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Introduction

Quantum mechanics is a branch of physics that started in 1900 with the pioneering work of Max Planck,
who proposed a solution to the black-body radiation problem, and continued with Albert Einstein’s 1905
paper explaining the photoelectric effect. In the 1920s, scientists like Schrödinger, Heisenberg, Born,
Dirac and others further contributed to the development of the quantum theory and its formalism, which
involves mathematical objects called wave functions for describing the state of a quantum system.

Today, quantum mechanics is considered to be the most complete physical theory of nature, which is
able to explain phenomena that are characteristic of the atomic and subatomic world, succeeding where
classical theories are inadequate.

One key feature of quantum mechanics is the so-called entanglement, i.e. a quantum correlation that
cannot be explained by any local classical theory and that nowadays constitute a fundamental resource
for many quantum-related tasks.

One of them is Quantum Computing, a well established research field where quantum phenomena
like superposition and entanglement are employed to process information. The aim of quantum comput-
ing is to devise quantum algorithms which are able to manipulate quantum systems in order to obtain
a quantum state representing the solution for a given problem. The power of superposition and entan-
glement can lead to a computational speed-up with respect to a classical computer. Quantum computers
outputs are probabilistic, thus, contrary to classical deterministic algorithms, quantum algorithms may
need to be repeated a number of times before getting a result.

There exist several equivalent models of quantum computation like quantum circuit model, adiabatic
quantum computing (AQC) model and topological quantum computation (TQC) which work employing
different quantum mechanical concepts. In the last decade, a large effort has been put forward by both
universities and companies in the realization of a hardware able to perform quantum computation. The
two main hardware available to the public are the IBM Q, a general purpose gate model quantum com-
puter, and the D-Wave quantum annealer, i.e. a device specific for solving combinatorial optimization
problems.

Simultaneously to the rise of quantum computing, also another research area has gained a lot of
popularity in recent years, namely Machine Learning (ML).

We live undoubtedly in the era of big data, where information is collected by the most disparate
devices. In this context, ML constitutes a set of techniques for identifying patterns among these huge
data-sets and for inferring input-output relations from data in order to interpret previously unknown
inputs. Some of the most common ML applications are spam mail filters, iris recognition for security
systems, evaluation of consumer behaviour, assessing risks in the financial sector or developing strategies
for computer games.

Machine learning tasks are typically classified into three broad categories depending on the nature of
the learning process [3]: Supervised, Unsupervised and Reinforcement learning.

Within the supervised category, we mainly focus on classification algorithms like K-nearest neigh-
bours and kernel methods; the latter are a set of algorithms, such as support vector machines, which
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employ kernel functions to perform non-linear classifications. Unsupervised algorithms like k-means
and minimum spanning tree clustering algorithms are also discussed in this thesis.

Moreover, a set of techniques known as Topological Data Analysis (TDA) that are able to improve
many ML algorithms will be introduced. TDA provides a set of tools to recognize the global structure of
multidimensional point clouds. The most powerful tool of TDA is perhaps Persistent Homology, i.e. an
algebraic method for computing coarse topological features of a given data cloud that persist over many
grouping scales [20, 21].

Recently a new interdisciplinary research topic going under the name of Quantum Machine Learning
(QML) started to merge in different ways quantum computing and machine learning techniques in order
to achieve improvements in both fields [15, 79, 80, 83, 84, 85, 86, 170]. It is possible to distinguish four
approaches in QML, depending on the nature of the dataset under study and on the computation device
being used [88]: in the first one (denoted as CC) the dataset represents some classical system and the
algorithm runs on a classical computer but the machine learning algorithm is inspired by the formalism
of quantum mechanics [89, 90, 91, 92, 93]; in the second approach (denoted as CQ) data is assumed to be
classical but algorithms relies on the advantages of quantum computation in order to speed up classical
methods of machine learning [94, 95, 96, 97, 98, 99, 100]; the third approach (denoted as QC) uses clas-
sical methods of machine learning to analyse quantum systems [101, 103, 105, 111, 112, 113, 114] and
finally the last direction (denoted as QQ) imagines a general scenario where both the learning algorithm
and the system under study are fully quantum.

In this thesis we propose and explore different research directions related to both the use of classical
algorithm for the study of quantum systems (QC) and the employment of quantum computing to speed
up hard ML computational tasks (CQ).

In the QC framework, we propose a TDA based on persistent homologies for the study of multipartite
quantum entanglement, i.e. a complex form of entanglement that is shared between multiple quantum
parties, which is in general very hard to characterise and classify.

In the CQ framework we present different strategies to perform ML tasks on quantum computational
devices choosing the quantum computing model whose properties are more suitable for the ML algorithm
being studied. In particular, from a purely theoretical viewpoint, we propose two different approaches
based on kernel methods: one performs a multi-class classification known as error correcting output
codes (ECOC) on a gate model quantum device while the other one computes a hamming distance based
kernel via topological quantum computation.

On a more applicative side, we used two quantum devices currently available, i.e. the D-Wave quan-
tum annealer and the IBM quantum computer for implementing two different tasks. A formulation of
minimum spanning tree (MST) clustering and of an edit distance kernel are presented as quantum an-
nealing problems that can be solved using the D-Wave device. A quantum classifier that performs facial
expressions recognition is developed for the IBM quantum hardware.

The original work behind this doctoral thesis has already appeared in the papers:

1. Homological analysis of multi-qubit entanglement, A. Di Pierro, S. Mancini, L. Memarzadeh, R.
Mengoni, EPL (Europhysics Letters) 123 (3), 30006

2. Persistent homology analysis of multiqubit entanglement, R. Mengoni, A. Di Pierro, L. Memarzadeh,
S. Mancini, QIC Vol.20 No.5-6 (2020)

3. Quantum error-correcting output codes, D. Windridge, R. Mengoni, R. Nagarajan, International
Journal of Quantum Information 16 (08), 1840003

4. Hamming distance kernelisation via topological quantum computation, A. Di Pierro, R. Mengoni, R.
Nagarajan, D. Windridge, International Conference on Theory and Practice of Natural Computing,
269-280

5. Kernel methods in Quantum Machine Learning, R. Mengoni, A. Di Pierro, Quantum Mach. Intell.
(2019) 1: 65
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6. Study network-related optimization problems using quantum alternating optimization ansatz, Z.
Wang, R. Mengoni et al. APS Meeting Abstracts

7. Quantum Annealing approach to Edit Distance Calculation, R. Mengoni, F. Trotti, A. Di Pierro,
(work in progress)

8. Facial expressions recognition with IBM quantum computer, R. Mengoni, M. Incudini, A. Di Pierro,
QTML2019 proceedings online, www.quantummachinelearning.org/qtml2019-program.html

The thesis is organized as follows. In Chapter 1 we give an overview of the classical computing
techniques in Machine Learning and Topological Data Analysis. In Chapter 2 we present the quantum
theory, with a focus on quantum entanglement. Then in Chapter 3 we introduce the topic of quantum
computing in its many facets. In Chapter 4, quantum machine learning and its main algorithms are dis-
cussed. Finally in Chapters 5 up to 8 we explain the core work of this thesis: homological analysis of
multiqubit entanglement (Ch.5); quantum error correcting output codes and Hamming distance kernel-
ization via TQC (Ch.6); a quantum annealing implementation of the ML learning techniques for MST
clustering and graph edit distance calculation (Ch.7); facial expressions recognition quantum algorithm
on the IBM quantum computer (Ch.8).





1

The Classical Setting

In this chapter we give an overview of the classical computing techniques which are relevant for this
thesis. In the first section the field of Machine Learning is introduced together with an explanation of its
main algorithms. In the second part, we discuss the techniques known under the name of Topological
Data Analysis.

1.1 Classical Machine Learning

The subset of Artificial Intelligence known as Machine Learning (ML) is recently showing an increasing
popularity. Historically ML was addressed as the set of techniques able to identify patterns among huge
datasets "without being explicitly programmed to perform that task" [76, 77]. In other words ML infers
an input-output relation from data in order to interpret previously unknown inputs. In the last decade ML
has undergone a great development because of its effectiveness in dealing with many IT problems like
spam mail filters, iris recognition for security systems, evaluation of consumer behaviour, assessing risks
in the financial sector or developing strategies for computer games.

Machine learning tasks are typically classified into three broad categories depending on the nature of
the learning process [3]:

1) Supervised learning. The algorithm is provided with a set of correct input-output relations from which
it has to infer a mapping that relates them. More in detail, it is given an ensemble of labelled data points
usually called training set. This sample contains data in the form of multidimensional feature vectors
which could for example represent the health condition of a patient and the labels indicating whether the
subject is healthy or presents some diseases. The learning algorithm has the task to induce a classifier
from these labelled samples. The classifier is a function that allocate labels to inputs, including those that
are out of the training set which have never been previously analysed by the algorithm.

2) Unsupervised learning. The algorithm is provided with an unlabelled dataset with the goal of finding
patterns and structures without any prior experience of the problem. A standard examples of unsuper-
vised learning task is clustering where data-points in the form of multidimensional vector are assigned
labels and grouped in such a way to minimize within-group distance while maximizing the margin be-
tween different classes. Other examples include density estimation which determines how data is dis-
tributed in space and generative models which are able to generate new data instances.

3) Reinforcement learning. In this setting, usually a computer program, called agent, interacts with a
dynamic environment in which it must perform a certain goal. The agent could be rewarded or punished
depending on which strategy it uses in order to reach its goal.



2 1 The Classical Setting

In the following sections we will discuss the machine learning method that are relevant for this thesis,
namely the K-nearest neighbours algorithm and kernel methods for what concerns supervised learning
while different clustering algorithms are presented as examples of unsupervised learning.

1.1.1 Supervised Learning

K-Nearest Neighbours

K-Nearest Neighbours (k-NN) is a very popular and simple supervised learning algorithm used in pattern
recognition where object classification is based on the characteristics of objects that are close to the one
considered [4].

In general, consider a training set T = {~xm, lm}Mm=1 containing M feature vectors ~xm ∈ RN with
their respective class labels lm ∈ {c1, c2, .., cn}, where ci identifies one of the possible n classes in
which the training dataset is divided.

In the classification phase, an unclassified input ~x (which represents an object) is assigned to a class
c if such a class is the most frequent among the k training vectors closest to ~x (see Fig.1.1). This is based
on the idea that feature vectors which are close to each other encode similar properties. The proximity
is measured based on some distance between points, usually Euclidean distance, but also others like
Manhattan or Hamming distance are equally usable.

Fig. 1.1: The k-NN algorithm assigns a new input vector depicted as a cross to the most frequent class appearing
among its closest k = 6 neighbours.

Since classification is based on the majority vote among k neighbours, k must be a positive, typically
not very large, integer. In a binary classification context, in which there are only two classes, it is appro-
priate to choose odd k to avoid a situation of equality. However, the choice of k is not always easy and
can influence the performance of the algorithm. Generally, increasing k leads to less noise-biased results
but the criterion of class allocation for new input becomes more blurred [5]. From the complexity point
of view, the k-NN algorithm takes O(MN + kM), where, as said before, M is the cardinality of the
training set and N the dimension of each sample.

A variation of the k-NN algorithm is the Nearest Centroid Classifier which, for each class, finds the
centroid ~µc i.e. the vector which is the mean between all those vectors with the same label

~µc =
1

|Nc|
∑
lm=c

~xm (1.1)

A new input is assigned to the class of the closest centroid; this is equal to a k-nearest neighbours where
the training data has been pre-processed and k = 1.
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Kernel Methods and Support Vector Machine

Kernel methods [115] are classification algorithms in ML that use a kernel function K in order to map
data points, living in the input space V , to a higher dimensional feature space V ′, where separability
between classes of data becomes clearer. Kernel methods avoid the calculation of points in the new
coordinates but rather perform the so called kernel trick that allow to work in the feature space V ′

simply computing the kernel of pairs of data points [115] (see. Fig.1.2).

𝜙

Fig. 1.2: Visual explanation of the kernel trick. After the application of the map φ, a previously non linearly separable
dataset becomes such in a higher feature space.

If we consider a map φ such that φ : V → V ′, the kernel K : V × V → R is the function representing
the inner product in this high dimensional feature space V ′:

K(~xi, ~xj) ≡ 〈φ(~xi), φ( ~xj)〉 (1.2)

(where 〈 , 〉 is the inner product in V ′) and it must satisfy the Mercer condition [11, 12] of positive
semi-definiteness i.e. for all possible choices of M real numbers (c1, . . . , cM ), the following relation
must hold

M∑
i=1

M∑
j=1

K(~xi, ~xj)cicj ≥ 0. (1.3)

Hence calculating the kernel K(~xi, ~xj) is computationally cheaper than computing each new coordinate
φ(~x); moreover it is worth noticing that at no stage it is required to compute φ(~xi). In fact, the Mercer
theorem guarantees the existence of a mapping φ whenever the kernel function K(~xi, ~xj) gives rise to a
kernel matrix obeying the Mercer condition. Common examples of kernels defined on Euclidean space
Rd include:

• Linear kernel: K(x, y) = xT y, x, y ∈ Rd.
• Polynomial kernel: K(x, y) = (xT y + r)n, x, y ∈ Rd, r ≥ 0.

• Gaussian kernel: K(x, y) = e−
‖x−y‖2

2σ2 , x, y ∈ Rd, σ > 0

Some kernels might be harder to compute than others. An example is the graph edit distance based
kernels. The graph edit distance (GED) is a measure of similarity (or dissimilarity) between two graphs
whose mathematical definition depends on the kind of graphs under study, i.e. whether graph are labelled,
directed, planar etc. In general, given a set of graph edit operations, the GED between two graphs is
defined as
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GED(g1, g2) = min
(e1,...,ek)∈P(g1,g2)

k∑
i=1

c(ei) (1.4)

where P(g1, g2) denotes the set of edit paths transforming g1 into (a graph isomorphic to) g2 and
c(e) ≥ 0 is the cost of an edit operation e. The problem of computing GED is in general NP-complete,
which means that also calculating the kernel which is based on the GED is a hard task.

Among the kernel methods, the best known example is Support Vector Machine (SVM), a supervised
binary classifier that learns the optimal discriminative hyperplane when receiving in input a set of M
labelled vectors {(~x, y) | ~x ∈ RN , y ∈ {−1,+1}}. The SVM maximizes the distance, i.e. the margin,
between the decision hyperplane and the closest points, called support vectors [70].

The SVM optimization problem with hard-margin can be formulated as follows:

arg min
(~w,b)

{
1

2
‖~w‖2

}
(1.5)

subject to the constraint
∀i yi(~w · ~xi − b) ≥ 1

where (~xi, yi), with i = 1 . . .M and yi ∈ {−1,+1}, is the couple of training vector and label; ~w is the
vector which is normal to the discriminative hyperplane, and b is the offset of the hyperplane.

An important extension of the SVM presented above is the so called soft margin SVM where the best
hyperplane is the one that reaches the optimal trade-off between two factors: the minimization of the
margin and the restrain of the point deviation from the margin, expressed using slack variables ξi tuned
by the hyper-parameter C. The soft margin SVM optimization problem is of the form:

arg min
(~w,b)

{
1

2
‖~w‖2 + C

M∑
i=1

ξi

}
(1.6)

subject to the constraint
∀i yi(~w · ~xi − b) ≥ 1− ξi, ξi ≥ 0, (1.7)

Usually it is convenient to switch to the dual form where we introduce Lagrange multipliers αi in order
to include the constraint in the objective function:

arg max
(αi)

M∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj(~x
T
i ~xj) (1.8)

subject to ∑
i

αiyi = 0 , ∀i αi ≥ 0

where the relation ~w =
∑
i αiyi~xi has been used to obtain Eq. 1.8. It is worth noticing that only a sparse

subset of the αis are non-zero and the corresponding ~xi are the support vectors which lie on the margin
and determine the discriminant hyperplane.

In this context, a non-linear classification boundary for the SVM is obtained by replacing the term
(~xTi ~xj) in Eq. 1.8 with a kernel function K(~xi, ~xj) ≡ ~φ(~xi)

T (~φ( ~xj)) satisfying the Mercer condition of
positive semi-definiteness. The Lagrangian optimization problem for the soft margin SVM now becomes

arg max
(αi)

M∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(~xi, ~xj) (1.9)

subject to ∑
i

αiyi = 0 with ∀i αi ≥ 0.
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Note that the dual form of the SVM optimization problem is quadratic in the parameter αi and it can be
efficiently solved with quadratic programming algorithms.

A related method is the Least Squares Support Vector Machines (LS-SVM) [116] where the con-
straint defined in Eq. 1.7 is replaced with the equality constraint

∀i yi(~w · ~φ(~xi)− b) = 1− ei, (1.10)

where ei are errors terms. In this way, optimal parameters ~α and b that identify the decision hyperplane
are found by solving a set of linear equations, instead of using quadratic programming. The LS-SVM
problem can hence be formulated as follows

F

(
b
~α

)
.
=

(
0 ~1T

~1 K + γ−1I

)(
b
~α

)
=

(
0
~y

)
(1.11)

where F is a (M + 1) × (M + 1) matrix, ~1T ≡ (1, 1, 1 . . .)T , K is the kernel matrix and γ−1 is the
trade-off parameter that plays a similar role to C in soft margin SVM. Binary class labels are denoted by
the vector ~y ∈ ([−1, 1]

M
)T .

From a computational point of view [15], solving the quadratic programming problem or the least-
squares SVM has O(M3) complexity. A bottleneck to the speed of computation is determined by the
kernel: for a polynomial kernel K(~xi, ~xj) = (~xi

T ~xj + c)d it takes O(M2d) but in other cases the
complexity could be much higher.

1.1.2 Unsupervised Learning

K-Means Clustering

The k-means algorithm is an unsupervised ML method to cluster data, which allows us to subdivide
objects into k partitions (or clusters), based on their attributes.

More in detail, consider an unlabelled dataset D containing M feature vectors ~x ∈ RN , the k-means
algorithm aims to partition the dataset into k ≤ M sets C = {C1, C2, ..., Ck} in order to minimize the
within-cluster variance. The objective function is the following

arg min
C

k∑
i=1

∑
~x∈Ci

‖~x− ~µi‖2 (1.12)

where ~µi is the centroid or mean vector calculated among those points belonging to the same class Ci

~µi =
1

|Ci|
∑
~x∈Ci

~x. (1.13)

The algorithm at first randomly select k centroids and then follows an iterative procedure that alter-
nates between two steps [6]. An assignment step where each vector ~x is assigned to the cluster whose
centroid ~µi has the least squared Euclidean distance. An updating step where it is calculated the new
centroids of the vectors in the new clusters.

The two steps are repeated until convergence, which is obtained when the points no longer change
clusters. The algorithm does not guarantee a convergence to a global optimum but towards a local mini-
mum [7]. Moreover the overall performance is largely affected by the initial choice of the centroids.

From the complexity point of view, finding the optimal solution for the k-means clustering problem
is NP-hard in the Euclidean space [8], moreover the problem can be exactly solved in time O(MNk+1),
whereM is the number of elements in the dataset to be clustered andN is the dimension of the Euclidean
space.
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Minimum Spanning Tree Based Clustering

Before diving into this clustering method, let’s briefly introduce the Minimum Spanning Tree (MST)
problem.

Intro to the Minimum Spanning Tree problem
Consider a weighted graph G = (V,E,w) composed of a set V of n vertices, a set E of edges and a
function w : E → R that associates a weight wv,v′ to each edge (v, v′) ∈ E.

The Minimum Spanning Tree (MST) problem aims at finding a subgraph T of G such that: it does
not contain cycles (i.e. T is a tree), it touches all the n vertices of G and it minimizes the sum over
all edge weights. Note that it is safe to consider only positive weights wi,j since the solution of MST
problem does not change when we add a positive constant to the weights (see Fig.1.3).
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Fig. 1.3: Minimum spanning tree (MST) problem example. The edges that constitute the MST are highlighted.
Notice the MST is a connected graph with n nodes and n− 1 edges.

In general, finding the MST of a given graph is not a hard task for a classical computer. In fact, given
a graph where e is the number of edges and n is the number of vertices, the MST problem can be exactly
solved in O(e log n) time. However, with an additional constraint called ∆-Degree constraint (i.e. each
vertex in the MST must have degree less or equal than ∆), where 2 ≤ ∆ < n− 1, the problem becomes
NP-hard and the corresponding decision problem NP-complete [9]. Finally, note that if the initial graph
is complete, then a MST with ∆-Degree constraint is ensured to exist.

Clustering with the MST
Given an unlabelled dataset D containing n feature vectors ~xi ∈ RN , the MST based clustering algo-
rithm considers the n points ~xi as nodes of a complete weighted graph G, where weights wi,j represent
the euclidean distance between any pair of points ~xi and ~xj .

wi,j = d(~xi, ~xj) (1.14)

At this stage, the algorithm computes the MST (or the Degree constraint MST) of the weighted graph G.
Once the MST is obtained, there are two different ways to produce a group of clusters[19].

