
Physics-based Deep Neural Network
for Real-Time Lesion Tracking

in Ultrasound-guided Breast Biopsy

Andrea Mendizabal1,∗, Eleonora Tagliabue2,∗, Jean-Nicolas Brunet1, Diego
Dall’Alba2, Paolo Fiorini2, and Stéphane Cotin1
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Abstract. In the context of ultrasound (US) guided breast biopsy, im-
age fusion techniques can be employed to track the position of US-
invisible lesions previously identified on a pre-operative image. Such
methods have to account for the large anatomical deformations result-
ing from probe pressure during US scanning within the real-time con-
straint. Although biomechanical models based on the finite element (FE)
method represent the preferred approach to model breast behavior, they
cannot achieve real-time performances. In this paper we propose to use
deep neural networks to learn large deformations occurring in ultrasound-
guided breast biopsy and then to provide accurate prediction of lesion
displacement in real-time. We train a U-Net architecture on a relatively
small amount of synthetic data generated in an offline phase from FE
simulations of probe-induced deformations on the breast anatomy of in-
terest. Overall, both training data generation and network training are
performed in less than 5 hours, which is clinically acceptable considering
that the biopsy can be performed at most the day after the pre-operative
scan. The method is tested both on synthetic and on real data acquired
on a realistic breast phantom. Results show that our method correctly
learns the deformable behavior modelled via FE simulations and is able
to generalize to real data, achieving a target registration error compara-
ble to that of FE models, while being about a hundred times faster.

Keywords: Ultrasound-guided Breast Biopsy · Deep Neural Networks
· Real-time Simulation.
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1 Introduction

Breast biopsy is the preferred technique to evaluate the malignancy of screening-
detected suspicious lesions. To direct the needle towards the target, biopsy pro-
cedures are performed under image guidance, normally done with ultrasound
(US) probes due to their ability to provide real-time visualization of both the
needle and the internal structures [15]. However, proper needle placement with
US remains a challenging task. First, malignant lesions cannot always be ade-
quately visualized due to the poor image contrast of US. Furthermore, navigation
towards complex 3D lesion geometries is commonly achieved using 2D freehand
US (FUS) systems, which provide information in a lower-dimensional space [9].
Since highly sensitive pre-operative images (such as MRI or CT) can provide
accurate positions of the lesions, finding a method to update these positions
from real-time US images during an intervention would highly benefit current
biopsy procedures. Several commercial and research platforms have implemented
image fusion techniques that align pre-operative and intra-operative data, ex-
ploiting rigid or affine registration methods [6]. However, when dealing with
breast anatomy, large deformations arise due to compression forces applied by
the US probe. To provide accurate probe-tissue coupling and acceptable image
quality, an appropriate alignment procedure of the pre-operative and US data is
required.

Accurate modelling of soft tisue deformation in real-time is a far-from-being-
solved problem. Biomechanical models relying on the finite element method
(FEM) realistically calculate soft tissue deformations by using a mathematical
model based on continuum mechanics theory. Although these models have been
successfully employed for multimodal breast image registration, they have never
been applied to registration between pre-operative data and intra-operative US,
due to their incapability to provide a prediction within real-time constraints [8].
This is especially true when considering large, non-linear deformations which
involve hyperelastic objects, as it is the case for the breast.

In order to meet real-time compliance, various techniques have been proposed
to simplify the computational complexity of FEM. Some of them have focused on
optimizing linear solvers (the main bottleneck of FEM) or the formulation itself,
such as corotational [5], multiplicative jacobian energy decomposition [11] and
Total Lagrangian explicit dynamics (TLED) [13] formulations. Another possible
option to lower the simulation time is through dimensionality reduction tech-
niques, like Proper Orthogonal Decomposition (POD), where the solution to
a high-dimensional problem is encoded as a subset of precomputed modes. The
most optimized approach used to model breast biomechanics is the one proposed
by Han et al. in [7], which relies on both TLED formulation and a GPU-based
solver. Despite the significant simulation speedup achieved, solving the FE sys-
tem took around 30s, which is still not compatible with real-time. Modelling
methods that do not rely on continuum mechanics laws have also been used to
approximate soft tissues behavior. Among these, the position-based dynamics
(PBD) approach has been used to predict breast lesions displacement due to US
probe pressure in real-time, providing comparable accuracy with FE models [18].
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However, not being based on real mechanical properties, such model requires an
initial optimization of simulation parameters to obtain a realistic description of
the deformation.

