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Abstract 

De novo genome assembly, the computational process to reconstruct the genomic 

sequence from scratch stitching together overlapping reads, plays a key role in 

computational biology and, to date, it cannot be considered a solved problem. Many 

bioinformatics approaches are available to deal with different type of data generated 

by diverse technologies. Assemblies relying on short read data resulted to be highly 

fragmented, reconstructing short contigs interrupted in repetitive region; on the 

other side long-read based approaches still suffer of high sequencing error rate, 

worsening the final consensus quality. This thesis aimed to assess the impact of 

different assembly approaches on the reconstruction of a highly repetitive genome, 

identifying the strengths and limiting the weaknesses of such approaches through 

the integration of orthogonal data types. Moreover, a benchmarking study has been 

undertaken to improve the contiguity of this genome, describing the improvements 

obtained thanks to the integration of additional data layers. 

Assemblies performed using short reads confirmed the limitation in the 

reconstruction of long sequences for both the software adopted. The use of long  

reads allowed to improve the genome assembly contiguity, reconstructing also a 

greater number of gene models. Despite the enhancement of contiguity, base level 

accuracy of long reads-based assembly could still not reach higher levels. 

Therefore, short reads were integrated within the assembly process to limit the base 

level errors present in the reconstructed sequences up to 96%. To order and orient 

the assembled polished contigs into longer scaffolds, data derived from three 

different technologies (linked read, chromosome conformation capture and optical 

mapping) have been analysed. The best contiguity metrics were obtained using 

chromosome conformation data, which permit to obtain chromosome-scale 

scaffolds. To evaluate the obtained results, data derived from linked reads and 

optical mapping have been used to identify putative misassemblies in the scaffolds. 

Both the datasets allowed the identification of misassemblies, highlighting the 

importance of integrating data derived from orthogonal technologies in the de novo 

assembly process. 
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This work underlines the importance of adopting bioinformatics approaches able to 

deal with data type generated by different technologies. In this way, results could 

be more accurately validated for the reconstruction of assemblies that could be 

eventually considered reference genomes. 

  



5 
 

    

Summary 

Abstract .....................................................................................................................3 

Introduction ...............................................................................................................7 

Algorithms for de novo Genome assembly.............................................................. 10 

Limitation de novo genome assembly approaches .................................................. 12 

Long range information to enhance genome assembly ............................................ 14 

Limitation of long-range scaffolding approaches ..................................................... 16 

Case study ................................................................................................................ 17 

Aim of the thesis ....................................................................................................... 17 

Materials and Methods ............................................................................................. 18 

Public repository ................................................................................................... 18 

Haematococcus pluvialis sample ............................................................................ 18 

Basecalling, reads processing and error correction .................................................. 18 

De novo genome assembly .................................................................................... 20 

PacBio reads ......................................................................................................... 21 

Assembly polishing................................................................................................ 25 

Identification of base-level errors........................................................................... 26 

Merging long read-based assemblies...................................................................... 26 

Assembly scaffolding and anchoring ....................................................................... 27 

Assessment of assembly quality and identification of misassemby ........................... 27 

Results ..................................................................................................................... 28 

De novo genome assembly of short reads data (Illumina) ........................................ 28 

De novo genome assembly of Long reads data (PacBio)........................................... 31 

De novo genome assembly of Long reads data (ONT) .............................................. 35 

Impact of reads length in de novo assembly ........................................................... 39 

Genome assembly polishing .................................................................................. 41 

Merging long reads-based assemblies .................................................................... 43 

Benchmarking of bioinformatics approaches for genome scaffolding and anchoring . 45 

Assessing Chromosome Conformation capture technology result ............................ 49 

Discussion ................................................................................................................ 51 

References ............................................................................................................... 56 

 



6 
 



7 
 

Introduction 

 

Genome assembly is the process to retrieve the original genomic sequence given a 

bunch of sequenced DNA fragments (reads). Since the advent of sequencing 

technique de novo assembly represented a key step aiming to generate the genomic 

sequence of an organism which is fundament for downstream analysis like 

comparative genomics, variant discovery or genome editing. De novo genome 

assembly is usually compared to jigsaw puzzle in which each piece is represented 

by a read that need to be placed in the original position of the picture identifying 

similarities with proximities pieces. From bioinformatic point of view, assembly 

procedure is performed by computational tools that find overlaps between reads 

reconstructing longer contiguous sequence (contigs). Then, using complementary 

long-range information, contigs can be ordered and oriented into longer, gapped 

sequences (scaffolds) (Figure 1). Genome assembly approaches changed during 

years adapting algorithms to the evolving sequencing technologies peculiarities. 

Despite the persistent improvement of sequencing technologies, genome assembly 

is still an unsolved problem and represent a unavoidable step due to the incapacity 

of reading entire chromosome sequence at once. Thus, to obtain the DNA sequence, 

it is necessary to sample many copies of the genome, fragment it randomly and 

sequence it. Generated reads need to be assembled using bioinformatics algorithms 

that have been developed exploiting different approaches.  

Figure 1. Schematization of de novo assemble approach. This image is 

from Venter et al. The Sequence of the Human Genome. Science. 2001 

https://www.collinsdictionary.com/it/dizionario/inglese-sinonimi/unavoidable
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Initially DNA sequencing was performed in a single-end mode (SE) that is read a 

genomic DNA fragment from one side. Assembling reads generated using this 

approach, presented many limitation: the information is limited to the sequenced 

regions and read orientation is not known [1]. In DNA sequence assembly, longer 

distance information helps the correct positioning of the reads into longer contigs. 

To address this issue, in 1997 was introduced the pair-end sequencing mode by 

Weber and  Myers [2] in which the sampled DNA fragment is sequenced from both 

the extremities. The first enhancement that this approach presented is the possibility 

to reads twice number of reads from the same number of DNA fragments, then, 

strictly related to de novo assembly, the paired information that can be used in the 

reconstruction process is extended to the whole fragment. Indeed, even if the middle 

portion is not sequenced, the information that two reads originated from the same 

fragment can be exploited during the reconstruction step to bypass complicated 

regions (Figure 2).   

 

A boosting in range information was introduced by the so-called third generation 

sequencing technologies (Single Molecule Real Time and Nanopore sequencing) 

that have the ability to read continuous DNA sequences up to megabases in length 

[3]. The enhancement introduced in genome assembly community was remarkable. 

Long reads  permit to read the complete sequence of repetitive regions reaching the 

non-repetitive boundaries. The non-repetitive sequence at the extremities resulted 

in a more reliable alignment during the assembly, incrementing the contigs size. 

Comparing the statistics of the first human genome assembly with a recently 

published genome, is it possible to highlight how assembly process improved in 

Figure 2. Singe-end sequencing vs. Pair-end mode. Blue and red reds 

have been sequenced using a pair-end approach. This permit to identify 
unambiguously the thought the repetitive region R. This image is from 
Sohn and Nam. The present and future of de novo whole-genome 

assembly. Briefings in Bioinformatics. 2019 
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less than twenty years. Contigs N50 of the first human genome assembly was 

reported to be 82 Kbp [4], while, recently published human genomes, based on long 

reads, exceed easily megabases in length [5]. Interestingly, the reads N50 

assembled in the latter work is greater than 100 Kb, highlighting how genome 

assembly approaches  need to adapt to the evolving sequencing data.  

Despite the improvement highlighted above, genome assembly suffer of the 

sequencing errors present in the reads worsening the final consensus accuracy. 

Moreover, low complexity regions and heterozygosity can lead to misassembled  

regions. Genome assembly is still an active research area aiming to find 

bioinformatic approaches to mitigate all the problematic arising from genome 

sequencing.         
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Algorithms for de novo Genome assembly 

Broadly speaking, assembly methods rely on the generation of a graph representing 

the connection of shorter portion of DNA. Identification of unambiguous path 

through this graph led to the generation of contigs sequences. De novo assembly 

algorithms can be grouped in two major categories: Overlap layout consensus 

(OLC) and de Bruijn graphs (DBG).   

 

Overlap Layout Consensus algorithm (OLC) 

Overlap Layout consensus algorithm (OLC) has been extensively applied in 

computational biology and, as suggested by the name, it is composed by three steps 

(Figure 3).  

In the overlap stage, whole dataset of reads is aligned in an all-vs-all manner 

identifying overlaps that exceed length threshold. Reads are placed as nodes and 

overlap creates links between nodes. During this procedure, the main challenge is 

represented by identifying the correct alignment: sequencing errors, repetitive 

genomic regions and heterozygosity can lead to false alignments that impact 

negatively in the next phases, generating misassemby or false connection in the 

graph. Then, on the bases of alignments, an overlap graph is constructed. 

Once generated the overlap graph, the layout phase is performed to walk through 

the graph finding unambiguous paths and to convert them into contigs. Erroneous 

overlaps detected in the previous would create false connection that impact 

negatively in the layout procedure.   

Finally, a consensus step is performed identifying a consensus between all aligned 

reads and generating contigs.   