If the number of clusters k is known in advance, the algorithm sorts the edges of the MST in de-
scending order and remove the (k − 1) edges with heaviest weights [16, 17], (see Fig.1.4).

Another approach to obtain clusters that does not require an a priori knowledge of k is the one where
edges that satisfy an inconsistency measure are deleted from the tree. Such measure takes into account
for those weights which are much larger than the average weight of the closest edges in the MST [18].
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Finally, unlike traditional clustering algorithms, the MST based clustering does not assume any shape
or structure of the underlying data and for this reason is well suited for detecting clusters with irregular
boundaries [19].

Fig. 1.4: Example of three-group MST-clustering after removal of two successive longest edges: (left) minimum
spanning tree representation of the given points; (right) three-group clustering after the removal of two successive
longest edges, dashed lines indicate the inconsistent edges.

1.2 Topological Data Analysis

A point cloud is a collection of points in some n-dimensional space Sn. In many cases, analysing the
global ’shape’ of the point cloud gives essential insights about the problem it represents. Topological
Data Analysis (TDA) provides a set of techniques to recognize the global structure of multidimensional
point clouds. The most powerful tool of TDA is perhaps Persistent Homology, an algebraic method
for computing coarse topological features of a given data cloud that persist over many grouping scales
[20, 21].

1.2.1 Algebraic Topology Background

Algebraic topology is a branch of mathematics that employs abstract algebra to study topological spaces.
The basic goal is to find invariants that classify topological spaces up to homotopy equivalence i.e.
"continuous deformation" of one space into the other.

In this section we will review some key concepts of algebraic topology that are relevant for the tech-
nique known as Topological Data Analysis (TDA) [22, 23].

Convex set: A convex set is a region of a Euclidean space where every two points are connected by
a straight line segment that is also within the region.

Convex Hull: The convex hull of a set X of points in an Euclidean space is the smallest convex set
that contains X.

k-Simplex: A k-simplex σ = (Vj0 , · · · , Vjk) is a k-dimensional object which is the convex hull of its k+1
points {Vj0 , · · · , Vjk}. The dimension of a k-simplex is k and it can be understood as a k-dimensional
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generalization of a triangle, for example, simplices of dimension 0, 1, 2 and 3 are respectively vertices,
edges, triangles and tetrahedra as shown in Fig.1.5.

0-simplex 1-simplex 2-simplex 3-simplex
(solid)

Fig. 1.5: Different k-simplices.

Face of a k-simplex: The convex hull of any nonempty subset of the k+ 1 points of a k-simplex is called
face of the simplex.

Simplicial complex: A simplicial complex K is a finite set of simplices that satisfies the conditions:

i) Any face of a simplex from K is also in K,
ii) The intersection of any two simplices σ, σ′ ∈ K is either the empty set ∅ or a face of both σ and σ′.

Loosely speaking, the simplicial complex is a collection of simplices and its dimension is equal to the
largest dimension of its simplices, as shown in Fig.1.6.

Fig. 1.6: An example of a simplicial complex.

Oriented simplex: An oriented k-simplex ~σ is a k-simplex with a fixed orientation, i.e. the order of the
vertexes is fixed. To denote an oriented simplex, brackets [.] instead of (.) around the generating vertices
are used. Oriented simplices have the following property when switching two vertices

[Vj0 , · · · , V̂jl , · · · , V̂jm , · · · , Vjk ] = −[Vj0 , · · · , V̂jm , · · · , V̂jl , · · · , Vjk ]

k-Chain group: A k-chain is a a linear combination of oriented k-simplices with integer coefficients of
the form

c =

p∑
i=1

εi ~σi (1.15)

where {σ1, · · · , σp} is the set containing all the k-simplices of the complex K. The set of all k-chains of
the complex K is indicated with Ck(K).

For example, the 1-chain of a path from some point v1 to another point v4 is c = ~σ1 + ~σ2 + ~σ3,
where ~σ1 = [v1, v2], ~σ2 = [v2, v3] and ~σ3 = [v3, v4] are the 1-simplices components of c.

k-Boundary operator: Given an oriented k-simplex ~σ = [Vj0 , · · · , Vjk ], the boundary operator is a
map of the kind ∂k : Ck(K)→ Ck−1(K) defined as
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∂k(~σ) =
k∑
i=0

(−1)
i
[Vj0 , · · · , V̂ji , · · · , Vjk ]

where the hat accent on V̂ji indicates that the point Vji is discarded and [Vj0 , · · · , V̂ji , · · · , Vjk ] is the
oriented (k − 1)-simplex represented by all vertices in the set, except for Vji .

Roughly, the boundary map, applied to a k-chain outputs a (k-1)-chain whose elements are the sim-
plices that constitute the boundary of the k-chain. Considering the previous example, the boundary of
the 1-chain c = ~σ1 + ~σ2 + ~σ3, of a path from point v1 to v4 is

∂1c = ∂1( ~σ1 + ~σ2 + ~σ3)

= ∂1( ~σ1) + ∂1( ~σ2) + ∂1( ~σ3)

= ∂1([v1, v2]) + ∂1([v2, v3]) + ∂1([v3, v4])

= ([v2]− [v1]) + ([v3]− [v2]) + ([v4]− [v3])

= [v4]− [v1].

(1.16)

which in fact are the extremes (the boundary) of the path from point v1 to v4 .

k-Boundary group : The k-boundary group of a complex K is defined as

Bk(K) = Im ∂k+1 = {c ∈ Ck(K) such that ∃c′ ∈ Ck+1(K) with ∂k+1(c′) = c} (1.17)

This means that Bk(K) of the complex K contains all those k-chains that are boundaries of the (k + 1)-
dimensional objects in K;

k-Cycle group : The k-cycle group of a complex K is defined as

Zk(K) = Ker ∂k = {c ∈ Ck(K) such that ∂kc = 0} (1.18)

which contains all those elements that have no boundary.

Homology group: Consider the simplicial complex K. The kth homology group Hk(K) associated to
K is defined as

Hk(K) ≡ Zk(K)/Bk(K) (1.19)

which includes those k-dimensional objects which have no boundary and are not boundary of anything
that is (k + 1)-dimensional.
More in detail, for each simplicial complexK there is a set of homological groups {H0(K), H1(K), H2(K), ..},
where the kth homology group Hk(K) is non-empty when the k-dimensional holes are in K.

Betti numbers: The k-th Betti number βk is defined as

βk(K) ≡ dim Hk(K). (1.20)

Hence, the Betti numbers βk, as well as the associated homology groups Hk(K) of a simplicial com-
plex K, describes the connectivity existing in that complex. In other words, the k-th Betti number βk
counts the number of k-dimensional holes in a complex: β0 is the number of connected components, β1
is the number of 1-dimensional holes and β2 is the number of two-dimensional holes i.e. voids.

Note that Betti numbers are topological invariants which means that if different spaces have the same
Betti numbers then the spaces are homotopy equivalent.
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1.2.2 Persistent Homology

Consider a dataset (or data cloud) represented by a set of points {xα} in a Euclidean space. In order to
capture the global topological features in the dataset, the corresponding space must first be represented
as a simplicial complex as depicted in Fig. 1.7.

At first, points in the cloud are grouped together depending on their pairwise distances. More in
detail, choosing a value of the grouping scale ε, it is possible to construct the graph whose vertices are
the data points {xα} and edges exα,xα′ are drawn when the ε

2 -balls centred in the vertices xα and xα′
intersect each other. Such graphs show connected components and hence clusters obtained at ε scale but
do not provide information about higher-order features such as holes and voids.

In order to track high-dimensional features it is necessary to complete the corresponding graph to a
simplicial complex by filling in the graph with simplices. At a given grouping scale ε, there are different
methods to generate simplicial complexes Kε. One of this methods generates the so called Vietoris-Rips
complex1,Rε, where k-simplices correspond to (k+ 1) points which are pairwise within distance ε. The
Rips complex is closely related to another simplicial complex, called the Čech complex Cε, where s k-
simplices are determined by (k+1) points whose closed ε/2-ball neighborhood have a point of common
intersection [25]. By the Čech theorem [24], the Čech complex has the same topological structure as
the open sets (ε/2-balls) cover of the point cloud. This is not true for the Rips complex, which is more
coarse than the Čech complex. Therefore, the latter is a more powerful tool for classification with respect
to Rips which by the way is computationally easier to calculate.

a) b)

c) d)

Fig. 1.7: Method to associate a simplicial complex to a data cloud: a) the point cloud; b) the choice of the grouping
scale ε produces the graph shown in c); d) the graph is completed to a simplicial complex.

1 For simplicity, it will be referred to as Rips complex in the following.
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Topological features of the data cloud that appear at a chosen value of ε are obtained by considering
the homology groups of the simplicial complex associated to the cloud. If ε is taken too small, then only
multiple connected components are shown. On the other hand, when ε is large, any pairs of points get
connected and a giant simplex with trivial homology is obtained.

However, it is preferable to make the whole process independent from the choice of ε. In order to
obtain significant features it is necessary to consider all the range of ε. In the presence of a noisy dataset,
those topological features which persist over a significant interval of the parameter ε are considered
specific of that point cloud, while short-lived features are less important ones [25, 26].

Consider the filtration K = {Kεi}Ni=1 i.e. a sequence of complexes associated to a given point cloud;
instead of examining the homology of the individual terms Hk(Kεi), we look at the inclusion maps
I : Hk(Kεi) → Hk(Kεj ) for all i < j. These maps are able to tell us which features persist since they
reveal information that is not visible if we consider Hk(Kεi) and Hk(Kεj ) separately.

a)
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Fig. 1.8: a) the point cloud; b) and c) are respectively the persistent diagrams and the barcode associated to the point
cloud: in the two diagrams, connected components are depicted in black, holes in red and voids in blue. When the
grouping scale ε is small, many connected components are visible because points get connected only to the closest
points. Increasing ε, higher order topological features like holes and voids appear. When the grouping scale is large
enough, all points are connected to form a high dimensional simplex and hence a single connected component is
left.

Barcodes. Given a filtration K = {Kεi}Ni=1, a barcode is a graphical representation of Hk(K) as a col-
lection of horizontal line segments in a plane whose horizontal axis corresponds to the parameter ε and
whose vertical axis represents homology groups, see c) in Fig.1.8. A barcode can be seen as a variation
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over ε of the Betti numbers which count the number of n-dimensional holes on the simplicial complex
Kε [25].

Persistence diagrams. Given the filtration K = {Kεi}Ni=1 a persistence diagram is a multiset of points
~p in R2 where each point p = (b, d) tell us at which values of ε a k-dimensional hole appear (time b)
and disappear (time d). Since not every k-dimensional hole has to disappear, those topological features
that persist are mapped to points of the form (b,∞) in the persistence diagram. Persistence diagrams are
therefore concise graphical representations of Hk(K) equivalent to barcodes, as shown in Fig.1.8.

1.2.3 TDA as a Resource for ML

ML is usually intended as a set of algorithms that can learn from data and make some kind of predictions
about them. TDA is in general not considered part of the ML toolbox, even if the boundary between the
two is blurred. However, rather than discussing about their differences, it is perhaps more useful to show
how TDA and ML could play well together.

A solid approach in this direction was proposed in [27] where authors establish a connection between
TDA and ML by designing a kernel defined on persistence diagrams that could improve kernel methods
like SVM.

More in detail, given a set of persistence diagrams D, the kernel is defined in terms of a feature map
Φσ : D → L2(Ω), where Ω ⊂ R2 indicates the closed half real plane above the diagonal, i.e. the portion
of the plane where persistence diagrams live.

Since a persistence diagram D is a multisets of points p in R2 which does not have the structure of a
Hilbert space, it is possible to embed the diagram D into a Hilbert space by representing it as a sum of
Dirac delta distributions, one for each point p in D.

a)

δp

p
p

δp

b)

Fig. 1.9: (a) Given a persistence diagram D, its domain is extended from Ω, i.e. the closed half plane above the
diagonal, to R2 by adding points p which are symmetric to p with respect to the diagonal. Each point p ∈ D is
associated with a Dirac delta δp, while each p with a −δp. (b) The modified persistent diagram on the left is used to
define a heat diffusion problem with Dirac deltas as initial conditions (Figure from [27]).

Moreover, in order to take into account the distance between points p and the diagonal of the persis-
tence diagram (see Fig.1.9a), the sum of Dirac deltas is used as an initial condition for a heat diffusion
problem with a Dirichlet boundary condition on the diagonal.

The solution of this partial differential equation lead to the definition of the following kernel, tuned
by the parameter σ

kσ(F,G) =
1

8πσ

∑
p∈F
q∈G

e−
‖p−q‖2

8σ − e− ‖p−q‖
2

8σ . (1.21)

where F,G ∈ D are two persistence diagrams while p and q are respectively the persistence diagrams
points of F and G and q is the symmetric of q with respect to the diagonal.
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Quantum Entanglement

Quantum entanglement is a purely quantum mechanical feature of global states of composite systems
which cannot be written as a product of the states of individual subsystems (or a convex linear combina-
tion of them) [28].

Despite an initial scepticism in the early days of quantum theory [29], entanglement is nowadays con-
sidered a uniquely quantum mechanical resource and it plays a key role in many of the most interesting
applications of quantum computation and quantum information [35].

In this chapter, after a brief overview of the postulates of quantum mechanics, the phenomenon
of Quantum Entanglement will be introduced for both pure and mixed states. Finally, the problems of
separability and characterization of entanglement will be extensively discussed.

2.1 Postulates of Quantum Mechanics

I. To a closed quantum system is associated a space of states H which is a Hilbert space. The pure
state of the system is then represented by a unit norm vector |Ψ〉 on such Hilbert space.

The simplest quantum system we can consider is the qubit, to which is associated the Hilbert space C2

[35], a generic qubit state is described by a vector

|Ψ〉 = α |0〉+ β |1〉

where {|0〉 , |1〉} is the canonical basis and probability amplitudes i.e. coefficients α, β ∈ C are such that
|α|2 + |β|2 = 1.
Quantum state |Ψ〉 is usually parametrized as

|Ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 .

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. This means that the set of states {|Ψ(θ, ϕ)〉}θ,ϕ corresponds to the
surface of a 2-sphere S2 ⊂ R3 of radius one (known as the Bloch sphere).

II. The space of states of a composite physical system is the tensor product of the states spaces (Hilbert
spaces) of its subsystems.

III. The state change of a closed physical system with associated Hilbert space H is described by a
unitary operator U : H→ H

|Ψ〉 → |Ψ ′〉 = U |Ψ〉
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with U†U = UU† = I where U† is the adjoint of U and I is the identity operator

The time evolution of the state of a closed quantum system is described by Schrödinger equation 1

i
d |Ψ〉
dt

= H |Ψ〉 (2.1)

where H is known as the Hamiltonian, an Hermitian operator that describes the energy of the system. It
is straightforward to see that the solution to Schrödinger equation is

|Ψ(t)〉 = e−iHt |Ψ(0)〉 (2.2)

Note that, since the operator H is Hermitian, the transformation U = e−iHt must be unitary, as claimed
before.

IV. Given a closed quantum system, to any observable physical quantity A is associated a Hermitian
operator in the space of states (Hilbert space H), i.e. A : H → H such that A = A†. The possible
measurement outcomes are the eigenvalues {aj}j (aj ∈ R) of A. The probability that the outcome
is aj , given that the system was in the state |Ψ〉, is

pΨ (aj) = 〈Ψ |Pj |Ψ〉 ,

with Pj = |aj〉 〈aj | the projector onto the subspace of eigenvector |aj〉 of A corresponding to the
eigenvalue aj .
As consequence of a measurement outcome aj , the state of the system changes as follows

|Ψ〉 → |Ψ ′〉 =
Pj |Ψ〉√
pΨ (aj)

. (2.3)

2.2 Entanglement for Pure States

Consider a bipartite quantum systems composed of two subsystems A and B to which are associated
the Hilbert spaces HA and HB with basis states respectively {|iA〉}i and {|jB〉}j . According to the first
and second postulate, the space of states of the bipartite composite system HAB is given by the tensor
product of its two subsystems i.e. HA⊗HB , having as basis states the set {|iAjB〉}i,j . From the second
postulate follows that any pure state of the composite system, |ΨAB〉 ∈ HA ⊗ HB , can be expressed as
follows

|ΨAB〉 =
∑
i,j

ci,j |iAjB〉 (2.4)

By looking at Eq. 2.4, it is possible to distinguish two kinds of states:

- Pure states. States |ΨAB〉 ∈ HAB that can be written as

|ΨAB〉 = |ΨA〉 ⊗ |ΨB〉 (2.5)

with |ΨA〉 ∈ HA and |ΨB〉 ∈ HB are called factorizable or product states.

1 Planck constant } is set to one
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- Entangled states. Those states |ΨAB〉 ∈ HAB that are not factorizable, i.e.

|ΨAB〉 6= |ΨA〉 ⊗ |ΨB〉 (2.6)

for any |ΨA〉 ∈ HA and |ΨB〉 ∈ HB , are called entangled.

Note that factorizable states assign a precise state to each subsystem while for entangled states there is
no way of characterizing one subsystem without referring to the other.

2.2.1 Schmidt Decomposition

The Schmidt decomposition is a useful mathematical description to characterize bipartite entanglement
[28]. Consider a generic state |ΨAB〉 ∈ HAB = HA ⊗ HB as in 2.4 where dim(HA) = dA and
dim(HB) = dB , written as

|ΨAB〉 =

dA∑
i=1

dB∑
j=1

cij |iAjB〉 . (2.7)

Coefficients cij ∈ C are such that
∑
i,j |cij |2 = 1 and can be rearranged in a matrix form as follows

C =


c11 c12 · · · c1dB
c21 c22 · · · c2dB

...
...

. . .
...

cdA1 cdA2 · · · cdAdB

 .

Applying Singular Values Decomposition [39] to matrix C with complex entries, we obtain

C = UDV (2.8)

where U is a dA×dA unitary matrix, V is a dB×dB unitary matrix and D is a dA×dB diagonal matrix
with non-negative real numbers on the principal diagonal. The diagonal entries,

√
λa, of D are known

as the singular values of C.
Equation 2.7 can now be written as

|ΨAB〉 =

dA∑
i=1

dB∑
j=1

min{dA,dB}∑
a=1

Uia
√
λaVaj |iAjB〉 .

where components cij are

cij =

min{dA,dB}∑
a=1

Uia
√
λaVaj (2.9)

Since vectors
∑dA
i=1 Uia |iA〉 = |ua〉A and

∑dB
j=1 Vaj |jB〉 = |va〉B form two new basis, respectively for

HA and HB we can recast everything as

|ΨAB〉 =

min{dA,dB}∑
a=1

√
λa

(
dA∑
i=1

Uia |iA〉
) dB∑

j=1

Vaj |jB〉


Finally we obtained the Schmidt decomposition of a pure bi-partite quantum state:

|ΨAB〉 =

min{dA,dB}∑
a=1

√
λa |ua〉A |va〉B (2.10)

where coefficients
√
λa, known as Schmidt coefficients, are s.t.

∑
a λa = 1.
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Schmidt Rank

The Schmidt rank is equal to the the rank of the matrix C i.e. to the number of non-zero Schmidt coeffi-
cients.

The Schmidt decomposition as it was defined for the state |ΨAB〉 of a bipartite system, give a math-
ematical characterization of bipartite entanglement:

- |ΨAB〉 is a factorizable state iff has Schmidt rank equal to one
- |ΨAB〉 is an entangled state iff it has Schmidt rank strictly greater than one

It is worth noting that the maximum Schmidt rank is d = min{dA, dB}.

Maximally Entangled State

States |ΨAB〉 having maximum Schmidt rank and Schmidt coefficients all equal to 1/d are called maxi-
mally entangled states:

|ΨAB〉 =
1√
d

d∑
a=1

|ua〉A |va〉B . (2.11)

For bipartite systems, the Hilbert space H = C2⊗C2 is spanned by the four Bell’s maximally entangled
basis states ∣∣ψ±〉 =

1√
2

(|0〉 |1〉 ± |1〉 |0〉)
∣∣φ±〉 =

1√
2

(|0〉 |0〉 ± |1〉 |1〉). (2.12)

These states have remarkable properties. A measurement of the observable Z on one of the two sub-
systems affects instantaneously the state of the other subsystem, that will collapse into state |0〉 or |1〉
depending on the outcome of the measurement. Thus, the result of the measurements for both subsys-
tems are perfectly correlated: we know nothing at all about the subsystems, although we have maximal
knowledge of the whole system.

2.3 Entanglement for Mixed States

Suppose to have a statistical mixture {pi, |ψi〉} on a Hilbert space H i.e. an ensemble of quantum states
|ψi〉 associated with some probability pi, with pi ≥ 0 such that

∑
i pi = 1.