An emerging approach which has the potential of being both accurate and
fast, exploits neural networks to estimate soft tissue behavior. Machine learning-
based methods have proven successful to predict the entire 3D organ deformation
starting either by applied surface forces [14, 19] or by acquired surface displace-
ments [16, 1]. Being networks trained with synthetic data generated from FE
simulations, they can reproduce a realistic physics-based description of the organ
mechanical behavior. The potentiality of applying machine learning techniques
to predict breast deformations has been already shown in [12], where several
tree-based methods have been employed to estimate breast deformation due to
compression between biopsy plates. These methods have been trained on 10 dif-
ferent patient geometries with a very specific FE simulation, where the upper
plate is displaced vertically towards the lower one.

Similarly to works in [16, 1], we propose an approach where a neural network
is trained to predict the deformation of internal breast tissues starting from the
acquired surface displacements induced by the US probe. Our network can be
seen as a patient-specific model. We train it on a single patient geometry before
surgery, with a relatively small amount of training data. However, in contrast to
the work of [12], FE simulations that compose the training set are generated with
several random input displacements, making our approach able to generalize to
different probe positions and compression extents.

The proposed method consists in a U-Net architecture, described in Sect. 2.2,
and an immersed boundary method used for generating patient-specific simula-
tions, described in Sect. 2.3. Results presented in Sect. 3 show the efficiency of
the method when applied to both synthetic and ex vivo scenarios. Our contribu-
tion consists of a novel method to generate a real-time capable soft tissue model
to improve target visualization during needle-based procedures. The position
of lesions identified beforehand on pre-operative images can be updated from
intra-operative ultrasound data and visualized by the surgeon in real-time.

2 Methods

This work presents a data-driven method to estimate in real-time the displace-
ment of the breast internal structures due to probe pressure during US scan-
ning. In our pipeline, we assume to have a patient-specific geometric model
of the breast, obtained from pre-operative imaging such as MRI, and to know
the position and orientation of the US probe at each time, thanks to a spatial
tracking system. If the tracking coordinate system and the coordinate system
of pre-operative imaging are registered, knowledge about the 3D pose and the
geometry of the US probe directly allows to identify the contact surface between
the breast and the probe. Since the US probe is represented as a rigid body,
we can reasonably assume that when the anatomy is deformed by the probe
during the image acquisition process, points on the breast surface below the US
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probe will be displaced to the same exact extent as the probe itself. As a con-
sequence, our method can predict the displacements of all the points within the
anatomy given as input the displacement of the surface nodes in contact with
the US probe. The decision of relying on surface displacement inferred from the
spatial tracking of the US probe instead of directly tracking surface deforma-
tions (through, for example, an RGBD camera) was taken from the fact that
probe-induced deformations are large but local, and the probe itself would oc-
clude most of the deformed surface to the sensor, thus preventing an accurate
estimation of the contact surface displacements.

2.1 The U-Net architecture

The objective of our work is to find the relation function f between the partial
surface deformation under the US probe and the deformation inside the breast.
Let us be the surface deformation and uv the volumetric displacement field. In
order to find f a minimization is performed on the expected error over a training
set {(us

n,uv
n)}Nn=1 of N samples:

min
θ

1

N

N∑
n=1

‖f(us
n)− uv

n‖22 (1)

where θ is the set of parameters of the network f . We propose to use the same
architecture as in [1], that is a U-Net [17] adapted to our application (see Fig. 1).
The network consists of an encoding path that reduces the high dimensional
input into a reduced space, and a decoding path that expands it back to the
original shape. The skip connections transfer features along matching levels from
the encoding path to the decoding path through crop and copy operations. As

Fig. 1. U-Net architecture for a padded input grid of size 32 × 24 × 16.

Fig. 1 shows, the encoding path consists of k sequences (k = 3 in our case)
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of two padded 3 × 3 × 3 convolutions and a 2 × 2 × 2 max pooling operation.
At each step, each feature map doubles the number of channels and halves the
spatial dimensions. In the lower part of the U-Net there are two extra 3× 3× 3
convolutional layers leading to a 1024-dimensional array. In a symmetric manner,
the decoding path consists of k sequences of an up-sampling 2×2×2 transposed
convolution followed by two padded 3× 3× 3 convolutions. At each step of the
decoding path, each feature map halves the number of channels and doubles the
spatial dimensions. There is a final 1×1×1 convolutional layer to transform the
last feature map to the desired number of channels of the output (3 channels in
our case). The design of the U-Net is based on a grid-like structure due to this
up- and down-sampling process. Hence we directly mesh our deformable object
with regular hexahedral elements as explained in the next section.