One of the first developed software implementing OLC algorithm is TIGR 

ASSEMBLER [6] employed in the firsts genome assemblies free-living organisms:  

H.influenza [7] and M.genitalium [8]. 
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Subsequentially, others OLC-based 

software have been developed, one of 

the most known is the WGA 

ASSEMBLER used for the assembly 

of the D.melanogaster genome and 

the first human genome [9][10]. 

OLC approach resulted to be 

successfully applied to Sanger 

sequencing which have a low 

throughput, generating reads of about 

1000 bp in length. With the advent of 

second sequencing technologies the 

instrument throughput exponentially 

increased with a reduction of read 

length. These factors made OLC 

approach inadequate for short read 

data. 

 

De Bruijn Graph algorithm (DBG) 

This model have been proposed for the first time applied to genome assembly in 

2001 by Pevzner et al [11]. This approach was developed adapting to second 

generation data (NGS), a technique that were developing in those years. NGS 

produced short reads (e.g. 30-300 bp) with high accuracy. To use DBG in genome 

assembly was introduced a counterintuitive approach: short reads are further split 

into shorter pieces of length k, called kmers. Each kmer represent a node in a 

directed graph and two nodes are connected if share k-1 sequence (Figure 4). After 

generating a graph using all the reads in a dataset, DBG algorithms try to reconstruct 

contigs finding unambiguous path in the graph.  

Figure 3. Overlap Layout Consensus (OLC) algorithm.  
This image is from Ayling et al. New approaches for 
metagenome assembly with short reads”. Briefings in 
Bioinformatics. 2019. 
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Limitation de novo genome assembly approaches 

Since in the overlap step an all-vs-all alignment is performed, this algorithm is 

sensitive to the input reads number. The graph size increases linearly with the 

number of input sequences, and, consequently, the number of connections between 

nodes increase by a logarithmic scale. During the Layout stage, finding the best 

path through the graph is a Hamiltonian Path Problem which is NP-complete. 

Hence, OLC methods are designed to deal with sequencing technologies producing 

a low throughput. Moreover, decreased sequencing length did not permit to identify 

reliable overlap between reads. OLC algorithms have been, thus, highly exploited 

during the sanger sequencing era but were set aside when NGS hit the market. 

Subsequentially, with the introduction of long reads technologies, OLC approaches 

return to be extensively used and many OLC-based software like Falcon [12], Canu 

[13] Flye[14], Wtdbg2 [15] and Shasta [16] have been developed. Third generation 

sequencing, indeed, generated long reads (up to hundreds of kilobases) permitting 

to take full advantages of overlap-based algorithms. On the other side, long reads 

contain a higher error rate (8 -15%), mostly due to small insertions or deletions 

(Indels) that may hamper a correct alignment.  

To mitigate this issue, different approaches have been proposed:  

- Introduction of a preliminary error correction (or preassembly) step in 

which input reads are corrected using a consensus approach before to 

proceed with the assembly. From one side, this permit to increase overlap 

identity between the reads improving overlap graph generation and the final 

genome assembly. This approach has been implemented in widely used 

software like Falcon and Canu and, despite its effectiveness, it is 

computationally slow. 

- Introduction of a final consensus step to refine the assembled sequences. 

The improvement of long reads sequence quality permitted to avoid the 

preliminary, computationally expensive correction step in favour of a final 

consensus stage. A final consensus step can be implemented with the 

assembler, like Flye, or can be performed independently after the assembly.  
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Despite these measures, genome assemblies based on third generation sequencing 

still contains many errors that may hamper subsequent biotechnological experiment  

[17]. 

As mentioned for OLC approaches, during DBG generation sequencing errors can 

affect negatively the final assembly quality. Sequencing errors generate many false 

kmers that would produce erroneous nodes in the graph. To avoid this, as mentioned 

for OLC approaches, a preliminary error correction step is performed: sequenced 

reads are scanned in search of low frequency kmers, generating from sequencing 

errors. In an ideal scenario in which sequencing reads do not contain errors and all 

the kmers present in the genome are unique, the number on nodes in the assembly 

graph would be the same that in genome. Therefore, on the contrary to OLC 

approaches, sequencing depth do not impact on the graph size. Since the above 

assumptions could not be true, in practice, assembly graph generated by DBG 

approach is much higher than the genome graph and, thus, need to be properly 

cleaned. Reads errors can produce spurious branch or alternative paths in the graph 

and, thus, after generating the graph, DBG algorithms for de novo assembly 

perform the so-called tip pruning in which not connected, low supported branches 

are removed. Then, alternative path in the graph arising from sequencing errors  

commonly called “bubbles” are removed relying on the number of kmers 

supporting each path 
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Long range information to enhance genome assembly 

Since the first genome assembly projects started, methods to get long range 

information have been pursued performing the so-called scaffolding procedure able 

to overcome problematic regions that generate breaks in the contigs. For instance, 

during the assembly of the first human genome mate-pair information was 

considered to join nearby contigs into scaffolds [10]. Indeed, sequencing a DNA 

fragments from both the extremities extend the information that can be converted 

into sequence favouring de novo assembly [18]. Even if the middle portion contains 

a repetitive region, unique sequenced extremities can be used to join the non-

repetitive adjacent regions. Modern approaches to exploit long range information 

rely on newly developed sequencing and mapping technologies like linked reads, 

optical mapping and Chromosome conformation capture (Hi-C). Recently, different 

software has been implemented to exploit this information in favour of de novo 

assembly.  

  

Linked reads 

Proximity information carried by the barcode contained in the linked fragments can 

be exploited in a de novo genome assembly in three different way.  

1) Linked reads can be independently assembled. Relying on an Illumina 

sequencing, short accurate reads can be assembled using a DBG approach. 

Subsequentially, barcode information can be exploited to simplify the 

assembly graph an to join contigs through ambiguous assembly path. 

2) Scaffolding. In this scenario, linked reads are aligned to the draft assembly 

and those contigs on which align reads labelled with the same barcode are 

identified and joined together.  

3) Validation and correction of de novo genome assembly. Once aligned on a 

genome assembly, linked reads can be considered as a virtual long read 

spanning the first to the last fragment containing the same barcode. With 

this approach is it possible to calculate physical coverage of the assembly. 

Those assembled regions where physical decrees under a confidence 
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threshold (e.g. there aren’t enough DNA fragment spanning that region) are 

considered as misassembled and contigs (or scaffold) can be broken.   

 

Chromosomes conformation capture 

Hi-C has been applied in genome scaffolding since it has the capability to catch all 

DNA interaction between genomic loci into the nucleolus without a limit in the 

linear distance which can vary between few baispairs up to hundreds of megabases. 

Once aligned to the draft assembly, contigs are grouped considering sharing pairs 

read. Hi-C does not measure distance between loci, but their frequency of 

interaction and thus, contigs sharing more interaction are placed nearby into 

scaffolds. Recently, many papers have been published highlighting the potentiality 

of this technology to obtain chromosome-scale scaffolds [19]–[22].  

 

Genome mapping data 

Genome mapping relying on the analysis of High Molecular Weight (HMW) DNA. 

Assembled genome maps can be used in a de novo assembly project to anchor the 

draft contigs to the maps. Since the analysed DNA fragments are in order of 

megabases in length it is easy to understand the advantages that this technology can 

guarantee in a de novo assembly project. Coming back to the jigsaw puzzle, this 

orthogonal technology represents a framework on which anchor the information 

deriving from NGS technologies. Being a sequencing free technology, bias arising 

from sequencing (PCR artefact, extreme GC content) are mitigated. Moreover,  the 

long information range of the technology permit to span repetitive sequences 

improving the reconstruction of genomic regions that otherwise would be obscured.  
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Limitation of long-range scaffolding approaches 

Linked reads data, as for Hi-C, rely on short reads sequencing and, thus, are affected 

by the limitation of Illumina sequencing. Moreover, these two approaches include 

PCR based library preparation. On the contrary of Hi-C, linked reads have a shorter 

information range deriving from library preparation. This limitation could limit the 

impact of the scaffolding procedure. Moreover, some limitation arises due to short 

read alignment and the difficulty to accurately estimate interaction frequency lead 

to contigs inversions and misassemby [23]. Indeed, when Hi-C fragments are 

mapped to the draft genome, the two pairs are aligned independently one each other 

and, thus, short reads alignment limitation are evident, especially in repetitive 

regions. 

Mapping approach reling on the geneartion of a restriction site map of the genome. 

Due to a technological limitation, restriction site could not be too close and, on 

average, one site every 10 kb is recognised. This poses a limitation on the size of 

the contigs that can be properly anchored. Indeed, shorter contigs wouldn’t have 

enough sites to be aligned against the map resulting not anchored. Therefore, to take 

full advantages of mapping assembly contiguity metrics of the input assembly need 

to be adequate  
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Case study 

Haematococcus pluvialis is a unicellular green alga of relevant interest for industrial 

application, indeed it is currently the main organism cultivated for astaxanthin 

production, one of the most powerful natural antioxidants. However 

biotechnological approaches to improve this species are restricted by the absence 

of genomic information. Reference genome for this species will allow genome 

editing studies and potential targets for biotechnological manipulation to improve 

biomass and then astaxanthin production in Haematococcus pluvialis. 