A mixed state on {pi, |ψi〉} is defined as the density operator

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.13)

If we denote with L(H) the space of linear operators acting on the Hilbert space H, then the class of
density operators are characterized by the following properties.

An operator ρ ∈ L(H) is the density operator associated to some ensemble {pi, |ψi〉} if and only if
it satisfies the conditions

1) Tr(ρ) = 1;
2) ∀ |γ〉 ∈ H, 〈γ|ρ|γ〉 ≥ 0.
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Given a bipartite system AB with associated Hilbert space HAB = HA ⊗HB in the state ρAB , the state
of the subsystem A is

ρA = TrB(ρAB).

where TrB stands for partial trace over B and it is defined as

TrB(ρAB) =

dimHB∑
j=1

〈jB |ρAB |jB〉

and |jB〉 is an orthonormal basis of HB .

It is worth noticing that for a maximally entangled pure state

|ΨAB〉 =
1√
d

d∑
a=1

|ua〉A |va〉B ,

where d = min{dA, dB}, the reduced density operator of subsystem A is

ρA = TrB(|ΨAB〉 〈ΨAB |) = IA/d.

Hence, the reduced density operator of a maximally entangled state is called maximally mixed state i.e.
a mixed state describing an ensemble of orthogonal states associated with a flat probability distribution.

Suppose that a mixed state of a bipartite composite system is described by the density operator ρAB
acting on the Hilbert space HAB = HA ⊗HB . It is possible to distinguish the following states:

- factorizable mixed states. States ρAB that can be written as the tensor product of states ρA on HA
and ρB on HB i.e

ρAB = ρA ⊗ ρB (2.14)

are called factorizable (or product) states.

- Separable mixed states. States ρAB that can be written as convex combination of states ρkA on HA
and ρkB on HB i.e.

ρAB =
∑
k

pkρ
k
A ⊗ ρkB (2.15)

are separable states where coefficients pk are s.t. pk ≥ 0 and
∑
k pk = 1.

- Entangled mixed states. Those states that are not separable, i.e. can not be expressed as a convex
combination of any state ρkA on HA and ρkB on HB

ρAB 6=
∑
k

pkρ
k
A ⊗ ρkB (2.16)

are called entangled states.

In practice it is hard to decide if a given states is separable or entangled simply looking at the definition.
For this reason one of the fundamental problems concerning entanglement is the separability problem
i.e. to establish if a given bipartite state is entangled or separable.
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2.3.1 PPT Criterion for Separability

Being the separability problem for mixed states extremely complex, few criteria are known which work
only in special cases. In the following we present a criterion for separability of a bipartite system known
as Positive Partial Transpose (PPT) criterion. [37]

Let’s first introduce the concept of partial transposition: consider a density operator ρAB acting on
HAB . The partial transpose ρTA of ρ with respect to the subsystem A, is the Hermitian operator with
unitary trace having elements

〈iA, jB | ρTA |kA, lB〉 ≡ 〈kA, jB | ρ |iA, lB〉 (2.17)

where |iA, jB〉 ∈ HA ⊗HB is a fixed orthonormal basis.

The PPT criterion states that: given a density operator ρAB on HAB , a necessary condition for its sepa-
rability is that

ρTAAB ≥ 0.

It is possible to prove that the criterion of positive partial transpose is necessary and sufficient for any
quantum system with a dimension of less than or equal to 6, i.e. when HAB is isomorphic to C2 ⊗ C2

or to C2 ⊗ C3 [28] [37]. In other words the PPT criterion states that if ρTAAB has at least one negative
eigenvalue, then the state ρAB will surely be entangled (note that it is independent of which is the
transposed subsystem since ρTAAB = (ρTBAB)T ).

2.4 Entanglement Monotones

Entanglement monotones are functions that measure the amount of entanglement in a quantum state.
Such functions are nonnegative and their value does not increase under the action of Local Operations
and Classical Communications (LOCC) [28].

Given a multipartite quantum system shared among different parties, LOCC transformations consist
in a series of rounds of operations applied to the system. In each round, a given party operates locally on
its subsystem and, in case a measurement occurred, a classical channel is used to communicate the result
of the measurement to the other parties.

More in detail, an entanglement monotone is a function of a bipartite quantum state, E(ρAB), with
the following properties:

I) E(ρAB) ≥ 0.
II) E(ρAB) = 0 if ρAB is separable.

III) E(|ψ〉AB 〈ψ|) is maximum when |ψ〉AB is a maximally entangled state.
IV) E is constant under local unitaries, and cannot increase under LOCC.
V) E is a convex function of the kind

E(
∑
i

piρi) ≤
∑
i

piE(ρi) (2.18)

whenever the ρi are Hermitian and pi ≥ 0 with
∑
i pi = 1.
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2.4.1 Measures of Entanglement

Concurrence

The concurrence is an entanglement monotone, ranging from zero to one, defined for a mixed state of
two qubits ρ = |ψ〉 〈ψ| where |ψ〉 ∈ C2 ⊗ C2 as [28]:

C(ρ) ≡ max(0, λ1 − λ2 − λ3 − λ4) (2.19)

in which λ1, ..., λ4 are the square roots of the eigenvalues (sorted in decreasing order) of the non-
Hermitian matrix ρρ̃ with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) where ρ∗ is the complex conjugate of the density
matrix ρ in the computational basis and σy the Pauli y-matrix.

Note that the concurrence reaches its maximum when the two qubits are a Bell pair and it is zero
when the state is separable. If the concurrence has a value strictly grater than zero and smaller than one,
this means that the two qubits have some degree of entanglement.

Generalised Concurrence

Given an N -qubit quantum state |ψ〉N , consider a bipartition of the N qubits into two subsystems A and
B. The generalized concurrence CG measures the amount of entanglement between the two partitions A
and B and it is defined as follows [142]:

CG(ρA) :=
√

2(1− Tr(ρ2A)). (2.20)

2.5 Entanglement Classification

Since entanglement is a key resource in many quantum information technology tasks (see e.g. [41]), a
careful characterization of entanglement is required. Usually, classes of entanglement are obtained by
applying a set of operations to entangled states in order to convert them into other entangled states. If
such operations allow the transformation, then the two states belong to the same entanglement class,
otherwise they belong to classes of entanglement that are not equivalent.

In [42] LOCC operations have been used in order to check whether a pure state of a bipartite quantum
system could be transformed into another pure state. In particular, it was shown the following. Consider
two bipartite quantum states |ψ〉AB and |φ〉AB on HAB of dimension d with Schmidt decomposition

|ψ〉AB =
∑
i

√
λi |i〉A|i〉B

|φ〉AB =
∑
k

√
λ′k |k〉A|k〉B

(2.21)

If the Schmidt coefficients are arranged in decreasing order, i.e., λ1 ≥ λ2 ≥ ... ≥ λd and λ′1 ≥ λ′2 ≥
... ≥ λ′d then |ψ〉 can be transformed into |φ〉 by LOCC if and only if

l∑
i=1

λi ≤
l∑
i=1

λ′i (2.22)

for all l = 1, 2, ..., d.
Moreover, pure states can be transformed into each other by means of LOCC if and only if they are

related by local unitaries LU [43]. However, even simple bipartite systems are typically not related by
LU which, in turn, means that infinitely many kinds of entanglement exist under LOCC.
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While entanglement monotones have been proved to work mostly for bipartite states [28], for mul-
tipartite entanglement, approaches based on stochastic local operations and classical communication
(SLOCC) seem more promising. In this scenario, two states are equivalent under SLOCC if there is a
non-vanishing probability of success when trying to convert one state into the other.

In [44], equivalence classes between quantum states are constructed on the base of invariance under
SLOCC. It was shown that each pure state of three entangled qubits can be converted into either the
GHZ-state or the W-state, which leads to two inequivalent ways of entangling three qubits.

|GHZ〉 =
1√
2

(|000〉+ |111〉)

|W 〉 =
1

2
(|001〉+ |010〉+ |100〉)

However, this leads to infinite (even uncountable) classes for more than three qubit systems. Hence this
approach is not effective in the general case, although some ways out were devised for the case of four
qubits. In [45] it is proposed a classification for pure entangled states of four qubit. This classification is
obtained from the orbits generated by SLOCC operations and produces nine classes. Among these nine
classes, one is called ’generic’ and contains an uncountable number of SLOCC inequivalent classes of
states, as shown in [46]. The other eight classes instead have W type entanglement.





3

Quantum Computing

Quantum Computing harnesses quantum phenomena like superposition and entanglement to process
information.

Quantum algorithms manipulate a quantum system in order to obtain a quantum state whose compo-
nents with high probability amplitude represent the solution for a given problem. The power of superpo-
sition and entanglement can lead to a computational speed-up with respect to a classical computer, since
operations are performed on many states simultaneously. Quantum algorithms are repeated a number of
times since the result is always probabilistic.

There exist different equivalent models of quantum computation: in this chapter, at first the quantum
circuit model will be discussed, which is probably the most known, then adiabatic quantum comput-
ing will be introduced, with a particular emphasis to the technique of quantum annealing and finally
topological quantum computation will be explained.

3.1 Quantum Circuit Model

In quantum circuit model, the quantum computation is performed by means of a sequence of quantum
gates acting on registers of n qubits. Each quantum gate maps the input quantum state into other quantum
state and therefore it must be described by a unitary operator. The computation usually ends with a
measurement that collapse the system into a basis state with a given probability.

3.1.1 Quantum Gates

For what concerns single qubits gates it is useful to introduce the Pauli operators defined as

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (3.1)

Notice that {|0〉 , |1〉} are Z eigenvectors with corresponding eigenvalues {+1, 1}. Analogously

{|+〉 =
|0〉+ |1〉√

2
, |−〉 =

|0〉 − |1〉√
2
} (3.2)

are X eigenvectors with corresponding eigenvalues {+1, 1}. Another widely used single qubit gate is
the Hadamard gate (graphical representation on the right)

H =
1√
2

[
1 1
1 −1

]
H (3.3)

which produces superposition of states as follows:
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H|0〉 = |+〉
H|1〉 = |−〉. (3.4)

For what concerns two qubit gates, the SWAP gate is represented by

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


SWAP

(3.5)

and it has the effect of swapping the states of two qubits|ψ〉 and |φ〉 as

SWAP|ψ〉|φ〉 = |φ〉|ψ〉 (3.6)

Another important two qubit gate is the two qubit CNOT gate,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 • (3.7)

which flips the state of the second qubit when the first qubit is in |1〉

CNOT
( |0〉+ |1〉√

2
⊗ |0〉

)
=
|00〉+ |11〉√

2
(3.8)

.

3.1.2 Quantum Parallelism

The speed-up of quantum algorithm is achieved through quantum parallelism i.e. the ability of the quan-
tum computer to exist in a superposition of qubits states.

Consider the function f : {0, 1} → {0, 1} and a two qubits register initially both in the state |0〉.
With an appropriate sequence of gates it is possible to construct the unitary operator Uf which acts as
follows

Uf |x, 0〉 = |x, f(x)〉 (3.9)

Suppose now to combine the unitary Uf with a Hadamard gate as in Fig.3.1.

|0〉 H

Uf
|0, f(0)〉+ |1, f(1)〉√

2
|0〉


Fig. 3.1: Circuit showing quantum parallelism.

With a single operation it is possible to obtain a quantum superposition that involves the function f
on both inputs 1 and 0. The drawback is that a final measurement of the qubits state yields only one
evaluated value. However, the procedure of quantum parallelism has a key role as an intermediate step
in quantum algorithm.
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3.1.3 Quantum Algorithms

Quantum Fourier Transform

The quantum Fourier transform (QFT) is the quantum analogue of the classical discrete Fourier transform
(DFT) which maps a vector x = (x0, x1, . . . , xN−1) ∈ CN to a new vector y = (y0, y1, . . . , yN−1) ∈
CN , where N = 2n, as follows

yk =
1√
N

N−1∑
j=0

xje
2πi kjN (3.10)

The QFT acts on the 2n amplitudes of the quantum state

|ψ〉 =

N−1∑
j=0

aj |j〉 (3.11)

and maps them to the new amplitudes of the quantum state |φ〉

|φ〉 =

N−1∑
k=0

bk|k〉 where bk =
1√
N

N−1∑
j=0

aje
2πi kjN (3.12)

The quantum gate associated to the QFT has the following matrix representation, where ω = e
2πi
N

F =
1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

 (3.13)

The discrete Fourier transform on 2n amplitudes can be implemented as a quantum circuit of onlyO(n2)
gates while the classical discrete Fourier transform takes O(n2n) on a classical computer. The exponen-
tial speed-up of the quantum Fourier makes it one of the most widely used subroutines of many quantum
algorithms.

Quantum Phase Estimation

Given a unitary matrix U and a quantum state |ψ〉 such that

U |ψ〉 = e2πiθ|ψ〉 (3.14)

the quantum phase estimation algorithm finds the value of the eigenvalue i.e. of θ with high probability
within an error ε, employing O(1/ε) controlled unitary operations. The quantum circuit associate to the
algorithm is constructed as in Fig3.2. Consider a register of n qubits in the state |0〉 and another register
of m qubits initially in the state |ψ〉 for a global input state of |0〉⊗n|ψ〉.
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|0〉 H · · · •

F−1

|0〉 H • · · ·

...
...

|0〉 H • · · ·

|ψ〉 /m U20

U21 · · · U2n−1

Fig. 3.2: Circuit realizing the quantum phase estimation.

An n-qubit Hadamard gate H⊗n is applied to the first n qubits obtaining the state

1

2
n
2

(|0〉+ |1〉)⊗n |ψ〉 (3.15)

and subsequently n control unitary gates Control − U2j with 0 ≤ j ≤ n − 1 are applied to |ψ〉. The
global state at this stage can be written as

1√
2n

(
|0〉+ e2πi2

n−1θ|1〉
)

︸ ︷︷ ︸
qubit 1

⊗
(
|0〉+ e2πi2

1θ|1〉
)

︸ ︷︷ ︸
qubit 2

⊗ · · · ⊗
(
|0〉+ e2πi2

0θ|1〉
)

︸ ︷︷ ︸
qubit n

⊗|ψ〉 (3.16)

which could be rewritten as

1√
2n

2n−1∑
k=0

e2πikθ|k〉|ψ〉 (3.17)

The last gate is an inverse QTF, F−1, on the first n qubits which leads to the state

1

2n

2n−1∑
j=0

2n−1∑
k=0

e2πikθe−2πi
kj
2n |j〉|ψ〉 (3.18)

At this point the value of θ ∈ [0, 1] is approximated as

2nθ = a+ 2nδ, (3.19)

where a is the nearest integer to 2nθ and 2nδ satisfies 0 6 |2nδ| 6 1
2 . In case error δ = 0, measuring the

first n qubits always leaves them in the state |a〉 = |2nθ〉 from which it is possible to read off the phase
θ and hence obtain an eigenvalue. If the error δ 6= 0 instead the algorithm yields the correct phase θ with
probability Pr(|a〉) ≥ 4

π2 ≈ 0.405 [47].

Grover’s Algorithm

Grover’s algorithm is a quantum search algorithm usually described in the context of searching an el-
ement in an unstructured database. More formally, it is considered an unknown or extremely complex
function f(x) : {0, 1}n → {0, 1} that returns 1 only for a particular unknown instance x̃ ∈ {0, 1}n.
Grover’s search algorithm uses internal calls to a quantum oracleOf , which is a black-box quantum gate
(or a set of quantum gates) acting on n input qubits that evaluates the function f at a given x. In order
to find x̃, Grover’s search only uses

√
2n calls to the oracle while a classical machine need in the worst

case 2n function evaluations. Grover’s algorithm hence provides a quadratic speed-up with respect to the
classical case and it is constructed as follows.
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Consider at first the function f , it can be written as

f(x) =

{
1 x = x̃

0 otherwise
(3.20)

The oracle Of evaluating this function is a quantum gate that flips the amplitude sign of the state to
which it is applied in case f(x) = 1

O|x〉 = (−1)f(x)|x〉 . (3.21)

The algorithm can be represented by the quantum circuit shown in Fig. (3.3).

|0〉 /n H⊗n Of H⊗n 2|0⊗2〉〈0⊗2| − I⊗2
H⊗n · · ·

Repeat ≈ π
4

√
2n times

︸ ︷︷ ︸
Fig. 3.3: Circuit representation of the Grover’s search algorithm.

The n qubits in the state |0〉⊗n are put in a superposition thanks to the n-qubit Hadamard gate H⊗n

resulting in the state

1√
2n

(|00..0〉+ |10..0〉+ · · ·+ |11..1〉) (3.22)

Subsequently the following two steps are applied number of times ≈ π
4

√
2n.

Step I. Application of the quantum oracle Of gate

|ψ(i)
2 〉 = Of |ψ1〉 . (3.23)

Step II. Application of the gate

H⊗n (2|0⊗n〉〈0⊗n| − I⊗n) H⊗n (3.24)

Finally a measurement is performed and the solution states |x̃〉 is found with a high probability.
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3.2 Adiabatic Quantum Computation and Quantum Annealing

Adiabatic quantum computation (AQC) is a model of quantum computation which relies on the adiabatic
theorem in order to perform calculations. It is closely related to Quantum Annealing (QA), a meta-
heuristic technique used to find the global minimum of an objective function which exploits the power
of quantum fluctuations to explore the space of possible candidate solutions [48]. Like in simulated
annealing, whose temperature parameter determines the probability of jumping between local minima,
in QA the tunnelling field strength is responsible for the transition to better minima.

In this chapter we present an overview of both AQC and QA as well as a discussion of the properties
of the current available QA hardware provided by the Canadian company D-Wave.

3.2.1 Adiabatic Quantum Computation

Adiabatic quantum computation (AQC) is a scheme of quantum computation where a quantum system
is initially prepared in the ground state, i.e. the state with lowest energy of a simple initial Hamiltonian
which is gradually deformed to reach a desired complicated Hamiltonian. The evolution must be very
slow in order to assure that the system remains in its ground state throughout the whole process. AQC
is in fact based on the adiabatic theorem introduced by Born and Fock in which states the following:
“A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly
enough and if there is a gap between the eigenvalues and the rest of the Hamiltonian spectrum”[49].

More in detail, consider an initial Hamiltonian H(0) = H0 whose lowest energy eigenstate |G0〉
is easy to obtain and a problem Hamiltonian HP which might be easy to construct but whose ground
state |GP 〉 is difficult to compute. Usually |GP 〉 is also the solution of an optimization problem which is
exponentially hard to find with classical algorithms. The time dependent Hamiltonian HAQC(t) of the
whole AQC process could be expressed as follows

HAQC(t) =

(
1− t

τ

)
H0 +

t

τ
HP (3.25)

where time t goes from 0→ τ with τ being the adiabatic time scale.
Assume that the system ground state |G(t)〉 calculated at generic instant t is non-degenerate (with

associated ground energy E0(t)) and that the first excited state at given instant t is |1(t)〉 with associated
energy E1(t). If we denote the generic state of the system as |ψ(t)〉, then the quantum adiabatic theorem
states that the condition for |ψ(t)〉 to be arbitrarily close to the instantaneous ground state |G(t)〉, i.e.

|〈G(t)|ψ(t)〉|2 = 1− ε2 (3.26)

for an arbitrary small ε� 1, is given by the following relation

max 0≤t≤τ

∣∣∣∣〈1(t)|dH(t)

dt
|G(t)〉

∣∣∣∣
min 0≤t≤τ ∆(t)2

= ε. (3.27)

The term ∆(t) = E1(t) − E0(t) denotes the energy gap between the instantaneous first excited and
ground states and the min and max are calculated among the whole time interval t ∈ [0, τ ]. In other
words, since the numerator of Eq. 3.27 is proportional to 1/τ , the upper bound on the rate at which the
Hamiltonian can be evolved maintaining the adiabatic condition is

τ ∝ 1

ε×min 0≤t≤τ ∆(t)2
. (3.28)

Note that a bottleneck to AQC is due to the fact that if the energy gap ∆(t) → 0 as the system size
increases then the runtime for the entire algorithm τ increases, according to Eq. 3.28, quadratically with
the size of the gap [50].
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3.2.2 Quantum Annealing

Different algorithms can be considered for finding a global minimum of a given objective function when
we are in the presence of several local minima.

Simulated Annealing (SA), for example, is a very popular algorithm used to solve this kind of op-
timization problem that imitate the thermalization of a physical system releasing energy to a cooling
reservoir. In SA, the initial high temperature induces thermal excitations which can allow the system to
escape local minima, then the cooling pushes the system toward nearby low energy states. However, the
thermal transition probability depends only on the height h of the potential wall to overcome e−

h
kBT ,

which means that SA in general fails when it has to deal with very high barriers.
A Quantum Annealing approach was proposed to find the global minimum of a given objective

function: a heuristic similar to SA but that exploits quantum tunnelling in order to escape local minima.
The advantage is that the tunnelling probability depends both on the height h and the width w of the
potential barrier e−

w
√
h

Γ , where Γ is the transverse field strength. This gives to QA the ability to move
in an energy landscape where local minima are separated by tall barriers, provided that they are narrow
enough.

