . 

For every 1 ≤ i ≤ h , let Mi
CPS

 be the maximum value for 
which the wL-DAG Lji

CPS
 admits an Mi

CPS
-thick path. The 

following result is straightforward.

Theorem  4  For  ever y  co lor-par t ia l  so lu t ion 
CPS = (G

�
, C+, C−) we have

Theorem 4 tells us that for computing val(CPS), we need 
to compute for every j ∈ J(G

�
) the maximum value Mj

CPS
 , for 

which Lj

CPS
 admits an Mj

CPS
-thick path. Given a wL-DAG LG , 

we will call MAX-ThickPath (Max-TP for short) the problem 
of finding the maximum M for which LG admits a M-Thick 
Path. Max-TP may be solved by a simple dichotomic search 
having a decision procedure that solves the problem M-TP 
(Problem 4), which is NP-Complete [10]. Here, our assump-
tion comes into play and allows us to find Mj

CPS
 for every 

j ∈ J(G
�
) in a “reasonable” time. Indeed, in the instances 

that are used to prove the NP-completeness, the number of 
nodes in any layer, roughly corresponding to the number of 
tuples of the given relation at a corresponding time point, 
is supposed to increase as the number of time points/layers 
increases.

This is not the case in many daily applications, espe-
cially in the clinical domain, where we may have a  
great number of tuples but scattered along the time- 
line. In thefollowing, we will provide a formal  
definition of our assumption. Given j ∈ J(G

�
) we  

define VT(G
�
, j) = {vt ∶ ∃t(t ∈ G

�
∧ t[VT] = vt ∧ t[J] = j)} , 

MaxLevel(G
�
, j) = maxvt∈VT(G

�
,j) |{t ∶ t[J] = j ∧ t[VT] = vt}| , 

MaxCount(G
�
, j) = maxvt∈VT(G

�
,j)

�∑
t∈G

�
∧t[VT]=v∧t[J]=j ��t��

� , 

and the value space ( j,G
�
) as the value 2MaxLevel(G

�
,j)

⋅|VT(G
�
, j)| ⋅ log2(MaxCount(G

�
, j)) .  Let MaxSpace(G

�
)

= max
j∈J(G

�
) space(j,G�

) . We will see that EdgeWiseMin is 
applicable to our instance, if we have O(MaxSpace(G

�
)2) 

bits for computing it. The problem with MaxSpace(G
�
) is 

that it is exponential in MaxLevel(G
�
, j) , but this value 

depends on the maximum number of tuples that shares the 
same values for attributes VT and J and differs on at least 

Ej =

{(t, t�) ∈ Vj × Vj ∶ t�[VT] − t[VT] > k}

∪

{(t, t�) ∈ Vj × Vj ∶ 0 < t�[VT] − t[VT] ≤ k ∧ c(t, t�) ∈ C
+}

∪{
(t, t�) ∈ Vj × Vj ∶

0 < t�[VT] − t[VT] ≤ k ∧ c(t, t�) ∉ C
−∧

∀x∀y∀z((x,y,z)∈C+→c(t,t�) is not conflicting with (x,y,z)

}

val(CPS) = ||G
�
|| − ∑

j J(G
�
)

M
j

CPS

one among the attributes X, Y  and Z in the original instance 
� . As we say above, we assume this value to be manageable 
as it happens in many real-world applications. Hereinafter, 
we will suppose to have O(MaxSpace(G

�
)2) bits for per-

forming our computation.
Let us suppose to have a wL-DAG LG = (V ,E,L,W) , 

and we want to solve MAX-TP on it. Given a wL-DAG 
LG = (V ,E,L,W) , a subset V ′ ⊆ V  is a level-subset if 
and only if V ′ ≠ ∅ and L(v) = L(v�) for every v, v� ∈ V � . 
Let V = {V � ⊆ V ∶ V � is a level-subset} . By definition 
of level subset, the function L� ∶ V → ℕ , such that for 
every V � ∈ V  we have L�(V �) = L(v) for some v ∈ V � , 
turns out to be well defined. We define the unfolding 
of wL-DAG LG = (V ,E,L,W) as the weighted DAG 
U(LG) = (V ∪ {source, sink},E�,WE� ) , where

For every (source,V �) ∈ E� , we have

For every (V �, sink) ∈ E� , we have

And for every (V �,V ��) ∈ E� with V �,V �� ∈ V we have

For instance, the DAG in Fig. 19 is the result of unfolding the 
wL-DAG in Fig. 11. The unfolding of a wL-DAG, in the worst-
case scenario, is exponential in the size of LG . Given a wL-
DAG LG = (V ,E,L,W) , we define Wall(LG) =

∑
v∈V W(v) as 

the sum of all the weights associated with nodes in V. It is 
straightforward to prove that the union of all the internal nodes 
in a source-to-sink path in the unfolding of a wL-DAG LG is a 
thick path in LG and, on the other hand, every thick path in LG 
may be associated with a source-to-sink path in its unfolding. 
Moreover, for every source-to-sink path p in the unfolding of 
LG , let wp be its weight. The weight of the thick path associ-
ated with p is exactly Wall(LG) − wp (i.e., LG admits a thick 
path with value Wall(LG) − wp ). With these premises, we can 
prove the following result.

