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Abstract

Programming language interoperability is the capability of two programming languages to interact as parts of a single system.
Each language may be optimized for specific tasks, and a programmer can take advantage of this. HTML, CSS, and JavaScript
yield a form of interoperability, working in conjunction to render webpages. Some object oriented languages have interoperability
via a virtual machine host (.NET CLI compliant languages in the Common Language Runtime, and JVM compliant languages in
the Java Virtual Machine). A high-level language can interact with a lower level one (Apple’s Swift and Objective-C). While there
has been some research exploring the interoperability mechanisms (Section 1) there is little development of theoretical foundations.
This paper presents an approach to interoperability based around theories of equational logic, and categorical semantics.

We give ways in which two languages can be blended, and interoperability reasoned about using equations over the blended
language. Formally, multi-language equational logic is defined within which one may deduce valid equations starting from a
collection of axioms that postulate properties of the combined language. Thus we have the notion of a multi-language theory
and much of the paper is devoted to exploring the properties of these theories. This is accomplished by way of category theory,
giving us a very general and flexible semantics, and hence a nice collection of models. Classifying categories are constructed, and
hence equational theories furnish each categorical model with an internal language; from this we can also establish soundness and
completeness. A set-theoretic semantics follows as an instance, itself sound and complete. The categorical semantics is based
on some pre-existing research, but we give a presentation that we feel is easier and simpler to work with, improves and mildly
extends current research, and in particular is well suited to computer scientists. Throughout the paper we prove some interesting
properties of the new semantic machinery. We provide a small running example throughout the paper to illustrate our ideas, and
a more complex example in conclusion.

Keywords: categorical logic, equational logic, interoperability, multi-languages, order-sorted signatures and theories,
programming languages, subsort polymorphism.

1 Introduction

The theory of equational algebra has been a compelling topic since the early days of universal algebra [33,2].
Research on equational logic, addressing the problem of reasoning by deduction about term equality, has been
prolific (see [34,17] for surveys). In particular, many sound and complete deduction systems have arisen. For
instance, if Sg is a one-sorted, many-sorted, or order-sorted signature (sorts and function symbols), such systems
appear in [2], [10], and [13], respectively. These developments have had a remarkable impact on operational
semantics and automatic theorem proving. In particular, the pioneering works of [8,18] to operationalize
equational deduction led to the theory of term rewriting systems [15,35] which has extensive applications.

Multi-languages are programming languages arising from the combination of already existing lan-
guages [27,1,32,9,14,26,24,21]. Intuitively, terms of multi-languages are obtained by performing cross-language
substitutions. For instance, the multi-language designed in [21] allows programmers to replace ML expressions
with Scheme expressions and vice versa. Potential benefits are code reuse and software interoperability. In or-
der to provide a semantics, [21] introduces new constructs to regulate the flow of values between the underlying
languages, the so-called boundary functions.
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But what are the formal properties and semantics of multi-languages? Indeed, how general can we be? And
in any case, what is a good formal definition of a multi-language in the first place? Buro and Mastroeni [3]
extended the approach of [21] to the broader class of order-sorted algebras, providing a systematic and more
general way to define multi-languages, but they did not address equational reasoning. We do so here. In more
detail, a multi-language is specified by combining two order-sorted signatures Sg1 and Sg2. But how exactly
should the signatures be combined? And what is the formal equational theory of “term interoperability”?
More precisely, since equations will not only be defined between two terms both of which are over just one of
the Sg i, but also defined between terms containing symbols from both Sg1 and Sg2, what is a good deduction
system for such multi-language equations? We tackle these questions by specifying multi-language equational
logic which is shown to be sound and complete.

Contributions in Detail: Conceptually we lift the basic syntactic theories of order-sorted equational
logic [13], and models of the theories, to the algebraic multi-language framework defined by [3]. The models
in [13] are built from sets, but we adapt the categorical approach in [20]. The main contribution is a deductive
system for multi-languages with a sound and complete categorical semantics. We also prove some interesting
semantic properties. There is a running example application throughout the paper, and an outline of a more
elaborate application in Section 3.3 where we combine an imperative language and a lambda calculus. Our
account of order-sorted equational theories builds on and refines [20], with all our deductive systems presented
with uniform and clear inductive rules. Further, we include explicit type information in equality judgements,
and include axioms that may be conditional equations. We give a simplified categorical semantics along with
categorical type-theory correspondence and classifying category, and also give an explicit connection to free
set-algebra semantics.

Remarks and Intuitions: We work with order-sorted signatures [13]. As such, our languages enjoy subsort
polymorphism; there is no provision for parametric polymorphism. Such signatures may satisfy criteria known
as monotonicity and regularity. Since the intuitions of these criteria are usually omitted from technical papers,
we make some remarks. Language terms t are built inductively by applying function symbols f to existing terms
(which begin as constants). Such symbols f can be polymorphically sorted. As such, if one input sort of f is a
subsort of another input sort, we would like the term t to be subsort polymorphic with respect to the output
sorts. Monotonicity formalises this requirement. One needs to place some control over such polymorphism:
one way of doing so is to apply a requirement whereby every term t has a least sort. Regularity [13] is such
a condition. To ensure every term t to has a least sort, we might naively achieve this by requiring each
subsort-polymorphic function symbol f to have a least input and least output sort, hoping that t would do
so inductively. We would need to give all constants a least sort to start the induction; and we could simply
stipulate that each constant has just one sort. In initially building terms, if there were any function symbol f
with a (polymorphic) input sort that is a strict subsort of the sort of a constant, such f could not be applied
to that constant. We are led to refine our naive idea: Fix any f . Consider only those constants that this f can
be polymorphically applied to. Now fix one such constant of sort s; this imposes a lower bound for the input
sort of f , namely s. We then require that for all such polymorphic instances of f , there is one instance with a
least input sort s, where of course s ≤ s, and a least output sort. This requirement, formalised, is Regularity.

Paper Structure: In Section 2 we present a transparent rule based deduction system for order-sorted
equational logic with conditional axioms, together with a categorical semantics which is proved sound and
complete. In Section 3 we present a similar set of results for multi-languages. In Section 4 we give some
further examples of multi-languages. In Section 3.3 we present an outline of an extended example in which a
traditional lambda calculus and an imperative while language are blended as a single multi-language.

2 Order-Sorted Equational Logic

We review order-sorted equational theories (see for example [13,20]). Here we give an improved presentation
that is syntactically simpler than in loc cit, and further we extend theories to include conditional equational
axioms. We also present a detailed but stylistically improved summary of the categorical models from [20],
along with a simpler construction of the classifying category (up to equivalence). We then prove a result
relating the classifying category to free order-sorted algebras.

2.1 Order-Sorted Algebras

A set S is usually regarded as a set of sorts or set of ground types. Often S is partially ordered by ≤, and
then Sn , S×· · ·×S (n-times cartesian product for n ≥ 1) inherits the pointwise order, with typical instances

written w ≤ w′. If w ∈ Sn, we usually make explicit its components by writing w , s1, . . . , sn, sometimes
referring to a sequence of sorts.

We write (As | s ∈ S) for a family indexed by S where each As is sometimes a set, but more generally an
object in a category C. We sometimes refer to the family as an S-sorted set (or, an S-sorted object). Such

indexed families are simply functors A in the presheaf category SetS (CS). As such, an S-sorted function
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−
Γ, x : s,Γ′ ` x : s

−
(k : s)

Γ ` k : s

(∀1 ≤ i ≤ a) Γ ` ti : si
(Fn) (f : s1, . . . , sa → s)

Γ ` f(t1, . . . , ta) : s

Γ ` t : s
(s ≤ r)

Γ ` t : r

Fig. 1. Proved terms generated by an order-sorted signature Sg.

(S-sorted morphism) h : A→ B is simply a morphism (that is, natural transformation) in SetS (CS) where
S is a set or poset.