Aim of the thesis 

Many bioinformatic algorithms for genome reconstruction, adapting to the evolving 

sequencing technologies, are in continuous development. This thesis aims to assess 

the impact of different assembly approaches on the reconstruction of H.pluvialis 

genome, identifying strengths and trying to limit the weaknesses through the 

integration of orthogonal technologies. Moreover, a benchmark study has been 

performed to evaluate the impact of different long-range scaffolding data for a de 

novo genome assembly 
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Materials and Methods 

Public repository 

To ensure readability and data analysis reproducibility, all scripts, commands and 

configuration files used in this work al publicly available at web repository 

https://bitbucket.org/liukvr/luca-marcolungo-phd-thesis/src/master/ 

Haematococcus pluvialis sample 

Haematococcus pluvialis sample, strain K-0084, analysed in this thesis was kindly 

supplied by Sole Lab directed by Prof. Ballottari at the Department of 

Biotechnology, University of Verona. 

 

Basecalling, reads processing and error correction  

Pacific Bioscience reads processing 

Raw sequencing file generate by PacBio RSII instrument (bas.h5) were converted 

to fasta file using bash5tool.py script from pbh5tools toolkit. 

(https://github.com/PacificBiosciences/pbh5tools) using the following command 

line. 

  

$ bash5tools.py  --outFilePrefix output_name --readType subreads --outType fasta 

https://bitbucket.org/liukvr/luca-marcolungo-phd-thesis/src/master/
https://github.com/PacificBiosciences/pbh5tools
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Oxford Nanopore Technology basecalling and reads filtering 

Raw signal files (fast5 format) were converted into fastq file using Guppy v3.1.5 

with accurate basecalling model. Subsequentially, sequencing adapters were 

trimmed using Porechop v0.2.4 (https://github.com/rrwick/Porechop) and fastq file 

converted into fasta file using seqtk v1.3(https://github.com/lh3/seqtk). 

 

Error correction of Illumina reads 

Illumina reads were searched for sequencing errors and corrected using 

BayesHammer module of SPAdes toolkit (https://github.com/ablab/spades) with 

the following command. 

$ spades.py -o output_folder --tmp-dir temp_folder --only-error-correction -t 16 -m 

256 --pe1-1 illumina_R1.fastq.gz --pe1-2 illumina_R2.fastq.gz 

$ guppy_basecaller --cpu_threads_per_caller threads_number -c guppy_config_file -i 

fast5_folder --hp_correct TRUE -s fastq --num_callers 1 

 

$ porechop ont_reads.fastq -o ont-reads_trimmed.fastq --format fastq --verbosity 3 --

threads threads_number 

 

$ seqtk seq -A ont-reads_trimmed.fastq > ont-reads_trimmed.fasta 

 

https://github.com/rrwick/Porechop
https://github.com/lh3/seqtk
https://github.com/ablab/spades
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De novo genome assembly 

Illumina reads 

Filtered reads have been assembled using SPAdes v3.11.1 [24]  and SOAPdenovo 

v2.04 [25] using different kmer length range from 41 to 107. The best result in terms 

of contiguity was obtained using kmer 77 for SOAPdenovo and exploiting a multi-

kmer approach for SPAdes with kmer length 95, 99, 103, 107. 

 

 

 

 

 

 

 

 

 

#SPAdes v3.11.1 

$ spades.py --dataset spades_config.yaml -t 25 -m 400 --only-assembler -k  

95,99,103,107    --tmp-dir temp_dir  -o Hp_illumina 

 

#SOAPdenovo v2.04 

$ SOAPdenovo-127mer all -o K77 -p 20 -K 77 -F -V -R -s 

config_file_soapdenovo2.config 
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PacBio reads 

PacBio subreads were assembled using Canu v1.5 [13], Falcon v1.4.4 [12], Flye 

v2.5 [14] and Wtdbg2 v2.5 [15] using following command lines. Configuration file 

provided to Falcon pipeline is reported. 

 

 

 

 

 

#Canu v1.5  

$ canu -p H.pluvialis -d H.pluvialis_PacBio genomeSize=300m -pacbio-raw 

subreads.fasta 
 

#Falcon v1.4.4 

$ fc_run file.cgf 

 

#Flye v2.5 

$ flye --pacbio-raw subreads.fasta -g 300m --out-dir output_dir -t threads_nbumber -i 

1 

 

#Wtdbg2 v2.5 

$ wtdbg2 -i subreads.fasta -o HP.wtdbg2 -t 30 -L 5000 

$ wtpoa-cns -t 22 -i HP.wtdbg2.ctg.lay -fo HP.wtdbg2.fasta 
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#Falcon pipeline configuration file 

 

input_type = preads 

 

length_cutoff = 4000 

 

# The length cutoff used for overalpping the preassembled reads 

length_cutoff_pr = 4000 

 

## resource usage ## 

# grid settings for... 

# daligner step of raw reads 

jobqueue = production 

sge_option_da = -pe smp 8 -q %(jobqueue)s 

# las-merging of raw reads 

sge_option_la = -pe smp 2 -q %(jobqueue)s 

# consensus calling for preads 

sge_option_cns = -pe smp 12 -q %(jobqueue)s 

# daligner on preads 

sge_option_pda = -pe smp 8 -q %(jobqueue)s 

# las-merging on preads 

sge_option_pla = -pe smp 24 -q %(jobqueue)s 

# final overlap/assembly 

sge_option_fc = -pe smp 24 -q %(jobqueue)s 

 

# job concurrency settings for... 

# all jobs 

default_concurrent_jobs = 7 

# preassembly 

pa_concurrent_jobs = 7 

# consensus calling of preads 

cns_concurrent_jobs = 4 

# overlap detection 

ovlp_concurrent_jobs = 7 

 

# daligner parameter options for... 

# initial overlap of raw reads 

pa_HPCdaligner_option =  -v -B4 -M50 -e.70 -l1000 -s100 

# overlap of preads 

ovlp_HPCdaligner_option = -v -B4 -M50 -h60 -e.96 -l500 -s100 

 

# parameters for creation of dazzler database of... 

# raw reads 

pa_DBsplit_option = -x500 -s400 -a 

# preads 

ovlp_DBsplit_option = -x500 -s400 

 

# settings for consensus calling for preads 

falcon_sense_option = --output_multi --min_idt 0.70 --min_cov 5 --max_n_read 200 --n_core 7 

 

# setting for filtering of final overlap of preads 

overlap_filtering_setting = --max_diff 100 --max_cov 100 --min_cov 5 --bestn 10 --n_core 10 
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Oxford Nanopore technology reads 

PacBio subreads were assembled using Canu v1.5, Shasta v0.1.0 [16], Flye v2.5 

and Wtdbg2 v2.5 using following command lines. 

 

 

 

 

 

 

 

 

 

 

 

 

#Canu v1.5  

$ canu -p H.pluvialis -d H.pluvialis_ONT genomeSize=300m -nanopore-raw 
nanopore_reads.fastq 

 

#Flye v2.5 

$ flye --nanopore-raw nanopore_reads.fasta -g 300m --out-dir  out_dir -t 

threads_number -i 1 

 

#Shasta 

$ shasta-Linux-0.1.0 --input nanopore_reads.fasta --Reads.minReadLength 0 

 

#Wtdbg2 v2.5 

$ wtdbg2 -i nanopore.fasta -o HP.wtdbg2 -t 30 -L 0 

wtpoa-cns -t 22 -i HP.wtdbg2.ctg.lay -fo HP.wtdbg2.fasta 
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Optical map assembly 

De novo genome map assembly was performed using Bionano Access v1.4.1 

exploiting RefAligner v9232 (https://bionanogenomics.com/support/software-

downloads/). Command line used for map assembly are reported below . Bionano 

configuration file was modified increasing the “MaxCoverage” parameter to 2500. 

  

#BspQI genome map assembly 

 

$ python pipelineCL.py -l output' -t RefAligner/1.0 -C \ 

clusterArgumentsBG_saphyr_phi.xml' \ 

-b Hp_Bionano_BssSI_RawMolecules.bnx \ 

-y  -d -U -i 5 -F 1 -W 0.4 \ 

-a Bionano_configuration_file_map_assembly.xml \ 

-r reference.map \ 

-R 0.5 -f 0.2 -J 48 -j 60 -jp 240 -T 240 -N 6 

 

 

#BssSI genome map assembly 

 

$ python pipelineCL.py -l output -t RefAligner/1.0 -C \ 

clusterArgumentsBG_saphyr_phi.xml \ 

-b Hp_Bionano_BspQI_RawMolecules.bnx  \ 

-y  -d -U -i 5 -F 1 -W 0.4 \ 

-a Bionano_configuration_file_map_assembly.xml \ 

-r reference.map \ 

-R 0.5 -f 0.2 -J 48 -j 60 -jp 240 -T 240 -N 6 

https://bionanogenomics.com/support/software-#downloads/
https://bionanogenomics.com/support/software-#downloads/
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Assembly polishing 

Long read based assemblies underwent to assembly polishing using both long reads 

and short reads correction. PacBio raw data were converted to bam file using 

bax2bam v0.0.8 (https://github.com/PacificBiosciences/bax2bam), aligned to Flye 

based assembly using pbmm2 v1.1.0 wrapper 

(https://github.com/PacificBiosciences/pbmm2). Then the based assembly was 

corrected using GenomicConsensus 

(https://github.com/PacificBiosciences/GenomicConsensus) using Quiver  

algorithm. ONT based assembly was correct using ONT reads. Firstly, ONT reads 

were aligned to the Flye based assembly using minimap2 v2.17 [26], then errors 

were corrected using two round of racon v1.4.3 (https://github.com/isovic/racon) 

and Medaka v0.8.1 (https://nanoporetech.github.io/medaka/). Raw assemblies 

along with long read polished assemblies were corrected using Illumina dataset: 

short reads were mapped to the assemblies using bwa v0.7.17, resulted alignment 

file was polished used by Pilon v1.23 [27] to correct base-level-errors. 