Theorem 5 Given a wL-DAG LG = (V ,E,L,W) , let w the 
value of the shortest source-to-sink path in its unfolding. We 
have that the value of MAX-TP on LG = (V ,E,L,W)  is equal 
to Wall − w.

Given a color-partial solution CPS = (G
�
, C+, C−) , pro-

cedure EdgeWise computes the value val(CPS) (performed 

E� =
{(source,V �) ∶ V � ∈ V} ∪ {(V �, sink) ∶ V � ∈ V}∪

{(V �,V ��) ∈ V × V ∶ ∀v∀v�(v ∈ V � ∧ v� ∈ V ��
→ (v, v�) ∈ E)}

,

W
�(source,V �) =

∑
v∈V⧵V �∶L(v)≤L(V �)

W(v),

W
�(V �, sink) =

∑
v∈VL�(V �)<L(v)

W(v),

W
�(V �,V ��) =

∑
v∈V⧵V ��∶L�(V �)<L(v)L�(V ��)

W(v).
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by procedure PartialSolution in Fig. 18) summing up all 
the values Mj

CPS
 for every j ∈ J(G

�
) . Each Mj

CPS
 is com-

puted as value of a source-to-sink shortest path (performed 
by procedure SourceSinkShortestPath in Figure 17) on 
the unfolding of Lj

CPS
 (built by procedure BuildDag in 

Fig. 17). For building U(L
j

CPS
) , on which we will com-

pute value of a source-to-sink shortest path, we may need 
O(MaxSpace(G

�
)2) bits.

Finally, let us observe that procedure PartialSolution 
does not return only the value val(CPS) of the current 
color-partial solution CPS = (G

�
, C+, C−) . Since it effec-

tively computes a minimal solution (G
�
,G+

�
,G−

�
) induced 

by CPS in order to provide val(CPS), it returns the set 
colors(G

�
,G

�
⧵G−

�
,G−

�
) , that is, the set of all and only the 

colors associated with active edges in (G
�
,G

�
⧵G−

�
,G−

�
) . 

If such a set does not contain two colors (x, y,  z) and 
(x, y, z�) such that z ≠ z′ , then we have that (G

�
, C+, C−) is 

a consistent solution and we may return val(CPS). Oth-
erwise, procedure EdgeWiseMin takes a color (x, y, z) in 
colors(G

�
,G

�
⧵G−

�
,G−

�
) such that there exists (x, y, z�) in 

colors(G
�
,G

�
⧵G−

�
, G−

�
) with z ≠ z′ and performs two recur-

sive calls, one in which C+ is updated to C+ ∪ {(x, y, z)} and 
the other in which C− is updated to C− ∪ {(x, y, z)}.

Mining APE‑FDs

In this section, we consider the problem of mining APE
-FDs on a given instance � of a temporal schema R from a 
practical point of view. We will describe a prototype that 
performs such task. In particular, we point out two big 
computational challenges we addressed in the implemen-
tation of our prototype.

Let us start with the formal definition of our problem. 
Given a temporal schema R = U ∪ {VT} , an instance � of 
R, a nonempty set J ⊆ U , a threshold 0 ≤ � ≤ 1 , and a value 
k ∈ ℕ , we denote as PE(�, k, �) the set of all the APE-FDs 
[�k(�

R
J
)]XY

�
−→Z , formally introduced in “Discovering Pure 

Temporally Evolving Functional Dependencies” section, 
such that � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z.

A set S of APE-FDs is complete if and only if for every 
[�k(�

R
J
)] XY

�
−→Z  belonging to S , there exists X′ ⊆ X and 

Y
′
⊆ Y  such that [�k(�

R
J
)] X�Y

� �
−→Z  ∈ PE(�, k, �) . A com-

plete APE-FD-set PE(�, k, �) is minimal if and only if for 
every [�k(�

R
J
)] XY

�
−→Z ∈ S , set S⧵{[�k(�

R
J
)]XY

�
−→Z} is not 

complete anymore. Given a complete minimal APE-FD-set 
PE(�, k, �) , every subset PE(�, k, 𝜖) ⊆ PE(�, k, 𝜖) is called a 
minimal partial.

