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Reading note

This appendix to Andreoli and Peluso (2020) delivers additional results that are useful

for implementing the Neighborhood Inequality index and its variance bounds empirically.

This appendix refers to equations, tables and figures appearing in the reference paper

with a ”*”, using the same numbering sequence appearing therein.

A Empirical estimators of the NI index and its vari-

ance bounds

Consider a sample of size n. Income realizations are denoted yi, with i = 1, . . . , n. The

income vector y = (y1, . . . , yn) is a draw from the spatial random process {Ys : s ∈ S}

distributed as FS, where a location s identifies a precise point on a map. Information

about location (latitude and longitude) of an observation i is denoted by si ∈ S. Distance

measures between locations can be easily constructed based on the geodesic formula. Fur-

thermore, observed incomes are associated with weights wi ≥ 0 and are indexed according

to the sample units, with w =
∑

iwi. It is often the case that the sample weights give the

inverse probability of selection of an observation from the population. Sample weights

may also incorporate complex survey design structure. In many applications, it is natural

to assume wi = 1/n.

The mean income within an individual neighborhood of size d, denoted µid, is estimated

by µ̂id =
∑n

j=1 ŵjyj where

ŵj :=
wj · 1(||si − sj|| ≤ d)∑
j wj · 1(||si − sj|| ≤ d)
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so that
∑

j ŵj = 1, and 1(.) is the indicator function. The estimator of the average

neighborhood mean income is instead µ̂d =
∑n

i=1
wi

w
µ̂id. The estimator of the NI index,

denoted N̂I(y, d), is the sample weighted average of the mean absolute deviation of the

income realization in location si from the income realization in any other location sj such

that ||si − sj|| ≤ d. Formally

N̂I(y, d) =
n∑

i=1

wi

w

1

2µ̂id

n∑
j=1

ŵj |yi − yj|,

where ŵj is defined as above.

The estimation is conditional on d, which is a parameter under control of the re-

searcher. The distance cutoff d is conventionally reported in miles and is meant to capture

a continuous measure of the size of an individual neighborhood. In empirical applications,

one can estimate as many values of d as there are pairs of observations in distinct locations

on the maps. The value of d is generally bounded by the population under analysis: if the

focus is on neighborhood inequality within a city, the definition of the urban area delimits

the space where interactions take place, thus providing a bound for d. For computa-

tional reasons, however, the NI index and its SE are estimated only for a finite number

of distance cutoffs, identifying intervals of fixed length. The maximum number of cutoffs

indicates the point at which distance between observations is large enough that the NI

index converges to the Gini index and its SE is constant. For a given neighborhood of size

d, we partition the distance interval [0, d], defining the size of the individual neighborhood,

into K intervals d0, d1, . . . , dK of equal size, with d0 = 0. We always use dk to denote the

distance between any pair of observations i and j located at distance dk−1 < ||si−sj|| ≤ dk

one from the other. The pairs (dk, N̂I(y, dk)) for any k = 1, . . . , K can be hence plotted

on a graph. The curves resulting by linearly interpolating these points are the empirical

equivalent of the neighborhood inequality curves.

A plug-in estimator for the asymptotic standard error of the NI indices can be derived

under the assumptions listed in the previous sections. The SE estimator crucially depends

on four components: (i) the consistent estimator for the average µ̃, denoted µ̂, which
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coincides with the sample average; (ii) the consistent estimator for variance σ2, denoted

σ̂2, which is given by the sample variance; (iii) the consistent estimator for the variogram;

(iv) the estimator of the weighting schemes.

Empirical estimators µ̂ and σ̂2 are standard. The robust non-parametric estimator

of the variogram proposed by Cressie and Hawkins (1980) can be used to assess the

pattern of spatial dependency of georeferenced data on income realizations. The empirical

variogram is defined for given distance ranges, meaning that it produces a measure of

spatial dependence among observations that are located exactly at a given distance range

one from the others. We use b = 1, . . . , B to partition the empirical distance range between

any given pair of locations into equally spaced lags. Then, we estimate the variogram on

each of these lags. This means that 2γ(b) refers to the correlation between incomes placed

at distance lags of exactly b intervals, each of size d/B.

It is understood that the size of the sample is large compared to B, in the sense that

the sampling rate per unit area remains constant when the partition into lags becomes

finer. This assumption allows to estimate a non-parametric version of the variogram at

every distance cutoff. The normality assumption is central for using variograms and linear

predictions from the underlying model (see also Diggle, Tawn and Moyeed 1998). The

assumption may be violated when dealing with income due to the presence of heavy tails

and outliers. Following Cressie (1991), we use an empirical variogram estimator that is

robust with respect to contamination from outliers and sensible to tails. We then use

weighted least squares to fit a theoretical variogram model to the empirical variogram

estimates we obtain from the data. The theoretical model is a continuous parametric

function mapping distance into the corresponding variogram level. In the application,

we adopt the spherical (semi)variogram model (see Cressie 1985), denoted γ(h) = α +

β(3/2 min{h/a, 1}−0.5 min{h/a, 1}), where α, β are parameters to be estimated and a is

the so-called range level: beyond distance a, the random variables Ys+h and Ys with h > a

are assumed to be spatially uncorrelated. The variogram satisfies the condition γ(0)→ 0

and γ(a) = σ2. The maximum number of intervals B is set so that d = 2a. The estimated

parameters are then used to draw predictions for the estimator 2γ̂ of the variogram at
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each distance cutoff.1 The predictions are then plugged into the SE estimator of the NI

index.

Finally, SE estimation requires to produce reliable estimators of the weights ω. These

are non-parametrically identified from the formulas provided above. In some cases, how-

ever, computation of the exact weights requires several iterations across observations. The

overall computation time thus increases exponentially in the number of observations and

the procedure becomes quickly unfeasible. We propose alternative, feasible estimators

for these weights, denoted ω̂, that are expressed as linear averages. The computational

time is, nevertheless, quadratic in the number of observations as it requires to construct a

routine that first computes weights estimators for each observation separately, and then

averages across all observations at given distance cutoffs.

We consider here only the weights that appear in the estimators ŜEd in (5*) that

cannot be directly inferred (i.e., are computationally unfeasible) from observed weights.

For a given observation i, define w(b, i) =
∑

j∈dbi wj for any ring b = 1, . . . , Bd, . . . , B of

radius db the weight associated with income realizations that are exactly located b lags

away from i. Then, denote w(d, i) =
∑

j∈di wj =
∑Bd

b=1w(b, i). Consider the following

estimators

for (9*) : ω̂(m, b, b′, d) =
∑
i

wi

w

w(b, i)

w(d, i)

w(m, i)

w

w(m+ b′, i)

w(m+ d, i)
;

for (11*) : ω̂(m, b′, d) =
∑
i

wi

w

w(m, i)

w

w(b′, i)

w(d, i)
.