 

 

#Polishing using PacBio dataset 

$ bax2bam *.bax.h5 

$ pbmm2  align  Hp.pb.flye.fasta.mmi list_of_reads.fofn aligned.bam 

$ quiver aligned.bam -r draft_genome.fasta -o quiver_polished.fasta -o 

 

#Polishing using ONT dataset 

$ minimap2 -a -L -t threads_number -x map-ont draft_genome.fasta ont_reads.fasta 

> alignment.sam  

$ racon -m 8 -x -6 -g -8 -w 500 -t 30 reads alignment.sam draft_genome.fasta 2>log1 

> racon_polished.fasta 

$ medaka_consensus -I ont_reads.fasta  -d draft-assembly.fasta -o output_dir -t 

threads_number 

 

#Polishing using Illumina dataset 

$ bwa mem -t threads_number reference.fasta read1.fastq.gz read2.fastq.gz | 

samtools sort --threads 5 -o aligned.bam 

 

$ java -Xmx160G  -jar pilon.jar --genome draft_genome.fasta --frags alignment.bam --

output pilon_polished --outdir Pilon_out --verbose --changes --vcf --vcfqe --tracks --fix 

all --threads threads_number 

 

 

 

https://github.com/PacificBiosciences/bax2bam
https://github.com/PacificBiosciences/pbmm2
https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/isovic/racon
https://nanoporetech.github.io/medaka/


26 
 

Identification of base-level errors 

To identify base-level errors still present in the assembly short reads data have been 

aligned to the sequence using BWA v0.7.17 [28]. The resulted BAM files were 

processed by local realignment around insertion–deletion sites, duplicate marking 

and recalibration using Genome Analysis Toolkit v4.0.2.1 [29]. Finally, variant 

calling was performed using GATK HaplotypeCaller v4.1.2.0. 

 

Merging long read-based assemblies 

Long reads-based assemblies were merged using QuickMerge v0.3 [30] . Briefly, 

the software aligns two genome assembly recovering those genomic regions 

reconstructed in only one. Moreover, contigs can be joined into scaffolds exploiting 

information of the other assembly. 

$ bwa mem -t threads_number draf_assembly.fasta read1.fastq.gz read2.fastq.gz |  

samtools sort --threads 5 -o aligned.bam; 

 

$ java -jar picard.jar MarkDuplicates VALIDATION_STRINGENCY=SILENT 

MAX_RECORDS_IN_RAM=4000000 INPUT=file.bam OUTPUT=alignment.rg.bam 

METRICS_FILE=duplicates.txt REMOVE_DUPLICATES=true CREATE_INDEX=true 

 

$ java -jar gatk.jar -T IndelRealigner -R draf_assembly.fasta  -I alignment.rg.bam -

targetIntervals alignment.intervals -o alignment.realigned.bam 

 

Java -jar gatk4.0.2.1.jar -R reference.fasta  -T UnifiedGenotyper aligned.bam -o 

snps.raw.vcf -stand_call_conf 50.0 -dcov 200 -glm BOTH 

 

$ nucmer -l 100 -prefix out  self_assembly.fasta hybrid_assembly.fasta 

 

$ delta-filter -r -q -l 10000 out.delta > out.rq.delta 

 

$ Quickmerge -d  alignment.delta -q  ../pacbio.polished.fasta   -r ../ont.polished.fasta  

-hco 5.0 -c  1.5 -l 0 -ml 5000 -p out 
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Assembly scaffolding and anchoring 

Merged assembly has been scaffolded and anchored using 10X Genomics data, 

Bionano optical map and Hi-C data.  

Assessment of assembly quality and identification of misassemby 

Linked reads and optical mapping data have been exploited to identify misassemby 

in the Hi-C based assembly using break10X (https://github.com/wtsi-

hpag/Scaff10X) v3.1 and RefAligner v9232 software respectively. 

#Linked read data 

$ scaff10x -nodes threads_number -longread 1 -gap 100 -matrix 2000 -reads 6  -link 

4 -score 20 -edge 50000 -file 1 -plot output.png -block 50000 -data input.dat 

draft_assembly.fasta 10x_scaffolded.fasta 

 

#Hi-C  

$ juicer.sh -g draft_genome  -s Sau3AI -p draft_genome.chrSize -D juicer_script_dir 

 

$ run-asm-pipeline.sh --editor-coarse-resolution 50000 --editor-coarse-region 

100000 --editor-saturation-centile 40 --editor-repeat-coverage 10 -q 20  -r 5 --

editor-fine-resolution 1000  Hp.pbFlye.ontFlye.QM.fasta merged_nodups.txt 

 

#Bionano optical map 

$ Rscript runTGH.R -R RefAligner  -b1 bionano_BssSI_assembly.cmap -b2 

bionano_BspQI_assembly.cmap -N  draft_assembly.fasta -e1 GCTCTTC -e2 CACGAG 

-t cur_results.tar.gz -s status.txt -f  

Bionano_configuration_file_hybridScaffold_two_enzymes.xml -O output 

#Linked read data 

$ break10x -nodes threads_number -gap 100 -reads 5 -score 20 -cover 50 -ratio 15 -

data input.dat hic_assembly.fasta corrected.fasta corrected 

 

#Bionano optical map 

$ Rscript runTGH.R -R RefAligner  -b1 541_EXP_REFINEFINAL1.cmap -b2 

543_EXP_REFINEFINAL1.cmap -N  assembly.fasta -e1 CACGAG -e2 GCTCTTC -t 

cur_results.tar.gz -s status.txt -f  

Bionano_configuration_file_hybridScaffold_two_enzymes.xml - output 

 

https://github.com/wtsi-hpag/Scaff10X
https://github.com/wtsi-hpag/Scaff10X
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Results  

De novo genome assembly of short reads data (Illumina) 

Starting data 

A genomic library has been sequenced on NovaSeq 6000 instrument using 150 Pair-

End protocol generating 300 million sequencing fragments. Before to be assembled, 

reads underwent error-correction using SPAdes v3.11.1 BayesHammer module to 

limit the impact of false kmers (e.g. arising from sequencing errors) to assembly 

graph and the consequent genome assembly.  

De novo genome assembly using de Bruijn Graph-based methods.  

Corrected reads have been assembled using two different software implementing 

DBG algorithms: SPAdes v3.11.1 and SOAPdenovo v2.04. Different assemblies 

have been generated using a range of Kmer length and, for each software, the 

assembly showing the best contiguity metric is reported (Table 1). SOAPdenovo 

reconstructed 208 Mbp of sequence, 132 of which are contained in scaffolds with 

an N50 of 4 Kbp. On the other side, N50 value of SPAdes assembly couldn’t be 

calculated because scaffolds length does not reach half of the total assembly size. 

This also reflect the ability of SPAdes to reconstruct contiguous sequence. Indeed, 

the number of gaps is 2,358 compared to the 34,474 of the SOAPdenovo assembly. 

Total contig number is 119,704 and 155,059 with an N50 value of 5,836 and 6,201 

for SOAPdenovo and SPAdes assemblies respectively. 
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 SOAPdenovo 
Kmer 77 

SPAdes 
Kmer 95, 99, 103, 107 

Total assembly length (Mbp) 208.0 219.7 

Total scaffolds length (Mbp) 132.1 17.5 

Number of scaffolds 28,927 2,168 

Scaffolds N50 (bp) 4,446  

Scaffolds average length (bp) 4,569 8,092 

Longest scaffold (bp) 79,691 70,878 

Number of Gaps 34,474 2,358 

Gaps size (bp) 623,511 39,975 

Contigs in scaffolds 56,114 4,430 

Remaining contigs 63,590 150,629 

Remaining contig total length 

(Mbp) 
75.8 202.3 

Remaining contigs N50 (bp) 4,499 6,028 

Remaining contigs average length 

(bp) 
1,192 1,342 

Longest remaining contig (bp) 79,453 79,543 

Total number of contigs 119,704 155,059 

Total contigs N50 (bp) 5,836 6,201 

Total contigs average length (bp) 1,723 1,417 

GC percentage 58.3% 59.7 
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Sequences > 1 Kbp 32,150 184.2 34,111 180.2 

Sequences > 5 Kbp 11,568 136.2 11,659 126.9 

Sequences > 10 Kbp 5,215 91.0 4,757 78.2 

Sequences > 30 Kbp 375 14.4 240 8.8 

 

Table 1. Comparison of assembly generated using Illumina data. For each software, assembly 
statistics are reported. The rows show the total assembly length, the total scaffolds length, the 

scaffolds N50 (calculated considering the total assembly size), the scaffolds average length, the 
longest scaffold and the gaps metrics (Number of undefined bases and number of gaps). 
Subsequently is reported the number of ungapped sequences (remaining contigs), their total length, 

N50 value average length and the longest. Moreover, number of sequences (both scaffolds and 
contigs) and relative cumulative length are reported for sequences greater than 1, 5, 10, 30 Kbp. 
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Assembly completeness 

BUSCO v4.0.6 has been used to assess assembly completeness using chlorophyte 

linage specific single copy core gene set (chlorophyte_odb10). SOAPdenovo 

assembly contains 87.0% of the orthologue’s genes present in the dataset, while 

SPAdes assembly contains 82.7% of those.  

