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Abstract

The neighborhood inequality (NI) index measures aspects of spatial inequality in

the distribution of incomes within a city. The NI index is a population average of

the normalized income gap between each individual’s income (observed at a given

location in the city) and the incomes of the neighbors located within a certain dis-

tance range. The approach overcomes the Modifiable Areal Units Problem affecting

local inequality measures. This paper provides minimum bounds for the NI index

standard error and shows that unbiased estimators can be identified under fairly

common hypothesis in spatial statistics. Results from a Monte Carlo study support

the relevance of the approximations. Rich income data are then used to infer about

trends of neighborhood inequality in Chicago, IL over the last 35 years.
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1 Introduction

The importance of regional disparities for economic development, social and political

cohesion is well-established in the literature (see Doran, Jordan and Elhorst 2018). The

increasing inequality pattern registered in the US in the last few decades seems to be repli-

cated also at a local scale within cities (Moretti 2013, Baum-Snow and Pavan 2013, Chetty

and Hendren 2018). Income inequalities that arise from differences across neighborhoods,

understood as areal units defined by an exogenous partition of the urban space, have re-

ceived substantial attention in the literature (Massey and Eggers 1990, Jargowsky 1997,

Watson 2009, Reardon and Bischoff 2011). Less evidence is available about the extent

and dynamics of income inequality within the neighborhood (relevant contributions are

Hardman and Ioannides 2004, Shorrocks and Wan 2005, Dawkins 2007, Wheeler and

La Jeunesse 2008, Kim and Jargowsky 2009). The degree of inequality within the neigh-

borhood of residence has been found to have an independent effect on important di-

mensions of quality of life, such as labor market attachment (Conley and Topa 2002),

well-being (Ludwig et al. 2012) health (Ludwig et al. 2011, Ludwig et al. 2013, Chetty

et al. 2016) and intergenerational mobility (Andreoli and Peluso 2018).

Existing approaches to the measurement of inequality within neighborhoods rely on the

exogenous partition of the urban space into areal units, and are hence exposed to the Mod-

ifiable Areal Unit Problem (Openshaw 1983, Wong 2009). The MAUP can be mitigated by

addressing neighborhood inequality across contiguous areas (Chakravorty 1996, Shorrocks

and Wan 2005) or among neighbors in selected clusters (Hardman and Ioannides 2004).

Andreoli and Peluso (2018) suggest a class of local inequality measures based on the notion
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of individual neighborhood (Galster 2001), assuming spatial continuity in the underlying

income distribution. A new Neighborhood Inequality Index (NI) is obtained following two

steps of aggregation of spatial income heterogeneity recorded in individual neighborhoods.

First, inequality is assessed within each individual neighborhood of a fixed (arbitrary)

size. An individual neighborhood in location s gathers all income units located within

the circular region of given size centered on s, and it may overlap with other individual

neighborhoods of similar size but centered on different locations. Second, the resulting

values of inequality within individual neighborhoods are aggregated across the relevant

population. The approach guarantees robustness vis-à-vis the MAUP, insofar individual

neighborhoods depend exclusively on the spatial arrangements of incomes on the map but

do not rely on a specific organization of the space.

Using Census and Commuting Survey (ACS) from American MSAs, Andreoli and

Peluso (2018) find that neighborhood inequality is i) high and close to citywide inequality

even when the neighborhood size is less than a mile in range, ii) on the rise since 1980s

and iii) displaying similar patterns across cities. The NI index estimates may be biased

by measurement error and by the sampling design of spatial data, whereas bias cannot

be effectively dealt with without an appropriate inference strategy.

In this paper, we derive minimum bounds for the standard error of the NI index and use

these bounds to infer about robust changes in NI. We utilize some properties of the ratio

estimators in Goodman and Hartley (1958) to derive bounds for the NI index variance

when the data generating process is not i.i.d., accommodating for the possibility of spatial

dependence. We assume that the process is continuous in nature and relies exclusively
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on information about income levels and their geocoded location. We then show (Sections

2 and 3) that under fairly common assumptions in spatial statistics the estimators of

the NI index standard error are identified by moments of the spatial income distribution

and by the variogram, a measure of spatial dependence of the data (Matheron 1963).

A simulation study (Section 4) confirms the qualities of the standard error estimator

proposed here. In Section 5, we infer about changes in NI in Chicago, IL, where we find

robust statistical support for rising neighborhood inequality irrespectively of the chosen

size of individual neighborhoods. Section 6 concludes.

2 Measuring inequality in the neighborhood

2.1 NI index and the related literature

Consider a population of n ≥ 3 individuals, indexed by i = 1, ..., n. Let yi be the income

of individual i and y = (y1, y2, ..., yn) the sample income distribution with average µ > 0.

Information on incomes comes with information about their location on the city map

(non-stochastic). An individual neighborhood di gathers nid individuals living in the

circular region of ray d centered on location i. If each individual occupies a separate

location, there would be as many different individual neighborhoods as individuals in the

city. Each individual neighborhood is characterized by an average income µid =
∑

j∈di
yj

nid
,

while ∆i(y, d) = 1
µid

∑
j∈di

|yi−yj |
nid

ia a normalized measure of the average gap between i’s

income and that of her neighbors. The NI index measures the degree of inequality in the
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Figure 1: Scaling and zonation effects on neighborhood inequality

average individual neighborhood. It is defined as

NI(y, d) =
1

2

n∑
i=1

1

n
∆i(y, d). (1)

The NI index depends on d, a parameter chosen by the researcher. The plot of the

value of NI(y, d) against d defines a neighborhood inequality curve. The curve is expected

to be close to the origin when d goes to zero (individual neighborhoods are very small)

remaining low when sample units are spatially clustered by income. When d reaches

the size of the city, each individual neighborhood spans the whole city. In this case,

neighborhood inequality converges to citywide inequality measured by the Gini index and

the NI curve is flat.

Alternative approaches to spatial inequality within (Wheeler and La Jeunesse 2008,

Shorrocks and Wan 2005) and across (Reardon and Bischoff 2011, Iceland and Hernandez

2017) areal units (such as regions, counties, census tracts, etc.) have been discussed

in the literature. These approaches are subject to the Modifiable Areal Unit Problem
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(Openshaw 1983, Wong 2009), that is, they are not robust to the zonation effect, due to

the administrative partition of space (for instance, by census tracts or school districts),

or to the subsequent way of scaling it (for instance, by block groups or by zip codes). The

example in Figure 1 illustrates the implications of these effects for spatial inequality.