Given a temporal schema R = U ∪ {VT} , an instance � of 
R, a nonempty set J ⊆ U , a threshold 0 ≤ � ≤ 1 and a value 
k ∈ ℕ , we are interested in finding a minimal complete set 

Fig. 19  The unfolding of the 
wL-DAG of Figure 11 into a 
weighted DAG for solving the 
MAX-TP problem. The table 
below the graph provides the 
weights for source-to-node 
edges and node-to-sink edges, 
which are both represented by 
dashed lines. Continuous edges 
without labels have weight 0. 
P = source{v1}{v2, v3}{v7, v9}{v8}{v11}sink 
is a source-sink shortest path 
with value 4
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PE(�, k, �) . However, in order to do that, we have to deal 
with two computational problems:

• the smallest minimal complete set S may be exponential 
in the size of U with respect to some given temporal 
schemata R = U ∪ {VT} , instances � of R, nonempty 
sets J ⊆ U , thresholds 0 ≤ � ≤ 1 , and values k ∈ ℕ;

• given a single APE-FD [�k(�
R
J
)]XY

�
−→Z  on a schema 

R = U ∪ {VT} , and an instance � of R, deciding whether 
or not � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z is a NP-complete problem.

The first result may be derived by leveraging a result of 
Kivinen et al. [16] on approximate functional dependen-
cies. The second result is proved in “The Computational 
Complexity of Checking APE-FD” section. However, such 
theoretical bounds are both difficult to achieve in real-world 
domains. For instance, the size of PE(�, k, �) could be expo-
nential in |U|, but in real-case scenarios, we have that |U| is 
often less than 50/60 elements. Moreover, the instance built 
in [16] for achieving the exponential lower bound does not 
occur in real-world instances. The complexity of checking 
a single APE-FD is even worse. Indeed, checking a single 
APE-FD is NP-Complete in the number of tuples, which 
may be very high and increasing time after time. This prob-
lem is known as the curse of cardinality, and its relevance 
has been recently considered for temporal inference of 
sequential patterns in [18]. Even in this case, the instance 
specified in “The Computational Complexity of Checking 
APE-FD” section for proving the NP-hardness result has 
been built in a very complex and constrained way. Such an 
instance does not even remotely resemble some real-world 
scenario. Thus, we are allowed to design and implement a 
prototype for the practical mining of such dependencies on 
real-world datasets and evaluate its performances.

Prototype Overview

Even though the results reported in “The Computational 
Complexity of Checking APE-FD” section are not com-
pletely encouraging and according to the last comments in 
the previous section, we developed a prototype. Given a tem-
poral schema R = U ∪ {VT} , an instance � of R, a nonempty 
set J ⊆ U , a threshold 0 ≤ � ≤ 1 and a value k ∈ ℕ , it returns 
a minimal complete set PE(�, k, �) . The prototype is named 
Attila(Approximate Temporal Tailored Inference Lean Appli-
cation). In the following, after providing a high-level descrip-
tion of Attilamodules and their interaction, we focus with 
a detailed description on novel ideas underlying the design 
of the prototype. Attilawas implemented according to the 
principles of distributed programming. Different tasks are 
executed by different processes (possibly executed on differ-
ent machines). Attila is composed by three main processes:

• Worker is responsible for maintaining a representation 
of the minimal partial PE(�, k, �) of PE(�, k, �) . Thus, 
Worker maintains a compact representation both of the 
set of the APE-FDs already checked and of the APE-FDs 
that remain to be checked. It updates its state accord-
ing to the last APE-FD [�k(�

R
J
)]XY

�
−→Z that has been 

checked. The next state depends on the fact that either 
� ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z  or � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z  . In both 

cases, Worker marks [�k(�
R
J
)]XY

�
−→Z to not be checked 

anymore. In this way, it can determine precisely the next 
APE-FD to check;

• Contributor has to check a single APE-FD against the 
instance �.It retrieves APE-FD from Worker. When Con-
tributor gets an APE-FD [�k(�

R
J
)]XY

�
−→Z , it schedules jobs 

among the computational units that will effectively check 
the given APE-FD;

• Sub-Contributor is the basic computational unit and 
depends on Contributor. Sub-Contributor leverages the 
graph representation generated by Contributor for resolv-
ing a subproblem of the original one. More precisely, it 
receives a subproblem of the one stored by Contributor 
for checking a given [�k(�

R
J
)]XY

�
−→Z against it. During 

the computation, Contributor may send a reduction of 
the subproblem Sub-Contributor is dealing with. Indeed, 
Contributor may assign portions of a problem to several 
Sub-Contributors.