To compute these weights, each observation i has to be first assigned with the total weight

w(b, i) of those observations j 6= i that are located exactly at distance b from i. Then,

ω̂(m, b, b′, d) and ω̂(m, b′, d) are obtained by averaging these weights across i’s. The key

feature of these estimators is that weights of observations occurring at distance b′ from an

observation located at distance m from i are estimated by averaging across all observations

the relative weight of observations at distance m+ b′ from i.

1Cressie (1985) has shown that this methodology leads to consistent estimates of the true variogram
function under the stationarity assumptions mentioned above.

5



B Monte Carlo study: Additional details

This section describes the underpinnings of the Monte Carlo study presented in the paper.

The study reports simulated size and power for tests of differences of NI indices estimated

at pre-determined distance cutoffs on samples of variable size n (n = 1000, 2000, 5000,

8000 observations), each drawn from distinct known distributions. The distributions are

calibrated to represent the actual distribution of gross equivalent household income in

Chicago IL in 2014, obtained from the Census Bureau’s American Community Survey

data, 2010-2014 module. We compare the actual distribution with counterfactual distri-

butions obtained by applying suitable transformations to the actual ACS 2010-2014 data,

so that these distributions can be clearly ordered in terms of NI curves dominance. Then,

we use moments of these population distributions to identify moments of the income data

generating processes adopted in the simulation study.

The first distribution F0 represents the spatial income distribution in Chicago, 2014.

This distribution has mean income µ0 = $53, 456, standard deviation σ0 = $55, 310 and

spatial covariance structure cov(s, v) across pairs of locations at distance h one from the

other. The spatial covariance function, estimating spatial dependence in the population

model, is characterize by the variogram γ0(.), so that cov(s, v) = σ2
0 − γ0(h). Interpolat-

ing the spherical model for the (semi)variogram function to the data yields parameters

estimates α0 = −327, 203, β0 = 21.14 and range level a = 10 miles.

We produce two counterfactual population distributions F1 and F2 from the same

data. The distribution F1 is obtained by adding noise to F0, so that y1 = y0 + ε for

y1 ∼ F1, y0 ∼ F0 and ε ∼ N(0, 6118.44), where the variance term of idiosyncratic

disturbances is half a million time smaller than σ2
0. This counterfactual distribution

displays similar patterns of neighborhood inequality as F0. The null hypothesis H3
0 :

NI(F0, d) = NI(F1, d) for at least some d, cannot be rejected, as shown in panel (a)

of figure 3. This new population distribution has expectation µ1 = µ0, standard error

σ1 = $55, 631 > σ0 and variogram γ1(.) with parameters α1 = −69, 660 and β1 = 21.19.

The second counterfactual distribution F2 is designed in a way that its NI curve

lies always below that of F0. This distribution is obtained by simulating the effect of a
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Figure 1: Neighborhood inequality in Chicago, IL, 2014, versus two counterfactual distri-
butions

(a) NI(F0, d)−NI(F1, d) (b) NI(F0, d)−NI(F2, d)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level.

redistributive linear income tax scheme applied to incomes distributed as F0. Andreoli and

Peluso (2018) have demonstrated that only a basic income flat tax scheme guarantees that

F2 dominates F0 in terms of NI curves. We hence use the transformation y2 = (1−t)y0+m,

for y0 ∼ F0, a flat tax rate t = 0.3 and basic income m = 0.3µ0. This counterfactual

distribution displays different patterns of neighborhood inequality compared to F0. The

null hypothesis H3
0 : NI(F0, d) = NI(F1, d) for at least some d is clearly rejected in

favor of a dominance alternative, as shown in panel (b) of figure 3. This new population

distribution has expectation µ2 = µ0, standard error σ2 = $38, 716 < σ0 and variogram

γ2(.) with parameters α2 = −158, 424.5 and β2 = 20.43.

The simulation study is based on models for the income process, denoted Yn
f for

f = 0, 1, 2, that replicate the population distributions F0, F1 and F2, respectively. As

before, the income process is a collection of random variables indexed by n, a parameter

controlled within the experiment, and defined over the random field Sn. The first concern

is to replicate the spatial structure of the data and construct a random field Sn that is

representative of the map of Chicago in terms of distance scale and population density. To

do so, we draw a random field Sn (reporting information about latitude and longitude of
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each of the n locations) directly from the ACS 2010-2014 map of Chicago, by sampling n

locations without replacement. This procedure should guarantee that the structure of ACS

data for Chicago is always reflected in the outcomes of the simulation. These sampled

locations are stored in a separate file for each n and used throughout the simulation

experiment. Results will be conditional to the random field Sn.2

The second concern is to model the spatial income process Yn
f so that it represents

income variability and spatial association underlying the population distributions Ff .

Given the random field Sn, we maintain the assumption that the spatial income process

is stationary and the Gaussian hypothesis, implying that the process is fully character-

ized by known moments of the population distribution, so that Yn
f ∼ (µf , σ

2
f , γf (.)) for

f = 0, 1, 2. The Monte Carlo experiment consists in randomly drawing realizations from

Yn
f , each denoted yn

f,r with r = 1, . . . , 200, and assessing for each draw r if a certain

null hypothesis about dominance in NI curves can or cannot be rejected, provided that

the actual pattern of dominance in the populations is known. The SE approximations

discussed in Section 3.1* are then adopted to conclude about acceptance/rejections of the

relevant null hypothesis. The decision outcome is registered with an indicator, which is

then averaged across the 200 replicas to simulate size and power of the tests.

Each draw yn
f,r from the spatial income process Yn

f , f = 0, 1, 2, should be represen-

tative of the degree of spatial association in the underlying population distribution Ff .

Coherently with previous assumptions, the spatial association between any pair of loca-

tions s, v on the random field Sn at geographic distance h (in miles) is provided by the

covariance term cs,v = σ2
f − γf (h). The empirical estimates of the moments (µf , σ

2
f , γf (.))

from the population distribution Ff identify the covariance matrix Cf of the spatial in-

come process, with Cf = {cs,v}, s = 1, . . . , n, v = 1, . . . , n and cs,s = σ2
f . We use

decomposition methods to factorize the covariance matrix as Cf = Df ·D′f , where Df is

a lower triangular matrix of size n × n. This matrix conveys the information about the

spatial association and variability in the population.3 Each replica r of a distribution f

2The extracted coordinates of the random fields, alongside parameter estimates and replication code
for this Monte Carlo study, are made available on the author web page.