Each panel of Figure 1 shows the spatial distribution of rich (black dots) and poor

(circles) individuals. The administrative partition of the stylized city is induced by vertical

and horizontal lines. As a consequence of the zonation effect (panel A), spatial inequality

measures may reverse the ranking of the two cities by just changing the design of the

administrative partition (i.e. replacing the horizontal lines by the vertical ones artificially

minimizes inequality within neighborhoods, inhabited by same-income individuals- and

maximizes inequality between neighborhoods). As a consequence of the scaling effect

(panel B), large discontinuities in spatial inequality evaluation may occur in response

to minor refinements of the neighborhoods partition. In the upper diagram of Panel B,

each neighborhood displays the same inequality as in the city. In the bottom diagram

of Panel B, inequality within neighborhoods is eliminated by virtue of a finer partition

obtained by drawing two additional vertical lines. If, instead, the finer partition were

obtained by drawing horizontal lines, then the opposite situation (high inequality within

the neighborhood) would have emerged.

The NI index overcomes the MAUP by treating the spatial distribution of income

as continuous, and using individual neighborhoods to avoid the zonation issues. Fur-

thermore, scaling is also controlled for by the levels of the distance threshold d, so that

evaluations only depend on the actual distribution of incomes in space. These properties

6



guarantee that the NI index ranks as equivalent the two panels A and B in Figure 1.

Individual neighborhoods have been used in the analysis of segregation in space (Galster

2001, Clark, Anderson, Östh and Malmberg 2015), in networks (Echenique and Fryer

2007), across housing units (Hardman and Ioannides 2004) or across time (Biondi and

Qeadan 2008). Chakravorty (1996) applied the notion of individual neighborhood to orga-

nizational units to develop a neighborhood disparity measure (ND), which is a normalized

average of the difference between the income observed in each areal unit and the average

income of neighboring parcels.

The NI index is instead related to the Gini index of inequality and develops on pairwise

income comparisons within individual neighborhoods. Following Pyatt (1976), the NI

index can be interpreted as the expected (relative) income gain that a randomly chosen

urban resident would experience if her income was exchanged with those of her neighbors

located within a ray of length d. Differently from traditional decomposable inequality

measures, the NI index considers a multidimensional distribution of individual income

observations alongside individual geographic locations. The two ingredients are combined

through the individual neighborhoods. This allows establishing a methodological bridge

with geostatistics.

2.2 Statistical properties of the NI index

Consider a spatially continuous process {Ys : s = 1, . . . , n} with s ∈ S being one location

on the random field, where n is the total number of locations. The process is jointly

distributed as FS and may represent, for instance, the data generating process underlying
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the spatial distribution of incomes across locations in a city. The joint distribution func-

tion FS combines information about the marginal income distributions in each location

and the degree of spatial dependence of incomes on S. In the analysis, locations on S are

non-random and the process is defined conditionally on S. Through geolocalization, it

is possible to compute the distance “||.||” between two generic locations s, v ∈ S, which

we denote ||s− v|| ≤ d or equivalently v ∈ ds, which denotes the set of locations located

within a range d from s. The cardinality of ds is nds . The observed spatial income dis-

tribution y (alongside geographic coordinates of the income observations) is a particular

draw from FS , where only one income realization is observed in any location s.

The NI index of the spatial process FS can be written in terms of first order moments

of the random variables Ys as follows:

NI(FS , d) =
∑
s

∑
v∈ds

1

2nnds

E[|Ys − Yv|]
E[Yv]

. (2)

The numerator in (2) depends on the extent of spatial dependence displayed by FS .

To show this, consider the restrictive yet widely adopted parametric assumption that Yi

follows a linear SAR model with Y = µ + ρdWd · (Y − µ) + ε, with Y = (Y1, . . . , Yn)′,

Wd is a n× n spatial weighting matrix with wij = 1/ndi if j ∈ di and wij = 0 otherwise,

ε is a column vector of i.i.d. innovations and µ the average income. The parameter ρd

measures spatial autocorrelation at distance range d (the Moran I statistics is often used

as an estimator for this correlation, see Li, Calder and Cressie 2007). Under standard

assumptions (Kelejian and Prucha 2010), Y = µ+(I−ρdWd)
−1 ·ε = µ+S(ρd) ·ε, so that

Yi = µ+Si(ρd) ·ε where Si(ρd) is a non-stochastic row vector. Under these circumstances,
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E[|Ys − Yv|] = E[|Ss(ρd) · ε− Sv(ρd) · ε|] depends on both inequality in the data (ε) and

spatial correlation in the data (S(ρd)), whereas E[Yv] = µ.

If incomes Ys and Yv are i.i.d. with distribution FS for any s, v ∈ S (i.e. ρd = 0 at any

d), then NI(FS , d) = E[|Ys−Yv |]
E[Yv ]

(= E[|εs−εv |]
µ

under SAR), which coincides with a definition

of the Gini index (see Muliere and Scarsini 1989). If, instead, spatial dependence is at

stake (typically ρd > 0), then the NI index differs from the Gini index and E[|Ys − Yv|]

varies across locations. This quantity cannot be identified from the observation of just one

data point in each location. We then introduce additional assumptions about the spatial

income process that allow to derive the NI index from the first and second moments of

FS .

The first assumption is that FS displays (second-order) stationarity (see Chilès and

Delfiner 2012), that is E[Ys] = µ, V ar[Ys] = σ2 and Cov[Ys, Yv] = c(||v − s||) = c(d) is

isotropic, with ||v−s|| = d. Under these circumstances, V ar[Ys+d−Ys] = E[(Ys+d−Ys)2] =

2σ2 − 2c(d) = 2γ(d) denotes the variogram of the process at distance range d (Matheron

1963). The function 2γ(d) is informative of the correlation between two random variables

that are at a distance d one from the other, insofar c(d) = σ2 − γ(d). Under stationarity,

2γ(d) → 0 as d approaches 0 if the spatial process displays high positive association at

small distance ranges. Conversely, 2γ(d) → 2σ2 when d is sufficiently large, indicating

spatial independence. We follow the convention that s − v = d whenever ||s − v|| = d

(which implies that the process occurs on a transect at neighborhood level).