Processes composing Attilaare hierarchically organized. A 
Worker could manage minimal partial PE(�, k, �) , but more 
Contributors are needed for checking multiple dependen-
cies at the time. Each Contributor may have several Sub-
Contributors in order to speed up the checking procedure.

Now, let us consider in some detail each process type, in 
order to give a general idea of how computations are handled. 
Worker has to manage the minimal partial PE(�, k, �) . At 
the end of computation, PE(�, k, �) turns out to be a mini-
mal complete set, according to the goal of our distributed 
procedure. Worker interacts only with its pool of Contribu-
tors. Figure 20 depicts how such interaction happens, by a 
BPMN choreography [22]. A Contributor can register to 
the Worker at any time incrementing by one the number 
of APE-FDs that may be checked simultaneously. Worker 
may receive APE-FD request only by registered Contribu-
tors. To this regard, it keeps two auxiliary APE-FD-sets 
Pending and Assigned ⊆ Pending . Pending is a minimal 
set of APE-FDs such that Pending ∩ PE(�, k, �) = � and, 
if for every [�k(�

R
J
)]XY

�
−→Z ∈ Pending � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z , 

then Pending ∪ PE(�, k, �) is a minimal complete APE
-FD-set. Pending contains all APE-FDs among whom 
Worker must choose every time it is asked for an APE-FD 
by some of its Contributors. Assigned represents all APE
-FDs in Pending already assigned to Contributors. Every 
time a Contributor returns the result of APE-FD-check 
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on an element of Assigned, Pending and PE(�, k, �) are 
updated according to the fact that either � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z 

or � � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z  . More precisely, we have that 

[�k(�
R
J
)]XY

�
−→Z is removed from both Pending and Assigned, 

and

• if � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z , then Worker inserts such APE-FD 

in PE(�, k, �);
• if � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z  , then for each attribute 

W ∈ U⧵(X ∪ Y ∪ {Z}) , dependencies [�k(�
R
J
)]XWY

�
−→Z 

and XYW
�
−→Z are inserted in Pending.

The main operations Worker performs are: 

1. (i) it pulls an APE-FD [�k(�
R
J
)] XY

�
−→Z out of Pending,

2. it updates PE(�, k, �) if needed, and
3. (iii) it updates Pending and Assigned as soon as the status 

of a new dependency is discovered.

We use Ordered Binary Decision Diagrams (OBDDs) [1] as 
data structures allowing an efficient execution of such opera-
tions. An OBDD is a single-rooted directed acyclic graph 
that represents a propositional formula � . A propositional 
variable is associated with every node as a label, except for 
the only terminal node 1.2 Any nonterminal node v may have 
at most two outgoing edges low(v) (dotted line, depicted in 
Fig. 21) and high(v) (solid lines, depicted in Fig. 21). low(v) 
(high(v)) means that variable v is taken with value 0 (1). 
A variable truth assignment is represented by a path from 
the root to terminal node 1. Thus, an OBDD represents the 
set of all truth assignments for a given formula � . Worker 
uses three different OBDDs corresponding to formulas 
�
PE
,�P and �A , to keep track of sets PE(�, k, �) , Pending and 

Assigned, respectively. APE-FDs in PE(�, k, �) correspond to 
all and only the solutions of formula �

PE
 (and the same for 

APE-FDs in Pending with respect to formula �P and for APE
-FDs in Assigned with respect to �A ). Hereinafter, we will use 
� for denoting both the formula and the OBDD correspond-
ing to all its possible solutions. Informally, updates of these 
three sets are implemented by adding conjuncts/disjuncts to 
their respective formulas.

For representing set PE(�, k, �) as all and only the 
solutions of a formula, it suffices to assign to each attrib-
ute Xi ∈ U three variables xi, xi, �⃗xi . Then, formula �

PE
 

has be satisfied by assignments � ∶ {x1,… , xn, x1,… , 
xn, �⃗xi,… , �⃗xn} → {0, 1} . An APE-FD [�k(�

R
J
)]XY

�
−→Z belongs 

to PE(�, k, �) if and only if the assignment �(xi) = 1 ∀Xi ∈ X , 
�(yj) = 1 ∀Yj ∈ Y  , and 𝜎(z⃗) = 1 satisfies �

PE
 . According to 

this approach, for instance, a1 ∧ a2 ∧ a3 ∧ �⃗a4 represents APE-
FD[�k(�

R
J
)]A1A2A3 → A4 . Clearly, if a formula �

PE
 represents 

all the possible APE-FDs, an OBDD for �
PE

 represents them 
as well. The same approach may be used for sets Pending and 
Assigned. Hereinafter, we refer to � as the OBDD represent-
ing all and only the assignments � such that 𝜎 ⊧ 𝜓.