The time-dependent Hamiltonian used in the process of QA is similar to the one of AQC

H(t) = −A(t)H0 +B(t)HP , (3.29)

where H0 is the initial Hamiltonian, HP is the problem Hamiltonian and the functions A(t) and B(t)
define the annealing schedule. The evolution is parametrized in time t ∈ [0, TQA], where TQA is the
total annealing time. The functions A(t) and B(t) are such that, at the beginning of the annealing, the
transverse field strength A(t) is large i.e.A(0)� B(0) and the dynamics is dominated by the tunnelling
Hamiltonian H0; at the end of the annealing the functions satisfy the relation A(TQA) � B(TQA) and
the dynamic is entirely governed by the problem Hamiltonian HP .

The main difference between AQC and QA is that AQC require a unitary and adiabatic (slow) evo-
lution of a closed quantum system, while QA allows for a non-adiabatic (fast) evolution of an open
quantum system which is usually few millikelvin above absolute zero. This means that, since the adia-
batic theorem does not hold for QA, we are usually not guaranteed to end up in the ground state of the
system. For this reason, the QA process is usually repeated a number of times to increase the probability
of reaching the ground state. Moreover, it often happens that the configurations that are returned are very
close to the lowest-energy state and hence are still very interesting.

D-Wave Quantum Annealer

In 2011, the Canadian company D-Wave Systems announced the first commercial quantum annealer on
the market by the name D-Wave One which used a 128 qubit processor chipset. Nowadays the company
provides cloud access to the current architecture with a 2048-qubit QPU known as D-Wave 2000Q.

The device solves combinatorial optimization problems expressed as Quadratic Unconstrained Bi-
nary Optimization (QUBO) problems of the kind

O(x) =
∑
i

hixi +
∑
i>j

Ji,jxixj (3.30)

where xi ∈ {0, 1} are binary variables and parameters hi and Jij encode the optimization problem.
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Fig. 3.4: D-Wave annealing parameters.

Hence the D-Wave device aims at solving such problem via a QA process that is described by the
following Hamiltonian

HQA = A(s)
∑
i

σ̂(i)
x +B(s)HP (3.31)

where annealing parameters A(s) and B(s) are smooth functions as those represented in Fig.3.4.
The term HP is the Ising Hamiltonian associated to the objective function O(x)

HP =
∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,j σ̂
(i)
z σ̂(j)

z (3.32)

where σ̂(i)
x and σ̂(i)

z are respectively the x and z Pauli operators. Coefficients hi are realized by applying
an external magnetic field to site i while Jij are coupling interaction between the spin in sites i and the
one in site j which can be either ferromagnetic ( Jij < 0, that tends to align spins) or anti-ferromagnetic
(Jij > 0, that tends to misalign spins). Despite σ(i) ∈ {+1,−1} are spin variables, it is possible to show
that the Ising energy minimization is equivalent to the QUBO problem, this means that solving the latter
corresponds to finding the ground state energy of the associated Ising model.

Fig. 3.5: D-Wave unit cell.

Moreover, in order to solve an instance of a QUBO problem with a D-Wave machine we need to
embed the logical formulation of a given problem (i.e. the logical Ising problem) to the physical fixed
architecture of the quantum processor (i.e. the physical Ising problem). This architecture is composed by
a matrix of unit cells (Figure 3.5) that is a set of 8 qubits arranged in a bipartite graph. These unit cells
are connected in a structure called chimera graph. Such embedding is found using a heuristic technique
described in [51] and available in the D-Wave python libraries as a function that goes under the name of
find_embedding.



3.3 Topological Quantum Computation 29

3.3 Topological Quantum Computation

Topological Quantum Computation (TQC) [63, 64, 65] is based on the existence of some special par-
ticles, called anyons, whose statistics substantially differ from the more common physical particles ob-
served in nature. Anyons can exist in two dimensional quantum systems and can not be identified neither
with bosons nor with fermions. Their behaviour could be described by the statistics generated exchanging
one particle with another since this exchange rotates the quantum state of the system producing arbitrary
phases [66] (for Abelian anyons) or even unitary operations (for non-Abelian anyons). By exchanging
non-Abelian anyons, it is possible to obtain significant changes in the state of the system, which can be
used to perform quantum computation.

Quantum computers can benefit from the use of topological properties as far as they can guarantee
a form of robustness [63]. This is possible because in a topological quantum computer information is
encoded in the collective states of anyons, which are naturally protected from decoherence by their braid-
ing behaviour. In the following we give an explanation of the basic features of the TQC computational
paradigm.

3.3.1 Mathematical Background

In this section we briefly review the main concepts in Topology that are relevant for the work presented
in this thesis, namely those of knots/links, braiding and related results.

Knot theory [53, 54] studies the topological properties of mathematical knots and links. A knot is an
embedding of a circle in the 3-dimensional Euclidean space R3, up to continuous deformations, and a
link is a collection a knots that may be linked or knotted together.

A fundamental question in knot theory is whether two knot diagrams, i.e. projections of knots on the
plane, represent the same knot or rather they are distinct.

Move I

←→

Move II

←→

Move III

←→

Fig. 3.6: The Reidemeister moves

The Reidemeister theorem [55] says that two links can be continuously deformed into each other
if and only if any diagram of one can be transformed into a diagram of the other by a sequence of
moves called Reidemeister moves [56]. If there exists such a transformation the two links are said to be
isotopic. The Reidemeister moves can be of three types, as depicted in Figure 3.6. Move I undoes a twist
of a single strand, move II separates two unbraided strands and finally move III slides a strand under a
crossing.

A powerful knot invariant is the Jones polynomial VL(A) [57] which is a Laurent polynomial in the
variable A with integer coefficients. Given two links L1 and L2 and their respective Jones polynomials
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VL1
(A) and VL2

(A), the following relation holds true:

L1 = L2 ⇒ VL1(A) = VL2(A) or, equivalently, VL1(A) 6= VL2(A) ⇒ L1 6= L2.

A useful formulation of this polynomial due to Kauffman [58, 59] is given in terms of the so-called
bracket polynomial or Kauffman bracket, defined in the following section.

3.3.2 Kauffman Bracket

The Kauffman bracket of any (unoriented) link diagram D, denoted 〈L〉, is a Laurent polynomial in the
variable A, characterized by the three rules:

1.
〈 〉

= 1, where is the standard diagram of the loop
2.
〈
D t

〉
= (−A2−A−2)〈D〉 = d〈D〉, where t denotes the distant union1 and (−A2−A−2) = d.

3.
〈 〉

= A
〈 〉

+A−1
〈 〉

where and represent some regions of link diagrams where they differ.

Rule 3 expresses the skein relation: it takes in input a crossing ri and dissolves it generating two new
links that are equal to the original link except for ri, and therefore with a smaller number of crossings. By
applying it recursively to a link we obtain at the end a number of links with no crossings but only simple
loops, though this number is exponential in the number of crossings. Rule 1 and Rule 2 show how to
calculate the polynomial after the decomposition achieved by applying Rule 3. Note that the Kauffman
bracket of a link diagram is invariant under Reidemeister moves II and III but it is not invariant under
move I. For every two links L and M, the distant union L tM has the property:

〈L tM〉 = (−A2 −A−2) 〈L〉 〈M〉 = d 〈L〉 〈M〉

The Kauffman Bracket of the Hopf Link

We show here the calculation of the Kauffman bracket for the simplest non-trivial link with more than
one component, i.e. the Hopf link depicted below [60].

By applying Rule 3 to the upper crossing we get

〈 〉
= A

〈 〉
+A−1

〈 〉
Now we use also Rules 1 and 2 to compute the new two brackets separately:〈 〉

= A

〈 〉
+A−1

〈 〉
= Ad+A−1 = (−A)3

〈 〉
= A

〈 〉
+A−1

〈 〉
= A+ dA−1 = (−A)−3

1 The distant union of two arbitrary links L and M, denoted by L tM is obtained by first moving L and M so that
they are separated by a plane, and then taking the union.
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Finally we get

〈 〉
= A

〈 〉
+A−1

〈 〉
= −A4 −A−4

It is worth noting that the Hopf link calculated here and the one obtained by reversing all the crossings
have the same Kauffman brackets, i.e.〈 〉

=

〈 〉

3.3.3 Braids and Links

A braid can be visualised as an intertwining of some number of strands, i.e. strings attached to top and
bottom bars such that each string never turns back.

Given n strands, the operator σi performs a crossing between the ith strand and the (i+ 1)th, keep-
ing the former above the latter. In a similar way, the operator σ−1i denotes a crossing of the ith strand
below the (i + 1)th. A generic braid B on n strings is obtained by iteratively applying the σi and σ−1i
operators in order to form a braid-word, e.g. σ1σ2σ−11 σ4. It is well-know that the operators σi and σ−1i
on n strands define a group Bn called braid group [52].

Markov trace
Given a braid B, its Markov trace is the closure obtained connecting opposite endpoints of B together, as
shown below.

••

•

•

• •

••

•

•

• •
−→B

The relation between links and open ended strands is defined by two important theorems [61, 62].

Alexander’s theorem
Every link (or knot) can be obtained as the closure of a braid.
The result of the Markov closure of a braid B is a link that we will denote by L = (B)Markov . The result
of the Markov closure of a braid B is a link that we denote by L = (B)Markov .

Markov’s theorem
The closure of two braids B1 and B2 gives the same link (or knot) if and only if it is possible to trans-
forms one braid into the other by successive applications of the Markov moves:

1) conjugation: B = σiBσ
−1
i = σ−1i Bσi, where B ∈ Bn

2) stabilization: B = Bσ−1n = Bσn, where σn, Bσn and Bσ−1n ∈ Bn+1.

3.3.4 Computing with Anyons

In order to perform a topological quantum computation we need to fix an anyon system, i.e. a system
with a fixed number anyons for which we specify: (1) the type, i.e. the anyon physical charge, (2) the
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fusion rules N c
ab (i.e. the laws of interaction), (3) the F -matrices, and (4) the R-matrices. The role of

these latter will be made clear in the following.
The fusion rules, give the charge of a composite particle in terms of its constituents. The fusion rule

a ⊗ b = N c
a bc indicates the different ways of fusing a and b into c; these are exactly N c

a b. Dually, we
can look at these rules as splitting rules giving the constituent charges of a composite particle.

An anyon type a for which
∑
cN

c
a b > 1 is called non-Abelian. In other words, a non-Abelian

anyon is one for which xthe fusion with another anyon may result in anyons of more than one type.
This property is essential for computation because it implies the possibility of constructing non trivial
computational spaces, i.e. spaces of dimension n ≥ 1 of ground states where to store and elaborate
information. Such spaces correspond to so-called fusion spaces. The fusion space, V cab, of a particle c,
or dually its splitting space V abc , is the Hilbert space spanned by all the different (orthogonal) ground
states of charge c obtained by the different fusion channels. The dimension of such a space is called the
quantum dimension of c; clearly this is 1 for Abelian anyons.

Considering the dual splitting process, a non-Abelian anyon can therefore have more than one split-
ting rule that applies to it, e.g. a ⊗ b = c and e ⊗ b = c. Given an anyon of type c we can split it into
two new anyons a, b and obtain a tree with root c and a, b as leaves. By applying another rule to a, say
a = c⊗d, we will obtain a tree with leaf anyons c, d, b and root c. The same result can also be obtained by
splitting the original anyon c into e, b and, supposing that there exists a fusion rule of the form c⊗d = e,
we can again split e into the leaves c and d. The two resulting, which have leaf anyons and root anyon
of same type and differ only for the internal anyons a, e, represent two orthogonal vectors of the Hilbert
space V cdbc . Applying the fusion rules in different order generates other (non orthogonal) trees which
have different shapes but contain the same information. This is because the total charge is conserved by
locally exchanging two anyons, a property that deserves the ‘topological’ attribute to anyon systems and
that determines the fault-tolerance of the quantum computational paradigm based on them.

The idea behind the use of anyons for performing computation is to exploit the properties of their
statistical behavior; this essentially means to look at the exchanges of the anyons of the system as a
process evolving in time, i.e., looking at an anyon system as a 2+1 dimensional space. This corresponds
to braiding the threads (a.k.a. world-lines) starting from each anyon of the system. Particle trajectories
are braided according to rules specifying how pairs (or bipartite subsystems) behave under exchange.
The braiding process causes non-trivial unitary rotations of the fusion space resulting in a computation.
Equivalently, a topological quantum computation can be seen as a splitting process (creating the initial
configuration) followed by a braiding process (the unitary transformation) followed by a fusion process
(measuring the final state). The latter essentially consists in checking whether the initial anyons fuse
back to the vacuum from which they were created by splitting.

Finally, it is worth underlining that for certain models of anyons, such as the Fibonacci model, it is
possible to reproduce any unitary operation to arbitrary accuracy (up to a global phase factor) by braiding
anyons, making them universal for quantum computation. Moreover, Non-Abelian anyons are thought
to be capable of universal quantum computation by braiding if the square of their quantum dimension is
not an integer. Fibonacci anions have in fact a quantum dimension of 1+

√
5

2 .

3.3.5 Topological Quantum Computation of the Jones Polynomials

Consider n anyons created in pairs from the vacuum. Each anyonic pair is in the vacuum fusion channel
with initial state denoted by |ψ〉. The final state 〈ψ| corresponds to a fusion of these anyons back into the
vacuum [60].
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I

|ψ〉

〈ψ|

a)

B

b)

|ψ〉

〈ψ|

Fig. 3.7: Two anyonic quantum evolutions. In both cases pairs of anyons are created from the vacuum and then fused
back into it. In a) no braiding, i.e the identity operator, is performed, in b) some braiding operator is applied.

As shown in Figure 3.7 part a, if no braiding is performed on the anyons (I stands for the identity),
then the probability that they fuse back to the vacuum in the same pairwise order is trivially given by

〈ψ| I |ψ〉 = 〈ψ|ψ〉 = 1.

Consider instead the situation represented in Figure 3.7 part b, where, after creating n = 8 anyons in
pairs from the vacuum, we braid half of them with each other to produce the anyonic unitary evolution
represented by the operator B. In this case, the probability amplitude of fusing the anyons in the same
pairwise order to obtain the vacuum state is given by

〈ψ|B |ψ〉 =

〈
(B)Markov

〉
dn−1

, where d = (−A2 −A−2). (3.33)

This equation expresses the relation between the probability amplitude of obtaining the vacuum
state after the braiding given by the operator B and the Kauffman bracket of the link obtained from the
Markov trace of braid B, i.e. (B)Markov . The Jones polynomial is defined in terms of the Kauffman
bracket, which is responsible for the complexity of computing the Jones polynomial. The problem of
approximating the Jones polynomials at any fixed root of unity is a BQP problem. In fact it can be solved
in polynomial time only by a quantum computer.
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Quantum Machine Learning

In the last few years, a new interdisciplinary research topic going under the name of Quantum machine
learning (QML) has emerged [15, 79, 80, 83, 84, 85, 86, 170]. Quantum Machine Learning has estab-
lished itself as one of the most promising applications for quantum computers and Noisy Intermediate
Scale Quantum (NISQ) devices. The aim of QML is to merge in different ways quantum computing
and data mining techniques in order to achieve improvements in both fields. As shown in Fig. 4.1, it is
possible to distinguish four approaches in QML, depending on the nature of the dataset under study and
on the computation device being used [88].

Type of Algorithm
classical quantum

Ty
pe

 o
f D

at
a

cl
as
si
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l CC CQ

qu
an
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m QC QQ

Fig. 4.1: The first letter refers to whether the system under study is classical or quantum, while the second letter
defines whether a classical or quantum information processing device is used.

The Classical-Classical (CC) class refers to ordinary machine learning or machine learning algorithm
that are inspired by the formalism of quantum mechanics. Here the dataset represent some classical
system and the algorithm used can run on a classical computer [89, 90, 91, 92, 93]. In Classical-Quantum
(CQ), algorithms rely on the advantages of quantum computation in order to speed up classical methods
of machine learning or improve their performances. Again in this class data is assumed to be classical
[94, 95, 96, 97, 98, 99, 100]. On the other hand, Quantum-Classical (QC) refers to the use of classical
methods of machine learning to analyse quantum systems [101, 103, 105, 111, 112, 113, 114]. Finally,
in Quantum-Quantum (QQ) both the learning algorithm and the system under study are fully quantum.

The aim of this chapter is to review the main approaches, focusing in particular on the more advanced
branches of QML which are the QC and CQ sections.
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4.1 QC: Machine Learning for Quantum Physics

It is well known that randomness and counter intuitive behaviour are the characteristic traits of quantum
mechanics. In this scenario, techniques of ML could be of great help, unveiling patterns in quantum
physics problems that are hard to grasp with the human intellect alone. Recently, many ML concepts and
tools have been applied to the study of quantum systems. In the following, we discuss some of the most
interesting approaches.

One of the main direction of research in this topic involves the use of ML to help understand many-
body quantum systems and, in particular, quantum phase transitions. Many-body systems are usually
described via phase diagrams showing qualitative changes in the system when its local parameters are
varied. In some cases, phase transitions are identified by looking for discontinuities or singularities in the
local parameters or its derivatives. However, in general, classification and detection of quantum phase
transitions are hard issues in the theory of many-body physics because they often appear at considerably
large system sizes and hence the exponential growth of the Hilbert space makes them hard to characterize.
In order to avoid expensive computations, it has been proposed ML as a novel approach to provide good
solutions in a reasonable amount of time.

An interesting work in this direction [102] shows how to use state-of-the-art supervised learning
technique (domain adversarial neural networks) to successfully predict phase transitions in close agree-
ment with standard methods for different many-body systems: the Ising model, the Bose-Hubbard model
and the Su-Schrieffer-Heeger model with disorder.

Later the same authors [103] have shown how an unsupervised ML approach based on neural net-
works can be used to identify new parameters that efficiently capture the physics of phase transitions in
systems of interacting quantum particles subjected to a static disordered background potential.

Finally, a recent paper [104] has shown how to identify quantum phase transitions of the axial next-
nearest-neighbour Ising (ANNNI) model employing both unsupervised and supervised machine learning
techniques like K-NN, Random Forest, Multilayer Perceptron and comparing them to different analytical
solutions.

Besides detecting phase transitions, ML has also been applied to several quantum information tasks.
A basic example is quantum state tomography (QST). The aim of QST is to carefully measure a quantum
system in order to reconstruct its unknown density matrix. QST is a core problem in quantum information
which needs an number of resources scaling exponentially with the size of the system in order to perform
full tomography.

An interesting approach in this direction [105] employs ML in order to retrieve information about
the amount of entanglement in an unknown quantum state. In general, the only way of measuring entan-
glement is through full quantum tomography. Authors instead propose a scheme where a neural network
only requires a polynomial number of measurements to obtain a good approximation of the negativity,
which is an entanglement measure.

Finally, in [106] authors extended the use of ML to the problem of quantum process tomography,
where the ability of neural networks to model non-Markovian evolution of open quantum systems is
investigated.

Another intriguing field of application for ML is the one concerning the discovery of new quantum
algorithms, experiments and physical concepts. In 2014, it was proposed a method [107] for quantum
algorithm design assisted by machine learning where a learning system, assisted by classical feedback
computer, evolves into a quantum algorithm. The authors proved that their system is able to learn how to
solve an oracle decision problem, called the Deutsch-Jozsa problem.

Two years later, Krenn et al. [108] found new experimental implementations for the creation and
manipulation of complex entangled quantum states using a ML algorithm that exploits asymmetric tech-
niques which are challenging to understand intuitively.

More recently [113] it was proposed a ML algorithm based on genetic algorithm and neural networks
for the design of quantum optics experiments. The task in this case is to produce specific quantum states
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such as Schrödinger cat states and cubic phase states which the algorithm successfully found with fidelity
of over 96%.

Finally, the use of ML has also been proposed for the discovery of new unbiased physical concepts
from experimental data. In their work [114], the authors used a neural network to compress data into a
simple representation, which is used by the network itself to gain information about the quantum system.
More specifically, given a dataset containing outcomes of quantum measurement, the network is able to
recognize how many degrees of freedom are needed to describe the quantum state.

Other remarkable applications of ML to quantum information and computation concern the valida-
tion of quantum devices [101], the reduction of measurement errors for trapped-ion qubits [109] and the
improvement of quantum error correction schemes [110].

4.2 CQ: Quantum Computing for Machine Learning

Inside the CQ section, the main idea is to use quantum mechanics in order to obtain a computational
advantage for a specific class of ML techniques. In this section we introduce at first the tools, i.e. the
quantum subroutines that are commonly used in this quantum machine learning algorithms. Hence the
focus will be on the explanation of the main algorithm belonging to this class.