The second assumption is that Ys is Gaussian with mean µ and variance σ2. The

random variable (Ys+d − Ys) is also Gaussian with variance 2γ(d), which implies |Ys+d −
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Ys| is folded-normal distributed (Leone, Nelson and Nottingham 1961) and its first and

second moments depend exclusively on the variogram, having expectation E[|Ys+d−Ys|] =√
2/πV ar[Ys+d − Ys] = 2

√
γ(d)/π and variance V ar[|Ys+d − Ys|] = (1− 2/π)2γ(d).

Altogether, these assumptions allow to characterize the NI index as a function of the

variogram. For given d, we consider partitioning the distance spectrum [0, d] into Bd

ordered intervals of size d/Bd, and derive the NI index formulation at distance intervals

of fixed size. If the size was chosen equal to the minimum distance recorded between

locations, then the NI index could be rewritten explicitly as a function of locations. Each

interval is denoted by the index b with b = 1, . . . , Bd. We further denote with dbi the

set of locations at interval b (and thus distant b · d/Bd from si) within the range d from

location si. The cardinality of this set is ndbi ≤ ndi ≤ n. Assuming stationarity of FS and

normality allows to write the NI index as follows:

NI(FS , d) =
∑
i

∑
j∈di

1

2nndi

E[|Ysj − Ysi |]
µ

=
∑
i

∑
j∈di

1

2nndi

√
4γ(||sj − si||)/π

µ

=
∑
i

1

n

Bd∑
b=1

ndbi
ndi

∑
j∈dbi

1

2ndbi

√
4γ(si + b− si)/π

µ

=
1

2

Bd∑
b=1

(∑
i

ndbi
nndi

)√
4γ(b)/π

µ
, (3)

This result (see also Andreoli and Peluso 2018), sets out the geostatistics foundations

of the NI index, by showing that the index is fully characterized by the distribution of

locations on the city map (non stochastic) and the degree of spatial dependence measured
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by the variogram.1 Under these assumptions, the index can be understood as an average

of a standardized measure of dispersion (the second term in the summation in (3)) taken at

different distance thresholds b, and weighted by the population on the random field located

on the average individual neighborhood of size d, a parameter chosen by the researcher.

The implications of dropping the normality assumption, widely (often implicitly) adopted

in geostatistics analysis, are assessed in a Monte-Carlo experiment. Results are collected

in the online appendix C.

2.3 Discussion

Few remarks are in order. First, the NI index depends both on geographical distance across

locations and local income variability, averaged across all individual neighborhoods while

holding distance range fixed. In presence of positive spatial correlation in incomes, small

individual neighborhoods gather few likely similar income realizations, implying minimal

income heterogeneity (NI → 0). When the size of the individual neighborhood is large,

the inequality evaluation tends to include an increasing number of income observations

that are spatially unrelated. For large d, the variogram coincides with the variance of

the stationary process and is constant. Equation (3) shows that the NI index stabilizes

on a converging level of inequality when rising d, hence rising the weight of locations

where incomes are spatially uncorrelated. This level of inequality is the Gini index of the

1Under second-order stationarity, the spatial autocorrelation is ρd = c(d)/σ2, which implies γ(d) =
σ2(1 − ρd). When data are i.i.d., γ(d) = σ2 and NI is a local measure of inequality. Otherwise, the NI
index is capable of measuring the consequences of spatial autocorrelation in the data (likely displaying
ρd > 0) on local inequality estimates.
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population income distribution.2

A second remark is about the choice of the distance parameter d. This parameter’s

relative magnitude is contingent to the problem under analysis. When addressing neigh-

borhood income inequality in a urban context, it makes sense to limit the analysis to

well defined statistical aggregates such as Commuting Zone or Metropolitan Statistical

Areas. The geographic size of these areas is generally well defined by their administra-

tive boundaries, density and commuting time requirements. The interpretation of the

NI index, which is grounded on individual neighborhoods attributable to the residents,

is meaningful when d is limited to the boundaries of the city.3 The choice of a limit for

a distance parameter may become crucial when analysing spatial inequality within inner

cities, thus neglecting edge effects on the NI index and its SE bounds induced by the

income distribution across the boundary areas of the city. In the online appendix D, we

investigate more carefully the issue of edge effects.

Third, we stress that the NI index is a measure of inequality which is normalized

by an implicit spatial weighting scheme, which we assume a uniform in (2) and (3).

More precisely, each income unit observed within i’s individual neighborhood is weighted

1/ndi , whereas individual neighborhoods are weighted 1/n. This weighting scheme allows

to capture empirically aspects related to the population size, as well as the population

distribution across the data field, which may cluster in dense urban areas, or sprawl in

2One can show that E[|Ys − Yv|] =
√

2V ar[Ys − Yv]/π = σ
√

2/π for any pair of i.i.d. normal random

variables Ys, Yv. It follows from Muliere and Scarsini (1989) that the Gini index writes E[|Ys−Yv|]
E[Yv]

=√
2/π σµ , which is a scaled version of the coefficient of variation. In our setting, when d is large, γ(d) = σ.

If the spatial process is i.i.d., then NI(FS , d) coincides with the Gini index at any distance threshold d.
3When d is large enough to include multiple urban areas, the graph of NI plotted against d may not

flatten for d large. The meaningfulness of this computation rests, however, on the interest in analyzing
individual neighborhoods that span over multiple urban aggregates.
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suburbs. The relation between d and n in the population is described by the intensity

of the population point process (the concept is formalized among others in Diggle 1985).

The local density ndi is an estimator of the process intensity, which may be a source

of bias in the NI index estimates. This bias vanishes when n is large4 but may still

survive for small values of d (small individual neighborhoods) if local density is too small.