In this paper all categories have finite products, and functors preserve them up to isomorphism. If A, B, and
Ai (1 ≤ i ≤ n) are objects in a category C, we write A×B for the binary product of A and B, A1×· · ·×An or∏n

1 Ai for the finite product of the Ai, and 1 for the terminal object. Mediating morphisms for binary product

are written 〈f, f ′〉, and as usual f × f ′ , 〈f ◦ π, f ′ ◦ π′〉 (for suitable f and f ′ and the usual projections). We

adopt the obvious extension of notation for finite products. If A is an S-sorted object and w , s1, . . . , sn, we
denote by Aw the product As1 × · · · × Asn . Likewise, if f is an S-sorted morphism, then the morphism fw is
defined by fs1 ×· · ·×fsn . The coproduct object of A and B is written A+B. We write l1 . . . ln or l1, . . . , ln for
a typical finite list, and we may abbreviate just to l. In the special case of a list of sorts s1, . . . , sn we usually
abbreviate to w. When we define order-sorted signatures Sg1, Sg2, Sg , Sg ′, etc., we shall implicitly assume
that their posets of sorts are denoted by (S1,≤1), (S2,≤2), (S,≤), (S′,≤′), etc., respectively.

Key ingredients of order-sorted equational theories are the definitions of signature and algebra. The former
defines the symbols from which the terms of a language are built, and the latter provides terms with a meaning.
This meaning can be both set-theoretic and category-theoretic [13,20].

Definition 2.1 (Order-Sorted Signature) An order-sorted signature Sg is specified by

• a poset (S,≤) of sorts;

• a collection of function symbols f : s1, . . . , sa → s each with arity a ≥ 1 and (w, s) ∈ Sa × S the rank

of f where w , s1, . . . , sa;

• a collection of constants k : s, each of a unique rank s (just a single sort); and

• a monotonicity requirement that whenever f : w1 → s and f : w2 → r with w1 ≤ w2, then s ≤ r.
By an operator we mean either a function symbol or a constant.

A key property of such signatures Sg , related to polymorphism, is regularity. We will shortly show how to
build a set of terms out of Sg , and regularity ensures that each term has a unique least sort [13, Proposition 2.10].
(All signatures in this paper are assumed regular).

Definition 2.2 (Regularity of an Order-Sorted Signature) An order-sorted signature Sg is regular if
for each f : w → s and for each lower bound wl ≤ w the set { (w′, s′) | f : w′ → s′ ∧ wl ≤ w′ } ⊆ Sn × S has a
minimum, called the least rank of f with respect to wl.

Raw terms over a signature Sg are defined by t ::= x | k | f(t1, . . . , ta) with x ∈ Var (a countably infinite
set of variables), k a constant, and f a function symbol with arity a. A context is a finite list of ordered pairs

x : s formed by a variable x and a sort s in Sg . We usually define a context by writing Γ , [x1 : s1, . . . , xn : sn].
We denote context concatenation of Γ and Γ′ by Γ,Γ′. We work with sorting judgements of the form Γ ` t : s.
Those that are generated by the sorting rules in Figure 1 are called proved terms. Note that a term t may
have more than one sort s for which Γ ` t : s is a proved term. However there is always a unique least sort.

Lemma 2.3 (Terms Have A Least Sort) Suppose that Γ is a context and t a raw term for a given regular
signature Th. If there is any sort s for which Γ ` t : s is a proved term, then there is a least such sort, st.

Proof. One uses rule induction. The proof is easy, though in the literature a key step is often omitted. By
induction, for the rule Fn, one easily uses regularity to obtain a sort, say š, such that Γ ` f(t1, . . . , ta) : š. Now
š is a candidate for the least sort of f(t1, . . . , ta). Most authors state that such a sort š is least. This is true,
but proving it so requires a separate (though trivial) rule induction. 2

We denote by t[u/x] the substitution of the raw term u for the variable x in t, and by t[u/x] the

simultaneous substitution of raw terms u , u1, . . . , un for variables x , x1, . . . , xn.

Definition 2.4 (Inclusion Structure and FPI-category) An inclusion structure I in a category C is
specified by a subposet (subcategory) I of C such that

• for any two objects A and B of C, the unique morphism A� B in I, if any, is a monic in C;

• for any object A in C, the identity idA is in I (so I is a luff subcategory: it has the same objects as C);
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−
JΓ, x : s,Γ′ ` x : sK , π : JΓK× JsK× JΓ′K→ JsK

−
(k : s)

JΓ ` k : sK , JkK◦! : JΓK→ 1→ JsK

(∀1 ≤ i ≤ a) JΓ ` ti : siK , mi : JΓK→ JsiK
(f : s1, . . . , sa → s)

JΓ ` f(t1, . . . , ta) : sK , JfK ◦ 〈m1, . . . ,ma〉 : JΓK→ (
∏a

1JsiK)→ JsK

JΓ ` t : sK = m : JΓK→ JsK
(s ≤ r)

JΓ ` t : rK = Js ≤ rK ◦m : JΓK→ JsK→ JrK

Fig. 2. Categorical semantics for proved terms.

• if ι1 : A1� B1 and ι2 : A2� B2 are morphisms in I, then so to is ι1 × ι2 : A1 ×A2� B1 ×B2.

A pair (C, I) is called an FPI-category. The intuition is that products model lists of sorts, and inclusions
model subsort polymorphism.

Thus, an FPI-category can be used as the basis for a definition of an algebra for a signature, namely

Definition 2.5 (Order-Sorted Algebra) Given an order-sorted signature Sg, an Sg-algebra A in an FPI-
category (C, I) is specified by

• an object JsKA in C for each sort s and object JwKA , Js1KA × · · · × JsnKA for each w , s1, . . . , sn ∈ Sn;

• morphisms Jf : w → sKA : JwKA → JsKA and JkKA : 1→ JsKA for each f : w → s and k : s; and

• a morphism Js ≤ rKA : JsKA� JrKA in I for each s ≤ r in S, where we set Js ≤ sKA , id JsK

such that if the function symbol f appears with more than one rank f : w1 → s and f : w2 → r in Sg with
s1, . . . , sa , w1 ≤ w2 , r1, . . . , ra, then the following diagram commutes:

Js1KA × · · · × JsaKA JsKA

Jr1KA × · · · × JraKA JrKA

Jf : w1→sKA

Js1≤r1KA×···×Jsa≤raKA Js≤rKA

Jf : w2→rKA

From now on, we drop the algebra subscript and the ranks of function symbols in the semantic brackets
whenever they are clear by context.

Definition 2.6 (Order-Sorted Homomorphism) Let Sg be an order-sorted signature and let A and B be
Sg-algebras. An Sg-homomorphism h : A → B is an S-sorted morphism (hs : JsKA → JsKB | s ∈ S) such
that given f : s1, . . . , sa → s, k : s, and s ≤ r in Sg the following diagrams commute:

Js1KA × · · · × JsaKA JsKA

Js1KB × · · · × JsaKB JsKB

JfKA

hs1
×···×hsa hs

JfKB

1 JsKA

JsKB

JkKA

JkKB
hs

JsKA JrKA

JsKB JrKB

Js≤rKA

hs hr

Js≤rKB

We define hw , hs1 × · · · × hsa provided that w , s1, . . . ,×sa.

Given an order-sorted signature Sg , the class of all the order-sorted Sg-algebras and the class of all the
order-sorted Sg-homomorphisms form a category denoted by OSAlg(C, I)Sg .

If Γ ` t : s is a proved term in a regular signature Sg and Γ , [x1 : s1, . . . , xn : sn], any Sg-algebra A induces

a (unique) morphism from JΓKA , Js1KA × · · · × JsnKA to JsKA in C according to the inductive definition that
appears in Figure 2. We denote such an arrow by JΓ ` t : sKA and we refer to it as the semantics of Γ ` t : s.

Since terms can be assigned different types in one given context, we should consider whether the definition in
Figure 2 is a sensible one. As such, we have the following lemma, where one sees that semantics of substitutions
of terms is given as usual by morphism composition:

Lemma 2.7 (Well-Defined Semantics) Given a proved term Γ ` t : s and an algebra A:

• The semantic morphism JΓ ` t : sK is unique; that is, the assignment ξ 7→ JξK is a total function.
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Let Γ , [x1 : s′1, . . . , xn : s′n] be a context in (AxSub) and (AxCSub).