2.2 Simulation of breast tissue using hexahedral grids

The training data set consists of pairs of (us,uv) where us is the input partial
surface displacement and uv is the volumetric displacement field. Even though
the data generation process takes place in an offline phase, in order to generate
enough training data with FE simulations within clinically acceptable times (the
intervention can be performed on the day after pre-operative scan is acquired),
it is important to have simulations that are both accurate and computationally
efficient.

Fig. 2. Breast surface mesh obtained from a pre-operative CT scan immersed in a
hexahedral grid for FEM computations.

We consider the boundary value problem of computing the deformation on
a domain Ω under both Dirichlet and Neumann boundary conditions. Let Γ be
the boundary of Ω (in our case, Γ corresponds to breast external surface, while
Ω represents the entire breast volume). We assume that Dirichlet boundary con-
ditions are applied to ΓD and are a-priori known, whereas Neumann boundary
conditions are applied to ΓN , a subset of Γ that represents probe-tissue contact
area and changes depending on current US probe position. In this work, train-
ing data for the network are generated by solving the discretized version of the
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following boundary value problem, exploiting the FE method:−∇ · σ = 0 in Ω
u = 0 on ΓD
σn = t on ΓN

(2)

where σ is the Cauchy stress tensor, n is the unit normal to ΓN and t is a
traction force applied to the boundary. Note that in (2) we neglect all time-
dependent terms and we do not apply any body force like gravity, since our
geometric model already accounts for the effect of gravity force. The relation
between stress and strain is described through the Saint Venant-Kirchhoff model,
which is the simplest and most efficient extension of a linear elastic material to
the nonlinear regime. This choice is motivated by the fact that a simple linear
elastic model would not be able to appropriately describe the large deformations
undergone by the breast. An iterative Newton-Raphson method is used to solve
the non-linear system of equations approximating the unknown displacement.

We choose to discretize the domain into 8-node hexahedral elements not only
for their good convergence properties and lock-free behavior, but also because it
is the required structure for the input to the network. To do that, the 3D breast
geometry is embedded in a regular grid of hexahedral elements (see Fig. 2) and
we use an immersed-boundary method to correctly approximate the volume of
the object in the FE method computations.

2.3 Data generation

The input to the network corresponds to the displacement us of the points be-
longing to the breast-probe contact area. The punctual displacements are spread
to the nodes of the surrounding cuboid cell through a barycentric mapping and
the corresponding volume displacement uv is obtained by the previously ex-
plained FE approach in response to us. The data used to train the network
must be representative of the application scenario and must allow the network
to extract the pertinent features of the tissue behavior. In order to train our
model to estimate breast volume deformation in response to pressure imposed
with the US probe, we simulate several random probe-induced deformations us-
ing the following strategy:

– Select a random node p in the breast surface
– Select an oriented bounding box A centered in point p and normal to the

breast surface, whose dimensions match those of the US probe lower surface,
which represents current probe-tissue contact area

– Select all the surface points P falling within the box A
– Select as force direction d the normal to the surface at point p plus a random

angle α (α ∈
[
−π4 ,

π
4

]
)

– Apply the same force f of random magnitude (|f | ∈ [0.0, 0.8]) along direction
d to the P selected points simultaneously

– Store the displacement at the set of points P (input to the network) and the
displacement of all the points in the volume (output to the network)
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– Repeat the procedure until N +M samples are generated

The choice of applying force f allowing some angle deviation from normal direc-
tion enables us to include in our dataset samples where the probe compression is
not precisely normal to the surface, as it can be the case in freehand US acquisi-
tions. The maximal force magnitude (e.g. 0.8N) is set such that the amount of
maximal deformation reproduced in the training dataset never exceeds too much
that observed in real clinical settings. The described strategy is used to generate
the set {(us

n,uv
n)}Nn=1 of N samples which is used to train the network, and

the set {(us
n,uv

n)}Mn=1 of M samples which is left for validation. The training
dataset is generated with the SOFA framework [3] on a laptop equipped with an
Intel i7-8750H processor and 16GB RAM.