3In some cases, the covariance matrix Cf may not be positive semi-definite, implying that exact
symmetric decompositions are not available. We use approximations based on the spectral theorem, as
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(of size n) is then obtained as

yn
f,r = µfen + Df · νr,

where en is a n×1 vector with all elements equal to one and νr is a n×1 vector of standard

normal distributed i.i.d. innovations. Throughout all replicas, values of the NI index and

of the SE approximations can be meaningfully computed only at some distance cutoffs.

For samples of size n = 2000, 5000, 8000, distance cutoffs are set at approximately a

third of a mile distance range increments within the first 2 miles, and then at increasing

increments within the next 12 miles (at 19 miles range the NI index converges to citywide

inequality). For the sample of size n = 1000, distance thresholds within 1 and 19 miles

are set by looking at increments of three quarters of a mile exclusively. H3
0 (d) is tested at

each distance cutoff. The null hypothesis of the type H3
0 is tested instead by looking at

all distance cutoffs.

C Robustness check 1: Normality

The variance bound estimator in Andreoli and Peluso (2020) is derived under the nor-

mality assumption. As noted in Cressie (1991) and Diggle, Zheng and Durr (2005), it is

often (albeit sometime not explicitly) assumed in geostatistics literature that the data are

obtained from a gaussian model:

Yi = µ+X(si) + εi,

where µ is non stochastic and may depend on observable characteristics of each unit

i = 1, ..., n, X(si) is a stationary Gaussian process with known means and variances and

spatial covariances Cov[X(s), X(s′)] for locations s 6= s′, s, s′ ∈ S that can be explic-

suggested in Bunch and Parlett (1971), to decompose Cf = X · diag(L) · X′, where L is a vector of
eigenvalues and X collects the corresponding eigenvectors. We then set negative eigenvalues to zero to
obtain L∗ and produce an approximation of Cf , denoted C∗f , such that C∗f = X ·

√
diag(L∗) ·

√
diag(L∗) ·

X′. We finally apply a Q-R decomposition of C∗f to obtain C∗f = R′f ·Rf where Df = R′f is a lower-
triangular matrix.
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itly written as a function of the variogram, and where εi are i.i.d. zero-mean normally

distributed disturbancies. Under this assumption, the spatial process is jointly normal

conditional on the random field. This is the assumption of normality.

The assumption may be restrictive for describing the empirical patterns of some vari-

ables, such as equivalized housold income, which tend to have heavy tails and are rea-

sonably bounded on the positive domain. Furthermore, the normality assumption may

not hold in presence of outliers, inducing bias in the estimation of the variogram. Cressie

and Hawkins (1980) propose estimators for the variogram that are roust with respect to

these empirical issues. Such estimators are adopted in the main paper to produce robust

estimates of the empirical variogram, which is then used to produce estimates of second

order moments under the normality assumption.

The Gaussian assumption has no implications for the derivation of the variance bound

in (5*), although it bears consequences for the empirical estimation of two of the SE

components, namely V ar[∆d] and Cov[∆d, µ̃]. Cressie (1991), p.81 and 137, suggests to

use Gaussian methods after applying a marginal non-linear transformation to the data.4

We follow this line and consider an alternative assumption to normality, that is that

income data are log-normally distributed.

The log-normality assumption has been widely adopted in economics as a theoretical

model for the distribution of income and consumption opportunities, which can be mea-

sured by income equivalized by family needs (as in the reference paper, see also Battistin,

Blundell and Lewbel 2009).5 Furthermore, there exists only one transformation, the expo-

nential, that maps log-income data data that are normally distributed into dollar-income.

This transformation can be used to produce unbiased empirical estimates of the vari-

ogram. Additionally, under log-normality, the transformed data are jointly normal, and

relevant parameters can be simulated from the knowledge of first and second moments of

the underlying distribution and of the variogram.

4Linear predictors, stemming from the normality assumption, are employed in spatial kriging. See also
Diggle et al. (1998) for an alternative proposal using linear predictors in a more general distributional
framework.

5The rationale for log-normality of consumption rests on the Gibrat’s law, which states that income
is the cumulation of idiosynratic shocks.
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In this section, we assume that the dollar-income data follow the process Zi = exp{Yi}

and that Yi, generating the log-income data, is normal conditional on the random field.

Following Cressie (1991), we consider a log transformation of the data and then use log-

transformed data to fit the appropriate variogram model. We implement the empirical

procedure outlined in appendix A to these data to obtain estimates of the underlying

empirical variogram. The variogram predictions are then used to estimate covariances

of log-income realizations across locations, and hence estimate the SE of the NI index.

Noticing that ln(Zi) is normal, one can use the first and second moments of this distri-

butions to estimate µ, σ2 and simulate the covariances Cov[(Yj, Yi, Yk, Y`)] (that we use

to estimate the term V ar[∆d]) and Cov[(Yj, Yi, Y`)] (that we use to estimate the term

Cov[∆d, µ̃]).

Identification of the first component of (5*), V ar(µ̃), does not rely on normality as-

sumption. The second component of (5*), V ar[∆d], depends on two expectations terms

that cannot be further simplified without assuming normality of the underlying spa-

tial process. Assuming log-normality instead implies that the expectation E[|exp{Yi} −

exp{Yj}||exp{Y`}−exp{Yk}|] can be simulated from a large number S (with S = 1, 000) of

independent draws (y1s, y2s, y3s, y4s) with s = 1, . . . , S, from the random vector (Yj, Yi, Yk, Y`).

The simulated expectation is a function of the variogram parameters m, b, b′ and d and

of σ2. It is denoted θ(m, b, b′, d, σ2) and estimated as follows:

θ(m, b, b′, d, σ2) =
1

S

S∑
s=1

|exp{y2s} − exp{y1s}| · |exp{y4s} − exp{y3s}|.

Furthermore, the expectation E[|exp{Yi}− exp{Yj}|] can be simulated from the same set

of independent draws. The simulated expectation is denoted θ(b, d, σ2) and estimated as

follows:

θ(b, d, σ2) =
1

S

S∑
s=1

|exp{y2s} − exp{y1s}|.

Combining together, the estimator of the variance component of the NI standard error
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writes:

V ar[∆d] =
B∑

m=1

Bd∑
b=1

Bd∑
b′=1

ω(m, b, b′, d)θ(m, b, b′, d, σ2)

−4

(
Bd∑
b

ω(b, d)θ(b, d, σ2)

)2

. (1)

The wights are defined as in reference paper.