These concerns seem to be of secondary importance for empirical applications of the NI

index in the context of urban inequality analysis. One the one hand, urban agglomerates

generally display large population size and density at all distance scales. On the other

hand, meaningful estimators of the empirical variogram for (3) should be based on at

least 30 pairs of observations (p. 194 in Journel and Huijbregts 1989), thus providing

a minimum bound for estimating the NI index at small geographic scale. Additionally,

the simulation study in LeSage and Pace (2014) suggests that, at small distance ranges,

the exact specification of the weighting scheme is likely irrelevant for addressing spatial

variability in the data. These considerations extends to the estimation of the NI variance

bounds, also based on the variogram.

3 Variance bounds for the NI index

3.1 Main result

We explore the geostatistics foundations of the NI index to derive empirically tractable

bounds for the NI index variance. We denote locations on the random field with i =

4Bias can be attenuated by smoothing the observed distribution of locations using kernel estimators.
As shown by Zimmerman (2008), large samples need substantially less smoothing across locations to
reduce the bias, holding fixed the geographic size of the city, thus supporting the use of ndi .
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1, . . . , n, each having non-stochastic weight wi ≥ 0 with w =
∑

iwi, which might reflect

the inverse probability of selection from the population. The underlying process F is

stationary with mean µ and variance σ2.

The first implication of the assumptions we consider is that, asymptotically, the ran-

dom variable µid =
∑

j∈di
wj∑

j∈di
wj
Yj is equivalent in expectation to µ̃ =

∑
i

wi∑
i wi
Yi, i.e.,

E[µ̃] = µ. The second implication is that the spatial correlation exhibited by F is sta-

tionary in d and can be represented through the variogram of F , denoted 2γ(d).

Our analysis focuses on an asymptotically equivalent version of the weighted NI index

of the process distributed as F , that is:

NI(F , d) =
1

2µ̃

n∑
i=1

∑
j∈di

wiwj
2w

∑
j∈di wj

|Yi − Yj| =
1

2µ̃
∆d. (4)

The NI index can thus be expressed as a ratio of two random variables. Asymptotic

approximations for the SE of ratios of random variables have been developed in Goodman

and Hartley (1958, see p. 496). Koop (1964) and Tin (1965) have demonstrated that under

normality such approximations are minimum variance bounds. We use these results to

obtain minimum variance bounds for the NI index in (4) as follows:

V ar [NI(F , d)] =
1

4nµ2
V ar[∆d] +

(NI(F , d))2

nµ2
V ar[µ̃]−

NI(F , d)

nµ2
Cov[∆d, µ̃] +O(n−2), (5)

where the SE approximation is SEd =
√
V ar [NI(F , d)] at any d. The approximation

converges quickly when the number of locations is large, as it the case in applications
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based on census micro data, and holds when income realizations are spatially correlated.5

As suggested in Tin (1965), we use plug-in estimators for the SE.

We provide estimators for each of the three addends in (5) under appropriate assump-

tions. First, we assume that the process F is stationary with known second moments.

Let the positive integer scalars m, b, b′ identify intervals of the distance range d, and B is

the number of such intervals. The variance of µ̃, V ar[µ̃], writes

V ar[µ̃] =
∑
i

wi
w

∑
j

wj
w
E[YiYj]− µ2

=
∑
i

wi
w

B∑
m=1

∑
j∈dmi

wj

w

∑
j∈dmi

wj∑
j∈dmi

wj
c(||si − sj||) (6)

=
B∑

m=1

(∑
i

wi
w

∑
j∈dmi

wj

w
(σ2 − γ(m))

)
(7)

= σ2 −
B∑

m=1

ω(m)γ(m), (8)

where (8) is obtained from (7) by renaming the weight scores so that
∑B

m=1 ω(m) = 1,

and by using the definition of the variogram and the fact that sj = si+m. The score ω(.)

depends on the density in one given location. In random sampling with uniform weights

(wi = 1/n), this factor reduces to an average of the population ndmi
residing in distance

segment m from any unit i normalized by the total population, that is ω(m) = 1
n

∑
i
1
n
ndmi

.

5The sample counterpart of the NI index in (4) can be interpreted as a U-statistic. As shown by Hoeffd-
ing (1948), theorem 7.5, the variance bound in (5) converges to the asymptotic unbiased estimator of the
NI index variance when the income observations are i.i.d. Under this specific circumstance, asymptotic
normality is also granted both with simple and with complex sampling design (Xu 2007, Davidson 2009).
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The second variance component of (5), V ar[∆d], can be written as follows:

V ar[∆d] =
n∑
i=1

∑
j∈di

wiwj
w
∑

j∈di wj

n∑
`=1

∑
k∈d`

w`wk
w
∑

k∈d` wk
E[|Yi − Yj||Y` − Yk|]

−

(∑
i

wi
w

∑
j∈di

wj∑
j∈di wj

E[|Yj − Yi|]

)2

.

The first component of V ar[∆d] cannot be further simplified, as the absolute value op-

erator enters the expectation term in a multiplicative way. We assume stationarity and,

additionally, normality to be able to simulate the expectation, since the random vector

(Yj, Yi, Yk, Y`) is jointly normally distributed with expectations (µ, µ, µ, µ) and variance-

covariance matrix Cov[(Yj, Yi, Yk, Y`)], with:

Cov[(Yj, Yi, Yk, Y`)] =



σ2 c(||sj − si||) c(||sj − sk||) c(||sj − s`||)

σ2 c(||si − sk||) c(||si − s`||)

σ2 c(||sk − s`||)

σ2


.

Let denote further sj−si = b ≥ 0 and sk−s` = b′ ≥ 0 for the positive integers b ≤ Bd and

b′ ≤ Bd. We also take the (unrestrictive) convention that si − s` = m with 0 ≤ m ≤ B.
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We can hence express the variance-covariance matrix as a function of the variogram

Cov[(Yj, Yi, Yk, Y`)] =



σ2 σ2 − γ(b) σ2 − γ(m+ b− b′) σ2 − γ(m+ b)

σ2 σ2 − γ(m− b′) σ2 − γ(m)

σ2 σ2 − γ(b′)

σ2


.

The expectation E[|Yi − Yj||Y` − Yk|] can be simulated from a large number S (with

S = 1, 000) of independent draws (y1s, y2s, y3s, y4s) with s = 1, . . . , S, from the random

vector (Yj, Yi, Yk, Y`). The simulated expectation is a function of the variogram parameters

m, b, b′ and d and of σ2. It is denoted θ(m, b, b′, d, σ2) and estimated as follows:

θ(m, b, b′, d, σ2) =
1

S

S∑
s=1

|y2s − y1s| · |y4s − y3s|.