4.2.1 Essential Tools in QML

Amplitude Encoding

Many quantum machine learning algorithms are based on the idea of amplitude encoding, i.e. an en-
coding of the inputs of computations in the amplitudes of a quantum state of n qubits. Since a state
of n qubits is described by N = 2n complex amplitudes, such an encoding automatically produces an
exponential compression of the data.

More in details, a classical vectors ~x ∈ RN defined as

~x = (x1, x2, x3, ..., xN ) (4.1)

could be represented by means of a quantum state | ~x〉 on n qubits as

| ~x〉 =
1

|~x|
N∑
k=1

xk |k〉 (4.2)

where components of the vectors ~x become amplitudes of the quantum state.
However, a crucial bottleneck of many algorithms that use amplitudes encoding is the preparation of

states like | ~x〉, which often requires the initialization of a quantum state whose amplitudes reflect the
features of an entire dataset. While for specific cases efficient methods for state preparation are known,
usually this step hides the complexity of the quantum algorithm.

A Quantum Random Access Memory (QRAM) is a device which is able of answering queries in
quantum superposition. Specifically, the QRAM uses O(N) memory cells to store the xi values with
i = 1, 2, ..., N and achieve the following transformation with a runtime of O(log2N) [86, 87]

N∑
i=1

αi |i〉 |0〉 →
N∑
i=1

αi |i〉 |xi〉 (4.3)

where |i〉 is the index register. Moreover a QRAM can produce in O(logN) the state | ~x〉 of Eq. 4.2
under the condition that the state to prepare is sufficiently uniform [80]. However, despite there are many
ideas of possible QRAM architectures [80], the question of whether a hardware realising a QRAM can
be built is still open.
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Swap Test

The Swap test refers to a quantum circuit shown in Fig.4.2 that is often used as a subroutine of many
quantum machine learning algorithms. The circuit takes in input the quantum states |ψ〉 and |φ〉 as well
as an ancillary qubit, initially in the state |0〉a

|0〉a H • H

|ψ〉
SWAP

|φ〉
Fig. 4.2: Swap test circuit.

Then a Hadamard gate is applied to the ancillary qubit |0〉a followed by a controlled swap. After the final
Hadamard gate on the ancilla, the global state of the system can be written as

1

2
[|0〉a (|ψ〉|φ〉+ |φ〉|ψ〉) + |1〉a (|ψ〉|φ〉 − |φ〉|ψ〉)] (4.4)

The probability of measuring the ancilla in the ground state is given by

P (|0〉a) =
1

2
+

1

2
|〈ψ|φ〉|2 . (4.5)

Hence it is possible to estimate the probability P (|0〉a) by repeated measurement of the ancilla and
obtain the value of the fidelity, i.e. the scalar product between the two quantum states

|〈ψ|φ〉| =
√

2P (|0〉a)− 1 (4.6)

Moreover, the time complexity of the swap test, given by the number of elementary gates such as
controlled-swap gates, increases linearly with the number of qubits that constitute the quantum states
|ψ〉 and |φ〉.

Quantum Algorithm for Linear Systems of Equations

The quantum algorithm for linear systems of equations [121], usually abbreviated as HHL algorithm is
a quantum algorithm for solving linear systems which provides a speedup over its classical counterpart.
The problem the algorithm solves is the following, given a N × N Hermitian matrix A and a vector ~b,
we want to find the solution ~x satisfying the equation

A~x = ~b (4.7)

The quantum algorithm aims at finding the solution |x〉 of the equation

Â |x〉 = |b〉 (4.8)

starting from the application of the unitary operator e−iÂt, obtained via Hamiltonian simulation per-
formed in O(logN) steps [122], to the quantum state
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|b〉 =

N∑
i=1

bi|i〉. (4.9)

Then, an ancillary qubit in the state |0〉 a is added to the system and the state |b〉 is decomposed in the
eigenbasis |ei〉 of Â using the quantum phase estimation algorithm [123] which retrieves the eigenvalues
λi. The state after the decomposition is

N∑
i=1

βi | ei〉 |λi〉 (4.10)

where |b〉 =
∑N
i=1 βi |ei〉. Now applying an inversion of the eigenvalue with a controlled rotation and

uncomputing the eigenvalue qubit we obtain the desired state |x〉
N∑
i=1

βi
λi
| ei〉 = Â−1 | b〉 = |x〉. (4.11)

Note that, provided that the matrix A is sufficiently sparse with low condition number

κ(A) =
σmax(A)

σmin(A)
, (4.12)

where σmax(A) and σmin(A) are maximal and minimal singular values of A, then the algorithm has a
runtime of O(log(N)d2κ2), where N is the number of variables in the linear system and d is the spar-
sity. The fastest classical algorithm for computing vector ~x takes O(Nκd). The apparent exponential
speed-up over the best classical algorithm does not actually yield any computational improvement since
the quantum algorithm outputs the solution in the form of a quantum state |x〉. Hence, in order to recon-
struct the classical vector ~x, a sampling procedure that would neutralize any computational advantage is
required.

4.2.2 Quantum K-NN and K-Means

In both the quantum versions of k-NN and k-means [81] a quantum advantage is obtained thanks to the
more efficient calculation of euclidean distances between vectors on a quantum computer. In particular,
given two vectors ~a and ~b in RN , while a standard classical algorithm takes O(N) to calculate

∣∣∣~a−~b∣∣∣,
the quantum algorithm based on the swap test runs in O(log(N)).

The algorithm starts with the representation of the vectors in terms of quantum states

|a〉 =
1

|~a|
N∑
i=1

ai|i〉. (4.13)

|b〉 =
1

|~b|

N∑
j=1

bj |j〉. (4.14)

Then, using a QRAM-like device the two following states are initialized.

|ψ〉 =
1√
2

(|0, a〉+ |1, b〉) (4.15)

|φ〉 =
1√
Z

(
|~a||0〉 − |~b||1〉

)
(4.16)

where Z = |~a|2 + |~b|2. Evaluating |〈ψ|φ〉|2 via swap test leads to an estimation of the euclidean distance
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In a recent work [82], it was proposed a classical quantum-inspired algorithm for clustering that uses
sampling strategy to obtain

∣∣∣~a−~b∣∣∣. The runtime of the algorithm is polylogarithmic in input size, match-
ing the runtime of the quantum algorithms with only quadratic slowdown.

4.2.3 Quantum SVM

The first quantum approach to SVM is due to Anguita et al. [117]. In their work, they consider a dis-
cretized version of the SVM that also takes into account the generalization error of the classifier. This
setting inhibits the use of well-known quadratic programming algorithms and optimization can turn into
a problem with NP complexity.

Authors propose to represent different configurations of the αi as quantum states |α0α1..αM 〉 and
then use Grover quantum algorithm in order to perform an exhaustive search over the configuration space
and find the maximum of the cost function Eq. 1.8 in O(

√
2M ) instead of O(2M ).

A different approach was proposed by Rebentrost, Mohseni and Lloyd [118], which presented a com-
pletely new quantum algorithm that realizes SVM on a circuit based quantum computer. This formulation
became very popular in the last few years and it is often addressed as the Quantum SVM (QSVM) al-
gorithm. The starting point to understand QSVM is the amplitude encoding of classical input training
vectors ~x into quantum states | ~x〉 as

| ~x〉 =
1

|~x|
N∑
k=1

xk |k〉 (4.18)

Authors claim this whole set of M states could in principle be constructed querying a Quantum Ran-
dom Access Memory (QRAM), which uses O(MN) hardware resources and O(logMN) operations to
obtain them [119].

In the preliminary step of the QSVM algorithm, it is exploited the fact that a dot product can be
estimated faster using QRAM and repeating the SWAP test algorithm on a quantum computer [120].
More precisely, if the desired accuracy of the estimation is ε, then the overall complexity of evaluating a
single dot product ~xi

T ~xj isO(ε−1logN). Calculating the kernel matrix takes thereforeO(M2ε−1logN)
instead of O(M2Nlog(1/ε)) required in the classical case.

However, the main idea of QSVM algorithm is to use the LS-SVM of Eq. 1.11 and rewrite it in terms
of quantum states as

F̂ |b, ~α〉 = |~y〉 (4.19)

where F̂ = F/tr(F ) with ||F || ≤ 1, parameters ~α and b identify the decision hyperplane and ~y denotes
the binary class labels. At this point it is applied the efficient quantum matrix inversion [121] in order
to generate the quantum state |b, ~α〉. This algorithm at first requires the simulation of matrix exponential
e−iF̂∆t, which can be performed in O(logN) steps [122].
Secondly, we can add an ancillary qubit initially in the state |0〉 and use the quantum phase estimation
algorithm [123] to express the state |~y〉 in the eigenbasis |ei〉 of F̂ and store an approximation of the
eigenvalues λi of F̂ in the ancilla

| ~y〉 | 0〉 →
M+1∑
i=1

〈ei | ~y〉 | ei〉 |λi〉 (4.20)

Now apply an inversion of the eigenvalue with a controlled rotation and un-compute the eigenvalue qubit
to obtain
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M+1∑
i=1

〈ei | ~y〉
λi

| ei〉 = F̂−1 | ~y〉 = |b, ~α〉 . (4.21)

In the training set basis, the solution state for the LS-SVM is

|b, ~α〉 =
1

b2 +
∑M
k=1 α

2
k

(
b | 0〉+

M∑
k=1

αk | k〉
)
. (4.22)

The process of classifying new data |~x〉 requires the implementation of the state | ũ〉 obtained by
calling the quantum data oracle using | b, ~α〉

| ũ〉 =
1(

b2 +
∑M
k=1 α

2
k| ~xk|2

) 1
2

(
b | 0〉 | 0〉+

M∑
k=1

| ~xk| αk | k〉 | ~xk〉
)

(4.23)

and also the query state

| x̃〉 =
1

M |~x|2 + 1

(
| 0〉 | 0〉+

M∑
k=1

|~x| | k〉 | ~x〉
)
. (4.24)

The classification is obtained calculating the inner product 〈x̃|ũ〉 via a swap test [120]. With the help of
an ancillary qubit, the state |ψ〉 = 1√

2
( | 0〉a | ũ〉 + | 1〉a | x̃〉) is constructed and then measured in the

state |φ〉 = 1√
2
( | 0〉a − | 1〉a) with a success probability given by P = |〈ψ|φ〉|2 = 1

2 (1− 〈x̃|ũ〉).

Probability P can be estimated to accuracy ε in O(P (1−P )
ε2 ) times. Class label is decided depending on

the value of P : if it is greater than 1
2 then |~x〉 is labelled −1; if it is less than 1

2 , in this case the label of
|~x〉 is 1.

The overall time complexity for both training and classification of the LS-SVM is of O(log(NM)).
In the QSVM algorithm, kernelization can be achieved acting on the training vector basis i.e. mapping

each |~xi〉 to a d-times tensor product

|φ(~xi)〉 = |~xi〉1 ⊗ |~xi〉2 ⊗ ...⊗ |~xi〉d (4.25)

in order to obtain polynomial kernels like the following in O(dε−1logN)

K(〈~xi|~xj〉) ≡ 〈φ(~xi)|φ(~xj)〉 = 〈~xi|~xj〉d (4.26)

Note that in the QSVM, kernel evaluation is directly performed in the high dimensional feature quantum
space, while in classical SVM the kernel trick avoids such expensive calculation. However this apparent
issue is solved considering the exponential quantum speed-up obtained in the evaluation of inner product.

Experimental implementations of the QSVM have been shown here [124, 125].

4.2.4 Quantum Computation of Hard Kernels

In this section we review the main proposals having as core idea the computation of classically hard
kernel via a quantum device. In this context we can recognize two common threads.

On one side, a hybrid classical-quantum learning model takes classical input and evaluates a kernel
function on a quantum devices, while classification is performed in the standard classical manner (e.g
employing a SVM algorithm).

In the second approach instead, a kernel based variational quantum circuit is trained to classify input
data. More in detail, a variational quantum circuit [127] is a hybrid quantum-classical algorithm employ-
ing a quantum circuit U(θ) that depends on a set of parameters θ which are varied in order to minimize
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a given objective function (see Fig.4.3). Such objective function is evaluated through the output mea-
surements of the variational circuit. Hence the training is performed by a classical iterative optimization
algorithm that in every step finds the better candidates θ starting from random (or pre-trained) initial
values.

1

|�(x1)i
W (✓)

p(y = 0)

|�(x2)i p(y = 1)

BS(✓1, ✓2)
D(✓3) P (✓5) V (✓7)

D(✓4) P (✓6) V (✓8)

q1 : |0i
U(✓)

q2 : |0i

Quantum circuit

output

objective
functionupdate

Fig. 4.3: Schematisation of a variational quantum circuit.

Optimizations algorithms use the quantum circuit as a black-box and follow under two main cate-
gories:

• Derivative-free training algorithm [128] that do not involve the computation of the gradients to
determine how to update the parameter θ. Such methods are easy to use but not very stable when
they have to deal with a large sets of parameters.

• Gradient-based training methods compute derivatives of the objective function f and thereby of
the variational circuit outputs giving information information on the steepest descent. Usually the
approximation of the gradient is performed using finite-differences method [129] or simultaneous
perturbation stochastic approximation (SPSA) [130], which work as follows for parameter θi ∈ θ
and ∆θi small enough

δθif(θi) ≈
f(θi − ∆θi

2 )− f(θi + ∆θi
2 )

∆θi
(4.27)

Schuld and Killoran recently explored this concepts [131] underlining the relation between feature
maps, kernel methods and quantum computing. The authors explain that the key element in both quantum
computing and kernel methods is to perform computations in a high dimensional (possibly infinite)
Hilbert space via an efficient manipulation of inputs.

In fact it is possible to interpret the encoding of classical inputs ~xi into a quantum state |φ(~x)〉 as a
feature map φ which maps classical vectors to the Hilbert space associated with a system of qubits. As
said before, two ways of exploiting this parallelism are described.

In the first approach, called by the authors implicit, a quantum device takes classical input and evalu-
ates a kernel function as part of a hybrid classification model. This requires the use of a quantum circuit
Uφ(x) realizing the mapping

φ : ~x→ |φ(~x)〉 = Uφ(x)|000..0〉 (4.28)

and which is able to produce a kernel

K(~xi, ~xj) = 〈000..0|U†φ(xi)Uφ(xj) |000..0〉 (4.29)

In order for quantum computing to be helpful, such kernel shouldn’t be efficiently simulated by a
classical computer. It is therefore posed the question of what type of feature map circuits Uφ lead to
powerful kernels for classical learning models like SVM but at the same time are classically intractable.
Authors suggest that a way to achieve such goal is to employ non-Gaussian elements (e.g. cubic phase
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gate or photon number measurements) as part of the quantum circuit Uφ(x) realizing the mapping to the
feature space.

The second approach, addressed in the paper as explicit, uses a variational quantum circuit to directly
learn a decision boundary in the quantum Hilbert space. In their example, they first translate classical
input to a quantum squeezed state

~x→ |φ(~x)〉 =
1√

cosh(c)

∞∑
n=0

√
(2n)!

2nn!
(− expi~x tanh(c))n|2n〉, (4.30)

then apply to |φ(~x)〉 a parametrised continuous-variable circuit

1

|�(x1)i
W (✓)

p(y = 0)

|�(x2)i p(y = 1)

BS(✓1, ✓2)
D(✓3) P (✓5) V (✓7)

D(✓4) P (✓6) V (✓8)

W (θ) is a repetition of the following gates

1

|�(x1)i
W (✓)

p(y = 0)

|�(x2)i p(y = 1)

BS(✓1, ✓2)
D(✓3) P (✓5) V (✓7)

D(✓4) P (✓6) V (✓8)

where
BS(θ1, θ2) = eθ1(e

iθ2 â†1â2−e−iθ2 â1â
†
2),

with θ1, θ2 ∈ R and â, â† annihilation and creation operators defined as

â|n〉 =
√
n|n− 1〉;

â†|n〉 =
√
n+ 1|n+ 1〉;

(4.31)

The displacement
D(z) = e

√
2i(Im(z)x̂−Re(z)p̂),

with complex displacement z and finally the quadratic and cubic phase gates

P (u) = ei
u
2 x̂

2

V (u) = ei
u
3 x̂

3

.

The probability of measuring the state |n1, n2〉 in the state |2, 0〉 or |0, 2〉 is interpreted as the probability
that the classifier predicts class y = 0 or y = 1

p(|2, 0〉) = p(y = 0) and p(|0, 2〉) = p(y = 1)

The authors trained such model on the ’moons’ dataset using stochastic gradient descent and showed
that training loss converges to zero after about 200 iterations. The authors claim that the advantage of
the explicit approach could be that the classifier is now defined directly on the quantum Hilbert space.
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Hence leaving the restriction of accessing the quantum Hilbert space only by means of the kernel, as in
the implicit approach.

Along the same path, simultaneously to [131], Havlicek et al. [132] propose two classifiers which
map classical data into a quantum feature Hilbert space. Again one SVM classifiers is based on a varia-
tional circuit that generates a separating hyperplane in the quantum feature space while the other classifier
only estimates the kernel function on the quantum computer.

The two methods are tested on an artificial dataset ~x ∈ T ∪ S ≡ Ω ⊂ (0, 2π]2 where T and S are
respectively the training and test sets. This classical input is previously encoded as φS(~x) ∈ R where
φS(~x) = (π − x1)(π − x2).

Stressing on the fact that to obtain an advantage over classical approaches, feature map needs to be
based on a circuit that is hard to classically simulate, the authors propose a feature map on n-qubits
generated by the unitary

UΦ(~x) = UΦ(~x)H
⊗nUΦ(~x)H

⊗n (4.32)

[+1]

[+1]

[-1]

z

x y

BA

C
Fig. 4.4: Circuit representation of the feature map family considered. A series of Hadamard gates are applied before
a diagonal phase gate. Then such layer is applied a second time.

where H is the Hadamard gate and

UΦ(~x) = exp

i ∑
S⊆[n]

φS(~x)
∏
k∈S

Zk

 (4.33)

with Zk being the Pauli Z operator acting on the kth qubit and S the test set. Such circuit acts on |0〉n as
initial state and uses classical data previously encoded φS(~x).

The authors conjecture that the kernel obtained using a circuit UΦ(~x) is hard to estimate up to an
additive polynomially small error by classical means. The intuition for this conjecture stems from the
fact that the feature map UΦ(~x) belongs to a particular quantum circuit family used for estimating the
hidden shift problem for boolean functions [132, 134, 135].

4.2.5 ML with a Quantum Annealer

We have seen in Sec. 3.2.2 that quantum annealing is usually employed to deal with combinatorial
optimization problems expressed as a QUBO (or Ising problem, equivalently) of the form

O(x) =
∑
i

hixi +
∑
i>j

Ji,jxixj (4.34)
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where xi ∈ {0, 1} are binary variables and parameters hi and Jij define the optimization problem.
It is possible to perform ML experiments on the D-Wave as long as a computational aspect of the ML

problem is expressed as a QUBO problem. An example could be found in the work [136] where authors
propose a simple formulation of a clustering technique.

The idea is the following: consider a dataset D containing M feature vectors ~xi ∈ RN that we want
to partition into k ≤M sets C = {C1, C2, ..., CK} in order to minimize the within-cluster variance. We
can start defining a binary variable z(k)i that is 1 only when the vector ~xi belongs to class Ci, in other
words

z
(k)
i =

{
1 iff ~xi ∈ Ci
0 iff ~xi /∈ Ci

Since every vector ~xi must be associated to a single class, this means that ∀~xi the relation
∑K
k=1 z

(k)
i = 1

should hold. This condition can be rephrased as an objective function as follows

f1(z) =

M∑
i=1

(
K∑
k=1

z
(k)
i − 1

)2

. (4.35)

Moreover, since we want the distance between vectors Di,j = |~xi − ~xj | to define the clusters, i.e we
want to group together vectors that are closer, it is necessary to add the penalty term

f2(z) =

K∑
k=1

∑
i 6=j

Di,jz
(k)
i z

(k)
j (4.36)

The QUBO associated to the clustering problem is therefore

O(z) = λ

M∑
i=1

(
K∑
k=1

z
(k)
i − 1

)2

+

K∑
k=1

∑
i 6=j

Di,jz
(k)
i z

(k)
j (4.37)

where parameter λ was inserted to modulate the strength of the first term, which represent the hard
constraint of the problem. Other version of clustering algorithms, like the bi-clustering problem (where
rows and columns of a matrix are simultaneously clustered) appearing in [100] have been successfully
translated in QUBO form and analysed using the D-Wave quantum annealer.
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Homological Analysis of Multi-qubit Entanglement

As discussed in Chapter 2, in the last few decades entanglement has been recognized as a key resource
for obtaining a quantum boost in many information technology tasks [41] and hence the interest moved
from a purely foundational aspects to a more practical one. In this context, it is of uppermost importance
to have a careful characterization of entanglement, although it is a challenging task when multipartite
entangled systems are involved.