3 Experiments and Results

The network presented in this work is used to predict US probe-induced defor-
mations of a realistic multi-modality breast phantom (Model 073; CIRS, Norfolk,
VA, USA). The 3D geometry model of the phantom surface and 10 inner lesions
(diameter of 5-10mm) is obtained by segmenting the corresponding CT image,
relying on ITK-SNAP and MeshLab frameworks [21, 2]. A Freehand Ultrasound
System (FUS) based on a Telemed MicrUs US device (Telemed, Vilnius, Lithua-
nia) equipped with a linear probe (model L12-5N40) is used to acquire US im-
ages of the 10 segmented lesions. The dimension of the probe surface is (5x1cm).
For each lesion, we acquire US images in correspondence of four different input
deformations. The MicronTracker Hx40 (ClaronNav, Toronto, Canada) optical
tracking system is used to track US probe in space (Fig. 3(a)). The overall
probe spatial calibration error is below 1mm (±0.7147), estimated through the
PLUS toolkit [10]. Landmark-based rigid registration is performed to refer the
CT-extracted 3D model, the US probe and the US images to the same com-
mon coordinate system, exploiting 3D Slicer functionalities [4]. The registration
process does not only enable us to extract the breast-probe contact area, as de-
scribed in Section 2, but also to know in real-time the 3D position of any point
belonging to the US image. In this way, it is possible to refer lesions position
extracted from US images to the 3D space.

3.1 Predict displacement on synthetic data sets

Elastic properties of the physics model used to generate training data are set
in accordance with the values estimated in [20] for the same breast phantom
considered in this study. However, as we are imposing surface displacements, the
values of the elasticity parameters do not affect the displacement field inside the
simulated volume, thus making the method reliable for any patient specificity.
Dirichlet boundary conditions are imposed by constraining the motion of all the
nodes belonging to the lowest phantom surface.

Using the method described in Sect. 2.2 and 2.3, we discretized the breast
phantom into 2174 hexahedral elements and we simulated several probe-induced
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(a) (b)

Fig. 3. (a)Experimental setup. From left to right: monitor showing real-time US im-
ages; CIRS breast phantom during FUS acquisition; optical tracking system that allows
to map the real positions of the CIRS breast phantom and the US probe to the pre-
operative geometry model. (b)External surface and inner lesions of the CIRS breast
phantom.

displacements. Overall we generated N = 800 samples for training and M = 200
samples for testing. The U-Net is trained in a GeForce GTX 1080 Ti using a
batch size of 4, 100000 iterations and the Adam optimizer. We used a Pytorch
implementation of the U-Net. To assess the learning capability of the network,
we perform a statistical analysis of the mean norm error e over the testing data
set. Let uv

m be the ground truth displacement tensor for sample m generated
using the finite element method described in Sect. 2.2 and f(us

m) the U-Net
prediction. The mean norm error between uv

m and f(us
m) for sample m reads

as:

e(uv
m, f(us

m)) =
1

n

n∑
i=1

|uv
m
i − f(us

m)i|. (3)

where n is the number of degrees of freedom of the mesh. We compute the
average e, standard deviation σ(e) and maximal value of such norm over the
testing data set. The obtained results are shown in Table 1. The maximal error
is of only 0.266mm and corresponds to the sample shown in Fig. 4(b). The most
striking result is the small computation time required to make the predictions:
only 3.14±0.56ms. In contrast, the FE method takes on average 407.7±64ms to
produce the solution. Obviously, the resolution of the FE mesh could be reduced
to accelerate the computations but at the cost of an accuracy loss.

3.2 Predict displacement on phantom data

In our experiments, we consider one lesion at a time and we reposition the US
probe on the surface of the breast such that the lesion considered is visible on the
US image. In order to validate our model, we manually extract lesions position
from US image acquired at rest (i.e., without applying any deformation, when the
probe is only slightly touching the surface) and we consider it as a landmark to
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e σ(e) max
m∈M

e Prediction Total training

(mm) (mm) (mm) time (ms) time (min)

0.052 0.050 0.266 3.14 ± 0.56 278

Table 1. Error measures over the testing data set for a breast having 2174 H8 elements,
with maximal nodal deformation of 79.09mm.

(a) (b) (c)

Fig. 4. (a) Sample with maximal deformation (79.09mm). (b) Sample with maximal
mean norm error (0.266mm). The green mesh is the U-Net prediction and the red
mesh is the FEM solution. The initial rest shape is shown in grey. (c) U-Net prediction
on phantom data.

track. We then impose four deformations of increasing extent for each lesion, and
we compare the U-Net-predicted displacement with real displacements extracted
from US images. The comparison is performed computing target registration
error (TRE) between the predicted position of the lesion and its ground-truth
position. The performance of our method is compared to that of the FE model
used for data generation. In Table 2 are shown the target registration errors
for each phantom lesion with respect to the applied deformation. The input
deformations are classified into five ranges based on the probe displacements.
Displacement ranges indicated as D15, D20 and D25 have a fixed length of 5
mm each and are centered at 15, 20 and 25 mm respectively. D10 and D30
contain the extreme cases under 12.5 mm or above 27.5 mm.