Γ ` t = t′ : s ∈ Ax

(∀1 ≤ i ≤ n) Γ′ ` ui : s′i
(AxSub)

Γ′ ` t[u/x] = t′[u/x] : s

∧m
1 Γ ` tα = t′α : sα =⇒ Γ ` t = t′ : s ∈ Ax

(∀1 ≤ i ≤ n) Γ′ ` ui : s′i
(∀1 ≤ α ≤ m) Γ′ ` tα[u/x] = t′α[u/x] : sα

(AxCSub)
Γ′ ` t[u/x] = t′[u/x] : s

Γ ` t : s
(Ref)

Γ ` t = t : s

Γ ` t = t′ : s
(Sym)

Γ ` t′ = t : s

Γ ` t = t′ : s Γ ` t′ = t′′ : s
(Trans)

Γ ` t = t′′ : s

Γ ` t = t′ : s
(Subsort) (s ≤ r)

Γ ` t = t′ : r

Γ ` t : s (∀1 ≤ i ≤ n) Γ′ ` ui = u′i : si
(Cong) (Γ , [x1 : s1, . . . , xn : sn])

Γ′ ` t[u/x] = t[u′/x] : s

Fig. 3. Theorems generated by an order-sorted theory Th , (Sg,Ax).

• The algebra induces a functor (S,≤)→ I between posetal categories, where s ≤ s′ 7→ Js ≤ s′K : JsK� Js′K,
and so as a consequence the semantics can be factored through the morphism JΓ ` t : stK, that is to say,
JΓ ` t : sK = Jst ≤ sK ◦ JΓ ` t : stK.

• Let Γ , [x1 : s1, . . . , xn : sn]. If we have proved terms Γ ` t : s and Γ′ ` ui : si where 1 ≤ i ≤ n, then
Γ′ ` t[u/x] : s and JΓ′ ` t[u/x] : sK = JΓ ` t : sK ◦ 〈JΓ′ ` u1 : s1K, . . . , JΓ′ ` un : snK〉.

Equations between proved terms are defined only for coherent signatures. To define coherence, first let ≡
be the symmetric and transitive closure of ≤. The equivalence classes induced by ≡ on S are the connected
components of (S,≤); and (S,≤) is locally filtered, if for every two sorts s′ and s′′ in the same connected
component there is a sort s such that s′, s′′ ≤ s. Then a signature Sg is said to be coherent if and only if it
is regular and locally filtered. The intuition is that terms of sort s′ and s′′ respectively could potentially be
judged equal if they have a “common super-sort” s.

Definition 2.8 (Order-Sorted Equation and Satisfaction) Let Sg be a coherent signature. An equation
(in-context) in Sg is denoted by Γ ` t = t′ : s, where

• there are sorts s′, s′′ such that Γ ` t : s′ and Γ ` t′ : s′′ are proved terms in Sg;

• s′ and s′′ fall in the same connected component of (S,≤); and

• s is a common supersort of s′ and s′′ (which exists by the coherence condition).

A conditional equation (in-context) in Sg is a list of m + 1 equations-in-context (where m ≥ 1)
suggestively denoted by

∧m
α=1 Γ ` tα = t′α : sα =⇒ Γ ` t = t′ : s. We say that an algebra A satisfies an

equation if JΓ ` t : sK = JΓ ` t′ : sK. We say that an algebra A satisfies a conditional equation if for all
morphisms u : U → JΓK, JΓ ` tα : sαK ◦ u = JΓ ` t′α : sαK ◦ u implies JΓ ` t : sK ◦ u = JΓ ` t′ : sK ◦ u.

We define an order-sorted theory Th , (Sg ,Ax ) to be a pair consisting of a signature Sg and a set of
axioms Ax . Each axiom is either an equation or a conditional equation. The theorems of the theory Th are
those equations generated by the rules of equational logic in Figure 3.

Lemma 2.9 (Generalised Substitution) The following rule is admissible by a routine rule induction

Γ ` t = t′ : s (∀1 ≤ i ≤ n) Γ′ ` ui : si
(Sub) (Γ , [x1 : s1, . . . , xn : sn])

Γ′ ` t[u/x] = t′[u/x] : s

Let Th , (Sg ,Ax ) be an order-sorted theory. If an Sg-algebra A satisfies all the axioms in Ax , we call A
a model of Th. The category of models OSMod(C, I)Th is the full subcategory of OSAlg(C, I)Sg given by
all the models of Th in (C, I).
Lemma 2.10 (Satisfaction is Well-Defined) As a consequence of Lemma 2.7, satisfaction is well-defined
up to subsort-polymorphic equality, as follows: Suppose that we have a theorem Γ ` t = t′ : s satisfied in a
model A. If Γ ` t = t′ : ŝ is also a theorem, then it too is satisfied.

Proof. The existence of least sorts st and st′ means that s and ŝ are connected, and so have a super-type
s′. Thus each term has this type s′, and the result follows by using factorisation from Lemma 2.7 and the
left-cancellation properties of monomorphisms. 2

The category Pres×,�((C, I), (D,J)) is defined by having objects functors F : C → D such that finite
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products are preserved and F restricts to a functor F|I : I → J (that is monics are also preserved). Suppose
that we have a model A in OSMod(C, I)Th . Then there is a model F∗A in OSMod(D,J)Th that is, roughly
speaking, defined by “taking the image of Sg in (C, I) induced by the model A, and applying F”. Equally one
may “apply F to homomorphisms of models” and this process (which is absolutely standard in categorical type
theory/logic; see for example [6,16]) leads to a functor ApA : Pres×,�((C, I), (D,J)) → OSMod(D,J)Th . A
classifying category Cl(Th) for a theory Th is an FPI-category such that there is an equivalence of categories

ApG : Pres×,�(Cl(Th), (D,J)) ' OSMod(D,J)Th

and thus models of Th in (D,J) correspond to such structure preserving functors with source Cl(Th).

Theorem 2.11 (Existence of Classifying Category) There is an FPI-category Cl(Th) constructed out of
the syntax of Th, in which there is a generic model of Th with the property that equality of morphisms
corresponds to derivability of term equations. At an abstract level this notion is standard in categorical type
theory/logic; see for example [6,16]. We feel that our concrete construction is simpler than that found in [20],
and regard this as a small contribution. Such existence proofs are notoriously tricky to get completely correct,
and there are notable errors in the literature. We use matching contexts and permutation invariance [7,29] to
replace the usual substitutions that rename variables, and we think this makes our proofs simpler to state and
prove (and hence less error prone).

Proof. Let Var be a (countable) fixed set of variables {V1, V2, . . .}. We call the context Γs ,
[V1 : s1, . . . , Vn : sn]) the primary context for any sorts s1, . . . , sn. In general, below, the metavariables x,

y, z etc, possibly subscripted, range over Var . Thus Γ , [x1 : s1, . . . , xn : sn] is a typical context as before,

and we say that any such context matches s , s1, . . . , sn.
First we define the objects T(Γ) of FOSAlg . Of course T(Γ) must be an S-sorted set, and the components

are sets of equivalence classes

T(Γ)s , Term(Γ)s/ ∼ where Term(Γ)s , { t | Γ ` t : s in Th }

where we define the equivalence relation t ∼ t′ just in case we can derive Γ ` t = t′ : s in Th, and write [ t ] for
a typical equivalence class.