The third term of the SE formula, Cov[∆d, µ̃], depends on the expectation E[min{exp{Yj}exp{Y`}−

exp{Yi}exp{Y`}, 0}] under the log-normality assumption. It can also be estimated under

the joint normality assumption of the vector (Yi, Yj, Y`) and simulated as in the main

paper.

We apply the robust variogram estimator on dollar-income data to estimate (8*), while

we use the estimators outlines above to produce estimates of V ar[∆d] and of Cov[∆d, µ̃],

that we can use to draw SE bounds for the NI index at any distance d without relying on

the normality assumption. Empirical counterparts are as in appendix A.

C.1 Empirical evidence

We maintain the log-normality assumption and use the newly derived SE estimators to

infer about changes in neighborhood inequality in Chicago, IL over the period 1980-2014.

The empirical application is based on the same data presented in section 5* of the main

paper.

Compared to the results obtained under normality (Figure 2*), the new SE bounds for

the NI index identified under log-normality are larger, suggesting a broader acceptance

region for the null hypothesis that difference in NI curves are equal to zero. As Figure 2

shows, comparisons of the evolution of neighbrohood inequality in Chicago across decades

reveal rising trends, albeit differences are not statistically significant at 95% confidence

level. The cumulative effect of growth in neighborhood inequality over from 1980 to 2014

is positive albeit not statistically different from zero at 95% confidence level (panel f of

Figure 2). The cumulative gap in NI curves turns out significant at 90% confidence level,
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Figure 2: Trends in neighborhood inequality in Chicago, IL

(a) (b)

(c) (d)

(e) (f)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level. SE estimates
based on the log-normal distributional assumption.
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Years Distance d in miles
0.4 1 2 3 5 12

Panel A: p-values for H1
0

1980 0.034 0.022 0.024 0.037 0.083 0.383
1990 0.000 0.000 0.000 0.000 0.001 0.054
2000 0.000 0.000 0.000 0.000 0.003 0.098
2014 0.001 0.001 0.002 0.004 0.012 0.188
Panel B: p-values for H2

0

1980 . 0.439 0.443 0.485 0.413 0.238
0.000 -0.003 -0.003 -0.001 0.005 0.017

1990 . 0.411 0.213 0.123 0.052 0.010
0.000 0.004 0.013 0.020 0.027 0.042

2000 . 0.344 0.416 0.475 0.275 0.092
0.000 -0.008 -0.004 0.001 0.011 0.027

2014 . 0.474 0.475 0.417 0.318 0.125
0.000 -0.001 0.001 0.004 0.010 0.026

Table 1: P-values (computed under the log-normality assumption) for null hypothesis
of the type H1

0 : NI(yt, d) = G(yt) and H2
0 : NI(yt, d) = NI(yt, 0.4), with t =

1980, 1990, 2000, 2014 and G(y1980) = 0.434, G(y1990) = 0.461, G(y2000) = 0.473,
G(y2014) = 0.486. Differences in levels of the NI index are in italic.

reproducing the outcomes in Figure 2*.

Table 1 reports p-values (obtained under the log-normality assumption) for null hy-

pothesis concerning the shape of the NI curves. Tests for the null hypothesis H1
0 are in

panel A. In line with results in Table 2*, we find evidence that the extent of neighbor-

hood inequality is indistinguishable from the citywide Gini index only when individual

neighborhoods are set to a relatively large size, above 5 miles radius. The results confirm

that the normality assumption, compared to log-normality, is not driving the conclusions

that neighborhood inequality is a relevant and growing phenomenon that is distinct from

citywide inequality at small individual neighborhood scale. In panel B of the same table,

we also report p-values for H2
0 obtained under the log-normality assumption. Conclusions

of the paper are unaffected when replacing normality with the log-normality assumption:

at almost all distance thresholds below 3 miles considered in Table 1 we cannot reject that

neighborhood inequality is equal to the level of neighborhood inequality observed in very

small (less than half a mile) individual neighborhoods. NI estimates based on individual
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Figure 3: Neighborhood inequality in Chicago, IL, 2014, versus two counterfactual distri-
butions

(a) NI(F0, d)−NI(F1, d) (b) NI(F0, d)−NI(F2, d)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level. SE estimates
based on the log-normal distributional assumption.

neighborhoods of large size are statistically different. Compared to Table 2* in the main

paper, Table 1 displays generally larger p-values, as a consequence of the more stringent

rejection regions estimated under log-normality assumption.

C.2 Monte Carlo experiment

We check the robustness of the normality assumption under alternative distributional

configurations. Building on appendix B (and adopting similar notation), we produce a

Monte Carlo study using distributions F0 to represent the spatial distribution of income

in Chicago, IL in 2014, and counterfactual distributions F1 and F2 as in the main paper.

These distributions are assumed log-normal for two reasons: first, the assumption guar-

antees a good fit to income data and is related to normality with known transformations;

second, the simulation routine developed under the normality assumption can be applied

straightforwardly to the log-income data and then convert the simulated samples into

dollar-incomes.

An empirical investigations of the available data for F0, F1 and F2 reveals patterns

of dominance in NI curves that are similar to those reported in Figure 1* in the main
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paper. In particular, Figure 3 shows evidence that F1 and F0 are indistinguishable from

a neighborhood inequality perspective (i.e. H3
0 cannot be rejected), while equality of

NI curves is rejected when comparing distributions F0 and F2. Confidence intervals in

both panels of Figure 3 are obtained under the log-normality assumption. As highlighted

before, confidence interval bounds obtained under the log-normal assumption identify a

larger acceptance region compared to what we obtain under the normality assumption.

The Monte Carlo experiment evaluates the size and power of the tests for dominance

in NI curves that are based on the normality assumption (as we do in section 4* of the

main paper), knowing that the data are generated from a joint log-normal distribution

(differently from what we do in the paper, where data are also assumed jointly normal).

Comparing size and power of these tests with those reported in Table 1* is informative

about the impact of the normality assumption on the patters of acceptance and rejections

of relevant null hypothesis on the spatial income inequality pattern.

Given Zf ∼ Ff , f = 0, 1, 2, the random variable Yf = ln(Zf ) is normally distributed.

We consider a population model Yn
f = (Y 1

f , . . . , Y
n
f ) with Yn

f ∼ (µf , σ
2
f , γf (.)) for f =

0, 1, 2, where µf and σ2
f are the first and second moments and γf the variogram function

of the normally distributed process (in log-incomes terms). The Monte Carlo experiment

consists in drawing realizations from Yn
f , each denoted yn

f,r with r = 1, . . . , 200, that

are representative of the extent of spatial association that we find in the population.