With some algebra, and using the fact that E[|Y` − Yi|] = 2
√
γ(m)/π for locations ` and

i at distance m ≤ B one from each other, it is then possible to write the term V ar[∆d]

as follows:

V ar[∆d] =
B∑

m=1

Bd∑
b=1

Bd∑
b′=1

ω(m, b, b′, d)θ(m, b, b′, d, σ2)

−4

(
Bd∑
m

ω(m, d)
√
γ(m)/π

)2

. (9)

In the formula, ω(m, b, b′, d) =
∑

i
wi

w

∑
j∈dbi

wj∑
j∈di

wj

∑
`∈dmi

w`

w

∑
k∈db′`

wk∑
k∈d`

wk
and ω(m, d) =∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
are calculated as before.
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The third component of (5) is the covariance term. It can also be written as a function

of the variogram. To show this, we maintain the convention that si − s` = m ≥ 0 and

sj − si = b ≥ 0. This gives the following equivalence:

E[|Yj − Yi|Y`] = E[|YjY` − YiY`|] = E[YjY`]− E[YiY`]− 2E[min{YjY` − YiY`, 0}]

= c(||sj − s`||) + µ2 − c(||si − s`||)− µ2 − 2E[min{YjY` − YiY`, 0}]

= γ(m)− γ(m+ b)− 2E[min{YjY` − YiY`, 0}]. (10)

The expectation E[min{YjY` − YiY`, 0}] is non-liner in the underlying random variables.

Under the Gaussian assumption, the expectation can be simulated from a large number S

(with S = 1, 000) of independent draws (y1s, y2s, y3s) with s = 1, . . . , S, from the random

vector (Yj, Yi, Y`), which is normally distributed with expectations (µ, µ, µ) and variance-

covariance matrix Cov[(Yj, Yi, Y`)]. The variance-covariance matrix writes

Cov[(Yj, Yi, Y`)] =


σ2 σ2 − γ(b) σ2 − γ(m+ b)

σ2 σ2 − γ(m)

σ2


for given m, b and d. The resulting simulated expectation is denoted φ(m, b, d, σ2) and

computed as follows:

φ(m, b, d, σ2) =
1

S

S∑
s=1

min{y1sy3s − y2sy3s, 0}.

18



Based on this result, the covariance term in (5) becomes:

Cov[∆d, µ̃] =
∑
i

wi
w

∑
j∈di

wj∑
j∈di wj

∑
`

w`
w
E[|Yj − Yi|Y`]

−µ
∑
i

wi
w

∑
j∈di

wj∑
j∈di wj

E[|Yj − Yi|]

=
B∑

m=1

Bd∑
b=1

ω(m, b, d)
[
γ(m)− γ(m+ b)− 2φ(m, b, d, σ2)

]
−2µ

Bd∑
m=1

ω(m, d)
√
γ(m)/π. (11)

The weights in (11) coincide respectively with ω(m, b, d) =
∑

i
wi

w

∑
`∈dmi

w`

w

∑
j∈dbi

wj∑
j∈di

wj

and ω(m, d) =
∑

i
wi

w

∑
j∈dmi

wj∑
j∈di

wj
.

A consistent estimator for the SE, denoted ŜEd, is obtained by plugging into (5) the

empirical counterparts of the variogram and the lag-dependent weights, using the formulas

in (8), (9) and (11). (Cressie and Hawkins 1980) provide non-parametric estimators for

the variogram that are robust with respect to outliers (in the empirical application, we

use the robust spherical variogram model in Cressie 1985). Details are provided in the

online appendix A.

3.2 Hypothesis testing

The NI index and the implied NI curves can be used to assess patterns and trends of

neighborhood inequality. Various hypotheses are of interest. One concern may be about

the extent at which inequality in the average individual neighborhood of size d is different

from citywide inequality measured by the Gini index. The relevant null hypothesis is
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H1
0 : NI(y, d) = G(y) against an unrestricted alternative (reflecting the fact that neigh-

borhood inequality can be either larger or smaller than citywide inequality). A second

concern is that the empirical patterns of neighborhood inequality are related to the size

of individual neighborhoods. In presence of income sorting, one expects that inequality

within neighborhoods of small size to be, on average, smaller than inequality in neigh-

borhoods of larger size. Consequently, the NI curve is expected to be increasing in the

individual neighborhood size. The relevant null here is H2
0 : NI(y, d′) = NI(y, d) for

d′ > d, to be tested against a restricted alternative. Rejecting both null hypotheses H1
0

and H2
0 gives statistical support for the existence of a neighborhood component in the

urban income distribution.

It is also of interest to study the dynamics of neighborhood inequality across income

distributions yt and yt′ . For a given size d of the individual neighborhood, the relevant

null hypothesis is H3
0 (d) : NI(yt, d) = NI(yt′ , d) against an unrestricted one. An increase

or decline in neighborhood inequality is robust (with respect to the choice of the distance

parameter) when it involves a form of dominance in neighborhood inequality curves:

that is, when the NI curves never intersect each others. In this case, the relevant null

hypothesis is: H3
0 : H3

0 (d) for some d against a constrained alternative mind{NI(yt, d)−

NI(yt′ , d)} > 0, which signals that one curve lies above the other at any distance range.

One particular case in which H3
0 cannot be rejected is the situation in which H3

0 (d) is

true for every d. As for H1
0 and H2

0 , the null hypotheses are expressed in the form of

equalities to stress that one is compelled to conclude in favor of increasing or decreasing

neighborhood inequality only if there is strong evidence against the null hypothesis.
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The acceptance regions for the null hypotheses H1
0 , H2

0 and H3
0 (d) can se constructed

using the confidence bounds implied by the SE approximations provided above. Confi-

dence bounds for the NI index based on individual neighborhoods of size d take the form

N̂I(y, d)± zαSEd, where N̂I is a consistent estimator of the NI index and zα is assumed

to be the standard normal critical value for confidence level 1−α (for instance, 95%). To

test H3
0 , it is sufficient to plot the confidence bounds of NI(yt′ , d) −NI(yt, d) against d

and verify that the horizontal orthant lies homogeneously in the implied rejection region.