Let Γ and Γ′ match s1, . . . , sn and s′1, . . . , s
′
m respectively. The morphisms h : T(Γ) → T(Γ′) must be

S-sorted functions (hs : T(Γ)s → T(Γ′)s | s ∈ S). These are specified by lists hs , {Γ′ ` t1, . . . , tn} where
ti ∈ Term(Γ′)si and where

hs([ t̂ ] ∈ T(Γ)s) , [ t̂[t1, . . . , tm/x1, . . . , xm] ] ∈ T(Γ′)s

It is easy to check this is well defined. Note that if

h , {Γ′ ` t1, . . . , tn} : T(Γ)→ T(Γ′) and h′ , {Γ′′ ` t′1, . . . , t′m} : T(Γ′)→ T(Γ′′)

then we have h ◦ h′ defined by

{Γ′′ ` t1[t′1, . . . , t
′
m/x1, . . . , xm], . . . , tn[t′1, . . . , t

′
m/x1, . . . , xm]}

It is tedious but routine to verify that this gives rise to a category, relying crucially on the substitution rules
for equation derivation. 2

Theorem 2.12 (Soundness and Completeness) Let Th be an order-sorted theory. Γ ` t = t′ : s is a
theorem of Th if and only if Γ ` t = t′ : s is satisfied by every model of Th.

Proof. Soundness follows by rule induction for Figure 3. For completeness, suppose that Γ ` t = t′ : s is
satisfied in any model. Then in particular it is satisfied in the generic model G in the classifying category
Cl(Th). Thus we have JΓ ` t : sKG = JΓ ` t′ : sKG and so we have (Γ | t) = (Γ | t′) which holds precisely when
Γ ` t = t′ : s is a theorem. 2

We conclude this section with a new result, although it is motivated by analogous theorems [28]. The proof
also makes use of matching contexts and permutations of variables.

Theorem 2.13 (Relationship to Free Algebras) There is an equivalence between FPI-categories Cl(Th)
and (FOSAlgop,J) where FOSAlg is the category of free order-sorted algebras over finite sets of
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variables, and order-sorted homomorphisms. Moreover the equivalence is given by an FPI-functor
Φ: Cl(Th) ' (FOSAlgop,J).

Proof. With a view to showing that (FOSAlgop,J) is an FPI-category, we shall show that FOSAlg is has
finite coproducts, and then define J. Given objects T(Γ) and T(Γ′) then the binary coproduct object is

given by T(∆ , Γs,Γs′) where the sorts match Γ and Γ′ respectively. The coproduct insertions are given by
{∆ ` v1, . . . , vn} and {∆ ` vn+1, . . . , vn+m}. Given morphisms

{Γ′′ ` t1, . . . , tn} : T(Γ)→ T(Γ′′) and {Γ′′ ` t′1, . . . , t′m} : T(Γ′)→ T(Γ′′)

then the mediating morphism is {Γ′′ ` t1, . . . , tn, t′1, . . . , t′m}. Note that T(∅) is the initial object.

Suppose that si ≤ ri for each 1 ≤ i ≤ n. Then there is an epic morphism i , {Γs ` x1, . . . , xn} : T(Γr)→
T(Γs); it’s easy to verify that this is an epimorphism, and hence yields a monomorphism in FOSAlgop. The

luff subcategory J has all of its morphisms the monomorphisms iop , {Γs ` x1, . . . , xn} : T(Γs) → T(Γr).
This is certainly an inclusion category.

Now we prove the equivalence. We define a functor Φ: Cl(Th) → (FOSAlgop,J) as follows. Given a
morphism (Γ | t1) . . . (Γ | tm) : s→ r then Φ sends this to

{Γs ` πt1, . . . , πtm} : T(Γr)→ T(Γs)

where permutation π is specified by π : xi 7→ Vi. We check this is well defined. Suppose that

(Γ | t1) . . . (Γ | tm) = (Γ′ | t′1) . . . (Γ | t′m).

We need to check that

{Γs ` πt1, . . . , πtm} , Φ((Γ | t1) . . . (Γ | tm)) = Φ((Γ′ | t′1) . . . (Γ | t′m)) , {Γs ` π′t′1, . . . , π′t′m}

By definition we have Γ ` tj = ρt′j : rj where ρ is specified by ρ : x′i 7→ xi. We can deduce, using substitution
rules for equations, that πΓ ` πtj = π(ρt′j) : rj and this is exactly Γs ` πtj = π′t′j : rj as required, since
π′ = π◦ρ. We feel that the use of permutations, while equivalent to the use of simultaneous variable renamings
by substitution, improves readability and more importantly simplifies calculations by making use of judgements
that are permutation invariant.

(Φ is essentially surjective):
For any object s in Cl(Th) we have Φ(s) = T(Γs). But one easily shows that for any T(Γ) where Γ matches

s, we have T(Γ) ∼= T(Γs) where the inverse homomorphisms “swap variables” xi and Vi.
(Φ is faithful): Let

Φ((Γ | t1) . . . (Γ | tm)) = Φ((Γ′ | t′1) . . . (Γ | t′m)).

We need to check that Γ ` tj = ρt′j : rj . By the assumption we have

{Γs ` πt1, . . . , πtm} = {Γs ` π′t′1, . . . , π′t′m}

Hence Γs ` πtj = πt′j : rj . Therefore we can deduce that Γ ` tj = (π−1◦π′)t′j : rj ; we are done since π−1◦π′ = ρ.

(Φ is full): Let

{Γs ` t1, . . . , tm} : Φ(r) = T(Γr)→ Φ(s) = T(Γs)

Then (Γs | t1, . . . , tm) is the appropriate Cl(Th) morphism.
(Φ is an object of Pres×,�(Cl(Th), (FOSAlgop,J))): We need to check that Φ|I : I → J where I is the

inclusion category of Cl(Th). Let s ≤ r. Note that Φ((Γ | x1) . . . (Γ | xn) : s → r) is the monomorphism
{Γs ` x1, . . . , xn} : Γr → Γs 2

3 Multi-Language Equational Logic

3.1 Fundamentals of Multi-Languages

Throughout this section we often refer to a Running Example, introduced below and subsequently extended,
to illustrate how the theory works in a concrete setting (see Section 3.3 for the outline of a more complex
example).
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0 : nat zero constant

s : nat→ nat successor function

+ : nat,nat→ nat addition operator

(a) Sg1 operators.

(∀c ∈ Char) c : chr character constant

next : chr→ chr next character function

+ : str, str→ str string concatenation

(b) Sg2 operators.

Fig. 4. Operators of order-sorted signatures Sg1 and Sg2.

Sorts JnatKA1 , N JchrKA2 , Char

JstrKA2
, Char∗

Operators J0KA1
, ∗ 7→ 0: 1→ N (∀c ∈ Char) JcKA2

, ∗ 7→ c : 1→ Char

JsKA1 , n 7→ n+ 1: N→ N JnextKA2 , c 7→ c′ : Char→ Char

J+KA1
, (n1, n2) 7→ n1 + n2 : N2 → N J+KA2

, (s1, s2) 7→ s1s2 : (Char∗)2 → Char∗

Subsorts Jchr ≤2 strKA2
, c 7→ c : Char→ Char∗

Fig. 5. Categorical semantics of Sg1 and Sg2.

Running Example. Our example is defined using the following order-sorted signatures:

• The signature Sg1 defines the symbols of a language for constructing simple mathematical expressions
over natural numbers in Peano’s notation. Let the poset of sorts (S1,≤1) of Sg1 be a poset with a single
sort nat denoting the type of natural numbers, and let the operators be those in Figure 4a.

• Let c ∈ Char , {a, b, . . . , z} be the metavariable ranging over a finite set Char of characters. The signature
Sg2 defines a language to build strings over Char. The set of sorts S2 of Sg2 carries the sort str for strings
and the sort chr for characters. The subsort relation ≤2 is the reflexive relation on S2 plus chr ≤2 str
(i.e., characters are one-symbol strings), and the operator symbols in Sg2 appear in Figure 4b.

We model Sg1 and Sg2 by the order-sorted algebras A1 and A2 (see Figure 5) in (Set , Incl), the FPI-
category of sets with inclusion functions forming the inclusion structure. The symbol c′ in the definition of
JnextKA2

denotes the character that follows c in Char (assuming the standard alphabetical order).