The spatial association between any pair of locations s, v on the random field Sn at

geographic distance h (in miles) is provided by the covariance term cs,v = σ2
f − γf (h).

We proceed as in the main paper and use mean and sample variance of the log-income

distribution of income Chicago 2014 to obtain estimates of µf and σ2
f , all expressed in

log-incomes. Furthermore, we use log-transformed data to fit variograms models and

obtain estimators for the spatial covariance matrix Cf . From these data we draw 200

replica samples yn
f,r of size n and then convert simulated log-incomes into dollar-incomes

applying the transformation znf,r,i = exp{znf,r,i} for i = 1, . . . , n, which gives the simulated

sample zn
f,r. We consider the same parametrization of the simulation exercise as in the

paper (n = 1000, 2000, 5000, 8000; distance cutoffs are set at approximately a third of a
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n Distance cutoffs (miles) # Rej. Rej. Weak Strong
0.4 0.7 1 1.4 1.7 2 3 5 12
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Panel A : Size comparisons for the true null H3
0 : NI(zn0,r, d) = NI(zn1,r, d) for some d

1000 . 0.00 . 0.00 . 0.00 0.00 0.00 0.00 0.0 0.00 . .
2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 . .
5000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.1 0.03 0.00 0.00
8000 0.00 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.03 0.4 0.11 0.03 0.00
Panel B : Power comparisons for the true alternative H3

a : NI(zn0,r, d) ≥ NI(zn2,r, d), ∀d
1000 . 0.00 . 0.01 . 0.19 0.59 0.79 0.95 19.0 0.98 1.00 0.00
2000 0.00 0.00 0.62 0.69 0.99 0.94 1.00 1.00 1.00 32.2 1.00 1.00 0.00
5000 0.00 0.67 0.81 0.81 0.81 0.81 0.81 0.81 0.81 27.5 0.81 1.00 0.00
8000 0.31 0.91 0.93 0.93 0.93 0.93 0.93 0.93 0.93 31.7 0.93 1.00 0.00

Table 2: Monte Carlo simulations of the size and power of dominance tests for NI curves
that are based on the NI index SE approximations. Data are simulated based on the
log-normal joint distribution. SE are obtained under the normality assumption.

mile distance range increments within the first 2 miles, and then at increasing increments

within the next 12 miles; H3
0 (d) is tested at each distance cutoff; H3

0 is tested instead by

looking at all distance cutoffs).

Table 2 reports the size and power of the tests for H3
0 (d) under different configurations

and for different distance thresholds (d). Interpretation of the entries of the table are as

for Table 1* in the main paper. In both Table 2 and Table 1* we produce results using

SE for the NI index that employ the normality assumption. In Table 2, however, the

underlying spatial process is log-normal. Comparing the two tables is informative about

the relative performances of the SE bounds under normality assumption when data are

non-normal.

Panel A of Table 2 reveals the estimated size for H3
0 (d) at fixed distance thresholds,

knowing that the null is true in the population. The size of the tests is virtually zero for

samples of size smaller than 5000 units, irrespectively of the distance threshold considered.

When the population spatial process is log-normal, the SE bounds estimated under the

normality assumption are larger than the nominal size, implying a thinner rejection region

for the null H3
0 : in small samples, the SE bounds obtained under normality produce test

statistics that are over selective. The size of tests for H3
0 (d) approaches the nominal 5%

values only for sample sizes larger than 8000 units, whereas the upper bound size of joint

tests for H3
0 (product of columns (11) and (12)) are of about 3.5%. Test sizes in Table 1*,
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where SE bounds are obtained under normality and the spatial data generating process

is Gaussian, are generally larger than those in Table 2, both for small and larger sample

sizes. Under reasonable distributional assumptions, the SE bounds based on the normal

approximation produce conservative tests statistics for the relevant null hypothesis. In

empirical application, we are bound to accept null hypothesis about equality in NI curves

even in cases where there is evidence of dominance in the population, compared to what we

would do if the population data were normally distributed. The severity of this problem

seems to substantially disappear in larger (8000 units) sample sizes when the population

data are ssumed jointly normal. In panel B of the table, we report power levels of the tests,

which is informative about the ability of the test to discriminate the alternatives. For

samples of 5000 units or above, power is above 80%, at all distance ranges. These figures

are uniformly larger than those estimated in Table 1*, indicating larger discriminatory

power related to SE bounds under the Gaussian hypothesis.

D Robustness check 2: Edge effects on NI estimates

and inference

The second robustness check aims at assessing the implications of edge effects on the NI

index estimator and on the SE bounds. Edge effects arise because a spatially continuous

process is empirically constrained by a spatial organization in areal units, with well de-

fined bounds. Edge effects attributable to administrative division of the urban territory,

most likely occurring in MSA spanning across different counties and census tracts, may

give rise to discontinuities in spatial association and generate biases in the estimation of

spatial association measures, such as the variogram. Griffith (1985) and subsequent lit-

erature have produced techniques to mitigate the bias in estimation of spatial correlation

measures. Griffith and Csillag (1993) discuss implications of edge effects for the variogram

estimation. The considerations developed in these contributions can be adapted to our

setting to produce consistent estimators for the NI index and for the SE bounds (based on

the variogram). Furthermore, edge effects arising from arbitrary partitioning the urban
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space do not seem to produce majors concern for the empirical evaluations carried out in

the main paper, which is constrained by availability of empirical data at block group level.

In fact, block groups do not define relevant administrative division for local taxation or

supply of public goods that might affect differentially the location choices of rich and poor

individuals. The empirical evaluations and simulations we produce in this section assume

continuity of the spatial process.

Edge effects may also arise from the administrative restrictions imposed on the size and

shape of the urban area considered for producing neighborhood inequality estimates. In

neighbrohood inequality analysis, for instance, the relevant size of the urban environment

may be defined on the basis of exogenous administrative criteria, such as the division in

MSA or Commuting Zones operated by the Census Bureau. Albeit such definition of urban

space is meaningful from a variety of perspectives, it defines a clear discontinuity at the

border in the spatial distribution of incomes which may have an impact on the estimation

of the NI index and its SE. The presence of administrative borders constraining the sample

of analysis may have implications for the estimation of the NI index (and the variogram)

at both large and small scale. In fact, boundary areas of the city define the distance

threshold over which, by construction, all units are observed. In correspondence of such

distance threshold, the NI index converges to the citywide Gini index by construction.