Initial work on the classification of entangled states was focused on the quantification through en-
tanglement monotones (see Sec.2.4), which have been proved to work well mostly for bipartite states
[28]. For multipartite entanglement, the main approach constructs equivalence classes on the base of
invariance under stochastic local operations and classical communication (SLOCC) [44]. However, this
leads to infinite (even uncountable) classes for more than three qubit systems. Hence this technique is
not effective in the general case, although some ways out were devised for the case of four qubits [45].

Recently it was proposed an alternative route to entanglement classification represented by the anal-
ysis of topological features of multipartite quantum states [137]. Topological data analysis (see Sec.1.2)
has recently gained a lot of attention in the classical framework thanks to its suitability for the analysis of
huge datasets represented in the form of point clouds. Among these techniques, Persistent Homologies
(PH) played a pivotal role [21, 139]. It is a particular sampling-based technique from algebraic topology
aiming at extracting topological information from high-dimensional datasets.

Interestingly, a quantum approach to computing persistent homology has been devised in [122] in
order to achieve more efficient algorithms for classical data analysis. Here instead we focus on the usage
of persistent homologies in the study of pure quantum states by discussing how [137] and [138] employed
this technique for characterizing multipartite entanglement.

In general the PH technique analyse the entanglement of multiqubit state vectors which are repre-
sented as a dataset by introducing a metric-like measure of pairwise entanglement between qubits. More
specifically, given a vector state of N qubits, we consider N points each one representing a qubit and
then arrange them in such a way that their pairwise distance is inversely proportional to the two-points
correlation. Then, a barcode is constructed for this dataset. Two states are in the same class if they have
the same barcodes. Actually, we do not care about the position of a bar, but only to its presence or ab-
sence. An interesting new classification of ‘genuinely’ entanglement is provided for states containing up
to six qubits. Finally, we compute the relative occurrence frequency of the various classes of entangled
states, obtained by means of a random generation of state.

5.1 Creating the Qubit Data Cloud

In this section, the methodology used for creating the data cloud which is the basis for classifying entan-
gled states is discussed. We restrict our attention to N qubit states showing "genuine" entanglement, i.e.
that are N -partite entangled or “fully inseparable".
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The approach starts with a random generation of pure states among which we select, using gener-
alised concurrence measure, those showing genuine entanglement. At this stage, a data cloud is associ-
ated to a state in such a way that each qubit is identified with a single point in the cloud, while a distance
between pairs of points is defined using a semi-metric that takes into account the pairwise entanglement
shared by the two qubits that the points represent. Semi-distances between qubits are stored in a matrix
D which will be the input of the persistent homology algorithm.

Note that in the definitions given in Section 1.2 we refer for simplicity to Euclidean spaces. Since
here we are dealing instead with a semi-metric space, it is worth stressing that computing persistent
homology is still possible in our case. In fact, a distance between pairs of points which does not satisfy
triangular inequality is still sufficient for constructing Rips complexes.

Moreover, it is worth underlining that multipartite entanglement is not uniquely determined by means
of bipartite entanglement between pairs of qubits. However, the idea here is to study the information we
get from looking at multipartite entanglement through the lenses of TDA.

5.1.1 Random State Generation

In order to randomly generate a pure state of N qubits, we employ the following parametrization [140,
141]

|ψ〉 =

2N−1∑
n=0

νn|n〉, (5.1)

with

ν0 = cos θ2N−1, (5.2)

νn>0 = eiφn cos θ2N−1−n

2N−1∏
l=2N−n

sin θl. (5.3)

and
θn := arcsin

(
ξ

1
2n
n

)
. (5.4)

The independent random variables φn≥1 and ξn≥0 are uniformly distributed in the intervals:

φn≥1 ∈ [0, 2π), ξn ∈ [0, 1].

Note that the state parametrization here presented is equivalent to that of random Haar states. In fact,
following [140], the Hurwitz parametrization for generating pure states as vectors of a random unitary
matrix distributed according to the Haar measure was used.

5.1.2 Entangled States Selection

After generating a random N -qubit state |ψ〉 we check that it is actually N -partite entangled. This
happens iff for every bipartition A/Â (where Â denotes the complement set of A) of the N -qubit,
CG(ρA) 6= 0, where CG is the generalized concurrence defined in Sec.2.4 as

CG(ρA) :=
√

2(1− Tr(ρ2A)). (5.5)

5.1.3 Distances Calculation

It is possible to generate barcodes for simplicial complexes corresponding to a points (i.e.qubits) cloud
by giving in input to the persistent homology algorithm the matrix D of all pairwise distances between
points.
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In [137], a semi-distance 1/Ei,j , was proposed, where Ei,j is an entanglement monotone calculated be-
tween qubit i and qubit j. This semi-distance goes from 1 (when the two qubit are maximally entangled)
to +∞ (when they are separable). Here we use the following semi-metric:

Di,j = 1− exp

{
1− 1

Ei,j

}
, (5.6)

where Ei,j , is chosen to be the concurrence Ci,j between qubit i and qubit j. The semi-distance Di,j

goes from 0 to 1 as the entanglement decreases, and remains finite for separable states.
Recall that, given a state ρ on N qubits, the concurrence between two qubits i and j is obtained by

first tracing out all other N − 2 qubits. This gives the reduced density matrix ρij . Then

Ci,j := max{0, λ1 − λ2 − λ3 − λ4}, (5.7)

where λ1, λ2, λ3, λ4, are the square root of the eigenvalues (in decreasing order) of the matrix ρij(σy ⊗
σy)ρ∗ij(σy ⊗ σy) [143], with σy the well known Pauli matrix and ρ∗ij the complex conjugate of ρi,j in
the computational basis.

5.2 Entanglement Classification

We have used the TDA package for computing persistent homology and barcodes developed for the R
software. The classification is obtained grouping together those states with the same barcode.

In the following barcodes, black lines represent connected components (i.e. homology group H0),
red lines represent holes (i.e. homology group H1) and blue lines represent voids (i.e. homology group
H2). All barcodes are generated using the Rips complex.

5.2.1 Classification of Three Qubits States

In the case of genuine three-partite entangled states of three qubits it is possible to recognize the follow-
ing three classes. Barcodes are shown starting from the most frequent to the least frequent one.

Fig. 5.1: Barcode for the class labelled as 3B1. Black lines in the barcode represent connected components, i.e.
homology group H0.

This class contains those states that have one of the two following properties:

• States with Ci,j , Cj,k > 0 and Ci,k = 0; their associated point cloud is made of three points where
the first and the second are at distance D(i, j), the second and the third are at distance D(j, k), but
the first and the third points are at maximum distance. This can be seen in the barcode of Figure 5.1
where two of the three lines vanishes and only one persists.
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• States where, at a finite value ε∗ of D(i, j), the three points get connected one with each other to
form a triangular graph that is immediately filled with a 2-simplex. This means that for ε ≥ ε∗ we are
left with only one connected component (the 2-simplex), again shown by the barcode of Figure 5.1.

A representatives for this class, could be

|3, B1〉 = |W 〉 =
1√
3

(|100〉+ |010〉+ |001〉) (5.8)

States of this class constitute a subset of the W-class found using the SLOCC classification.

Fig. 5.2: Barcode for the class labelled as 3B2. Black lines in the barcode represent connected components, i.e.
homology group H0.

Another class is defined by states where Ci,j > 0, Cj,k = 0 and Ci,k = 0; the associated point cloud
is made of three points where the first and the second are at a distance D < 1, while the third point is
at distance D = 1 from the other two. The barcode shows three different connected components in the
interval [0, D(i, j)], while for values grater than D(i, j) only two of them persist as shown in Figure 5.2.
The state

|3, B2〉 = |ψb〉3 =
1√
3

(|000〉+ |011〉+ |111〉) (5.9)

can be chosen to be a representative for this class. Note that this class constitutes a subset of the W-class
found under SLOCC [44].

Fig. 5.3: Barcode for the class labelled as 3B3. Black lines in the barcode represent connected components, i.e.
homology group H0.

This class collects all those states where entanglement between any possible pair of the three qubits
gives Ci,j = 0, for all i, j. This implies that each point of our three points cloud is maximally far away
from the others. Hence they generate a barcode that only displays the 0-order homology group H0, i.e
the connected components as shown in Figure 5.3.
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The state
|3, B3〉 = |GHZ〉 =

1√
2

(|000〉+ |111〉) (5.10)

can be chosen to be a representative for this class, which exactly corresponds to the GHZ-class of [44].

In summary, we have shown that a classification performed using barcodes obtained with distanceD(i, j)
is able to distinguish 3 different classes of true entangled states of three qubits, hence going beyond the
known SLOCC classification.

5.2.2 Classification of Four Qubits States

Barcodes generated by 4-partite entangled states of 4 qubits are shown starting from the most frequent
to the least frequent one. Recall that black lines in the barcodes represent connected components (i.e.
homology group H0) and red lines represent holes (i.e. homology groupH1). All barcodes are generated
using the Rips complex.

Fig. 5.4: Barcode of the class labelled as 4B1.

Genuine entangled states with the barcode shown in Figure 5.4 have a total of four connected compo-
nents: three of them end at value of ε < 1, while only one component persists over all the range of ε.
The fact that only one connected component persists means that the state form a single cluster of qubits
grouped by pairwise entanglement without showing higher homological features. A representative of
such class is the |W 〉 state.

|4, B1〉 = |W 〉 =
1

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉) (5.11)
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Fig. 5.5: Barcode of the class labelled as 4B2.

States belonging to class of Figure 5.5 form again a single persistent component of pairwise entanglement
between qubits. However in this case a hole, denoted by the red barH1, appears when only one connected
component is left. Such a hole has limited life-span since disappears when ε is sufficiently large. A state
showing such a behaviour is the following:

|4, B2〉 =
1

2
√

2

(√
2|0000〉+ |0011〉+ |0110〉+ |1001〉+ |1100〉+

√
2|1111〉

)
(5.12)

Fig. 5.6: Barcode of the class labelled as 4B3.

In the case shown in Figure 5.6, a single connected component is left and a persistent hole is present.
States with this barcode have the characteristic that each qubit is pairwise entangled to other two qubits
and completely un-entangled with a third qubit. A state showing such properties is

|4, B3〉 =
1

2
(|0000〉+ |0011〉+ |1010〉+ |1111〉)
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Fig. 5.7: Barcode of the class labelled as 4B4

In the class represented by the barcode in Figure 5.7 we find genuinely entangled states with no higher
homological feature than H0 which have two different connected component that persist over the range
of ε. This means that such states have two sets of qubits which are internally connected by pairwise
entanglement to form a component, but no connection is present among qubits of different sets. Yet a
single qubit in a set could be entangled to the other set as a whole. An example for this class is the state:

|4, B4〉 =
1

2
(|0011〉+ |1011〉+ |1101〉+ |1110〉) (5.13)

Fig. 5.8: Barcode of the class labelled as 4B5

Like the previous case, states with the barcode of Figure 5.8 only show four connected components,
three of which persist while one has limited lifetime. The characteristic of these states is that there are
always 2 qubits which do not share any pairwise entanglement with another qubit, while the other two
do. A representative state for this class is

|4, B5〉 =
1√
3

(|0000〉+ |0111〉+ |1101〉) (5.14)
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Fig. 5.9: Barcode of the class labelled as 4B6

States of the kind shown in Figure 5.9 do not have any pairwise entanglement among qubits. For this rea-
son no qubit get connected to another and we see four distinct components that persist. A representative
of this class is the |GHZ〉 state.

|4, B6〉 = |GHZ〉 =
1√
2

(|0000〉+ |1111〉) (5.15)

As we can observe in Fig.5.22, there exist six different classes of four qubit genuine entangled states,
based on the persistent homology classification.

Comparison with SLOCC and Generalisation

In [45] it is proposed a classification for pure entangled states of four qubit. This classification is obtained
from the orbits generated by SLOCC operations and produces nine classes. Among these nine classes,
one is called ’generic’ and contains an uncountable number of SLOCC inequivalent classes of states,
as shown in [46]. A comparison between the classification based on persistent homology and the one
presented in [44] is possible in the three qubit case, as discussed before. However, in the four qubit
case, a comparison between our approach and the one in [45] does not allow us to clearly establish a
correspondence between classes as in the three qubit case. In order to better understand this, it is useful
to consider few specific examples. Consider the class

Lab3 = a(|0000〉+ |1111〉) +
a+ b

2
(|0101〉+ |1010〉)+

+
a− b

2
(|0110〉+ |1001〉) +

i√
2

(|0001〉+ |0010〉+ |0111〉+ |1011〉)
(5.16)

defined in [45]. It is easy to check that for the different values of the parameters a and b we obtain the
following states:

• for a = b = 0, a W-like state with associated barcode 4B1;
• for a = 0 and b = 1, a state with barcode 4B3;

• for a = b = 1, a state with barcode 4B4.

Moreover states belonging to the class L07⊕1̄
, which are obtained from the state |L07⊕1̄

〉 below, up to
permutations of the qubits,
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|L07⊕1̄
〉 = |0000〉+ |1011〉+ |1101〉+ |1110〉 (5.17)

have the same barcode of |GHZ〉 which instead belongs to the generic class Gabcd for a = d and
b = c = 0. This makes it impossible to fully characterize the SLOCC classification proposed in [45]
in terms of barcodes and vice versa. The SLOCC approach is indeed based on a classification criteria
(equivalence with respect to local operations) that are not comparable to ours, which are of different
nature (the change in the topology of the point cloud formed by the qubit, depending on the pairwise
entanglement strength). Therefore the classifications obtained are intrinsically different besides leading
to a different number of classes: nine with SLOCC and six with persistent homology.

We will nevertheless argue in the following that our approach is more robust in terms of increasing
the number of qubits. In fact, it was shown in [44] that for systems of size N ≥ 4 there exist infinitely
many inequivalent kinds of entanglement under SLOCC and no finite classification is known for states
of those sizes. If we restrict to the case of genuine multipartite entangled state of N qubit, it is easy to
see that our persistent homology approach always provides a finite number of different classes for any
value ofN . This is due to the fact that the total number of possible homology groups that can be obtained
considering a dataset of points is always finite. The number of possible barcodes BN obtained with a
dataset of N points can in fact be bounded from the above as follows

BN <

N(N−1)
2∑

d=0

GN (d) d!

 (5.18)

where GN (d) is the total number of possible graphs with N vertices and d edges, up to permutations of
the vertices, and the factorial d! takes into account all the possible ways of constructing GN (d).

In light of this concept, we extend our classification of genuine entanglement to the cases of five and
six qubits as shown in the following sections.

5.2.3 Classification of Five Qubits States

Let’s hence consider randomly generated 5-partite entangled states of 5 qubits. Barcodes are shown
below starting from the barcode more likely to appear to the least frequent one. Recall that black lines
in the barcodes represent connected components (i.e. homology group H0) and red lines represent holes
(i.e. homology group H1). All barcodes are generated using the Rips complex.

Fig. 5.10: Barcode of the class labelled as 5B1

In the five qubit case, the most frequent class shows a barcode like the one in Figure 5.10 with three
connected components that persist in the range of D. States of this kind have at least one qubit (up to



56 5 Homological Analysis of Multi-qubit Entanglement

two qubits) that does not share pairwise entanglement with any other qubit. This configuration does not
generate higher homology groups than H0. An example of state in this class is

|5, B1〉 =
1√
5

(|00001〉+ |00011〉+ |00110〉+ |01000〉+ |11011〉) (5.19)

Fig. 5.11: Barcode of the class labelled as 5B2

As we can see, the barcode of Figure 5.11 shows four persistent connected components i.e. only two
qubits among five share pairwise entanglement while all remaining qubits act as independent connected
component. A representative state for this class is

|5, B2〉 =
1√
5

(|00001〉+ |00011〉+ |00100〉+ |01100〉+ |11010〉) (5.20)

Fig. 5.12: Barcode of the class labelled as 5B3

In this class identified by the barcode of Figure 5.12, two connected components persist while the
other three have limited lifetime. Two clusters of qubits connected by pairwise entanglement are hence
created and no holes or higher topological features appear. An example of state in this class is the fol-
lowing

|5, B3〉 =
1√
5

(|00001〉+ |00010〉+ |00100〉+ |01000〉+ |10111〉) (5.21)
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Fig. 5.13: Barcode of the class labelled as 5B4

Figure 5.13 show the barcode of the class where we find GHZ like states, i.e. those states where there
are no entangled pair of qubits and hence show five persistent connected components in the barcode.

|5, B4〉 =
1√
2

(|00000〉+ |11111〉) (5.22)

Fig. 5.14: Barcode of the class labelled as 5B5

After we find the barcode shown in Figure 5.14 and relative to those states like |W 〉 which have only
one connected component and hence pairwise entanglement creates a single cluster of qubits.

|5, B5〉 =
1√
5

(|00001〉+ |00010〉+ |00100〉+ |01000〉+ |10000〉) (5.23)
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Fig. 5.15: Barcode of the class labelled as 5B6

Figure 5.15 shows the barcode of the first class of 5 qubits genuinely entangled states that present a
first order homology group H1, i.e. a hole, in the barcode. States in this class have their qubits connected
to form a single persistent component when ε ≈ 1. Note also that some subsets of qubits do not share
any pairwise entanglement and hence are responsible for the persistent hole. An example of state in this
class is

|5, B6〉 =
1√
6

(|00000〉+ |11000〉+ |01100〉+ |00110〉+ |00011〉+ |10001〉) (5.24)

Fig. 5.16: Barcode of the class labelled as 5B7

As we can see in Figure 5.16, like in the previous class, a hole is created at some value of ε and
persists up to the upper limit of the semi-metric D. However here while four qubits are responsible
for one connected component and for the H1 homology, the remaining fifth qubit does not share any
pairwise entanglement with the others and creates a persistent component on its own. A representative
state of this kind is

|5, B7〉 =
1√
5

(|00010〉+ |00011〉+ |00101〉+ |10111〉+ |11011〉) (5.25)



5.2 Entanglement Classification 59

Fig. 5.17: Barcode of the class labelled as 5B8

States in the class of Fig.5.17 have similar properties to those in the class of Fig.5.15, however in this
case the H1 homology does not persist since connections among qubits creating the hole appear at some
value of ε. An example state with such barcode could be

|5, B8〉 =
1√
10

(√
5|00000〉+ |11000〉+ |01100〉+ |00110〉+ |00011〉+ |10001〉

)
. (5.26)

Fig. 5.18: Barcode of the class labelled as 5B9

The class characterized by the barcode depicted in Figure 5.18 shows a single persistent connected
component of qubits grouped by pairwise entanglement but also two holes which appear at some ε and
persist for higher values. A representative for this class is the following

|5, B9〉 =

√
2

5
(|00000〉+ |01010〉) +

1

5
(|00011〉+ |00101〉+ |01100〉+ |11000〉+ |10001〉)

(5.27)
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Fig. 5.19: Barcode of the class labelled as 5B10

States belonging to the class of Figure 5.19 have similar properties to those in class with barcode in
Figure 5.16, i.e. two persistent connected components, one of which is made up of a single qubit which
does not share pairwise entanglement with the other four. In the other instead, the remaining four qubits
get connected to form a non-persistent hole. An example state with such barcode could be

|5, B10〉 =
1√
6

(|01000〉+ |01010〉+ |10000〉+ |10001〉+ |10110〉+ |11010〉) (5.28)

Fig. 5.20: Barcode of the class labelled as 5B11

A single persistent connected component and two holes characterize the barcode of this class, as
shown in Figure 5.20. Note that one of the two homology group generators H1 appears only in a limited
interval while the other one persists over ε. An example state with such barcode:

|5, B11〉 =
1√
11

(√
5|00010〉+

√
2|00100〉+

√
2|10000〉+ |10101〉+ |11100〉

)
(5.29)
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Fig. 5.21: Barcode of the class labelled as 5B12

The least frequent class, barcode in Figure 5.21, is the one composed of those states where qubits get
connected to form a single connected component allowing the presence of two hole that however do not
persist. An example state with such barcode is the following

|5, B12〉 =
1√
2
|00000〉+

1√
10

(|11000〉+ |01100〉+ |01010〉+ |00101〉+ |10001〉) (5.30)
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5.2.4 Classification of Six Qubits States

By randomly generating six-partite genuine entangled states of six qubits, we obtained 33 different
classes. Here we report the 33 associated barcodes d starting from the most frequent to the least fre-
quent one. Recall that black lines in the barcodes represent connected components (i.e. homology group
H0), red lines represent holes (i.e. homology group H1) and blue lines represent voids (i.e. homology
group H2). All barcodes are generated using the Rips complex.