Figure 4:BUSCO completeness values on the 
Illumina-based assemblies 
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De novo genome assembly of Long reads data (PacBio) 

Starting data 

Long reads sequencing, generated with PacBio RSII instrument, comprises a total 

of 21 Gbp of data corresponding to about 70-fold coverage (Table 2). Reads N50 is 

11.5 Kbp and the longest sequenced reads is 48 Kbp.   

 

 

 

 

 

 

 

 

 

Instrument PacBio RSII 

Chemistry P6-C4 

Number of SMRTcells 21 

Number of sequenced bases 21,816,661,710 

Number of sequenced reads 2,828,818 

Average reads length 7,712 

Reads N50 11,507 

Longest read 48,520 

Expected fold coverage 70X 

Table 2. PacBio sequencing data statistics. Table reports statistics of the PacBio subreads. 
Have been report the sequencer name, the sequencing chemistry used, the number of 
SMRTcells used. The total number of sequenced bases and sequenced reads, the average 

reads length, the N50 value of the reads, the longest sequenced read and the expected fold 
coverage considering an expected genome size of 300 Mbp.  

 

 

 

 

Figure 5:PacBio Weighted reads length distribution 
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Denovo assembly using OLC-based methods 

Results obtained using Illumina data highlighted the limitation of short reads 

sequencing in a de novo assembly process. To overcome this limitation the sample 

have been sequenced using long reads (PacBio). DBG-based software assessed for 

short reads data cannot be successfully applied for long reads. Higher error rate 

profile would generate plenty of erroneous kmer hampering the graph building and 

the consequent genome assembly. On the contrary, OLC approach can handle errors 

presents in log reads allowing mismatch in the Overlap stage allowing to find 

overlap even though the identity is not 100%. Two well-known OLC-based 

software have been exploited to assemble long reads data: Falcon v1.4.4 and Canu 

v1.5. Moreover, two other newly developed assemblers, implementing a slightly 

different OLC approach, have been tested: Flye v2.5 using a repeat graph approach 

and Wtdbg2 v2.5 implementing Fuzzy De Bruijn Graph algorithm.  
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 Canu Falcon Flye Wtdbg2 

Assembly length 

(Mbp) 
266.2 240.3 272.5 241.6 

Number of 

contigs 
5,192 6,676 6,176 5,493 

Average contigs 

length (Kbp) 
51.2 36.0 44.1 43.9 

Longest contig 

(Kbp) 
1,402.4 526.2 457.5 430.1 

Contigs N50 

(Kbp) 
67.0 81.5 86.5 81.1 

Contigs N90 

(Kbp) 
25.7 14.9 23.8 19.2 

GC percentage 59.6% 59.5% 60.1% 59.6% 
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Contigs > 10 

Kbp 
5,065 265.3 4,454 227.9 4,416 264.9 4,383 233.9 

Contigs > 50 

Kbp 
1,767 168.4 1,522 163.3 1,977 201.8 1,588 165.4 

Contigs > 100 

Kbp 
542 82.8 621 99.4 753 114.7 624 96.5 

Contigs > 300 

Kbp 
12 5.0 24 8.9 22 7.8 19 6.5 

 

Table3. Comparison of assembly generated using PacBio data. For each software, assembly 

statistics are reported. The rows show the total assembly length, the number of reconstructed 
contigs, the average contigs length, the longest assembled contig, the N50 and N90 value of the 
assembly and the GC percentage. Moreover, number of contigs and relative contigs length are 

reported for contigs greater than 10, 50, 100, 300 Kbp.     
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Assembly completeness 

To assess assembly completeness, we evaluated the four generated assemblies using 

BUSCO with the chlorophyte linage specific single copy core gene set 

(chlorophyte_odb10). As for the contiguity, Flye assembly resulted the one with the 

higher completeness percentage (96.5%) of core genes, compared to the 88.6%, 

93.9% and 80.5% of the assembly generate by Canu, Falcon and Wtdbg2 

respectively.  

 

 

Figure 6. BUSCO completeness values on the PacBio-
based assemblies 
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De novo genome assembly of Long reads data (ONT) 

Starting data 

Long reads sequencing, generated with Oxford Nanopore Technology MinION 

instrument, comprises a total of 12 Gbp of data corresponding to about 40-fold 

coverage (Table 4). Reads N50 is 15.8 Kbp and the longest sequenced reads is 

more than 400 Kbp. 

 

 

 

 

 

 

 

 

 

 

 

Instrument ONT MinION 

Number of sequenced bases 11,940,386,371 

Number of sequenced reads 2,061,059 

Average reads length 7,712 

Reads N50 15,852 

Longer reads 430 Kbp 

Expected fold coverage 41X 

Table 4. ONT sequencing data statistics. Table reports statistics of the ONT 

reads. Have been report the sequencer name, the total number of 
sequenced bases and sequenced reads, the average reads length, the N50 
value of the reads, the longest sequenced read and the expected fold 

coverage considering an expected genome size of 300 Mbp. 

Figure 7:ONT Weighted reads length distribution 
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De novo genome assembly using OLC-based methods 

Results obtained with PacBio data showed an improvement to the sort-read based 

assemblies. On the other hand, the contiguity metrics of the generated assembly still 

cannot be considered satisfactory. Considering the PacBio based assembly, short 

contigs couldn’t be incorporated in a hybrid assembly using optical mapping data. 

Being a low-resolution technology, contig shorter than 60-90 Kbp cannot be 

properly anchored to the map. Thus, being only 50% of the Fly assembly sequence 

is contained in contigs longer than 86 Kbp, about 50% of the assembly would be 

anchored. To further increase contigs length, it was necessary to generate longer 

reads. Sequenced dataset is than assembled using four different OLC-based 

software. Falcon, which has been developed to work with PacBio reads has been 

replaced with Shasta v0.1.0 a brand-new assembler developed with the goal of 

assembling ONT reads. 

 Canu Flye Wtdbg2 Shasta 

Assembly length 

(Mbp) 
307.5 278.6 235.2 257.8 

Number of contigs 3,607 5,009 7,245 42,329 

Average contigs 

length (Kbp) 
85.2 55.6 32.4 6.1 

Longest contig 1,533.3 1,189.2 911.9 848.3 

Contigs N50 (Kbp) 188.1 247.8 59.8 140.1 

Contigs N90 (Kbp) 39.5 56.1 12.8 5.6 

GC percentage 59.8% 60.3% 59.8% 59.2% 
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Contigs > 10 Kbp 3,079 305.1 1,897 270.2 5,054 220.2 2,345 229.2 

Contigs > 50 Kbp 1,604 266.1 1,270 253.7 1,034 129.1 1,411 204.7 

Contigs > 100 Kbp 945 219.6 883 225.4 408 86.2 806 160.9 

Contigs > 300 Kbp 194 89.7 238 111.5 68 29.8 106 43.0 

Table 5. Comparison of assembly generated using ONT data. For each software, assembly statistics are 
reported. The rows show the total assembly length, the number of reconstructed contigs, the average contigs 
length, the longest assembled contig, the N50 and N90 value of the assembly and the GC percentage. 
Moreover, number of contigs and relative contigs length are reported for contigs greater than 10, 50, 100, 300 

Kbp. 
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Generated assemblies have a genome size ranging from 235 Mbp (Wtdbg2) to 307 

Mbp (Canu) (Table 5). Shasta reconstructed the greater number of contigs, most of 

them shorter than 10Kbp. Despite the assembly with the highest average contigs 

length is the Canu assembly (85 Kbp), if considering the N50 value Flye resulted 

to be the most contiguous assembly: 247 Kbp compared to the 188 Kbp, 140Kb and 

59Kbp of Canu, Shasta and Wtdbg2 respectively. Moreover, considering N90 

value, Flye assembly resulted the best assembly having reconstructing 90% of the 

sequence in contigs longer or equal to 56 Kbp.  