Remark 3.1 The forthcoming definitions and results gradually define and illustrate multi-languages, and give
relationships between multi-languages and order-sorted languages. A multi-language signature 3.2 is specified as
two order-sorted signatures (as in the Running Example) together with an interoperability relation between
the two signatures. This determines the terms of the multi-language. Note that the relation is not a universal
property of the underlying signatures; and also note a multi-language signature explicitly provides users with the
original two language specifications. We show in 3.3 that there are nice notions of categories of signatures, both
order-sorted and multi-language. We shall also see that we can exhibit a functor that maps a multi-language
signature to an order-sorted signature (the associated signature 3.4), blending the two original signatures
into one. After defining multi-language algebras 3.5 and homomorphisms 3.6, Theorem 3.7 will provide, via
associated signatures, a clear semantic relationship between multi and order-sorted languages. In particular, it
suggests how to give the definitions of (multi-language) terms, equations, and satisfaction using the associated
signature. We can then reason equationally about interoperability of the two given languages. This takes us
to Section 3.2 where we study equational reasoning in detail.

In order to define multi-language signatures we introduce some crucial notation. We denote by + the
disjoint union of two sets: the insertion morphisms that form a coproduct in the category of sets are injective
functions, thus they have left inverses (and one has a model of disjoint union). In the following, if S1 and S2

are two sets of sorts and s ∈ Si with i , 1, 2, we write

si for the element ιi(s) ∈ S1 + S2 where ιi(s) , (s, i) ∈ S1 × {1} ∪ S2 × {2}

Thus in relationships si n s′j we have s ∈ Si and s′ ∈ Sj . This is a very useful notation but perhaps requires

care on first reading. Moreover, if w , s1, . . . , sn ∈ Sni , then we write wi for (s1)i, . . . , (sn)i.

8
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Definition 3.2 (Multi-Language Signature) A multi-language signature SG , (Sg1,Sg2,n) is

• a pair of order-sorted signatures Sg1 and Sg2 with posets of sorts (S1,≤1) and (S2,≤2), respectively; and

• a (binary) relation join n over S1 + S2 such that si n s′j with i, j ∈ {1, 2} and i 6= j.

The idea is that if sin s′j , and Γ ` t : s is a proved term in one language, then t can be used in place of a term
t′ such that Γ′ ` t′ : s′ in the other language: as in [21], “ML code can be used in place of Scheme code”. This
is made precise in due course.

Definition 3.3 OSSg is the category of order-sorted signatures with morphisms h : Sg1 → Sg2 given by

• a monotone function h : (S1,≤1) → (S2,≤2) (where we will write h(w) , h(s1), . . . , h(sn) for w ,
s1, . . . , sn ∈ Sn1 ), and

• a mapping h from the operators in Sg1 to those in Sg2 that preserves rank: given k : s in Sg1, then
h(k) : h(s) in Sg1; and given f : w → s in Sg1, then h(f) : h(w)→ h(s) in Sg2.

Moreover, we denote by MLSg the category of multi-language signatures in which a morphism

H , (h1, h2) : (Sg1,Sg2,n)→ (Sg ′1,Sg ′2,n′)

is defined by two morphisms h1 : Sg1 → Sg ′1 and h2 : Sg2 → Sg ′2 in OSSg such that they preserve the join
relation, namely si n s′j in (Sg1,Sg2,n) implies (hi(s)i n′ (hj(s′))j in (Sg ′1,Sg ′2,n′).

Definition 3.4 (Associated Signature) Let SG , (Sg1,Sg2,n) be a multi-language signature. The asso-
ciated signature SG of SG is the order-sorted signature defined as follows:

• the poset of sorts is given by (S1 + S2,≤), where si ≤ rj if i = j and s ≤i r;
• if f : w → s is an operator in Sg i for some i , 1, 2, then fi : wi → si is a function symbol in SG;

• if k : s is a constant in Sg i for some i , 1, 2, then ki : si is a constant in SG; and

• a conversion operator ↪→si,s′j
: si → s′j for each constraint si n s′j.

The associated signature functor (−) : MLSg → OSSg maps each multi-language signature SG ,
(Sg1,Sg2,n) to its associated signature SG , and each multi-language signature morphism H : SG → SG ′

to the order-sorted signature morphism H : SG → SG ′ given by H(si) , (hi(s))i for each s ∈ Si (hence

si ∈ S1 + S2) and H(fi) , (hi(f))i for each f ∈ Sg i (hence fi in SG).

Running Example. (−) embeds the multi-language signature SG into OSSg , providing the order-sorted
version SG of the multi-language. SG generates Sg i-terms (see Section 3.2) as well as hybrid multi-language
terms involving conversion operators such as [c : chr2, n : nat1] ` +1( ↪→chr2,nat1 (c), n) : nat1. From now on,
we use colours in the examples for disambiguating the left and the right inclusion in place of subscripts 1 and 2.
Moreover, we use an infix notation whenever the operators lend themselves well to do so. That is, the previous
term is represented by [c : chr, n : nat] ` ↪→chr,nat (c) + n : nat.

Such a functor outlines an embedding of multi-language signatures into order-sorted signatures, enabling us
to see a multi-language as an ordinary language. Indeed, it is easy to see that (−) is both injective on objects
and a faithful functor.

Definition 3.5 (Multi-Language Algebra) Let SG , (Sg1,Sg2,n) be a multi-language signature. An SG-
algebra A in an FPI-category (C, I) is given by

• a pair of order-sorted algebras A1 and A2 in (C, I) over Sg1 and Sg2, respectively; and

• a boundary morphism Jsi n s′jKA : JsKAi
→ Js′KAj

in C for each constraint si n s′j.

An algebra sets out the meaning of a multi-language: The meaning of the underlying languages, and how
terms of sort s ∈ Si can be interpreted as terms of sort s′ ∈ Sj . Put differently, “boundary morphisms regulate
the flow of values across A1 and A2” [22].

Definition 3.6 (Multi-Language Homomorphism) Let SG , (Sg1,Sg2,n) be a multi-language signature,
and let A and B be two SG-algebras. An SG-homomorphism h : A → B is given by a pair of order-sorted
homomorphisms h1 : A1 → B1 and h2 : A2 → B2 such that they commute with boundary functions, namely, if
si n s′j, then the following diagram commutes:
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JsKAi Js′KAj

JsKBi
Js′KBj

Jsins′jKA

(hi)s (hj)s′

Jsins′jKB

Given a multi-language signature SG , the class of all SG-algebras and SG-homomorphisms form a category
denoted by MLAlg(C, I)SG . We have a simple connection between this category and OSAlg(C, I)SG , outlined
in Theorem 3.7, after more of the Running Example.

Running Example. Suppose we are interested in a multi-language SG , (Sg1,Sg2,n) according to the
following specifications:

• terms denoting natural numbers can be used in place of characters according to the function chr : N→ Char
that maps the natural number n to the n-th character symbol modulo |Char|; and

• terms denoting strings can be used in place of natural numbers according to the function len: Char∗ → N,
namely the length of the string.

In order to get such a multi-language, we provide (1) the join relation n on S1 + S2 and (2) a boundary
morphism Jsi n s′jKA : JsKAi

→ Js′KAj
for each constraint si n s′j introduced by n:

• nat1 n chr2 and nat1 n str2 with boundaries Jnat1 n chr2KA(n) , Jnat1 n str2KA(n) , chr(n); and

• chr2nnat1 and str2nnat1 with boundaries Jchr2nnat1KA(c) , len(c) = 1 and Jstr2nnat1KA(s) , len(s).

The next theorem yields a formal correspondence between multi-languages and order-sorted languages:
We can make a multi-language signature SG into an order-sorted one by applying the functor (−), and thus
blending the underlying languages. Nevertheless, we do not lose any semantical information if we consider the
category of algebras over SG and SG .

Theorem 3.7 There is a natural isomorphism between the category of multi-language algebras over SG and
the category of order-sorted algebras over the associated signature SG

η : MLAlg(C, I)⇒ OSAlg(C, I) ◦ (−) inducing MLAlg(C, I)SG ∼= OSAlg(C, I)SG

where there are functors MLAlg(C, I) : MLSg → Catop and OSAlg(C, I) : OSSg → Catop that map signatures to
their category of algebras in (C, I).