6B1 6B2

6B3 6B4

6B5 6B6
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6B7 6B8

6B9 6B10

6B11 6B12

6B13 6B14
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6B15 6B16

6B17 6B18

6B19 6B20

6B21 6B22
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6B23 6B24

6B25 6B26

6B27 6B28

6B29 6B30
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6B31 6B32

6B33

5.3 Class Frequencies

As we can observe in Fig.5.22, there exist six different classes of four qubit genuine entangled states,
based on the persistent homology classification. The most frequent class (61.70%) is the one where only
one component persists (4B1). States like W belong to to this class. With frequencies of 17.31% and
10.60% we find states with barcodes 4B2 and 4B3 showing one persistent connected component and a
hole (red line) that in the case of 4B3 is also persistent. The last three barcodes, in order 4B4, 4B5 and
4B6 show an increasing number of disconnected components. States that are GHZ-like are hence the
least frequent (0.52%).
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Fig. 5.22: Barcode frequencies (in Log scale) for four qubits genuine entangled states
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Fig. 5.23: Barcode frequencies (in Log scale) for five qubits genuine entangled states

For what concerns the five qubits case, we obtained twelve classes. By looking at the chart in Fig-
ure 5.23 it can be noticed that the most frequent barcode (5B1) belongs to states with three connected
components, followed by states with barcodes showing four, two, five and one persistent components
(respectively 5B2, 5B3, 5B4, 5B5). The 95% of all randomly generated states fall inside one of these
first five classes. After them, barcodes with higher dimensional homology features start to appear: at first
those with one hole and then those with two. The only exception is given by barcode 5B10 (showing
one short-lived hole but two connected components) since it is less frequent than 5B9 (one connected
component and two persistent holes).

By randomly generating six-partite genuine entangled states of six qubits, we obtained 33 different
classes. Their frequencies are shown in Figure 5.24. With a frequency of 68%, the class defined by
barcode 6B1 is by far the most frequent. Such a class consists of GHZ-like states that present six different
connected components, i.e. the single qubits with no pairwise entanglement. As we have seen, for the
five qubit case, the first classes in frequency, from 6B1 to 6B6, are those containing states showing only
connected components (H0 homology group i.e. black bars). Then states with one hole start to appear,
and later those showing two holes, with the exception of barcodes 6B12 and 6B13. Barcodes showing
multiple holes and voids, from 6B19 to 6B33 are also possible but they do not appear in the histogram
since their frequency is very low (� 0.004%). Finally, note that these frequencies are obtained using the
parametrization of Eq. 5.1 which produces states according to the Haar measure, a uniform probability
distribution over all quantum states.
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Fig. 5.24: Barcode frequencies (in Log Scale) for six qubits genuine entangled states

5.4 Comments

The classification that we have carried out for three, four, five and six qubits entangled states shows that
is possible to distinguish respectively three, six, twelve and thirty-three different classes by persistent
homological barcodes. In general, given a N qubit genuinely entangled state, it is always possible to
come up with a finite classification where the total number of possible barcodes BN is bounded.

Furthermore, patterns seems to emerge in our classifications by looking at the frequencies of bar-
codes. First of all, those states which are characterized by the only H0 homology group become more
likely as the number of qubits N increases. This is followed by the group of those states showing also
H1 which again are followed by those with a much richer topology. While this fact could be explained
from a topological point of view by claiming that, with a limited number of points complex homological
patterns in the barcode are harder to obtain, it is still interesting to notice that the same reasoning also
hold true for quantum state barcodes.

Among those states with only theH0 homology group, it is worth noticing that the W-like class, with
only one persistent connected component, decreases its frequency with the increase of N . In fact, except
for N = 4 where we find this class in the first place, in the N = 5 and N = 6 cases, it falls to the
last position. Conversely, the class of states which have N persistent components, like GHZ, gradually
increase their frequency, starting from the bottom at N = 4 and becoming the most popular at N = 6.

In general we can say that increasing the number of qubits makes the randomly generated states easily
fall inside classes with more persistent connected components. This seems to indicate that, increasing the
number of parties, qubits in a genuine entangled states tend to dislike pairwise entanglement and rather
share it with the whole set of other qubits.

The proposed method could be particularly useful to classify eigenstates of solvable Hamiltonians
such as [144]. For non-integrable systems, the method can still be applied to approximate eigenstate
derived by various techniques such as perturbation theory or numerical analysis. The procedure is to first
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verify whether or not the eigenstate has genuine multipartite entanglement (as explained in section III.B)
and if it is so it is possible to verify the different classes they belong to.

Another consideration is related to the subject of quantum algorithms and their computational com-
plexity classes. As quantum speedup is based on the entanglement employed in the algorithm, it would
be interesting to investigate possible links between quantum computational complexity classes and en-
tanglement classification (see [145] along this line), here provided by persistent homology.

Last, the proposed approach could be extended to the case of mixed states and then find applications
in the context of open systems dynamics [146].
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Quantum Kernel Methods

Kernel functions are similarity functions that constitute a very useful tool in ML. In fact kernel functions
can be expressed as inner product in another (usually larger) space without explicit feature mapping,
enabling linear learning algorithms to learn highly non-linear decision boundaries. In many applications
where data classification is based on dissimilarity measures (e.g. string matching for pattern recognition),
kernels provide a valid alternative method for classification.

In Section 4.2 we have seen that quite a lot of effort have been put into the development of quantum
algorithms based on kernel methods. The main approaches to quantize them either rely on the formula-
tion of a quantum algorithm that can realize the respective of SVM but running on quantum computer
(see Sec.4.2.3) or exploit the power of quantum computing to deal with classically intractable kernels
(see Sec.4.2.4).

In this chapter, two approaches are proposed. The first one deals with Error Correcting Output Codes
(ECOC), which are a standard technique in Machine Learning for efficiently rendering the collective
outputs of a binary classifier, such as the Support Vector Machine, as a multi-class decision procedure.
Appropriate choice of error correcting codes further enables incorrect individual classification decisions
to be effectively corrected in the composite output. In the next section, we present a quantum algorithm
based on the quantum Support Vector Machine which is able to reproduce the ECOC process with a
speedup associated with efficient QRAM calls.

The second approach proposes to use the framework of TQC (see Sec.3.3) to estimate kernels that
could be employed in supervised learning tasks. As an example, we show how a Hamming distance
based kernel between binary strings can be obtained by an encoding of those strings as some special
braiding in TQC. Hamming distance is derived as the Jones polynomial of a particular link. Exploit the
computational features of TQC it is possible to compare two strings and compute a Hamming distance
kernel function between them.

6.1 Quantum Error Correcting Output Codes

A well studied aspect of Quantum Computing is that of error correction [35], which is crucial in order
to protect quantum algorithms from errors induced by environmental de-coherence [152]. Within the
emerging subtopic of QML, however, other forms of error become apparent; in particular, classification
error.

It will be the endeavour of this section to demonstrate that decision errors with respect to the output of
quantum classifier ensembles are also amenable to error correction. In particular, we demonstrate that the
existing advantages of quantizing machine learning algorithms demonstrated in [71, 72, 74, 75, 118, 122]
can be further applied to the problem of multi-class ensemble decision-error correction. This will lead
to a cumulative performance boost i.e. with respect to both the collaborative decision process and the
underlying classifiers in the ensemble.
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At first we will look at the individual classifiers of the ensemble in the classical setting; in particular
we will focus on the Support Vector Machine (SVM) as this exhibits the dual characteristics of being
both a binary and discriminative (as opposed to generative) classifier. Hence the standard classical setting
for Error Correcting Output Codes (ECOC) is presented, followed by a discussion of our proposal for a
quantum version of ECOC for multi-class classification problems.

6.1.1 Error Correcting Output Codes (ECOC) in Classical Machine Learning

Real world data typically exhibits multiple classes - for example photographs of street scenes may exhibit
buildings of various kinds, pedestrians, vehicle, distinct species of animal and plant life etc. Machine
learning is therefore commonly tasked with identifying from amongst the different classes when pre-
sented with novel data. A powerful way to approach these problems is to break the multi-class problem
down into a series of smaller binary classification tasks.

Such two-class problems can then be treated by appropriate binary classifiers (e.g. SVMs) whose
decision outputs are combined to provide the sought multi-class classification. Perhaps the simplest such
approach is ‘one versus one’, in which classifiers are trained for all possible bi-partitions of classes and
a majority vote of their decisions is applied. A more efficient alternative with respect to the number of
classifiers is the ‘one versus all’ approach in which a binary classifier is built to distinguish each class
from all the others. Again, a decision is made by majority vote to obtain a final class decision allocation.
Thus, both methods suffice to convert binary classifiers into multi-class classifiers.

A key difference between ‘one versus one’ and ‘one versus all’ is that both methods have a diverse
degree of resilience to classification error. The committee decision making process (e.g. majority vote)
of the ensemble of classifiers potentially allows for some individually-incorrect decisions, whilst still
arriving at a correct collective decision. They are thus, to an extent, error-correcting. However, it is
demonstrable that neither of these approaches is optimal in this respect nor are they optimal in terms of
the training requirements of the classifiers. For this, we need to consider Error Correcting Output Codes
(ECOC) [153, 154].

Suppose, again, that (~xi, yi) with i = 1 . . .M are the training vectors/labels, where and ~xi ∈ RN
and the label set now extends to yi ∈ {ω1, ω2, ..., ωc}. There are in general L binary classifiers in the
ensemble which are denoted as h ∈ {h1, h2, . . . hL}.

In the ‘one versus all’ method there is one binary classifiers for each class, hence L = c in this case.
The classifier hi labels data from class i as positive and all data from the other classes as negative. A
new instance is classified in the class whose corresponding classifier output has the largest value. The
committee decision is thus defined as [158]

y = arg max
i∈1,...,c

hi(~x) (6.1)

The ECOC method utilises a codeword for each class ωi. There hence exists a c×L code matrixM with
valuesMij , with each of theMij values drawn from the set {1,−1}1. The code matrixM represents L
distinct binary classification problems, where each of the individual codes divides the set of classes into
two meta-classes (in the literature it dichotomises them). It is important to note that the division of the
set of class labels into two meta-classes for each of dichotomisers is carried over to the training vectors
themselves, i.e. each of the binary dichotomisers are trained on all of the training vectors to maximize
their generalising capacity. Both ’one versus one’and ’one versus all’ can thus be phrased in ECOC
terms.

The matrix formulation adopted illustrates an important duality: while matrix columns represent the
meta-structure of the dichotomisers, matrix rows define uniquely-identifying codewords for each of the
1 This is the simplest form of ECOC; three valuedMij are possible i.e.Mij ∈ {−1, 0, 1}, where the zero value

represents omission of a class from the meta-class allocation.
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underlying classes class ωi. There are hence two stages to the ECOC process: an encoding and a decoding
stage. The coding stage is the constitution of an appropriate code matrixM; the decoding process is the
derivation of a collective decision from the set of dichotomisers. To see how this works, consider an
unlabelled test vector ~x. Each of the meta-class dichotomisers predicts a value in the set {1,−1} such
that the test vector generates a codeword of length L. This codeword is then compared against the set of
codewords constituting the row-wise entries ofM ieM(i,·). The class i with the closest code value is
then allocated as the final ensemble decision:

y = arg min
i∈1,...,c

{
Σj |hj −Mij |2

}
(6.2)

The error correcting capacity of the ECOC matrix is thus determined by the minimal Hamming distance
between codes.

Because the mapping of arbitrary codewords in the test vectors space onto the codeword contained
inM is many to one, the ECOC coding/decoding process has an intrinsic error correction property. A
subset of the L dichotomisers can reach incorrect classification decisions with regard to the test vector
while retaining a correct ensemble decision. Their errors have, in effect, cancelled themselves out (it may
be shown that the ECOC ensemble reduces both classifier bias and variance errors [156]). This property
is invaluable in any non-trivial, non-linearly-separable classification problem where there is an intrinsic,
inalienable likelihood of error lower-bounded by the Bayes error for each dichotomiser.

6.1.2 Strategy for Quantum Error Correcting Output Codes

Our approach to quantize the ECOC is based on the implementation of the QSVM, discussed in Section
4.2.3, of which we present the multi-class version. Since we have to deal with L binary classifiers, hj ,
with j = 1, 2, ..., L, we assume that the QRAM contains the binary vector labels ~yj ∈ {+1,−1}M for
each of the dichotomisers and that these too can be queried in superposition

L∑
j=1

| ~yj〉 | j〉 (6.3)

Moreover we assume that the code-word matrix M is given from the beginning and that the QRAM
contains also the binary vectors associated to each row i of the code-word matrix.

Projecting | y〉 into the eigenbasis |ei〉 of the SVM matrix F̂ of Eq. 1.11, with eigenvalues λi, we
obtain what follows

L∑
j=1

| ~yj〉 | j〉 | 0〉 →
L∑
j=1

M+1∑
i=1

〈ei | ~yj〉 | ei〉 | j〉 |λi〉 →
L∑
j=1

M+1∑
i=1

〈ei | ~yj〉
λi

| j〉 | ei〉 (6.4)

A quantum phase estimation algorithm (first arrow of Eq. 6.4) with a successive employment of an
eigenvalues inversion are performed. The eigenvalue qubit is hence uncomputed. In the training set basis
this gives the solution state for the SVM parameters ~αj and bj associated to the jth dichotomiser.

1√
L

L∑
j=1

|~αj , bj〉|j〉 =
1√
L

L∑
j=1

(
bj
Nj
| 0〉 | j〉+

M∑
k=1

αj,k
Nj

| k〉 | j〉
)

(6.5)

where Nj =
(
b2j +

∑M
k=1 α

2
j,k

) 1
2

is the normalization factor. In order to classify a new input, it is
necessary to construct the state |u〉 which is obtained by calling the QRAM using the state of Eq. 6.5.

|u〉 =
1√
L

L∑
j=1

(
bj
Zj
| 0〉 | 0〉 | j〉+

M∑
k=1

αj,k
Zj
| ~xk| | k〉 | ~xk〉 | j〉

)
(6.6)
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where Zj =
(
b2j +

∑M
k=1 α

2
j,k| ~xk|2

) 1
2

is the normalization constant. In addition, the query state associ-
ated to new unlabelled vector ~x is constructed as follows

| x̃〉 =
1√
L

L∑
j=1

1

M |~x|2 + 1

(
| 0〉 | 0〉 | j〉+

M∑
k=1

|~x| | k〉 | ~x〉 | j〉
)
. (6.7)

We can thus rewrite Eq.s 6.6-6.7 respectively as

|u〉 =
1√
L

L∑
j=1

|uj〉 | j〉 (6.8)

| x̃〉 = | x̃j〉

 1√
L

L∑
j=1

| j〉

 (6.9)

where

| x̃j〉 =
1

M |~x|2 + 1

(
| 0〉 | 0〉+

M∑
k=1

|~x| | k〉 | ~x〉
)

and |uj〉 =
bj
Zj
| 0〉 | 0〉+

M∑
k=1

αj,k
Zj
| ~xk| | k〉 | ~xk〉

In order to obtain the required multi-class decision and implement the ECOC scheme, we need an
additional stage. As stated in the beginning of this section, we assume that row vectors of the code-matrix
M are contained in the QRAM. Hence, instead of the state |u〉 alone, consider the state |ui〉 associated
to the ith row of the code-matrix constructed as follows. Given QRAM access that performs

1√
L

L∑
j=1

|uj〉 | j〉 →
1√
L

L∑
j=1

|uj〉 | j〉 |M(i,j)〉 (6.10)

where |M(i,j)〉 is the qubit register which encode the values of the ith row ofM(i,j) in binary, i.e. 0 for
1 and 1 for −1; applying a Z gate to the last register |M(i,j)〉 and uncomputing it we obtain

|ui〉 =
1√
L

L∑
j=1

M(i,j) |uj〉 | j〉 (6.11)

Since the QRAM enables efficient storage of matrix values with access in quantum parallel, state
preparation for storing each row of the binary-valued matrix M thus takes place in O(logL) steps.
This is finally followed by a swap test that reveals the value of

〈
x̃|ui

〉
: after the construction of state

1√
2
( | 0〉 |ui〉+ | 1〉 | x̃〉), the probability of measuring the first qubit in the state 1√

2
( | 0〉 − | 1〉) is given

by

Pi =
1

2
(1−

〈
x̃|ui

〉
) (6.12)

which is obtained with accuracy ε in O(Pi(1−Pi)ε2 ). Note that the inner product
〈
x̃|ui

〉
can be written as

〈
x̃|ui

〉
=

1

L

〈x̃j′ | L∑
j′=1

〈j′|

 L∑
j=1

M(i,j) |uj〉 | j〉 =

=
1

L

L∑
j=1

M(i,j) 〈x̃j |uj〉

(6.13)

where the term 〈x̃j |uj〉 is the one responsible for the classification of the unlabelled state |~x〉with respect
to the jth dichotomiser. In fact, if the value of 〈x̃j |uj〉 > 0, then the label associated to |~x〉 is +1.
Conversely, for 〈x̃j |uj〉 < 0, the classification gives a −1.
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The role ofM(i,j) inside the summation appearing in Eq. 6.13 can be better understood with a simple
example. Suppose of having a set of three binary classifiers {h1, h2, h3} and three classes {w1, w2, w3}
with ECOC code-words c1 = {1, 1, 1}, c2 = {−1,−1,−1} and c3 = {1,−1,−1} respectively. Matrix
M hence has the following form

M =

 1 1 1
−1 −1 −1
1 −1 −1

 (6.14)

For the first class w1, Eq. 6.13 becomes〈
x̃|u1

〉
=

1

3

(
M(1,1) 〈x̃1|u1〉+M(1,2) 〈x̃2|u2〉+M(1,3) 〈x̃3|u3〉

)
=

=
1

3
(〈x̃1|u1〉+ 〈x̃2|u2〉+ 〈x̃3|u3〉) ,

(6.15)

for the second class w2 instead we get〈
x̃|u2

〉
=

1

3

(
M(2,1) 〈x̃1|u1〉+M(2,2) 〈x̃2|u2〉+M(2,3) 〈x̃3|u3〉

)
=

=
1

3
(−〈x̃1|u1〉 − 〈x̃2|u2〉 − 〈x̃3|u3〉)

(6.16)

and for the third class w3 we obtain〈
x̃|u3

〉
=

1

3

(
M(3,1) 〈x̃1|u1〉+M(3,2) 〈x̃2|u2〉+M(3,3) 〈x̃3|u3〉

)
=

=
1

3
(〈x̃1|u1〉 − 〈x̃2|u2〉 − 〈x̃3|u3〉) .

(6.17)

Suppose now that the single dichotomisers classify the unlabelled state |~x〉 as shown below

〈x̃1|u1〉 > 0 → |~x〉 labelled + 1 by h1,

〈x̃2|u2〉 > 0 → |~x〉 labelled + 1 by h2,

〈x̃3|u3〉 < 0 → |~x〉 labelled − 1 by h3.

(6.18)

To the state |~x〉, it is hence associated the codeword cx = {+1,+1,−1}. We can now rewrite Eq.s
(6.15-6.16-6.17) respectively as follows〈

x̃|u1
〉

=
1

3
(| 〈x̃1|u1〉 |+ | 〈x̃2|u2〉 | − | 〈x̃3|u3〉 |) (6.19)

〈
x̃|u2

〉
=

1

3
(−| 〈x̃1|u1〉 | − | 〈x̃2|u2〉 |+ | 〈x̃3|u3〉 |) (6.20)

〈
x̃|u3

〉
=

1

3
(| 〈x̃1|u1〉 | − | 〈x̃2|u2〉 |+ | 〈x̃3|u3〉 |) (6.21)

As we can see from Eq.s (6.19),(6.20) and (6.21), when the sign of 〈x̃j |uj〉 is in accordance with the sign
of the correspondent elementM(i,j), the summation in (6.13) obtains a positive contribution. Conversely,
when the sign of 〈x̃j |uj〉 is opposite to the one of M(i,j), the summation in (6.13) gets a negative
contribution. The effect of this procedure is to increase the value of

〈
x̃|ui

〉
whose related class i has the

closest code-word with respect to cx. The unlabelled vector |~x〉 is therefore assigned to the class with the
highest

〈
x̃|ui

〉
.

Each Pi is an estimate of the distance from the correct code-word for the class and the classification
that the dichotomisers actually generated. The estimation of probability Pi of equation (6.12) is used
to decide the final class allocation via an argmax process. If all dichotomisers are ideal, the classes
fully linearly separable and the query vector within the hamming bound for the ECOC codes, then the
probability mass is entirely centred on the relevant class.
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Note that we have an implicit logarithmic compression of the ECOC scheme since training and label
vectors are log2 compressed and accessed simultaneously via the QRAM. Moreover only log2L + 1
additional qubit to the Q-SVM are required to index all the L dichotomisers in the state |j〉. ECOC gains
thus exist in addition to the QSVM speedup.