 

 

 

 

 

 

 

 

Figure 8. ONT-based assemblies cumulative length plot 
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Assembly completeness 

As performed for PacBio-based assemblies the completeness has been assessed 

using BUSCO. Compared with the results obtained using PacBio data is possible to 

notice that an overall decreasing of the reconstructed gene space. Flye assemblers 

confirm to be the most accurate reconstructing the 93.3% of the orthologous genes 

compared to the 88.2%, 86.7%, 62.9% of Shasta, Canu and Wtdbg2 respectively 

(Figure 10). 

 

Figure 9. BUSCO completeness values on the ONT-based assemblies 
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Impact of reads length in de novo assembly 

To assess the impact of reads length in de novo assembly process we downsampled 

the ONT dataset considering only those reads longer than: 5Kb (33-fold coverage), 

10Kb (27-fold coverage) and 15Kb (21-fold coverage) (Figure 11). 

 

 

As expected, filtering out shorter reads, N50 value increase, reaching up 26 Kbp for 

the dataset comprising reads longer than 15 Kbp. Results show that assembly N50 

increase when considering filtered datasets compared to the value obtained using 

the whole dataset. Despite the halved reads coverage, assembly generate using reads 

longer than 15 Kbp resulted having a greater N50 compared to the one generated 

with the whole dataset, value increased from 247 Kb to 272 Kb. Highest N50 value 

(278 Kb) has been obtained assembling dataset composed by reads longer than 10 

Kb. The number of contigs reduced when considering filtered datasets: in all three 

cases the number of reconstructed contigs is about half of the number obtained 

using the whole dataset. This reduction is reflecting also in the average contigs reads 

length which is, in the filtered datasets, more than double of the original assembly 

(Table 6). 

 

Figure 10. ONT datasets. Number of total bases along with reads N50 value is reported for the whole 
and filtered datasets  
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Whole 

dataset 

Reads > 

5Kb 

Reads > 

10Kb 

Reads > 

15Kb 

Assembly length 

(Mbp) 
278.6 311.9 316.8 316.9 

Number of contigs 5,009 2,578 2,634 2,469 

Average contigs 

length (Kbp) 
55.6 121.0 12.3 128.3 

Longest contig (Kbp) 1,189.2 1,374.5 1,712.7 1,291.2 

Contigs N50 (Kbp) 247.8 271.9 278.3 272.6 

Contigs N90 (Kbp) 56.1 73.7 71.7 77.1 

GC percentage 60.3% 60.3% 60.3% 60.3% 
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Contigs > 10 Kbp 1,897 270.2 1,905 309.3 1,964 314.2 1,877 314.7 

Contigs > 50 Kbp 1,270 253.7 1,426 295.6 1,450 299.8 1,430 301.7 

Contigs > 100 Kbp 883 225.4 975 263.1 986 266.5 989 269.2 

Contigs > 300 Kbp 238 111.5 298 141.9 301 144.6 302 145.8 

 

Table 6. Comparison of assembly generated using Flye assembler over different ONT filtered data. For 

each dataset, assembly statistics generated using Flye is reported. The rows show the total assembly length, 
the number of reconstructed contigs, the average contigs length, the longest assembled contig, the N50 and 

N90 value of the assembly and the GC percentage. Moreover, number of contigs and relative contigs length 
are reported for contigs greater than 10, 50, 100, 300 Kbp. 
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Genome assembly polishing  

Long reads permit to span over repetitive regions allowing to resolve more low 

complex regions than short reads technologies. However, sequencing errors present 

in raw reads, have an impact on the base-level accuracy of the final assembly. 

Despite different approaches have been implemented trying to limit the propagation 

of sequencing errors to final assembly, (e.g. reads correction and consensus calling 

step) the quality of long-reads based assemblies is still not optimal and 

complementary bioinformatics approaches need to be exploited to improve overall 

quality. To tackle this limitation assembly polishing have been performed using 

long reads sequencing, short reads sequencing and a combination of both 

approaches. PacBio based assembly have been polished using PacBio reads with 

GenomicConsensus v3.4.1 using Quiver algorithm; ONT based assembly have been 

polished using ONT reads using Racon v1.4.3 and Medaka v0.8.1; polishing 

performed using short reads data have been performed using Pilon v1.23. Polishing 

improvement have been assessed using short reads data, identifying variants present 

in the genomes using GATK Toolkit v3.8.1. Majority of errors present in the PacBio 

an ONT based assemblies generated are InDels, comprising 85% and 75% of total 

errors respectively (Figure 12). ONT-based assembly resulted to be the most error-

prone, having 1.6 million position identified as erroneous compared to the 181,267 

  

 

 

Figure 11. Number of errors in de novo genome assemblies. The number of Single 
Nucleotide variation (SNV) and short (<50 bp) insertions or deletion (InDels) is 
reported for the assembly generate using PacBio or ONT dataset. Number of 

variants identified in draft assembly as well as polished assembly is reported.  
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of the PacBio assembly. After polishing using long reads data number of errors 

present in ONT assembly reduced by 40% reaching 1,022,792 while PacBio 

decreased to 148,253. A higher reduction of errors was observed using short reads 

data; after error correction ONT and PacBio assemblies presented 177,799 and 

43,501 errors respectively. Correcting using short read data subsequently to long 

reads data is possible to observe a reduced number of errors in the ONT data: 70,820 

while PacBio assembly presented 44,443 errors. This increased number of errors 

derived from a higher number of SNV, while Indels resulted in a lower number.       

 

 SNV + InDels SNV InDels 
 

ONT PacBio ONT PacBio ONT PacBio 

Not Polished 1,650,034 181,267 406,670 27,009 1,243,364 154,258 

Polished with long 
reads 

1,022,792 148,253 370,875 8,480 651,917 139,773 

Polished with short 
reads 

177,799 43,501 62,305 10,464 115,494 33,037 

Polished with long 
reads and short 
reads    

70,820 44,443 29,614 5,539 41,206 38,904 

 

Table 7 Number of errors in the assembly: Different polishing approaches have been tested on the PacBio 
and ONT assemblies. For each assembly (not polished, polished using only long reads, polished using only 
short reads and polished using long reads and short reads) number of SNV, InDels and total variants have 
been reported 

 

Reduction  in base level errors was reflected also to BUSCO completeness assessment. As 

for the analysis showed before, a greater improvement was observed for ONT-based 

assembly (Figure 13A), which BUSCO score increased from 93.3% to 97.1% compared to 

the PacBio-based assembly which BUSCO score was nearly unchanged.    
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Merging long reads-based assemblies 

To further improve assembly contiguity two long reads-based assembly generated 

with Flye were merged using meta-assembler QuickMerge v0.3. This software 

performs whole genome alignment filling gaps or not reconstructed regions of one 

assembly exploiting information of the other. The resulted merged assembly has an 

increased assembly size (309 Mbp) with a contig N50 value of 284 kb (Table 8). 

This procedure permitted, moreover, to decrease the number of total contigs to 

3,646 with an average contigs length of 84 Kbp. Merged assembly will be used as 

starting assembly to assess the impact of different scaffolding methods.   

 

 

 

 

 

 

   

Figure 12: BUSCO completeness values on the ONT-based assemblies [A] and PacBio based assemblies 
[B]. From the top to the bottom, values represent BUSCO genes identified in the Flye not polished 
assembly, Flye assembly polished with long reads and Flye assembly polished with long and short 
reads.  

A B 
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 Flye (PacBio) Flye (ONT) PacBio + ONT 

Assembly length 272.5 278.6 309.1 

Number of contigs 6,176 5,009 3,646 

Average contigs length 44.1 55.6 84.7 

Longest contig 457.5 1,189.2 1,861.1 

Contigs N50 86.5 247.8 284.0 

Contigs N90 23.8 56.1 49.9 

GC percentage 60.1% 60.3% 60.1% 
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Contigs > 10 Kbp 4,416 264.9 1,897 270.2 2,330 303.6 

Contigs > 50 Kbp 1,977 201.8 1,270 253.7 1,254 278.1 

Contigs > 100 Kbp 753 114.7 883 225.4 877 250.9 

Contigs > 300 Kbp 22 7.8 238 111.5 289 145.5 

 

Table 8. Merging long-read based assemblies. Table reports statistics of the assembly generated using 
PacBio dataset (assembled using Flye), ONT dataset (assembled using Flye) and the merged assembly. For 
each assembly are shown: the total assembly length, the number of reconstructed contigs, the average 

contigs length, the longest assembled contig, the N50 and N90 value of the assembly and the GC percentage. 
Moreover, number of contigs and relative contigs length are reported for contigs greater than 10, 50, 100, 

300 Kbp. 
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Benchmarking of bioinformatics approaches for genome scaffolding and 

anchoring 

Except for short genomes like bacterial or viral, contig assembly most likely do not 

represent chromosomes or chromosome arms, interrupting in low complex regions 

or in those regions difficult to sequence. In the last years different methods for 

genome scaffolding have been developed exploiting orthogonal long-range 

technologies to scaffold contigs. We tested in parallel three different bioinformatics 

approaches that exploit linked reads data, optical mapping data and chromosome 

conformation capture information to improve assembly contiguity generating 

scaffolds. Scaff10X v4.2 have been applied to retrieve information contained in 

linked reads data (e.g. produced by 10X Genomics), Bionano Solve pipeline v3.4 

is a toolkit developed by Bionano Genomics aimed to analyse optical mapping data 

and finally, 3D-DNA pipeline using juicer v1.5.7 has been used to retrieve 

proximity information from a Hi-C library preparation. Using the merged assembly 

described above as starting point we benchmarked the just mentioned methods.  