Proof. The functors are defined on objects by MLAlg(C, I)(SG) , MLAlg(C, I)SG and OSAlg(C, I)(Sg) ,
OSAlg(C, I)Sg . Now, let SG , (Sg1,Sg2,n) and SG ′ , (Sg ′1,Sg ′2,n′), and let H , (h1, h2) : SG → SG ′ be a
signature morphism between them. We shall define a functor H∗ : MLAlg(C, I)SG′ →MLAlg(C, I)SG and let

MLAlg(C, I)(H) , H∗. Let A be an SG ′-algebra in MLAlg(C, I)SG′ . Then, the multi-language SG-algebra
H∗A is defined as follows:

• We define its order-sorted components (H∗A)1 and (H∗A)2. Let i , 1, 2:

· the interpretation of sorts is given by JsK(H∗A)i , Jhi(s)KAi for each s ∈ Si;
· given the function symbol f : w → s in Sg i, we define Jf : w → sK(H∗A)i , Jhi(f) : hi(w)→ hi(s)KAi ;

· the constant symbol k : s in Sg i is interpreted by letting JkK(H∗A)i , Jhi(k)KAi ; and

· Js ≤i rK(H∗A)i , Jhi(s) ≤′i hi(r)KAi
for each subsort constraint s ≤i r in Sg i.

The fact that (H∗A)i is a proper order-sorted Sg i-algebra is ensured by the properties of the (multi-
language) signature morphism H.

• Boundary morphisms are defined by Jsi n s′jKH∗A , Jhi(s) n′ hj(s′)KA for each constraint si n s′j in SG .

In order to define the action of H∗ on homomorphisms, suppose that g : A → B is a multi-language SG ′-
homomorphism in MLAlg(C, I)SG′ . Then, (H∗g)i : (H∗A)i → (H∗B)i is defined by the Si-sorted morphisms

•
(
(H∗g)i

)
s
, (gi)hi(s), which is well-defined since gi : Ai → Bi is an order-sorted Sg ′i-homomorphism and

Jhi(s)KAi
= JsK(H∗A)i .

The commutativity of the diagram in Definition 3.6 is given by a tedious but simple diagram chase.
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Jhi(s)KAi
Jhj(s′)KAj

JsK(H∗A)i Js′K(H∗A)j

JsK(H∗B)i Js′K(H∗B)j

Jhi(s)KBi
Jhj(s′)KBj

(gi)hi(s)

Jhi(s)n′hj(s
′)KA

(gj)hj(s
′)

Jsins′jKH∗A

(
(H∗g)i

)
s

(
(H∗g)j

)
s′

Jsins′jKH∗B

Jhi(s)n′hj(s
′)KB

We next define a functor h∗ : OSAlg(C, I)Sg2
→ OSAlg((C, I))Sg1

and set OSAlg(C, I)(h) , h∗, where
h : Sg1 → Sg2 is an order-sorted signature morphism. This is similar to the definition of H∗ above. First
pick any (order-sorted) Sg2-algebra A. We need to define the order-sorted Sg1-algebra h∗A. We define

• objects Js ∈ S1Kh∗A , Jh(s)KA in C and hence JwKh∗A , Jh(s1)KA×· · ·×Jh(sn)KA for w , s1, . . . , sn ∈ Sn1 ;

• morphisms Jf : w → s ∈ Sg1Kh∗A , Jh(f) : h(w) → h(s) ∈ Sg2KA : JwKh∗A → JsKh∗A and morphisms

Jk ∈ Sg1Kh∗A , Jh(k)KA : 1→ JsKh∗A; and

• a morphism Js ≤1 r ∈ S1Kh∗A , Jh(s) ≤2 h(r)KA : JsKh∗A� JrKh∗A in I.

We omit the verification that semantics of operators commutes with the semantics of subsorting, although
this is essentially immediate since A is an Sg2-algebra. Now let g : A → B be an order-sorted Sg2-
homomorphism. We define the Sg1-homomorphism h∗(g) : h∗A → h∗B by setting the components to be

(h∗(g))s∈S1
, gh(s) : Jh(s)KA → Jh(s)KB.

Now we define the natural transformation η by specifying the components ηSG : MLAlg(C, I)SG →
OSAlg(C, I)SG . Pick any SG-homomorphism h : A→ B. First we define the (order-sorted) SG-algebra ηSGA
by setting

• Jsi ∈ S1 +S2KηSGA , JsKAi
in C and JwKηSGA , Js1KAi

×· · ·× JsnKAi
for each w , s1, . . . , sn ∈ (S1 +S2)n;

• morphisms Jfi : wi → siKηSGA , Jf : w → sKAi
and JkiKηSGA , JkKAi

: 1→ JsKAi
; and

• J↪→si,s′j
: si → s′jKηSGA , Jsi n s′jKA : JsKAi → Js′KAj

• Jsi ≤ rjKηSGA , Js ≤i rKAi
: JsKAi

� JrKAi
in I for each si ≤ rj in S1 + S2 (don’t forget that i = j).

where the required commutation properties follow immediately since the Ai are Sg i-algebras. Second we
define SG-homomorphism ηSG(h) : ηSGA→ ηSGB. Since by the definition of h there are Sg i-homomorphisms

hi : Ai → Bi, we can define ηSG(h)si∈S1+S2 , (hi)s : JsKAi → JsKBi , and ηSG(h)si inherits the required
commuting properties from h (commuting with ↪→si,s′j

), and from the hi (commuting with the fi).

One can see that ηSG is an isomorphism by reversing the construction and by noting there is a one-one
correspondence between the sorts, operators, and subsort constraints in SG and those in Sg1 and Sg2. This is
straightforward. More difficult is naturality of η which we show next.

Let H , (h1, h2) : SG , (Sg1,Sg2,n) → SG ′ , (Sg ′1,Sg ′2,n′). Then we need to show that the diagram
below commutes.

MLAlg(C, I)SG OSAlg(C, I)SG

MLAlg(C, I)SG′ OSAlg(C, I)SG′

ηSG

H∗

ηSG′

H
∗

Pick any morphism g : A→ B inMLAlg(C, I)SG′ . First we need to show that ηSG(H∗A) = H
∗
(ηSG′A). Let us

check only that these SG-algebras provide equal meaning to sorts si ∈ S1+S2 where we have (hi(s))i ∈ S′1+S′2.

JsiKηSG(H∗A) = Js ∈ SiK(H∗A)i = Jhi(s) ∈ S′iKAi
= J(hi(s))i ∈ S′1 + S′2KηSG′A = JH(si)KηSG′A = JsiKH∗(ηSG′A)

11
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Now g furnishes us with SG ′-homomorphisms gi : Ai → Bi, and we need to show that

ηSG(H∗g) = H
∗
(ηSG′g) : Jhi(s) ∈ S′iKAi

→ Jhi(s) ∈ S′iKBi

is an equality of SG-homomorphisms. But this follows from the following calculation on components of S1+S2-
sorted morphisms

(ηSG(H∗g))si = ((H∗g)i)s = (gi)hi(s) = (ηSG′g)(hi(s))i = (ηSG′g)(H(si))
= (H

∗
(ηSG′g))si

and the proof is completed. 2

Running Example. The multi-language semantics of the term introduced in the previous example is given by
the algebra ηSGA which leads to J[c : chr, n : nat] ` ↪→chr,nat (c) + n : natKηSGA = (c, n) 7→ n+1: Char×N→ N.

3.2 Equational Reasoning in a Multi-Language Context

In this section we define multi-language proved terms, and give them a semantics. Then we define multi-
language equations and semantic satisfaction. From this we can define theories and models, and hence prove
soundness and completeness.

Let SG , (Sg1,Sg2,n) be a multi-language signature. A (multi-language) proved term Γ ` t : si is
a proved term over the associated signature SG . It follows that if Γ ` t : s is a proved term over Sg i, then

Γ ` t : s is a proved term in SG , where Γ ` t : s , Γ ` t : s and

• s , si for each s ∈ Si; and Γ , [x1 : s1, . . . , xn : sn] for each context Γ , [x1 : s1, . . . , xn : sn] over Sg i;

• t is recursively defined over the syntax of raw terms generated by Sg i: x , x; k , ki; and f(t1, . . . , ta) ,
fi(t1, . . . tn).