Furthermore, observations located at the edges of the relevant urban area contribute to

bias estimates of neighborhood inequality, insofar individual neighborhoods of these units

only partially overlap with the territory of the city and indices ∆i for people residing in

these areas are biased. If these areas are densely populated, the effects of such limitations

may induce relevant bias in NI estimates, as well as on the empirical variogram (and

hence of the SE) even at small distance range. Finally, the presence of edges to the

spatial sample distribution is inconsistent with the assumption that the variogram is

isotropic (an assumption we make use of for identifying the SE bounds), insofar individual

neighborhoods cannot span evenly across all directions.

The presence of edges in the urban area definition has an impact as well on the

simulation study, which takes the structure of the random field as given. Xu and Dowd
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Figure 4: The MSA of Chicago, IL. Edge block groups are in darker gray.

(2012) have supported, in the context of simulation studies, the possibility of using buffer

zones (or guard areas) as a mean to mitigate the implications of the edge effects (see also

Griffith 1983). We follow this line and consider a buffer zone in the estimation of the NI

index and of the variogram. Figure 4 reports the 2014 map of the MSA of Chicago, IL

and its block group division. We use such map to define borders of the metropolitan area

under study in both the empirical evaluation and the Monte Carlo study. The buffer zone

for Chicago is shaded in gray in Figure 4.6

D.1 Empirical assessment

Let E define the buffer zone of the city distribution S. Edge effects arise from the contri-

bution to the NI index of inequality estimated for income units located in E . We consider

producing estimates of the NI index and of its SE focusing only on observations located

6To identify the buffer area in a non ad-hoc fascion, we have first organized block groups by per-
centiles groups based on their position on the latitude and longitude scale (computed from their centroid
coordinates). Each cell of the partition on the latitude or longitude scale gathers about 60 block groups,
arranged north-south for fixed latitude and east-west for fixed longitude. Then, we have trimmed 3%
of the locations at the extremes of these distributions to identify locations at the extremes of the map.
These locations define the buffer area.
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within the inner city area S/E . This is tantamount to redesign the shape of the relevant

administrative boundaries to those of the MSA excluding E . In the case of Chicago in

Figure 4, this area corresponds to the light gray area. The procedure we use discrimi-

nates in an objective manner (which can be easily re-parametrized) the new sample n′

in empirical evaluations as well as the new random field we consider in the simulation

exercise.

The NI index and the variogram are calculated over the sample S/E (with n′ replacing

n in the relative formulas). Besides, information on all units in the city (all locations in S)

are used to construct individual neighborhoods and estimate ∆i for all i ∈ S/E , which may

hence include individuals located in the E buffer zone. In the empirical exercises reported

in this section, we disregard individual neighborhoods and inequality for all income units

located in the dark gray area in Figure 4, but we use these incomes to estimate individual

neighborhoods of individuals located in the light gray area in the same figure. The new

empirical income distributions, obtained using the same buffer area across income years,

is denoted Eyt.

We held locations in the buffer area identified in Figure 4 as fixed in the empirical

assessment, and employ the normality assumption to derive the SE bounds of the NI index.

Figure 5 displays the NI curves for years 1980, 1990, 2000 and 2014 (panel a) and year-

by-year differences in NI curves with their confidence internal implied by the SE bounds

estimated when considering the buffer zone. Results in the figure are remarkably similar

to those obtained in the main text without controlling for edge effects adopting a buffer

zone. Table 3 reports p-values for H1
0 (comparisons of the NI index with the citywide

Gini index) and H2
0 (shape of the NI curve). Results are virtually indistinguishable from

those in Table 2* in the main paper.

The empirical analysis does not provide evidence of edge effects, insofar the size of

the NI index and of its SE, as well as the conclusions about a variety of null hypothesis

concerning the shape and the temporal differences in NI curves, do not vary when we

consider a buffer zone that is supposed to mitigate the implications of edge effects. We

evaluate more carefully the implications of edge effects in a Monte Carlo study.
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Figure 5: Trends in neighborhood inequality in Chicago, IL

(a) (b)

(c) (d)

(e) (f)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level. Buffer zone
defined as in Figure 4. SE bounds estimates based on the normality assumption.
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Years Distance d in miles
0.4 1 2 3 5 12

Panel A: p-values for H1
0

1980 0.016 0.003 0.004 0.007 0.024 0.047
1990 0.000 0.000 0.000 0.000 0.000 0.048
2000 0.000 0.000 0.000 0.000 0.000 0.030
2014 0.001 0.001 0.003 0.010 0.013 0.257
Panel B: p-values for H2

0

1980 . 0.347 0.357 0.403 0.480 0.479
0.000 -0.007 -0.006 -0.004 0.001 0.001

1990 . 0.381 0.160 0.068 0.010 0.000
0.000 0.004 0.013 0.020 0.031 0.050

2000 . 0.386 0.458 0.410 0.216 0.079
0.000 -0.005 -0.002 0.004 0.013 0.025

2014 . 0.482 0.448 0.347 0.306 0.105
0.000 -0.001 0.003 0.008 0.010 0.028

Table 3: P-values for null hypothesis of the type H1
0 : NI(Eyt, d) = G(yt) and H2

0 :
NI(Eyt, d) = NI(Eyt, 0.4), with t = 1980, 1990, 2000, 2014 and G(y1980) = 0.434,
G(y1990) = 0.461, G(y2000) = 0.473, G(y2014) = 0.486. Differences in levels of the NI
index are in italic.

D.2 Monte Carlo experiment

The Monte Carlo experiment replicates the setting described in the main paper. We con-

sider the 2014 distribution of incomes in Chicago, which has population distribution F0,

and obtain counterfactual distributions F1 (adding noise) and F2 (simulating the effects

of an income redistribution scheme). We further consider the buffer zone E described

above to estimate the underlying variograms and implied spatial correlations, considering

only spatial units located in S/E . The distributions characterized by first and second

moments of Ff and by the variograms estimates based on the buffer zone are denoted

EFf , f = 0, 1, 2 to idicate that the underlying spatial association already accounts for

pontential edge effects.

We proceed as in the main paper and use first and second moments estimates together

with spatial covariance matrix Cf to draw samples Eyn
f,r (replica r ≤ 200) from a collection

of n (simulated sample size n = 1000, 2000, 5000, 8000) random variables that are jointly

normally distributed, with means, averages and spatial association implied by EFf , f =
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Figure 6: Neighborhood inequality in Chicago, IL, 2014, versus two counterfactual distri-
butions

(a) NI(EF0, d)−NI(EF1, d) (b) NI(EF0, d)−NI(EF2, d)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level. SE bounds
obtained under the normality assumption

1, 2, 3.7 We derive NI index estimates and SE bounds using the procedure described

in the previous section. We always produce SE bounds estimates under the normality

assumption.