 

Linked reads 

Illumina sequencing of one 10X Genomics library has been performed on HiSeq X 

instrument using 150PE protocol generating 88 million fragments. Exploiting 

barcode information carried by sequenced reads, input contigs have been joined by 

Scaff10X into 180 scaffolds comprising 106 Mbp. Since this doesn’t reach half of 

the assembled size (309 Mbp) is not possible to calculate N50 value. The 180 

scaffolds contain 270 Gaps. When join two contigs is not possible, when using 

linked reads data, to accurate calculate the real gap size and, thus, scaffolding 

software insert a pre-selected gap length (e.g. 100 bp). More than three thousand 

contigs couldn’t be placed in scaffold which cover 202 Mbp of the assembly (Table 

10).  
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Optical mapping data 

Sample was analysed using double-enzyme approach, increasing the label density, 

enhancing contigs anchoring. Analysis was performed on the Saphyr instrument 

generating a total of 1.1 million molecules covering 361 Gbp of data (more than 

1,000-fold coverage). Molecules N50 is 196 Kbp and 210 Kbp for BspQI enzyme 

and BssSI enzyme respectively.  

Input data was assembled using BioNano Solve pipeline generating two genome 

maps (Table 9), one for each selected enzyme. 

 

Draft assembly was then aligned to both maps generating the hybrid assembly. 

Seventy-four percent of draft assembly, encompassing 228 Mbp, has been anchored 

to the map generating a hybrid assembly of 263 Mbp containing 604 gaps with a 

total of unknown bases of 33 Mbp. Scaffolds encompass 223 Mbp of the anchored 

sequences and have a N50 value of 849 Kbp. Contigs anchored, but not scaffolded 

are 153, with a total length of 40 Mbp. Not anchored contigs contain a total length 

of 79 Mbp with an average size of 24 Kbp highlighting that the majority of 

unanchored contigs are shorter than the optical map resolution. 

Chromosome Conformation Capture technology 

A Hi-C library have been sequenced using NovaSeq 600 instrument generating 300 

million fragments. Hi-C library has been mapped to the draft assembly and the 

information regarding the spatial proximity of genomic regions have been exploited 

to join contigs in scaffolds. 3D-DNA pipeline successfully joined 1,819 contigs 

 Enzyme BspQI Enzyme BssSI 

Genome map length (Mbp) 323.9 370 

Number of optigs 699 741 

Average optigs length (Kbp) 463.4 499 

Longest optigs (Mbp) 3.0 3.2 

Optigs N50 (Kbp) 520.0 630.0 

Table 9.Genome map assembly statistics. For each enzyme, table reports genome maps statics including total 

genome map length, number of reconstructed optigs, average optigs length, longest reconstructed optigs and 
N50 value of the assembly. 
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generating 55 scaffolds containing 245 Mbp of sequence with an N50 of 5.1 Mbp. 

Scaffolds contains 1,765 gaps but, as motioned for linked reads, gaps size cannot 

be calculated confidentially and thus the pipeline introduce between adjacent 

contigs a user-selected length (e.g. 500 bp). Longest scaffold is 13.4 Mbp and the 

average scaffolds size is 4.5 Mbp.  
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  Bionano  

 10X genomics Anchored Not anchored 
Anchored + Not 

Anchored 
Hi-C 

Total assembly length (Mbp) 309.1 263.9 79.1 343.1 310.0 
Total scaffolds length (Mbp) 106.3 223.1  223.0 245.6 
Number of scaffolds 180 271  271 55 
Scaffolds N50 (Kbp)  849.5  656.2 5,095.1 
Scaffolds average length (Kbp) 590.6 823.2  823.2 4,466.4 
Longest scaffold (bp) 1.8 3.0  3.0 13.4 
Number of Gaps 270 604  604 1,765 
Gaps size (Kbp) 27.0 33,975.1  33.975.1 882.5 
Contigs in scaffolds 450 875  875 1,819 
Remaining contigs 3,196 153 3,174 3,327 3,428 
Remaining contig total length (Mbp) 202.8 40.8 79.1 120.0 64.3 
Remaining contigs N50 (Kbp) 269.1 303.2 54.8 93.0 42.8 
Remaining contigs average length (Kbp) 63.4 267.2 24.9 36.0 18.7 
Longest remaining contig (Kbp) 1,861.1 951.2 391.8 951.2 350.4 
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Sequences > 10 Kbp 2,060 303.6 424 263.9 1,745 73.1 2,169 337.1 1,664 302.2 

Sequences > 50 Kbp 984 278.2 424 263.9 489 42.7 913 306.7 388 274.5 

Sequences > 100 Kbp 696 258.1 418 263.4 127 17.9 545 281.4 147 259.0 

Sequences > 300 Kbp 320 188.1 295 238.0 2 0.696 297 238.7 51 245.1 

 
Table 10. Comparison of assembly generated using bioinformatics methods for scaffolding and anchoring. For each method, assembly statistics are 

reported. The rows show the total assembly length, the total scaffolds length, the scaffolds N50 (calculated considering the total assembly size), the 
scaffolds average length, the longest scaffold and the gaps metrics (Number of undefined bases and number of gaps). Subsequently is reported the 
number of ungapped sequences (remaining contigs), their total length, N50 value average length and the longest.  Moreover, number of sequences 
(both scaffolds and contigs) and relative cumulative length are reported for sequences greater than 10, 50, 100, 300 Kbp. 
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Assessing Chromosome Conformation capture technology result 

Results reported in the chapter above highlighted how Chromosome Conformation 

Capture technology can reconstruct chromosome-scale assembly. To assess the 

result obtained we decided to use two bioinformatics approaches to validate the 

structure of the assembly generate using Hi-C. The first one, rely on the fragment 

coverage, calculated exploiting linked reads data using break10X v3.1 software. 

Even though linked reads have been sequenced using short read technology, 

information carried by the barcode allow to retrieve the information of the original 

DNA fragment generating the barcoded-reads. Thus, it is possible to exploit 

fragment coverage instead of reads coverage to evaluate assembly accuracy. Those 

regions representing a misassemby, will not be supported by any fragment (e.g. any 

fragment will span over misassembled region) and will be labelled as erroneous. 

The second approach is based on optical maps. Genome maps have been aligned to 

the assembly using RefAligner v9232 and regions which highlight incongruences 

have been corrected breaking the contig or scaffolds in the misassembled region 

from BionanoSolve Pipeline v3.4. Hi-C assembly resulted fragmented using both 

technologies meaning that. Using fragment coverage have been identified 117 

misassemby, corrected assembly resulted having a greater number of scaffolds and 

contigs. Consequently, scaffolds N50 decrease to 2.0 Mbp. Optical mapping 

pipeline permits to break sequences where misassemby is identify and then to join 

corrected sequences in right order and orientation base on map data. Fifty-four 

sequenced were corrected, identifying 524 misassemby. Resulted assembly 

contains 439 scaffolds with an N50 of 864 Kbp. 

 

Figure 13: Incongruence between NGS and Optical mapping data. The figure shows a region where the two 

reconstructed genome maps align properly to the Hi-C scaffolded assembly until the misassemble region.   
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Corrected with linked 

reads 

Corrected with optical 

mapping data 

Total assembly length (Mbp) 310.0 326.5 

Total scaffolds length (Mbp) 245.1 265.1 

Number of scaffolds 157 439 

Scaffolds N50 (Kbp) 2,043.8 864.7 

Scaffolds average length (Kbp) 1,561,569 603.9 

Longest scaffold (bp) 5,717,429 3,942,643 

Number of Gaps 1,765 1,962 

Gaps size (Kbp) 882,500 17,459.3 

Contigs in scaffolds 1,921 2,376 

Remaining contigs 3,443 3,479 

Remaining contig total length (Mbp) 64.8 61.4 

Remaining contigs N50 (Kbp) 43.2 38.0 

Remaining contigs average length 

(Kbp) 
18.8 17.6 

Longest remaining contig (Kbp) 350.4 576.8 
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Sequences > 10 Kbp 1781 302.2 2001 318.2 

Sequences > 50 Kbp 500 274.2 658 288.2 

Sequences > 100 Kbp 241 257.5 402 271.5 

Sequences > 300 Kbp 135 241.0 256 245.9 

 

Table 11. Comparison of Hi-C assembly corrected using linked reads and optical mapping data.  For 
each correction, assembly statistics are reported. The rows show the total assembly length, the 
total scaffolds length, the scaffolds N50 (calculated considering the total assembly size), the 
scaffolds average length, the longest scaffold and the gaps metrics (Number of undefined bases 

and number of gaps). Subsequently is reported the number of ungapped sequences (remaining 
contigs), their total length, N50 value average length and the longest. Moreover, number of 
sequences (both scaffolds and contigs) and relative cumulative length are reported for sequences 

greater than 10, 50, 100, 300 Kbp. 
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Discussion 

High quality genome assembly represents the fundament of further genomic 

studies. Continuously evolving sequencing technologies motivated the 

development of adequate bioinformatic tools to assemble sequenced reads. 