Due to the injectivity of this construction, we shall refer to it as the inclusion of an order-sorted term into the
multi-language, and we informally say that a multi-language “contains” the underlying languages. Furthermore,
the definition of multi-language terms also includes hybrid terms that are not the result of the inclusion of an
order-sorted term but which are constructed using the conversion operators in the associated signature.

Given a multi-language SG-algebra A, the categorical semantics of a (multi-language) term Γ ` t : si is

the order-sorted semantics of Γ ` t : si induced by ηSGA, namely JΓ ` t : siKA , JΓ ` t : siKηSGA. As expected,
a multi-language preserves the semantics of the underlying terms:

Proposition 3.8 Let A be a multi-language SG-algebra over SG , (Sg1,Sg2,n). If Γ ` t : s is a proved term
over Sg i, then JΓ ` t : sKA = JΓ ` t : sKηSGA = JΓ ` t : sKAi

.

Regularity and coherence for a multi-language signature SG , (Sg1,Sg2,n) are defined with respect to
its associated signature. That is, SG is regular (resp., coherent) if SG is regular (resp., coherent). It is
immediate that SG is regular (resp., coherent) if and only if Sg1 and Sg2 are regular (resp., coherent).

Definition 3.9 (Multi-Language Equation and Satisfaction) Let SG be a coherent multi-language sig-
nature. A (conditional) equation for SG is an order-sorted (conditional) equation over SG. A multi-language
algebra A satisfies any such (conditional) equation if the (conditional) equation is satisfied by ηSGA.

An immediate consequence of Proposition 3.8 is that every Sg i-equation satisfied by Ai is also satisfied by
the multi-language algebra A (in its inclusion form provided by the mapping (−)).

A multi-language theory TH , (SG ,AX ) is a pair of a multi-language signature SG and a set of
(conditional) multi-language equations AX over SG , namely the axioms of the theory. The theorems of
TH are the equations Γ ` t = t′ : si derivable from (SG ,AX ). A multi-language SG-algebra that satisfies all
the axioms in AX is said a model of TH , and MLMod(C, I)TH denotes the full subcategory of models of
MLAlg(C, I)TH . We now introduce the categories of theories in order to define the associated theory of a
multi-language theory. From now on, when we write order-sorted theories Th1, Th2, Th, Th ′, etc., we assume
they are defined as Th1 , (Sg1,Ax 1), Th2 , (Sg2,Ax 2), Th , (Sg ,Ax ), Th ′ , (Sg ′,Ax ′), etc., respectively.

Running Example. Let Th1 , (Sg1,Ax 1) and Th2 , (Sg2,Ax 2) be the order-sorted theories over Sg1
and Sg2 axiomatized by the equations provided in Figure 6. We can generate from Ax 1 and Ax 2 a set AX of

multi-language equations by applying (−) to each equation. For instance, (eq1,1) , [n : nat] ` 0 + n = n : nat
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(eq1,1) [n : nat] ` 0 + n = n : nat

(eq1,2) [n : nat,m : nat] ` s(n) + m = s(n + m) : nat

(eq1,3) [n : nat,m : nat] ` n + m = m + n : nat

(a) Th1 axioms.

(eq2,1) ` next(a) = b : chr

(eq2,...) ` . . . = . . . : chr

(eq2,26) ` next(z) = a : chr

(b) Th2 axioms.

Fig. 6. Axioms of order-sorted theories Th1 and Th2.

becomes (eq1,1) , [n : nat] ` 0 + n = n : nat. Note that a substantial change occurs when mapping an order-
sorted equation to a multi-language one. Consider again (eq1,1). A substitution in the order-sorted world can
only plug t, where Γ ` t : nat in Sg1, into the variable n : nat. However, a multi-language substitution can
substitute any t′, where Γ′ ` t′ : nat in SG , for n : nat in the lifted equation (eq1,1)—including, crucially, the
possibility that t′ is a hybrid multi-language term.

The behaviour of boundary morphisms can be axiomatized by adding the following equations to AX :

(EQ1) ` ↪→nat,chr (0) = a : chr
(EQ2) ` ↪→nat,str (0) = a : str
(EQ3) [c : chr] ` ↪→chr,nat (c) = s(0) : nat
(EQ4) [c : chr] ` ↪→str,nat (c) = s(0) : nat
(EQ5) [n : nat] ` ↪→nat,chr (s(n)) = next(↪→nat,chr (n)) : chr
(EQ6) [n : nat] ` ↪→nat,str (s(n)) = next(↪→nat,str (n)) : str
(EQ7) [s : str, v : str] ` ↪→str,nat (s + v) = ↪→str,nat (s) + ↪→str,nat (v) : nat

Definition 3.10 Let OSTh be the category of order-sorted theories whose morphisms h : Th1 → Th2

are signature morphisms h : Sg1 → Sg2 in OSSg that preserve theorems, that is, if Γ ` t = t′ : si is a

theorem of Th1 with Γ , [x1 : s1, . . . , xn : sn], then Γ′ ` h(t) = h(t′) : h(si) is a theorem of Th2, where

Γ′ , [x1 : h(s1), . . . , xn : h(sn)] and h(t) and h(t′) are inductively defined over the syntax according to the
action of h on function symbols and constants.

The category of multi-language theories is denoted by MLTh and a theory morphism
H : (SG1,AX 1) → (SG2,AX 2) is a signature morphism H : SG1 → SG2 in MLSg such that if Γ ` t = t′ : si
is a theorem of (SG1,AX 1) with Γ , [x1 : s1, . . . , xn : sn], then Γ′ ` H(t) = H(t′) : H(si) is a theorem of

(SG2,AX 2), where Γ′ , [x1 : H(s1), . . . , xn : H(sn)].

Functors MLAlg(C, I) and OSAlg(C, I) can be easily extended to MLMod(C, I) : MLTh → Catop and
OSMod(C, I) : OSTh → Catop, respectively, such that they associate to each signature its corresponding cate-

gory of models. Then, (−) : MLTh → OSTh is defined by TH , (SG ,AX ) on objects and by H on morphisms
H : TH 1 → TH 2.

Proposition 3.11 MLMod(C, I) and OSMod(C, I) ◦ (−) are isomorphic functors. Let η be the natural iso-
morphism between them and TH a multi-language theory. Then, ηTH is the isomorphism between categories
MLMod(C, I)TH and OSMod(C, I)TH .

Theorem 3.12 (Soundness and Completeness) Let TH be a multi-language theory. Γ ` t = t′ : s is a
theorem of TH if and only if Γ ` t = t′ : s is satisfied by every model of TH .

3.3 An Extended Example

The Running Example has the sole purpose of illustrating our theory in an elementary way: we are very much
aware of its limitations. Here we give a taste of a more realistic example. For space reasons, we can convey
only the main ideas: full details are in an extended version of the paper citearxiv-version-of-this-paper.

We define a new multi-language by blending a simple functional core with a minimal imperative language.
The former is of course suited to writing programs that are easier to reason about, whereas the latter provides
a more straightforward procedural and low-level approach to software development. We formalise the simply-
typed lambda calculus and a simple imperative language as two equational theories, and we blend them together
in order to provide the gist of an interoperability between the functional and imperative paradigms. More
complex examples can be built along the lines of the one presented here.

We assume Imp and λ� to be the signatures of a small imperative language and the simply-typed lambda-
calculus, respectively. In the following, we use colours blue for denoting Imp code and red for λ�-terms. The
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interoperability we wish to provide should allow the use of λ�-terms as Imp-expressions and vice versa. For
instance, we would like to write multi-language programs such as x = (λy:int . y + y) 1, which encodes
the assignment to the variable x of the value obtained by applying the λ�-function (λy:int . y + y) to the
Imp-numeral 1. Although minimal, its interpretation requires several applications of the boundary functions:
First, we need to compute the result of the function application, which in turn needs the evaluation of 1 as a
λ�-term. Then, the resulting term has to be converted back to an Imp-numeral in order to be assigned to x.