In fact, H3
0 is rejected only if there is enough evidence against a possible crossing in NI

curves, which requires to verify if the implied confidence interval bounds do not include

the horizontal orthant.6

4 Monte Carlo study

4.1 Results

The size and power properties of the estimators adopted to test dominance in NI curves

are now assessed within the framework of a Monte Carlo study. The simulation study is

informative about the behaviour of the SE estimations for the NI index and the implication

is has for testing null hypothesis about NI curves based on different distributions.

6H3
0 cannot be rejected if there is evidence of at least some intersection between the curves. It is

rejected if one curve lies everywhere above the other, implying that the former distribution displays more
spatial inequality than the other irrespectively of the choice of the distance parameter. The suggested
procedure of joint testing is analogous to that used in stochastic dominance analysis (Dardanoni and
Forcina 1999). One can test for intersections of cdfs against the alternative of strong first order stochastic
dominance by producing t-tests for the intersection of cdfs at any given income percentile (usually a grid).
The null is rejected when the smallest t-test value recorded across percentiles range is larger than the
corresponding 95% percentile of a standardized normal distribution (see also Bishop, Chakraborti and
Thistle 1989, Andreoli 2018). We use the same logic to test for equality in NI curves taking dominance
as the alternative .
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Figure 2: Neighborhood inequality in Chicago, IL, 2014, versus two counterfactual distri-
butions

(a) NI(F0, d)−NI(F1, d) (b) NI(F0, d)−NI(F2, d)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level.

The distributions are calibrated to represent the actual distribution of gross equivalent

household income in Chicago IL in 2014, obtained from the Census Bureau’s American

Community Survey data, 2010-2014 module. We compare the actual distribution with

counterfactual distributions obtained by applying suitable transformations to the actual

ACS 2010-2014 data, so that these distributions can be clearly ordered in terms of NI

curves dominance. Then, we use moments of these population distributions to identify

moments of the income data generating processes adopted in the simulation study.

The first distribution F0 represents the spatial income distribution in Chicago, 2014

(µ0 = $53, 456, σ0 = $55, 310). We further consider two counterfactual distributions F1

and F2. The distribution F1 is obtained by adding noise to F0, so that y1 = y0 + ε

for y1 ∼ F1, y0 ∼ F0 and ε ∼ N(0, 6118.44) (µ1 = µ0 and σ1 = $55, 631 > σ0). This

counterfactual distribution displays similar patterns of neighborhood inequality as F0: H
3
0 :
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NI(F0, d) = NI(F1, d) for at least some d, cannot be rejected, as shown in panel (a) of

figure 2. The distribution F2 is obtained by simulating the effect of a redistributive linear

income tax scheme applied to incomes distributed as F0, so that y2 = (1− t)y0 + m, for

y0 ∼ F0, a flat tax rate t = 0.3 and basic income m = 0.3µ0 (µ2 = µ0, σ2 = $38, 716 < σ0).

The null hypothesis H3
0 : NI(F0, d) = NI(F1, d) for at least some d is clearly rejected in

favor of a dominance alternative, as shown in panel (b) of figure 2.

The simulation study is based on models for the income process Yn
f ∼ (µf , σ

2
f , γf (.))

that is normal distributed with finite moments estimated on Ff with f = 0, 1, 2. The

Monte Carlo experiment consists in randomly drawing realizations from Yn
f , each denoted

ynf,r with r = 1, . . . , 200, and assessing relevant nulls hypothesis at pre-determined distance

threshold and for variable n. For samples of size n = 2000, 5000, 8000, distance cutoffs

are set at approximately a third of a mile distance range increments within the first 2

miles, and then at increasing increments within the next 12 miles (at 19 miles range the

NI index converges to citywide inequality). For the sample of size n = 1000, distance

thresholds within 1 and 19 miles are set by looking at increments of three quarters of a

mile exclusively. H3
0 (d) is tested at each distance cutoff. The null hypothesis of the type

H3
0 is tested instead by looking at all distance cutoffs. A detailed description of the Monte

Carlo study is in the online appendix.

We first investigate the size for the tests for various null hypothesis about NI curves.

The size corresponds to the share of simulated samples that allow to reject the relevant null

hypothesis when the null hypothesis is true in the population. We consider populations

where H3
0 : NI(F0, d) = NI(F1, d) for at least some d is true. We draw replicas yn0,r and
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n Distance cutoffs (miles) # Rej. Rej. Weak Strong
0.4 0.7 1 1.4 1.7 2 3 5 12
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Panel A : Size comparisons for the true null H3
0 : NI(yn0,r, d) = NI(yn1,r, d), ∀d

1000 . 0.00 . 0.24 . 0.19 0.16 0.03 0.01 1.1 0.46 0.60 0.00
2000 0.00 0.00 0.32 0.22 0.23 0.19 0.10 0.08 0.00 2.4 0.62 0.53 0.00
5000 0.00 0.00 0.33 0.15 0.17 0.09 0.01 0.01 0.00 1.1 0.52 0.47 0.00
8000 0.00 0.00 0.22 0.06 0.09 0.06 0.05 0.01 0.00 0.8 0.38 0.53 0.00
Panel B : Power comparisons for the true alternative H3

a : NI(yn0,r, d) ≥ NI(yn2,r, d), ∀d
1000 . 0.00 . 0.29 . 0.31 0.19 0.09 0.03 1.7 0.60 0.92 0.00
2000 0.00 0.00 0.40 0.31 0.44 0.26 0.13 0.08 0.00 3.3 0.85 0.88 0.00
5000 0.00 0.00 0.55 0.28 0.49 0.24 0.12 0.09 0.03 4.3 0.81 0.98 0.00
8000 0.00 0.05 0.57 0.34 0.53 0.32 0.30 0.22 0.15 8.7 0.82 0.99 0.00

Table 1: Monte Carlo simulations of the size and power of dominance tests for NI curves
that are based on the NI index SE approximations.

yn1,r and for each replica r we test whether H3
0 (d): NI(yn0,r, d) = NI(yn1,r, d), as well as the

implied null H3
0 , are rejected by the data. Rejections are recorded and the average share

of rejections over the 200 replicas is stored in Panel A of table 1. Columns (1) to (9) report

the size of test for null hypothesis H3
0 (d) at well defined distance cutoffs. Column (10)

reports the average number of rejections of H3
0 (d) across all available distance cutoffs.