However, limitation of de novo assembly methods and sequencing technologies 

makes genome assembly an active research field [31][32][33]. Short reads 

sequencing, highly exploited during early 2000s, permitted to reconstruct genome 

assembly with high base-level accuracy. DBG algorithms was implemented to 

manage this kind of data, however, limited by sequencing read length, DBG 

methods do not permit to discriminate between repetitive regions hampering the 

reconstruction of high contiguous contigs. Indeed, in eukaryotic organism,  

transposable element generate ambiguous path in the assembly graph and represent 

the most relevant cause of contigs breaks during genome reconstruction [34][35]. 

H.pluvialis assemblies, generated using short reads data, resulted greatly 

fragmented using both tested software, with a contigs N50 about 5 Kbp, too low to 

annotate many gene models. Assembly generated by SPAdes resulted slightly larger 

than the one assembled by SOAPdenovo: 219 Mbp and 208 Mbp respectively. 

Interestingly, SPAdes is able to reconstruct longer contiguous sequences, 

highlighted also by the much smaller number of gaps and the lower total gaps 

length. More than 90% of assembly generated by SPAdes reside in contigs, 

underlining the effectiveness of Gap Closure module developed in the software. 

Genome size confirms limitation of kmer based approaches in reconstructing 

repetitive regions [36] which resulted to be collapsed if the kmer length cannot span 

the whole repetition, decreasing the size  of final assembly. During the last years, 

development of long reads technologies permitted to sequence longer fragment of 

DNA enabling to depict a greater portion of the genome [37]. OLC based software 

using PacBio dataset permitted, indeed, to reconstruct a more contiguous 

assemblies, which are overall larger (60Mbp) deriving from an increased read 

length able to span over repetitive regions, anchor to the unique extremities and, 

thus, reconstruct repetitive regions. Due to an increased error rate compared to short 

reads data, DBG is not suitable for long reads. Indeed, this approach would detect 
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plenty of false kmer arising from sequencing errors generating spurious path in the 

assembly graph. Flye permitted to reconstruct a larger genome having the highest 

N50 value. Nevertheless, the four tested software showed comparable performance 

in terms of contiguity. The largest assembled sequence was reconstructed by Canu 

and it is 1.4 Mbp in length. While the increased assembly size obtained using long 

reads and mapping technologies, compared to Illumina based ones, was a 

consequence of the ability to reconstruct repetitive regions, the discordant assembly 

size obtained using Nanopore, PacBio and optical mapping data highlight the 

possibility that this species is highly heterozygous. Indeed, different 

implementation of assembly algorithms lead to a different amount of collapsing 

haplotypes affecting the final assembly size [38].  

Concerning base level accuracy, Falcon and CANU perform a reads correction step 

before to proceed with the assembly, while Flye and Wtdbg2 compensate the 

absence of correction phase with final consensus step during which raw reads are 

used to polish the assembly. This procedure resulted more effective in Flye 

assembly highlighted by the higher number of reconstructed genes models 

compared to the others three approaches.  

Long reads permitted to obtain assemblies containing greater portion of the gene 

space, namely 10% more of BUSCO genes was reconstructed using long reads 

approach. To confirm the fact that read length impact positively on the contiguity 

metrics and gene space reconstruction, a de novo assembly was performed using 

increased reads length dataset obtained using ONT technology. This, permitted to 

obtain longer and contiguous contigs, having an N50 of 246 Kbp, almost three times 

the contiguity obtained using PacBio dataset. Differently from the PacBio based 

assemblies, tested software showed more differences in terms of contigs and 

genome size but the best contiguity metrics along with best BUSCO value was 

identified using Flye based assembly as well. An overall worsening of BUSCO 

value have been observed using ONT reads, probably due by a higher sequencing 

error rate and a lower sequencing coverage. Despite the newly introduced software 

Shasta doesn’t implement an error correctio step, the percentage of complete genes 

identified by BUSCO is comparable with Canu which it does. Wtdbg2 resulted the 

worst in terms of reconstructed gene models.    
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Depth of coverage is always considered one of the main parameters during the setup 

of a genome assembly project. We investigated the impact of this parameter, related 

to read length using the ONT dataset, highlighting how the lowering coverage, 

discarding shorter sequences, do not impact negatively on the resulted assembly. 

On the contrary, discarding shorter reads, assemblies resulted in a fewer number of 

contigs and with a greater N50 value, highlighting the importance of having longer 

reads even at the expense of reads coverage. From the other side, keep sequencing 

to increase depth of coverage would be unnecessary if sequenced reads length is 

not adequate.  From bioinformatic point of view, longer sequences spanning over 

repetitive region, even with lower coverage, permit to identify unique overlaps and, 

thus, to walk through duplicated regions reconstructing those portions of genome 

that, otherwise, would be obscured. 

The benefit of assemble with long reads technologies, however, have some 

drawbacks, deriving from the higher error rate of raw sequences. Indeed, long-reads 

based assembly suffer base-level errors, the majority of which are small insertion 

or deletions (InDels). These kinds of errors can cause frameshift in the final 

assembly hampering an accurate gene prediction [17]. Many approaches have been 

developed trying to limit the impact of this disadvantage during the assembly 

procedure [39][40]. Despite these efforts, assembly algorithms can’t fully resolve 

this concern, resulting contigs with a relatively low base-level accuracy. As 

highlighted in this work, bioinformatics approaches to correct base-level errors are 

then necessary to refine genome assembly using complementary data (e.g. Illumina 

reads) that, despite a limited length (up to 300bp), enable, thanks to the high 

accuracy (> 99%), to polish the sequence. Refinement performed using a 

combination of long and short reads data permitted to increase H.pluvialis genome 

quality to QV38 in the case of PacBio assembly enhancing also further genes 

annotations. Despite the increased read length and the consequent improved 

contiguity, ONT based assemblies contain more errors than PacBio. Considering 

the assemblies refined using both long and short reads, ONT assembly contains 

almost double number of errors (70,820) compared to the PacBio assembly 

(44,443).  
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Results presented suggested that, when approaching genome assembly, a trade-off 

between contiguity and base-level accuracy should be considered. Despite huge 

improvements in the last few years, long reads technologies behave differently, and 

results need to be complemented with short reads data to enhance base-level quality. 

Bioinformatic approaches to combine long and short reads permit to obtain high 

quality genomes, combining the ability to reconstruct low complex regions of long 

reads sequencing and the high base-level quality of short reads technologies. 

However, apart for some prokaryote or small viruses’ genomes, contigs usually do 

not represent chromosomes [41], centromeres or long segmental duplication still 

represent complex regions hard to be confidentially reconstructed. Scaffolding 

approaches have been developed with the aim to compensate this limitation 

exploiting long range technologies that permit to bypass repetitive regions and to 

order and orient contigs into scaffolds. Tested methods, relying on linked reads, 

optical mapping data and chromosome conformation capture, disclosed different 

performance. The latter one, permitted to reconstruct chromosome scale scaffolds. 

Long-range information generates using Hi-C library derive from three-

dimensional interaction of distant loci into the nucleus. Hi-C library is sequenced 

using Illumina instrument that still suffer of the mapping limitation of short 

sequencing technologies. Moreover, bioinformatics approaches tend to introduce 

inversions deriving from noise in the Hi-C data [23]. Thus,  orthogonal technology 

are still necessary to validate the scaffolding result [42] [43].  

Knowing the limitation of chromosome conformation capture technology, we 

verified the results using two bioinformatics approaches that permit to verify the 

assembly quality. Exploiting fragment coverage of linked reads is it possible to 

detect regions not supported by sequenced data, identifying misassembled regions. 

This approach allowed to break Hi-C scaffolds in 117 positions suggesting that the 

assembly contained misassemby. Using mapping data, the number of misassembled  

regions was even higher: scaffolds have been broken in 524 positions lowering the 

assembly N50 value to 864 Kbp.  

Development of bioinformatic methods for genome sequencing and scaffolding 

permit to obtain assembly with unprecedent quality allowing starting of massive 
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sequencing projects initiative (e.g. Vertebrate Genome Project, Bat1K, Genome 

10K). However, genome assembly cannot be considered a solved problem, 

especially for highly repetitive genomes, and still is not available a methodology or 

a sequencing technology without some drawbacks.  

In this thesis different bioinformatic approaches and sequencing technologies have 

been employed to reconstruct the highly repetitive H.pluvialis genome. Sequential 

integration of additional data layers permitted to bypass single methodology 

limitation. The knowledge of bioinformatics approaches, how to integrate different 

methodologies and the importance of validate the results is necessary to reconstruct 

genome assembly that can also be considered a reference genome. 
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