The multi-language signature λ�-Imp providing the desired interoperability is given by coupling the signa-
tures Imp and λ� with the join relation specified by en exp and expn e, where e is the sort of Imp-expressions
and exp the sort of λ�-terms. The semantics of the generated multi-language programs is obtained by in-
troducing a boundary function for each n-constraint. For instance, given a standard denotational semantics
for both the underlying languages, the boundary function Je n expK can provide each Imp-expression with a
λ�-meaning in the following way: Let e be the semantics of such an Imp-expression. We can first transform
a λ�-environment to an Imp-environment, run e on its conversion, and then move the resulting Imp-values to
suitable λ�-values.

The equational axiomatization of such a boundary function can be specified by the following multi-language
equations: (1) ↪→e,exp (i) = i and (2) ↪→e,exp (x) = x. The first equation allows λ�-integers to be converted
to Imp-numerals of the same form. In more realistic examples, the conversion of values across languages should
take into consideration different machine representations (for instance, if the λ� language does not admit
an explicit representation of integers, we may convert the integer i to its corresponding Church-numeral).
Equation (2) provides a match between Imp and λ� variables with the same name. This enables a natural way
for moving stored values across the two languages. For instance, the multi-language program x = (λy:int . y
+ y) z acts in the same way of the previously described one but applying the λ�-function to the value stored
in the Imp-variable z.

On the other hand, the boundary function Jexp n eK works in a dual manner for providing λ�-terms with
an Imp-meaning. Given all these specifications, the equational logic provides the following chain of equalities:

x = (λy:int . y + y) 1 = x = 1 + 1 = x = 2 = x = 2

4 Further Multi-Language Constructions

Buro and Mastroeni [3] provides three different multi-language constructions based on boundary morphism
properties (although in their work, morphisms are only set-theoretic functions). In Section 3, we studied
a categorical equational logic for the simplest construction. Here we briefly discuss the other two, each a
refinement of the first.

The first refinement of multi-language signatures is accomplished by allowing all conversion operators
↪→si,s′j

: si → s′j in the associated signature to be replaced by subsort polymorphic operators ↪→ : si → s′j that

do not carry any sort information. One can check that any associated signature SG defined in this way remains
an order-sorted signature if and only if the following additional constraint holds for SG :

si n s′j , ri n r′j , and si ≤i ri imply s′j ≤j r′j (1)

Multi-language algebras are then restricted by the following monotonicity requirement:

si n s′j , ri n r′j , and si ≤i ri imply Js′ ≤j r′KAj
◦ Jsi n s′jKA = Jri n r′jKA ◦ Js′ ≤j r′KAj

(2)

In this new multi-language construction, we can prove the following version of Theorem 3.7:

Theorem 4.1 Assume (1) and (2) for multi-language signatures and algebras, respectively. There is a natural

isomorphism η : MLAlg(C, I) ⇒ OSAlg(C, I) ◦ (−) inducing MLAlg(C, I)SG ∼= OSAlg(C, I)SG , where there are
functors MLAlg(C, I) : MLSg → Catop and OSAlg(C, I) : OSSg → Catop that map signatures to their category of
algebras in (C, I).

Proof. The proof is almost identical to the proof of Theorem 3.7. That each ηSGA is a proper order-sorted
algebra boils down to the fact that each J↪→ : si → s′jKηSGA commutes with the desired morphisms in I; but
this commutativity follows immediately from (2). 2

The second refinement of multi-language signatures aims to achieve a multi-language construction which
consists only of the union of the underlying languages, that is no conversion operator is added to the associated
signature and single-language operators are not tagged. Such a construction is particularly useful when mode
ling the extension of a language rather than the union of two already existing languages.
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The notion of multi-language signature is refined by assuming that

• (S1 + S2,n) is a poset; and

• f : w → s in Sg i and f : w′ → s′ in Sgj with wi n w′j , then si n s′j .

and the associated signature SG is defined as follows:

• the poset of sorts is given by (S1 + S2,≤), where si ≤ rj if i = j and s ≤i r or i 6= j and si n rj ;

• if f : w → s is a function symbol in Sg i, then f : wi → si is a function symbol in SG , and similarly for
constants.

Multi-language algebras now force boundary morphisms to act as subsort morphisms. This means that if the
function symbol f appears with more than one rank f : w → s and f : w′ → r in Sg i and Sgj , respectively,

with (s1)i, . . . , (sa)i , w n w′ , (r1)j , . . . , (ra)j , then the following diagram commutes:

Js1KAi × · · · × JsaKAi JsKAi

Jr1KAj × · · · × JraKAj JrKAj

Jf : w1→sKAi

J(s1)in(r1)jKA×···×J(sa)in(ra)jKA JsinrjKA

Jf : w2→rKAj

Theorem 4.2 Assume these new hypotheses for multi-language signatures and algebras, respectively. There is
a natural isomorphism η : MLAlg(C, I) ⇒ OSAlg(C, I) ◦ (−) inducing MLAlg(C, I)SG ∼= OSAlg(C, I)SG , where
(as before) there are functors MLAlg(C, I) : MLSg → Catop and OSAlg(C, I) : OSSg → Catop.

Conclusions and Future Research

Equational logic is a simple fragment of first-order logic with several applications to computer science [12,34,17].
In this paper, we have addressed the problem of equational deduction in a multi-language context. We have
lifted the order-sorted equational logic of [13] to the algebraic framework of multi-languages introduced by [3],
and we have proved the soundness and the completeness of the resulting deduction system. The main benefit
of the theoretical development in this paper is a solid mathematical foundation for reasoning about equalities
in a multi-language context.

Among all the applications, one motivation for extending the theory of equational logic to a multi-language
context resides in the possibility of providing operational semantics to multi-languages, in a similar way to [11].
In future work, we plan to investigate this in the context of rewriting logic [31], where axioms might be
partitioned into a set R of rewriting rules and a set E of equations in order to perform rewriting modulo E.

We know that there is considerable practical interest in understanding how real languages and systems may
be integrated to exploit advantages of each individual system. To make real progress, we believe that practical
advances need to be made in synchrony with theoretical developments, with each approach supporting and
informing the other. To this end, we are pursuing practical developments of the work presented in this paper.
As a side note, we have also begun to look at the implementation of our examples within Maude [5].

We deduce unconditional equations but allow conditional axioms. This approach has merit from the point
of view of practical specifications, and reasoning about them. That said, one could be rather more expressive
if one allows conditional equations as primary judgements of a deduction system. In such a case, the semantics
of judgements could be given in an internal manner by making use of categories with equalisers [19]. We are
currently working on such a system, with a view to giving a sound and complete semantics, and the results
will appear in a future paper. There are interesting questions concerning the appropriate category theory, and
the answers will have connections to work such as [25]. And further, since equational theories give rise to free
algebra monads [30], further studies should investigate the possibility of extending/generalizing the results in
this paper to the notion of monad [23]. Here, however, our intention has been to provide an account that is
very general (categorical) but not so abstract that applications become obfuscated.

Finally, we wish to note that the approach presented in this paper generalises to the combination of an
arbitrary number n of languages by recursively combining the (associated theory of the) first Th1, . . . ,Thn−1
theories with Thn. Such a modularity property strengthens the framework both from a theoretical and practical
perspective, enabling the construction of complex theories on the basis of more elementary ones.
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[20] Narciso Mart́ı-Oliet and José Meseguer. Inclusions and Subtypes I: First-order Case. Journal of Logic and Computation,
6(3):409–438, 1996.

[21] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language programs. ACM Transactions on
Programming Languages and Systems, 31(3):12:1–12:44, 2009.

[22] Jacob Matthews and Robert Bruce Findler. Operational Semantics for Multi-Language Programs. ACM Transactions on
Programming Languages and Systems, 31(3):1–44, 2009.

[23] Eugenio Moggi. Notions of computation and monads. Information and computation, 93(1):55–92, 1991.
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