Column (11) reports the proportion of times that a null hypothesis H3
0 (d) is rejected

at least one. Columns (12) and (13) report, respectively, the share of cases where the

rejection entails a weak dominance in NI curves (i.e., all cases where multiple rejections

of H3
0 (d) occur within the same replica r and differences in NI curves have the same sign)

and the proportion of the cases in (12) where dominance is strong (i.e., H3
0 is rejected at

every distance cutoff).

Overall, the tests based on the NI index SE bounds have larger size compared to the

nominal 5% level. The size of tests carried out at fixed distance cutoffs is smaller than

10% when the sample size is at least of 5000 units and it is virtually zero when d ≤ 1

mile. Tests for H3
0 (d) for d ≥ 5 miles are below 5%. At these distance ranges, in fact,
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neighborhood inequality converges to the levels of citywide inequality measured by the

Gini coefficient, and the SE approximation converges asymptotically (since the spatial

association of incomes becomes negligible). On average, there is less than 1 rejection of

H3
0 (d) across the distance cutoffs for which we test. The upper bound for the size is of

18% in the largest sample. The size of the test monotonically converges to this number

as the sample size grows. A linear interpolation of size estimates in column (11) suggests

that the upper bound for the size converges to its nominal value of 5% when the sample

size is larger than 16,000 units.

We also investigate the power of the tests for various null hypothesis about NI curves.

Power is measured by the share of replicas that reject the relevant null hypothesis in

favor of a specific alternative when the alternative is true in the population. We use

distributions so that H3
0 : NI(F0, d) = NI(F2, d) for at least some d is rejected in favor

of (strong) dominance in NI curves. We draw replicas yn0,r and yn2,r for replica r, and

we test if H3
0 (d): NI(yn0,r, d) = NI(yn2,r, d) at each distance cutoff separately, as well

as the implied null H3
0 , are rejected by the data. We find that the power of tests for

H3
0 (d) are relatively small for small and large distance cutoffs, while power grows above

30% for distance cutoffs between 1 and 5 miles for which we test. Tests for H3
0 neglect

the positive correlation between SE computed at different distance cutoffs, thus making

rejections of the null hypothesis more likely (since part of the variability in NI curves

estimates is neglected). Hence, rejections rates for H3
0 in favor of (weak) dominance can

only be interpreted as upper bounds for the power of the joint tests. These upper bounds

are estimated by the product of the columns (11) and (12). The upper bound for the
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power of tests for H3
0 is of 74.8% for samples of size 2000 units and grows to 81% in the

largest samples. Despite being upper bounds, these power estimates support the validity

of tests for NI curves dominance based on the SE approximations even in relatively small

samples. We also find that the average number of distance cutoffs where H3
0 (d) is rejected

at any given simulated sample grows steadily with the simulated sample size (column

(10)), from 1.7 rejections when n = 1000 to 8.7 rejections on average when n = 8000,

alongside larger chances that these rejections are in favor of a weak form of dominance in

NI curves. Altogether, these figures confirm the relevance of the SE approximations for

inferring about patterns and dynamics of neighborhood inequality.

4.2 Additional checks

In the online appendix C, we challenge the normality assumption. First, we derive SE

bounds for the NI index while assuming stationarity and log-normality of the process as

a reasonable alternative. Estimated bounds are marginally larger than those obtained

under normality, implying a smaller rejection region. In the Monte Carlo experiment,

we maintain the assumption that SE bounds are derived under normality, and apply

these bounds to simulated data from counterfactual joint log-normal (hence non-gaussian)

distributions. Compared to results in Table 1, the simulated size seems not affected by lack

of normality in the underlying data, while we register improvements in simulated power

estimates. This may follow from the larger acceptance region implied by the normality

assumption. Overall, evidence suggests that the normality assumption leads to high-power

and high-conservative tests for the null of lack of changes in neighborhood inequality.
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In appendix D, we also consider the implications of edge effects arising from the

choice of boundaries of the urban areas. A simulation exercise aims at assessing the

implications of such effects by considering the spatial income distributions of Chicago,

2014, alongside a buffer zone on the boundaries: inequality measured in the individual

neighborhoods of those living in the buffer area does not contribute to NI computation

(see Griffith 1983, Xu and Dowd 2012). The sizes of the tests based on the simulated

distributions (under normality) are comparable to those in table 1, but smaller for samples

of 8000 units. Accounting for edge effects reduces the power of the tests for H3
0 , although

the difference with table 1 is mitigated when rising sample size.

5 Inference for patterns and trends of neighborhood

inequality in Chicago, IL, 1980-2014

Andreoli and Peluso (2018) provide robust evidence that neighborhood inequality is high

in large American metro areas, it has been growing over the lest 35 years, and it almost

converges to citywide income inequality, even when estimates are based on individual

neighborhoods of small size (smaller than half a mile). Are these patterns producing

reliable evidence for the population? Is the growth in neighborhood inequality statistically

significant?

We use the data for the Metropolitan Statistical Area of Chicago, IL in the years 1980,

1990, 2000 and 2014 to draw inference about NI curves.7 Chicago has experienced large

7See Andreoli and Peluso (2018) for details about the data. We use equivalized household market
income estimates as observations, each is assumed to be located at the block group’s centroid. This
assumption follows the empirical empirical constraints dictated by the way data are organized into small
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Figure 3: Trends in neighborhood inequality in Chicago, IL

(a) (b)

(c) (d)

(e) (f)

Note: Author analysis of US Census and ACS data. Confidence intervals are at 95% level.

areal units (block groups), whereas the NI index is defined for spatially continuous processes. In a
simulation exercise discussed in the online appendix E we test the robustness of our estimates to such
assumption.
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demographic growth over the last 35 years, with the number of inhabited census blocks

(each gathering approximately 1000 households) increasing from 3756 in 1980 to more

than 4700 in 2014. The growth in average equivalent income (in nominal terms), ranging

from $13,794 in 1980 to $55,710 in 2014, has been followed by an expansion of relative

inequality. The Gini index for the citywide income distribution has evolved steadily, from

0.434 in 1980 to 0.461 in 1990, then to 0.473 in 2000 and finally 0.486 in 2014, reflecting

both demographic and economic changes.