Figure 6 illustrates that distributions EF0 and EF1 are statistically indistinguishable

in terms of neighborhood inequality they display (H3
0 cannot be rejected at conventional

significance levels), whereas distribution EF0 displays significantly more neighborhood

inequality than EF2 at any distance range (H3
0 is rejected). Table 4 reports size and

power for tests based on the SE bounds (after accounting for the edge effects) for the

null hypothesis H3
0 (d), derived at selected distance thresholds d. By comparing the size

and power estimates in Table 4 with those reported in Table 1*, we are able to draw

conclusions about the statistical relevance of edge effects (accounted for in Table 4 by

limiting estimates to the set of locations S/E).

Panel A of Table 4 displays the size of the tests using H3
0 (d) under the null, when we

know that H3
0 (d) is true in the population. For simulated samples of size 1000 or 2000, the

7Each replica sample is based on the orginal map of Chicago. Hence, some predicted incomes will fall
in the buffer area E .
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n Distance cutoffs (miles) # Rej. Rej. Weak Strong
0.4 0.7 1 1.4 1.7 2 3 5 12
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Panel A : Size comparisons for the true null H3
0 : NI(Eyn

0,r, d) = NI(Eyn
1,r, d), for some d

1000 . 0.00 . 0.35 . 0.38 0.09 0.05 0.00 1.6 0.64 0.30 0.00
2000 0.00 0.00 0.34 0.26 0.22 0.13 0.08 0.02 0.00 1.8 0.65 0.61 0.00
5000 0.00 0.01 0.16 0.07 0.08 0.07 0.05 0.01 0.00 0.7 0.34 0.50 0.00
8000 0.00 0.00 0.01 0.06 0.01 0.05 0.01 0.03 0.01 0.5 0.14 0.55 0.00
Panel B : Power comparisons for the true alternative H3

a : NI(Eyn
0,r, d) ≥ NI(Eyn

2,r, d), ∀d
1000 . 0.00 . 0.22 . 0.23 0.12 0.04 0.00 1.1 0.46 0.65 0.00
2000 0.00 0.00 0.33 0.27 0.32 0.14 0.08 0.03 0.00 1.9 0.64 0.95 0.00
5000 0.00 0.01 0.24 0.10 0.19 0.08 0.06 0.01 0.00 1.1 0.38 0.99 0.00
8000 0.00 0.09 0.58 0.34 0.53 0.36 0.32 0.32 0.24 7.0 0.52 0.98 0.00

Table 4: Monte Carlo simulations of the size and power of dominance tests for NI curves
that are based on the NI index SE approximations.

size estimates in Table 4 are larger than those in the reference paper, uniformly across all

distance ranges. In simulated samples of size 5000, the estimated size in Table 4 is closer

to the nominal 5% value and improves the estimates in the reference paper (in particular

for NI estimates based on individual neighborhoods of size smaller than 3 miles). For

samples of size 8000, accounting for edge effects does not seem to produce improvements

for the estimated sizes. The size for H3
0 is estimated of about 7% (product of columns (11)

ans (12)) for the largest samples. The simulation exercise suggests that edge effects have

implications for the size of the tests of hypothesis based on the SE bounds in relatively

small sample sizes. Accounting for a buffer zone in the simulation drastically reduces

to test size to nominal values in samples of size 5000, and generally reduces the sizes of

the tests in samples smaller than 2000 units (which remains nonetheless larger than the

nominal size). In small samples edge effects are found to rise the probability of mistakenly

rejecting equality in NI curves (against unrestricted alternative), thus making more likely

statements about changes in neighborhood inequality. The simulation study also reveals

that upper bounds for the null H3
0 (obtained by the product of figures in columns (11)

and (12)) are smaller than those in Table 1*. Size estimates converge to nominal 5%

values (with upper bounds of 7%) when evaluations about neighborhood inequality are

performed on larger samples of at least 8000 units, which is generally smaller than those

available for assessing neighborhood inequality in American MSA.
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Comparing panel B in Table 4 with the respective panel in Table 1*, we detect a

reduction in the power of the tests for the relevant nulls when edge effects are accounted

for. In the largest samples, tests power for H3
0 is about 50%, i.e. 30% smaller than values

registered in Table 1*. The NI index SE bounds seem to produce less discriminating tests

for true alternatives in presence of edge effects at the boundaries of the city, the difference

with Table 1* being stronger in small samples.

E Robustness check 3: Addressing empirical restric-

tions on the data

One last concern arises from the nature of the income data used in the application. The

Census reports income data at the block group level (the finest urban space partition),

thus splitting the urban space into small areal units. The centroid of each block group is

genocoded and in the empirical application we make the (possibly restrictive) assumption

that all income units observed in each areal units are located at the centroid. This

assumption is convenient to map the Census publicly available data (STF3A files and

ACS data tables), organized into areal units, into data that can be assumed generated by

a spatially continuous process. This is a convenient simplification. Indeed, the population

distribution of income from where the census and ACS are drawn is spatially continuous

in nature. Different data sources, such as register data from Sweden, collect data at the

exact location. Papers analyzing these income data assume (as we maintain in the paper)

that the underlying income process is continuously defined in space (see for instance Östh,

Clark and Malmberg 2015, Türk and Östh 2019).

As a robustness check for our application, we investigate whether introducing transfor-

mations of the original data that try to map the areal unit structure into a more realistic

spatially continuous structure bear consequences for our estimates of NI and of its SE.

We consider simulated distributions where observations are scattered uniformly within

each block group areal unit. Based on this assumption, we have constructed artificial

distributions of incomes Syt for t = 1980, 1990, 2000, 2014 by assuming that all income
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Figure 7: Map of Chicago, IL, reporting the distribution of income locations

(a) At block group centroid (b) Scattered

observations (and their population weights) observed in each block group centroid are uni-

formly scattered within the block’s boundaries.8 We compute NI and its SE and assess

hypothesis over the index using this newly obtained income dataset. Figure 7 displays the

actual distribution of locations (block groups centroids) overlying the areal units partition

of Chicago that we use in the rest of the paper (panel a) and the artificial distribution

obtained after scattering the income observations evenly within block groups (panel b).