A Worker begins the APE-FD mining task by initializing 
two OBBDs representing 𝜓

PE
= 𝜓A = ⊥ . Initially, 𝜓

PE
= ⊥ 

(i.e., PE(�, k, �) = � ) since the distributed procedure has not 
discovered any valid APE-FD yet. �P is true only for those 
assignments that represent well-formed APE-FDs. In order 
to extract from �P an APE-FD to be tested, we take the solu-
tion associated with any root-to-terminal path in the OBDD 
for �P ∧ ¬�A . For inserting an APE-FD [�k(�

R
J
)]XY

�
−→Z 

Fig. 20  A BPMN choreography 
showing the interaction between 
a Worker and its (possibly) 
many Contributors

Register Contributor
Unregistered Contributor

Worker

Set Complete

Worker

Registered Contributor

Request APEFD
Registered Contributor

Worker

New Dependency Checked
Registered Contributor

Worker

APEFD Set Complete?

Free to work on
a new APEFD

StopSend APEFD Status

Register to Worker

Yes

No

Fig. 21  The update of the set 
PE(�, k, �) = {[�

k
(�Contact

PatId
)]GAF,

Phys
�
−→CT} (left) into the set 

PE
�
(�, k, �) = {[�

k
(�Contact

PatId
)]GAF,

Phys
�
−→CT , [�k(�

Contact
PatId

)]GAF,Phys
�
−→CT} 

(right)

2 We use OBDD without the 0 terminal node.
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in PE(�, k, �) , it suffices to update �
PE

 to �
PE

∨ � where 
𝜓 =

⋀
Xi∈X

xi ∧
⋀

Xi∈Y
xi ∧ z⃗ . Moreover, for deleting a solu-

tion from Pending it suffices to update �P:

• if we have that � ⊧ [𝛥k(𝜏
R
J
)]XY

𝜖
−→Z , then we update �P to 

�P ∧ ¬�;
• if we have that � � ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z , then we update �P 

to �P ∧ � where 𝜓 = z⃗ → (
⋁

Xi∈U⧵X xi ∨
⋁

Xi∈U⧵Y xi) (i.e., 
if z⃗ holds, then at least one of variables not contained in 
the formula for the given APE-FD must hold).

It is worth noting that we have a search operation for APE
-FDs that is linear in |U|. Moreover, Boolean operations on 
OBDDs are implemented in very efficient way by many pack-
ages on the market (in our prototype, we used BuDDy [17]). 
This solution allows us to have a compact representation of 
sets of APE-FDs that can be manipulated efficiently.

Figure 21 shows an example of how PE(�, k, �) is updated 
if we represent it through formula �

PE
 . In this example, we 

borrow two dependencies from the psychiatric case reg-
ister introduced in a simplified way in “Discovering Pure 
Temporally Evolving Functional Dependencies” section 
and discussed in detail in “Mining APE-FDs on Clinical 
Domains” section. The real-world schema differs from the 
example since patients are identified by PatId attribute in 
place of their names. Furthermore, several attributes are 
used for storing information regarding registered calls. 
The most significant attribute is Global Assessment of 
Functioning (GAF): it is a numeric value provided by the 
physician at the end of the call, and it scores the patient’s 
mental health status. Figure 21 shows an update opera-
t i o n  o n  PE(�, k, �) = {[�k(�

Contact
PatId

)]GAF,Phys
�
−→CT} , 

w h e r e  PE(�, k, �)  i s  u p d a t e d  t o  PE
�
(�, k, �) 

= {[�k(�
Contact
PatId

)]GAF,Phys
�
−→CT , [�k(�

Contact
PatId

)]GAF,Phys
�
−→CT} . 

As one may notice, each node v has at most two outgoing 
edges, one solid and one dashed representing high(v) and 
low(v) respectively. Taking a solid edge high(v) in a root-to-
terminal path denotes that the attribute corresponding to v 
belongs to the dependency. Taking a dashed edge low(v) in a 
root-to-terminal path denotes that the attribute correspond-
ing to v does not belong to the dependency. As an example, 
the OBDD shown in Fig. 21 (right) features two paths from 
the root node, labeled Phys, to terminal node 1. Since the 
edge (Phys,Phys) is dashed, the path Phys,Phys,GAF, ����⃗CT , 1 
represents the dependency [�+∞(�

Contact
PatId

)]GAF,Phys
�
−→CT  . 