Neighborhood inequality in Chicago mirrors the trends observed in other large Amer-

ican metro areas. As shown in panel a) of figure 3, in each year the NI index is high

and close to the level of the citywide Gini index even in neighborhoods of relatively small

size.8 The NI estimates are always significant at all distance ranges, with SE of the mag-

nitude of 0.01 − 0.02 points. As table 2 shows (panel A), the hypothesis H1
0 is rejected

with p-values always close to zero when the individual neighborhood size is smaller than

5 miles. When the individual neighborhood is of 12 miles or above, neighborhood in-

equality is statistically indistinguishable from the level of inequality observed in the city

at conventional levels of significance in 1980, 2000 and 2014. The same table, panel B,

reports the evolution of the NI index at different distance thresholds compared to the

level of neighborhood inequality in individual neighborhoods of size 0.4 miles. The gap in

the NI index, in italics, is positive almost everywhere and always increasing with distance.

Nonetheless, these differences are not statistically significant in a distance range smaller

than 5 miles. At 12 miles, H2
0 can be rejected in every year with p-values that are slightly

8The nature of the Census and ACS publicly accessible data does not allow to unbiasedly estimate NI
in neighborhoods smaller than 0.3 miles. Confidence intervals are only reported for larger neighborhoods.
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Years Distance d in miles
0.4 1 2 3 5 12

Panel A: p-values for H1
0

1980 0.000 0.000 0.000 0.000 0.004 0.160
1990 0.000 0.000 0.000 0.000 0.000 0.003
2000 0.000 0.000 0.000 0.000 0.001 0.070
2014 0.000 0.000 0.000 0.000 0.002 0.108
Panel B: p-values for H2

0

1980 . 0.493 0.454 0.396 0.239 0.067
0 0.000 0.001 0.003 0.009 0.020

1990 . 0.357 0.122 0.046 0.020 0.002
0 0.004 0.014 0.020 0.025 0.039

2000 . 0.311 0.410 0.461 0.239 0.060
0 -0.008 -0.004 0.002 0.012 0.027

2014 . 0.467 0.465 0.390 0.269 0.071
0 -0.001 0.002 0.005 0.011 0.027

Table 2: P-values for null hypothesis of the type H1
0 : NI(yt, d) = G(yt) and

H2
0 : NI(yt, d) = NI(yt, 0.4), with t = 1980, 1990, 2000, 2014 and G(y1980) = 0.434,

G(y1990) = 0.461, G(y2000) = 0.473, G(y2014) = 0.486. Differences in levels of the NI
index are in italic.

larger than 5% (smaller in 1990). The patterns of p-values in the table confirm findings

in Andreoli and Peluso (2018) that after 2000 the degree of neighborhood inequality reg-

istered in small neighborhoods has become more representative of the degree of inequality

in the city.

The trends of neighborhood inequality in Chicago resemble those observed in other

large American metro areas. The year-to-year changes in NI, reported in panels b), c)

and d) of figure 3, are always positive at every distance range. The magnitude of these

changes is, however, too small to be statistically significant according to the rejection

region implied by the SE bounds. Nonetheless, the cumulated change of neighborhood

inequality over the four decades turns out to be positive and significant at every distance

range. As panel f) shows, the acceptance region for H3
0 is always positive and never
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includes the horizontal axis, implying that we have strong statistical evidence that the NI

curve of Chicago for 2014 lies always above that of 1980 and the gap between these two

curves is different from (in fact, larger than) zero.

6 Concluding remarks

This article provides variance bounds for the neighborhood inequality index. These

bounds are identified from the knowledge of the variogram function which, under assump-

tions on the income generating process that are common in spatial statistics literature,

fully characterizes the spatial income distribution.

An application to rich income data from the American Census and the Community

Survey motivates the interest in using SE approximations for the NI index when assessing

patterns and trends of neighborhood inequality across American cities. Focussing on the

city of Chicago, IL, we find robust statistical evidence that neighborhood inequality is

large even for individual neighborhoods of small size, but it is statistically different from

citywide inequality (as measured by the Gini index). The cumulated growth of neigh-

borhood inequality over the period 1980-2014 is substantial and significant at standard

confidence levels, reflecting a general trend in largest American cities documented in An-

dreoli and Peluso (2018). Patterns are robust to granularity of the spatial distribution

as well as to edge effects. The Monte Carlo study shows that the tests for NI curves

dominance based on the SE approximations have higher size than the nominal values,

although the (upper bound) size estimates quickly converges when the sample size grows.

We expect that a sample of 16,000 units, smaller than the sample used to obtain estimates
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on the 5-years ACS module, is sufficient to guarantee that the size of the tests we consider

converge to their nominal values. The power of these tests is relatively small for null hy-

potheses defined at given distance cutoffs (but larger than 30% in simulated samples of at

least 8000 units), but power grows significantly to more than 80% when considering tests

for NI curves (weak) dominance (although these are only upper bounds). Investigations

about the appropriate testing procedure when placing dominance/non-dominance of NI

curves under the null are also left for future research.

An interesting extension is to craft individual neighborhoods based on a nearest-

neighbor logic, that is by holding ndi as fixed and d variable. Cressie (1991) provides esti-

mators for the variogram based on nearest-neighbor logic. While the nearest-neighborhood

weighting scheme bears little practical implications for the NI calculation at small geo-

graphic scale (LeSage and Pace 2014), it fails basic replication invariance properties.

Consider, for instance, the possibility of “replicating” the population so that each income

unit’s replica has the same income and location as the original. This operation doubles the

population size and density of a city, without affecting the patterns of spatial income in-

equality. The NI index we study in this paper, which is normalized by population density,

is not affected by this transformation. Conversely, a measure of neighborhood inequality

based on the nearest-neighborhood logic would artificially dilute inequality evaluations

over a larger number of neighbors. These arguments provide further support for the use

of a distance-based criteria, such as the individual neighborhood, in spatial inequality

measurement.
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