Figure 8 reports NI curves for the years considered, alongside differences in these

curves across years and the confidence interval for these differences. Results obtained

with the artificial distribution perfectly match those reported in the paper: neighborhood

inequality rises over the period considered, albeit only the cumulative gap over 1980-

2014 is significant at 95% level. Differently from the main paper, the NI curves obtained

from the scattered data tend to display larger levels of neighborhood inequality even for

individual neighborhoods of size less than 1 mile. Table 5 displays p-values of various

hypothesis about the shapes of the NI curves depicted in Figure 8. Panel A) of the

8To do so, we have considered maxima and minima of latitude and longitude of each block group’s
edges (denoted x, x for x = lat., lon.), assigned two distinct random number in [0, 1] to each income unit
within each block group (denoted ulat, ulon ∼ U(0, 1)), and then associated a latitude and longitude to
that unit proportionally (by the respective random numbers) to the maximal difference in latitude and
longitude observed on the block group where this unit is located (that is, the new latitude and longitude
of the artificial distributions are x̃ = x + ux(x− x) for x = lat., lon.).
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Years Distance d in miles
0.4 1 2 3 5 12

Panel A: p-values for H1
0

1980 0.168 0.392 0.275 0.277 0.235 0.310
1990 0.005 0.040 0.077 0.073 0.117 0.150
2000 0.004 0.075 0.061 0.068 0.023 0.076
2014 0.002 0.056 0.083 0.080 0.124 0.218
Panel B: p-values for H2

0

1980 . 0.357 0.421 0.421 0.446 0.434
0.000 0.006 0.003 0.003 0.002 0.003

1990 . 0.301 0.234 0.241 0.199 0.336
0.000 0.007 0.010 0.009 0.011 0.007

2000 . 0.215 0.237 0.225 0.320 0.264
0.000 0.013 0.012 0.012 0.008 0.011

2014 . 0.214 0.178 0.181 0.146 0.137
0.000 0.013 0.015 0.015 0.018 0.020

Table 5: P-values for null hypothesis of the type H1
0 : NI(Syt, d) = G(yt) and H2

0 :
NI(Syt, d) = NI(Syt, 0.4), with t = 1980, 1990, 2000, 2014 and G(y1980) = 0.434,
G(y1990) = 0.461, G(y2000) = 0.473, G(y2014) = 0.486. Differences in levels of the NI
index are in italic.

table shows that H1
0 , that is that the NI curve is equal in levels to the citywide Gini

index at some distance thresholds, cannot be rejected at small distance ranges (below

2 miles) characterizing individual neighborhoods. This pattern reflects the increase in

local income heterogeneity (at very narrow distance ranges) introduced in the artificial

distribution, which is now allowed to recover neighborhood inequality even within the

block group. Panel B of the table reports instead p-values for H2
0 . Across all years, we

find that inequality measured in individual neighborhoods of size smaller than 0.4 miles is

statistically indistinguishable from inequality computed with larger neighborhoods, even

when radius of the neighborhoods spans over 12 miles (i.e., each neighborhood almost

cover the entire Chicago MSA size).

F Discussion

Section C shows that the normality assumption has no implications for estimation of

NI index, but is has for the identification of its SE bounds. Assuming that the spatial
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distribution of income is drawn from log-normals (a widely used hypothesis in income

distribution analysis), we derive new SE bounds. The empirical estimates of such bounds,

based on the Census and ACS data, are marginally larger than those obtained under

normality. Empirical evidence reported in the paper is nonetheless verified at conventional

(90%) significance level. The simulation exercise assumes log-normality and verifies the

power and size of tests of hypothesis based on the normality assumption. We find that

SE bounds based on the Gaussian hypothesis induce tests that are conservative against

the null (low size) but highly discriminatory (high power) when applied to non-gaussian

data generating processes.

Edge effects generated by the administrative division of the urban territory play a

minor role on the NI index and its SE bounds estimates (block groups are conventional

divisions of the Census for data collection purposes, not for local administration purposes),

and only emerges because of the nature of the data we use in the empirical application.

Furthermore, there exists techniques to control for these edge effects in calculating spatial

association measures, such as the variogram. In section D we focus instead on the second

source of edge effects, namely those arising from the choice of boundaries of the urban

areas. Setting boundaries for the urban area has implication for setting the individual

neighborhoods size (hence the converging values of the NI index) and for defining bounds

on local variability of the data. Following relevant literature, we have devised an algorithm

that identifies boundary areas to the Chicago MSA, we have designed a buffer zone, and

considered units in the buffer zone when constructing individual neighborhood of variable

size of units outside the buffer zone (in core Chicago area) while we have disregarded in

the calculation of the NI index the contribution of the individual neighborhood inequality

estimates attributable to units located in the buffer zone (weights have been adjusted

accordingly). We have proceeded in a similar way to construct relevant variograms under

the normality assumption. We do not detect any clear pattern in NI and its SE bounds

estimates that differs from what reported in the main paper. The Monte Carlo study

also employs this buffer zone when simulating potential income distributions. Simulated

size of tests based on the SE bounds (under normality) are comparable to those reported
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in the paper in small samples, and smaller than those in Table 1* for larger samples

of 8000 units. When accounting for edge effects, the power of the NI index decreases,

with upper bounds above 50%. The simulation study shows that edge effects related to

boundaries of the urban area may play a role in small samples, the effect being stronger

when tests of neighborhood inequality are performed on individual neighborhoods of small

size. Drawing samples of size larger than 8000 units may help mitigating the problem.

In section E we address the effects of a change in support observed in the empirical

application. The robustness check based on the artificial spatial distribution (obtained

by evenly spreading income units across each block group are) reveals that patterns in

neighborhood inequality observed in the data reflect those obtained with the artificial

distribution Syt, the evidence being robust across years. We also find statistical support.

Albeit arbitrary, uniformly scattering income units within the block group boundaries

reveals that NI estimated based on original data are underestimating neighborhood in-

equality when individual neighborhoods are of very small size. The pattern of underesti-

mation seems, however, stable across time. Confidence intervals (hence rejection regions

for H3
0 ) do not vary in size when adding artificial heterogeneity in the local distribution

of locations. We stress that such effect is driven from the way data are constructed and

distributed (they are organized in spatial units, we assume all income units are located at

the block groups centroids) rather than by a feature of the NI index or of its SE bounds,

which always assume a continuous spatial pattern of the underlying data.
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Figure 8: Neighborhood inequality in Chicago, IL - data scattered uniformely at the
neighborhood level

(a) (b)

(c) (d)

(e) (f)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level. SE bounds
calculated under the normality assumption.
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