Such dashed edge implies that attribute Phys is not taken in 
X while it is taken in Y because the outgoing edge the path 
takes from Phys is a continuous one.

Let us consider now the Contributor process. Until 
now we just considered it as a process which asks 
Worker for a dependency and eventually answers whether 
� ⊧ [𝛥k(𝜏

R
J
)]XY

𝜖
−→Z holds or not, as shown by the BPMN 

choreography in Fig. 20. Thus, Contributor is responsible 
for checking a single APE-FD at a time. Since the complexity 
is intractable (recall that the problem in NP-Complete), Con-
tributor does not deal directly with the computation. Indeed, 
as mentioned before, it splits a problem among several com-
putational units called Sub-Contributor s.

The way in which a Contributor deals with its pool of 
Sub-Contributors is very close to the interaction between 
Worker and its Contributors, and it is described by the 
BPMN choreography diagram provided in Fig.  22. The 
status of the problem is managed by Contributor, and it 
is represented by a binary tree, where each node is labeled 
with a tuple and its two children represent either the case 
in which the tuple is inserted in the current solution or it is 
removed from it. Subproblems are generated by asserting 
that a tuple belongs or not to the final solution. This proce-
dure generates a tree. Initially, the whole tree is given to a 
single Sub-Contributor to visit. Suppose that a new Sub-
Contributor registers himself to the same Contributor during 
a computation. Such Contributor selects the subproblem of 
a Sub-Contributor and a tuple t in � . Contributor splits the 
subproblem into two parts, one in which t must belong to the 
solution and the other in which t does not belong to the solu-
tion. One portion is given to the new Sub-Contributor and 
the “old” Sub-Contributor is notified to reduce its problem 
to the other portion. Usually, we have multiple Sub-Con-
tributors that work in a subtree rooted at the node where the 
reduce operation happens, and thus, as reported in Fig. 22, 
we have to notify all of them about the reduction.

Figure 23 shows an example of how Contributor works. 
Suppose that there is exactly one Sub-Contributor sc1 that 
is exploring the tree (a) on the top of Fig. 23. At a certain 
point, a new Sub-Contributor sc2 registers himself to the 
Contributor and requests a subproblem. Now Contributor 
looks at the active subproblem and chooses the one of sc1 . 
At the root of such problem, there is tuple t1 . Therefore, Con-
tributor splits the subproblem into two more subproblems: 
one where t1 is forced to be deleted (tree (b) in Fig. 23), and 
the other where t1 is kept (tree (c) in Fig. 23). Finally, the 
exploration of subtree (c) is given to sc2 and sc1 is notified 
that its exploration of the tree (a) is reduced to the exploration 
of the subtree (b).

Sub-Contributor is the minimal computation unit: it sim-
ply performs tasks assigned by its master Contributor. Sub-
Contributor listens constantly to its Contributor in order to 
receive reduction of its current subproblem for speeding up 
the process; meanwhile, it explores its current subproblem 
searching for a solution. Sub-Contributor operates in two 
symmetric ways that may be seen as two concurrent threads. 
The first thread assumes that its subproblem contains the 
solution and performs a depth-first search of the tree in order 
to find it. The other thread assumes that the subproblem does 
not contain the solution and tries to find a counterexample. 
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In order to deal with the latter task, the Sub-Contributor 
translates the subproblem into a linear programming problem 
and verifies its feasibility. This symmetric approach turns out 
to be very efficient. Attilamakes use of the open-source linear 
programming library GNU Linear Programming Kit (GLPK) 
[24] to perform such linear programming tasks.

Mining APE‑FDs on Clinical Domains

In this section, we discuss APE-FDs obtained through Attila . 
These results may be also considered as an early validation of 
our prototype. As we already mentioned, we focused on two 
different clinical domains. The first one is that of psychiatry. 
In this domain, one of the main sources of information con-
sists of data acquired during the (mainly, telephonic) contacts 

between patients and psychiatrists. “Discovering Pure Tem-
porally Evolving Functional Dependencies” section provides 
a detailed description of this domain. Attila allowed us to 
extract the following APE-FDs from relation Contact:

• [�+∞(�
Contact
PatId

)]GAF
�
−→numPsychologists with � = 0.1 . 

This dependency represents the fact that, considering two 
consecutive calls of the same patient, the number of psy-
chologists involved in the second call uniquely depends 
on the GAF score of the patient during the first call. It 
may highlight that some (maybe implicit) policy deter-
mines the number of psychologists required for a contact, 
according to the conditions the given patient showed in 
the previous call.