Values in Table 2 highlight that the average TRE for all the tumors and
for all the deformations is smaller than 6.194mm which is comparable to the
maximum value obtained with the FE method (6.080mm). The average error
increases with the deformation range just like in the FE method. There is no
significant difference between the values of the two tables, meaning that in terms
of accuracy, our method is comparable to the data generation method used to
train it. In order to compute each deformation, the FE method needs about
407.7ms whereas the U-Net predicts the deformation in only 3ms.
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Table 2. Target registration errors in millimeters for different tumors and different
deformation ranges in the breast phantom. The first table is for the proposed method,
while the second table reports results obtained with the FE model used for data gen-
eration. Not-acquired data is reported as (-).

U-Net predictions

TumorID D10 D15 D20 D25 D30 Mean STD

1 - 1.936 2.002 1.506 3.053 2.124 0.569
2 3.211 2.905 4.068 - 4.137 3.580 0.534
3 2.032 - 4.709 7.134 10.90 6.194 3.262
4 0.505 2.225 5.313 5.903 - 3.486 2.217
5 0.932 2.768 3.454 - 4.893 3.012 1.425
6 3.923 6.349 5.625 - 6.724 5.655 1.075
7 3.454 3.864 4.543 6.710 - 4.643 1.255
8 2.422 3.261 4.320 5.136 - 3.785 1.030
9 - 3.928 4.214 4.578 4.858 4.394 0.353
10 5.529 3.272 3.940 4.846 - 4.397 0.860

Mean 2.751 3.390 4.219 5.116 5.761
STD 1.638 1.294 1.007 1.854 2.788

FE method

TumorID D10 D15 D20 D25 D30 Mean STD

1 - 1.326 2.151 2.075 3.759 2.328 0.887
2 1.956 2.738 3.945 - 4.025 3.166 0.865
3 1.595 - 4.748 7.044 10.932 6.080 3.404
4 0.755 1.991 4.544 5.120 - 3.103 1.795
5 1.029 2.863 3.330 - 4.541 2.941 1.262
6 2.579 3.409 2.871 - 2.337 2.799 0.400
7 2.605 3.219 4.095 6.750 - 4.167 1.582
8 2.695 2.748 4.321 5.411 - 3.794 1.139
9 - 2.745 2.497 2.510 4.193 2.986 0.704
10 2.916 2.542 3.015 3.868 - 3.085 0.485

Mean 2.016 2.620 3.552 4.682 4.964
STD 0.765 0.593 0.856 1.803 2.757

4 Conclusion

In this work we have proposed to use a deep neural network to learn the de-
formable behavior of the breast from numerical simulations based on the finite
element method, in order to bypass the high computational cost of the FEM.
Our approach represents an interface between precise biomechanical FE mod-
eling (not capable of real time) and clinical applications requiring both high
accuracy and very high speed. We have shown that our framework allows for ex-
tremely fast predictions of US probe-induced displacements of the breast during
US scanning, achieving comparable accuracy to other existing methods. There-
fore, it has the potential to be employed to update in real-time the estimated
position of breast lesions identified on a pre-operative scan on US images, en-



abling continuous visualization of the biopsy target, even when sonography fails
to render it.

Although the FE model used to train our network does not perform in real-
time, its prediction delay of less than 1 s might be considered already acceptable
for our specific application. However, such good computational performance is
achieved since in this preliminary evaluation we use a very simplistic model,
that does not account for heterogeneity or complex boundary conditions hap-
pening in clinical cases. Usage of a more complex FE model will certainly cause
an increase of computation load. On the contrary, an important feature of our
approach is that the prediction time remains close to 3ms regardless of the grid
resolution and of the biomechanical model used for the data generation pro-
cess. This means that increasing the complexity of the model used to generate
the data set will not affect the prediction speed. Moreover, our pipeline allows
the method to be insensitive to patient specific elastic properties as it imposes
surface displacements. Another advantage of our method is the easy meshing
process. Any geometry can be embedded in a sparse grid and through the use
of immersed boundary simulations the deformations are correctly estimated.

The main limitation of our method remains the training process, which is
burdersome and has to be repeated for every new geometry or application. How-
ever, we have shown that a limited amount of training data can be sufficient to
train a U-Net such that it obtains accurate prediction within clinically accept-
able times. As a future work, we plan to use a more general training strategy
leading to a network model able to predict deformations induced by any type
and number of compression tools (for example, different probe shapes or the two
biopsy compression plates).
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