• [�+∞(�
Contact
PatId

)]Service,GAF
�
−→CT  with � = 0.1 . Infor-

mally, it means that for each pair of consecutive calls for 
the same patient, the previous patient’s GAF score and 
Service (clinical psychiatry, medical psychology, psy-
chotherapy, ...) uniquely determines the next contact type 
(family member, a neighbor, the police, ...).

• [�+∞(�
Contact
PatId

)]GAF,Physician
�
−→Request with � = 0.1 . 

This dependency says that the next actions on patients are 
mainly based on the previous GAF score and physician. 
For each pair of consecutive calls, the request (it could be 
group psychotherapy, family psychotherapy, legal medical 
evaluation, ...) decided during the second call depends on 
the physician and on the GAF score of the given patient 
during the first call.

The second clinical domain is that of pharmacovigilance, 
which is the science related to the management and preven-
tion of suspected adverse reactions induced by drugs [34]. 
Premarketing trials are not able to discover all adverse reac-
tions induced by the investigated drug. This is due to trial 

Register SubContributor
Unregistered SubContributor

Registered Contributor

Set Complete

Worker

Registered Contributor

Request sub-problem
Registered SubContributor

Registered Contributor

sub-problem Closed
Registered SubContributor

Registered Contributor

APEFD checked?

Free to work on
a new sub-problem

Stop

Send sub-problem Status

Register to Contributor

Reduce Problem

Update Problem Status

Registered Contributor

Registered SubContributor

Request APEFD
Registered Contributor
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Free to work on
a new APEFD

Set Complete
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Registered SubContributor

Stop
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Fig. 22  A BPMN choreography showing the interaction between a Contributor and its (possibly) many Sub-Contributors

Fig. 23  A graphical account of how the tree is split among Sub-Con-
tributors
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limitations, e.g., short timespan of the study, highly selected 
test groups, and so on. Adverse drug reactions (ADRs) may, 
indeed, go undetected and become evident when the drug 
is already on the market [28]. Therefore, marketed drugs 
require a continuous monitoring of their possible effects. The 
spontaneous reporting of ADRs allows healthcare stakehold-
ers to identify unexpected reactions and to inform regulating 
authorities about them. This practice is extremely important, 
provides early warnings and requires limited economic and 
organizational efforts and resources [21]. Among its mul-
tiple advantages, spontaneous reporting allows one to con-
sider every drug on the market and any category of patients. 
It investigates possible relationships between one or more 
adverse reactions and one or more drugs. physicians, chem-
ists or citizens are allowed to submit reports. The analysis 
focuses on unknown or completely undocumented relation-
ships and may suggest a potential cause–effect link between 
ADRs and drugs, classified as “suspected” or “concomitant.” 
Any report contains both demographic and specific pharma-
covigilance data, as patient information (age, nationality, 
gender, weight, outcome of reactions, and so on), drug(s) 
involved in the suspected reaction(s) (identified by their Ana-
tomical Therapeutic Chemical - ATC - classification, brand 
name, dosage), and the description of the occurred adverse 
reaction(s) encoded by means of the MedDRA classifica-
tion [20], the entry date, the period of the adverse reaction 
and the periods of drug administrations. These temporal data 
are then processed and analyzed to possibly discover any 
cause–effect relationship among drugs and reaction(s) in dif-
ferent time periods, or according to the exposure timespan. In 
this case, we consider the evolution of reports for the same 
drug (by using PhProd (Pharmaceutical Product, i.e., active 
principle) for performing the join in the evolution expres-
sion). This way, we may observe whether the therapy decided 
by physicians is influenced by previous adverse reactions. As 
an example, the fact that physicians are aware of past cases 
of adverse events could determine changes in drug dosages. 
Changing the prescribed drug quantities for patients because 
of previously suspected drugs could be considered as attempt 
of avoiding such adverse reactions.

Among APE-FDs extracted from a recent instance of 
Reports schema of the Italian Network of Pharmacovigilance, 
we introduce here the following APE-FD.

• [�+∞(�
Reports

PhProd
)]PhProd,Dos

�
−→Dos with � = 0.2 . Such a 

dependency may highlight that, when an ADR is reported, 
the dose is usually adjusted in the same way for most 
patients, depending on the previous administrations. Such 
APE-FD may suggest that Italian physicians methodically 
consider the Italian Network of Pharmacovigilance in 
managing drug therapies.

Performance Analysis

In this section, we present a short and preliminary perfor-
mance analysis of Attila and of its components. We exe-
cuted two kinds of test. The first test was done using a single 
machine. This way, we obtained a first evaluation of the time 
required for mining multiple APE-FDs on a large real-world 
database. The second test focused on a single APE-FD, but 
considering some distributed architecture, using a server and 
at most two distinct remote machines. This test allows us to 
observe whether the time required for checking a single APE
-FD decreases, when the problem is distributed among dif-
ferent computational units.

We started by analyzing the performances of the whole 
system, when the computation is entirely done by a single 
machine. We tested Attila on an instance of schema Con-
tact, consisting of approximately 1.5 ⋅ 106 rows. APE-FDs 
as [�+∞(�

Contact
PatId

)]XY
�
−→Z were extracted, with a threshold 

� = 0.1 . Figure 24 depicts the result of this first experiment. 
Attilaverified almost 4500 APE-FDs in about 10 days. Fig-
ure 24 shows through a pie chart that checked APE-FDs 
(i.e., holding and not holding) are less than half of possible 
APE-FDs. Indeed, many APE-FDs denoted as superset are 
subsumed by the checked and holding APE-FDs. Thus, they 
have not been tested (i.e., only minimal APE-FDs have been 
tested). Moreover, Worker is often idling, as Contributors 
perform most of the computation. As described in “Mining 
APE-FDs” section, a Contributor has to visit a tree, which is 
exponentially large w.r.t. the instance size. Even though this 
operation is theoretically unfeasible for large instances, by 
employing simple pruning conditions (as, for example, too 
many tuples deleted, existence of violated constraints, and so 
on), the tree size may be reduced.

Finally, we analyzed the interactions between Con-
tributor and Sub-Contributors by checking APE-FD 
[�+∞(�

Reports

PhProd
)]PhProd,Dos

�
−→Dos with � = 0.2 , discussed in 

“Mining APE-FDs on Clinical Domains” section and related 
to the pharmacovigilance domain. Figure 25a depicts some 
comparisons between various configurations of Sub-Con-
tributors when checking the given dependency. We consid-
ered five possible situations: 

(1) a single local Sub-Contributor(Server), running on the 
same machine where Contributor is running;

(2) a single local Sub-Contributor, and a remote Sub-
Contributor(Remote);

(3) two local Sub-Contributors and a single remote Sub-
Contributor,

(4) two remote Sub-Contributors, i.e., two separate physi-
cal machines with identical hardware/specs running a 
Sub-Contributor each;

(5) a single local Sub-Contributor, and two remote Sub-
Contributors.
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As expected, we observed that performances improved when 
distributing the task among different machines.

Figure 25b depicts the number of closed branches, which 
increases according to the size of the instance. These results 
confirm that our database instance is easier to evaluate than 
the artificial instances we built to prove NP-hardness results.

Conclusions

In this paper, we proposed a framework for discovering 
Approximate Pure Temporally Evolving Functional Depend-
encies ( APE-FDs for short) from a temporal database. We 
have addressed in depth the data complexity of such problem. 
Unfortunately, this complexity turns out to be NP-Complete 
even for a single dependency. Moreover, moving to min-
ing the set of APE-FDs holding on an instance � , the size 
of the result set depends also on the number of attributes 
of the schema of � . For some instances, the lower bound 
of such size is exponential. We faced these problems in a 
real-world context, by proposing the use of model checking 
techniques, distributed computations and linear programming 

techniques. The implemented prototype Attila was tested on 
two real-world clinical scenarios and proved to be efficient. 
Moreover, we discussed the meaning of some interesting 
APE-FDs mined from the databases in the psychiatry and 
pharmacovigilance domains, previously introduced. These 
results may provide (clinical) stakeholders with some new, 
previously unknown, understanding of the underlying data. 
We plan to further improve and extend our prototype, by inte-
grating it in a platform allowing the discovery of different 
types of (temporal) approximate functional dependencies. 
Finally, we plan to perform an extended validation of mined 
APE-FDs with clinical experts.
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Fig. 24  Result of the execution 
of Attila on a single machine 
(Intel Core i3(TM) CPU M 330 
2.13 GHz, 4GB) on an instance 
of table Contact ( ∼ 1.5 ⋅ 106 
rows)
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Fig. 25  a Result of Attilaexecution varying Sub-Contributors con-
figurations on the same instance of the schema Reports consisting of 
∼ 1.5 ∗ 105 rows (Server: 6 Core AMD Opteron(TM) 4284 3GHz, 
8GB, Remote: AMD Phenom(TM) II X6 1055T Processor 2.8 GHz, 

8GB). b Number of closed branches considering incremental portions 
of the same instance of schema Reports (the time refers to the execu-
tion on a Intel Core i3(TM) CPU M 330 2.13GHz, 4GB machine)
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adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creat iveco mmons 
.org/licen ses/by/4.0/.
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