6.1.3 Comments

The emergent field of Quantum Machine Learning proposes to leverage the capabilities of quantum com-
putation in order to achieve greater machine learning algorithms performance than would be possible
classically. One of the principal quantum machine learning algorithms, the quantum support vector ma-
chine of Rebentrost, Mohseni & Lloyd [118] is able to obtain a significant computational speed increase
in the case of a binary SVM classifier.

The work proposed here is an extension of the contribution [118] to the multi-class scenario. This
is possible due to the quantization of the ECOC scheme, a method that combines many binary classi-
fiers, called dichotomisers, to solve a multi-class problem. Our quantum implementation of ECOC is
able to estimate the distance from the correct code-word for each class and the classification that the
dichotomisers actually generated. It does so with an additional speedup associated with efficient QRAM
calls. The class with the closest code value is then allocated. This work constitutes a fruitful expansion
of the current range of quantum algorithms that can be applied to recognize patterns in data, specifically
in the context of multi-class classification.

6.2 Hamming Distance Kernelization via TQC

In Sec. 4.2.4 the relation between feature maps, kernel methods and quantum computation was discussed.
In particular, it is interesting the idea of interpreting the encoding of classical inputs ~xi into a quantum
state |φ(~x)〉 as a feature map φ which maps classical vectors to the Hilbert space associated with a
system of qubits. In the standard circuit based quantum computing framework, this requires a circuit
Uφ(x) realizing the mapping

φ : ~x→ |φ(~x)〉 = Uφ(x)|000..0〉 (6.22)

obtaining a kernel as inner product between states

K(~xi, ~xj) = 〈000..0|U†φ(xi)Uφ(xj) |000..0〉 (6.23)

In order for quantum computing to be helpful, such kernel shouldn’t be efficiently simulated by a classical
computer. It is therefore posed the question of what type of feature map circuits Uφ lead to powerful
kernels for classical learning models like SVM but that, at the same time, are classically intractable.

In Sec.3.3 we saw that TQC is equivalent in computational power to the other models of quantum
computation such as the quantum circuit model and the quantum Turing machine model. However, cer-
tain algorithms are more naturally implementable on a topological quantum computer. A well-known
example of such algorithms is the one for evaluating invariant for knots and links called the Jones poly-
nomial [69]. The problem of approximating the Jones polynomials at any fixed root of unity is a BQP
problem, it is in fact classically hard and requires all the power that quantum computing can offer. In
particular, Jones polynomial naturally arise from the probability outcomes

〈ψ|B |ψ〉 =

〈
(B)Markov

〉
dn−1

, with d = (−A2 −A−2) (6.24)

where |ψ〉 is the quantum state of the vacuum, B is the unitary quantum evolution to which is associated
a braiding B, the knot (or link) (B)Markov is obtained form the closure of the braid B and 〈.〉 is the
Kauffman polynomial which is proportional to the Jones polynomial.

The idea again is to interpret the quantum evolution of TQC, expressed in terms of braiding, as a
feature map that is able to map some classical input ~x into the quantum Hilbert space of TQC
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φ : ~x→ |φ(~x)〉 = B~x |ψ〉 (6.25)

Hence obtaining a kernel whose evaluation depends on the Jones polynomial of the knot (or link) gener-
ated from the closure of the composed braid B†xBy

K(~x, ~y) ≡ 〈ψ|B†xBy |ψ〉 =

〈
(B†xBy)Markov

〉
dn−1

In order to have an advantage in using TQC, the above kernel should be classically hard to approximate.
The key point is to associate a braiding to each classical vector in a meaningful way. In addition, the
braiding must be complicated enough to produce a knot (or link) whose Jones polynomial is hard to
calculate. However, designing such an encoding of classical data into braids could be a hard task. In the
following we provide an example of how it is possible to construct a simple Hamming distance based
kernel from a braiding encoding of binary strings.

The Hamming distance of two strings is defined as the number of positions in which the strings are
different. As well as its use throughout computer science, the Hamming distance is interesting from the
perspectives of statistical data analysis and machine learning in that it is used in many kernel functions.
We show the relationship between Hamming distance and Topology and we use it to define a quantum
algorithm computing a Hamming distance based kernel.

The quantum algorithm we present is essentially the application of the Jones polynomial algorithm
after an appropriate problem reduction. This is obtained by an encoding of binary strings as some special
braiding in TQC and deriving their Hamming distance as the Jones polynomial of the link resulting from
the closure of the obtained braids. We can then exploit the computational features of TQC for comparing
two strings and obtain an estimation of the Hamming distance between them.

With the present work we aim at studying the suitability of TQC for kernel methods.

6.2.1 Topological Quantum Calculation of Hamming Distance Between Binary Strings

In this section we define a topological quantum algorithm for the approximation of the Hamming dis-
tance between two binary strings. This will be the base for the definition of a distance based kernel.

Hamming distance
Given two binary strings u and v of length n, the Hamming distance dH(u, v) is the number of compo-
nents (bits) by which the strings u and v differ from each other.

Encoding Binary Strings in TQC

Given a binary string u, we associate to each 0 and 1 in u a particular braiding between two strands as
follows:

B 0 is identified with the crossing σi

• •

• •
0 −→

B 1 is identified with the crossing σ†i

• •

• •
1 −→

Note that, using this encoding, a given binary string of length n is uniquely represented by a pairwise
braiding of 2n strands i.e. by a braid B ∈ B2n as shown below.

••• • ••

•• • •• •
010... −→ ...
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• •

• •

••
B†0 −→

B0 −→
• •

• •

••
B†1 −→

B0 −→

• •

• •

••
B†0 −→

B1 −→
• •

• •

••
B†1 −→

B1 −→

Fig. 6.1: Links associated to the Hamming distance between two single-digit binary strings.

Hamming Distance Calculation: Simple Case

Given two binary strings of length one (n = 1), u and v, we consider the braiding operators, Bu and Bv ,
associated to u and v, respectively. Then we construct the composite braiding operator B†uBv and apply
the Markov trace, obtaining a link. Our aim is to calculate the Hamming distance dH(u, v) by exploiting
the properties of the Kauffman brackets associated to these links. All the possible cases are shown below.

As we can see from Figure 6.1,

• dH(0, 0) and dH(1, 1) can be continuously transformed in two loops (using the Reidemeister move)
with Kauffman brackets (using rules in Section 3.3.3)〈

t
〉

= (−A2 −A−2)〈 〉 = d〈 〉 = d

• dH(1, 0) and dH(0, 1) are both represented by the Hopf link with Kauffman brackets (calculated as
in Section 3.3.2)

〈Hopf〉 = (−A4 −A−4)

If we could perform the calculation of such Kauffman brackets using anyons, as discussed in Section
3.2, we would get:

• for dH(0, 0) and dH(1, 1)

〈ψ|B†uBv |ψ〉 =

〈
(B†uBv)Markov

〉
d2n−1

=

〈
t

〉
d2−1

=
d

d
= 1

• for dH(1, 0) and dH(0, 1)

〈ψ|B†uBv |ψ〉 =

〈
(B†uBv)Markov

〉
d2n−1

=
〈Hopf〉
d

This means that, when the Hamming distance is zero (i.e in the cases dH(0, 0) and dH(1, 1)), the
probability of the anyons fusing back into the vacuum is 1. When the hamming distance is 1 instead (i.e

in both cases dH(0, 1) and dH(1, 0)), this probability reduces to
∣∣∣∣ 〈Hopf〉

d

∣∣∣∣2.
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Hamming Distance Calculation: General case

What was shown in the previous paragraph can be easily generalised. Consider two binary strings u and
v of length n > 0 such that dH(u, v) = k.
This means that Markov trace of the 2n strand used in the encoding will give a number 2(n−k) of loops
and k Hopf links. Hence, the Kauffman bracket is calculated considering the distant union t between all
these k + 2(n− k) = 2n− k links. What we get from anyon braiding is the following:

〈ψ|B†uBv |ψ〉 =

〈
(B†uBv)Markov

〉
d2n−1

=

〈(⊔2(n−k)
i=1

)
t
(⊔k

j=1 Hopf
)〉

d2n−1
=

= d2(n−k)

〈(⊔k
j=1 Hopf

)〉
d2n−1

= d2(n−k)dk−1
〈Hopf〉k
d2n−1

=
〈Hopf〉k
dk

where Property 1.1.1 and the rules of the Kauffman brackets have been used. Finally we can write

〈ψ|B†uBv |ψ〉 =

( 〈Hopf〉
d

)dH(u,v)

(6.26)

which means that, given two arbitrary binary string u and v, of length n, their associated braiding Bu
and Bv are such that the probability amplitude of 2n anyons fusing back into the vacuum after a braid
B†uBv is given by a constant 〈Hopf〉

d multiplied by itself a number of times equal to the Hamming distance
between the two strings dH(u, v).

6.2.2 Hamming Distance Based Kernel

Kernel functions are generalised inner products that profoundly extend the capabilities of any mathe-
matical optimisation that can be written in terms of a Gram matrix of discrete vectors (for example, a
Gram matrix of vectors over training examples in machine-learning or samples requiring interpolation
in regression). In particular, the Gram matrix (~xTi ~xj) may be freely replaced by any kernel function
K(~xi, ~xj) that satisfies the Mercer condition, i.e. a condition guaranteeing positive semi-definiteness.
Many optimisation problems fall into this category (e.g. the dual form of the support vector machine
training problem [70]).

The Mercer space is given in terms of the input space x via ~φ(~x), whereK(~xi, ~xj) ≡ ~φ(~xi)
T (~φ( ~xj)).

The Mercer condition guarantees the existence of ~φ, but the kernel itself may be defined based on any
similarity function that gives rise to a legitimate kernel matrix. A kernel enforces a feature mapping of
the input objects into a Hilbert space. However, the feature mapping does not need at any stage to be
directly computed in itself, the kernel matrix alone is sufficient.

Here, we show how a kernel can be naturally defined using TQC. To this purpose we use the Ham-
ming distance as a demonstrative example of an approach to the definition of kernel methods that may
involve more complex distance notions (note that the Hamming distance is essentially the simplest case
of an edit distance, which excludes edit operations such as insertion, deletion and substitution; these
clearly provide a more general and accurate measure of sequence dissimilarities).

The topological quantum computation of the Hamming distance shown in Section 6.2.1 can be used
to define a kernel function. In fact, the encoding of binary strings as vectors B |ψ〉 in the anyonic space
allows us to define an embedding φ into the Hilbert space H defined by the fusion space of the anyonic
configurations, i.e. for each string u, the mapping φ(u) is such that φ(u) = Bu |ψ〉 ∈ H. With this, using
Equation 6.26 we can define a string kernel by

K(u, v) ≡ 〈ψ|BuB†v |ψ〉 =

( 〈Hopf〉
d

)dH(u,v)

=

(
A4 +A−4

A2 +A−2

)dH(u,v)

If we work with so-called Fibonacci anyons, we have that A = eπi/10 and the resulting kernel matrix is
positive semi-definite. Thus it satisfies the Mercer condition for a valid kernel. Moreover, we can show
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that the Euclidean distance in the Mercer space, i.e. the fusion spaceH, can be defined in terms of 〈Hopf〉
d .

In fact, we have, using the fact that vectors inH are normalized to unity,

||φ(u)− φ(v)||2H = ||φ(u)||2H + ||φ(v)||2H − 2φ(u)Tφ(v) = 2− 2K(u, v)

6.2.3 Comments

By suitably encoding the Hamming distance calculation problem into a link invariant problem, we have
shown how to solve it by means of a topological quantum computer. We have also shown that the anyonic
encoding of the string data and their braiding evolution naturally define a kernel function. The choice of
a simple distance such as the Hamming distance allowed us to focus on the description of the approach
rather than on the technicalities of the encodings of more complex distance notions.

We are not aware of other approaches that associate topological properties to a given problem with
no intrinsic topology, in order to exploit TQC. Our aim is to further investigate the potential offered by
topological quantum algorithmic techniques for Machine Learning. It will be the subject of future work
to extend the range of applicability of TQC to the computation of hard kernels. An example could be
the edit distance based kernel between graphs. However an encoding of problems of this kind into a
braid/link is a totally unexplored territory, yet worth investigating.





7

Machine Learning with the D-Wave

In Section 3.2.2 it was explained how quantum annealing is currently used to approach combinatorial
optimization problems. In 4.2.5 it was shown how to express a computationally intensive aspect of a ML
algorithm in the form of QUBO (or Ising problem) which is the standard way of formulating problems
that can be approached by the D-Wave quantum annealer.

Here we consider two different ML problems, namely the minimum spanning tree based clustering
and the edit distance based kernel calculation and we show how to make them amenable for a QA treat-
ment. The first section of this chapter is therefore dedicated to the formulation of the QUBO associated
to the MST problem with ∆-Degree Constraint, which is the hard computation at the core of the MST
based clustering, as explained in Sec. 1.1.2.
The second part of this chapter instead is devoted to the QA based calculation of the graph edit distances,
which can be used to speed up the training of a graph classifier employing the edit distance based kernel.
Both approaches are tested on the most advanced QA hardware available to the public, namely the D-
Wave 2000Q introduced in 3.2.2.

7.1 Quantum Annealing Approach to the Minimum Spanning Tree Problem with
∆-Degree Constraint

Consider a weighted graph G = (V,E,w) composed of a set V of n vertices, a set E of edges and a
function w : E → R that associates a weight wv,v′ > 0 to each edge (v, v′) ∈ E.

The Minimum Spanning Tree (MST) problem introduced in Sec.1.1.2 aims at finding the tree T ,
subgraph of G, that minimizes the sum over all edge weights, touching all the vertices of G. The ∆-
Degree constraint (i.e. each vertex in the MST must have degree less or equal than ∆), with 2 ≤ ∆ <
n− 1, is introduced to make the problem NP-hard [9].

The aim of the following sections would be at first to reformulate the aforementioned problem in
terms that could be understood by the D-wave quantum annealer. This means constructing a QUBO
model that realizes the MST with ∆-Degree constraint problem. Then, after a discussion about the prop-
erties of the model, the performances of the quantum device for solving this problem are analysed. Note
that the focus will be on complete graphs, for which a MST with ∆-Degree constraint surely exists.

7.1.1 QUBO Formulation

Given a complete weighted graph G = (V,E,w) with n vertices and weights wv,v′ , consider a total
ordering of the vertices, i.e. a bijective map that associates to each vertex only one index i ∈ {1, 2, ..., n}
and vice versa. Since our task is to obtain a tree that covers all the nodes of G, we can arbitrary nominate
one of the vertices to be the root. In other words we randomly pick one vertex and upgrade it to root,
denoted by r and associated to the index i = 1.
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We can now represent the ordering of vertices with the binary variable xv,i, defined for each v ∈
V \ {r} and i ≥ 2 as follows

xv,i =

{
1 iff v is in position i
0 otherwise

The relation between a vertex p which is parent of the ith vertex is expressed by the binary variable yp,i
as follows

yp,i =

{
1 iff p is parent of vertex in position i
0 otherwise

Because the root has no parent, yp,1 must be zero for every vertex. Moreover, since the root has been
set from the beginning, it is already known that yp,2 = 1 only when p is the root. Hence, we can safely
restrict the variable yp,i to the cases where p ∈ V and i ≥ 3.

Let’s now introduce the hard constraints these two variables have to satisfy in order to realize the
MST. Since we considered a total ordering of the vertices, the following two QUBO terms should be
considered:

∑
v∈V \{r}

(
n∑
i=2

xv,i − 1

)2

+

n∑
i=2

 ∑
v∈V \{r}

xv,i − 1

2

(7.1)

Where the first term ensures that only one i is associated to every v while the second term guarantees the
converse.
Moreover, a necessary property to obtain a tree requires that each vertex has only one parent. Such
property is expressed with the QUBO constraint

n∑
i=3

∑
p∈V

yp,i − 1

2

(7.2)

Now we need to secure that, if p is in the parent of the vertex in position i, then p shouldn’t be at greater
or equal position. In QUBO form, such condition becomes∑

p∈V \{r}

n∑
i=3

∑
j≥i

yp,ixp,j (7.3)

Finally, in order to make sure that parents and children are indeed neighbours, the following term that
penalizes non-neighbours should be taken into account∑

p∈V

∑
v/∈N(p),v 6=r

n∑
i=3

xv,iyp,i (7.4)

Note that this term does not give any contribution when the graph is complete, since all vertices are
neighbours. Anyway we decided to insert this term form completeness, since it becomes relevant when
the input graph is not complete.

QUBO terms introduced so far guarantee that the sub-graph of G we are looking for is actually a tree
and hence we obtained all the hard constraints necessary in the MST problem.

In order to realize the ∆-Degree constraint, a number ∆− 1 of binary slack variables zp,j are intro-
duced for each vertex. The QUBO term for this constrain is

∑
p∈V

 n∑
i=3

yp,i +

∆−1∑
j=1

zp,j −∆+ 1

2

(7.5)
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where the first term counts the number of children of p having i ≥ 3, while the plus one at the end takes
into account:

• when p = r, the edge between the root and the vertex labelled with i = 2;
• when p 6= r, the edge between p and its parent.

Since (
∑∆−1
j=1 zp,j) ∈ {0, 1, ..,∆ − 1} and (

∑∆−1
j=1 zp,j − ∆ + 1) ∈ {0, 1, .., 1 − ∆}, Eq. 7.5 can be

simplified as follows ∑
p∈V

 n∑
i=3

yp,i −
∆−1∑
j=1

zp,j

2

(7.6)

The final QUBO form for the MST problem with ∆-degree constrain is

A
∑

v∈V \{r}

(
n∑
i=2

xv,i − 1

)2

+A

n∑
i=2

 ∑
v∈V \{r}

xv,i − 1

2

+

+A

n∑
i=3

∑
p∈V

yp,i − 1

2

+A
∑

p∈V \{r}

n∑
i=3

∑
j≥i

yp,ixp,j +

+A

∑
p∈V

∑
v/∈N(p),v 6=r

n∑
i=3

xv,iyp,i

+A
∑
p∈V

 n∑
i=3

yp,i −
∆−1∑
j=1

zp,j

2

+

+B

 ∑
v∈N(r)

xv,2wr,v +
∑

v∈V \{r}

∑
p∈V

n∑
i=3

yp,ixv,iwp,v

 (7.7)

where the last term minimizes the sum of edge weights w.

As we can see from Eq. 7.7, parameter A have been introduced to define the strength of the hard con-
straints with respect to the cost term, multiplied instead by parameter B. In general, A >> B to ensure
that the problem is well defined. In our case, the minimum value of A for which the problem is well
defined is given by the relation

A

B
> max
v,v′∈V

{wv,v′} (7.8)

This is due to the fact that valid solutions (i.e.those that satisfy all the hard constraints) and the closest
non valid solutions (i.e.those that do not satisfy at least one hard constraint) are one bit-flip far from
each other. Hence we must avoid the situation where, with a single bit-flip form a valid solution, we gain
more from the B term than what we lose dissatisfying one of the hard constraints. Selecting A and B
according to inequality of Eq. 7.8 is sufficient to satisfy such requirement.
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7.1.2 Resources

Number of Logical Qubits

A number (n − 1)2 of qubits are needed to represent binary variables xv,i, other n(n − 2) qubits are
used for the variables yp,i and finally n(∆− 1) qubits are associated to zp,j . The total number of logical
qubits is therefore

nL = (n− 1)2 + n(n− 2) + n(∆− 1) (7.9)

In the next histogram, total number of logical qubits nL is shown varying ∆ and n (number of vertices
in the input graph G). As we can see nL scales as n2 when ∆ is fixed while it grows as ∆ for chosen n.

Fig. 7.1: number of logical qubits varying (n,∆) . Bars in the same group have the same ∆, bars of same colour
have the same n.

Connectivity

Each QUBO term present in Eq. 7.7 is responsible for the creation of different coupling (i.e. connections)
between logical qubits. The first two constraints expressed by Eq. 7.1 connects all xv,i with the same i
and all those with the same v creating the cliques shown in the example below.
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xB,2 xB,3 xB,4

xC,2 xC,3 xC,4

xD,2 xD,3 xD,4

Fig. 7.2: Example of the connectivity for the xv,i elements, due to the first two terms. Consider G = {V,E,w}
with V = {A,B,C,D} and vertex A = root. Each row creates a clique. Same happens for columns.

The constraint given by Eq. 7.2 connects all yp,i i with the same index i which hence create a clique.

yA,3

yB,3

yC,3

yD,3

yA,4

yB,4

yC,4

yD,4

Fig. 7.3: Example of the connectivity for the yp,i elements, due to the third term. Consider G = {V,E} with
V = {A,B,C,D} and vertex A = root. Each column form a clique.

The fourth term (the one of Eq. 7.3) connects each yp,i with all the xp,j with same p and j ≥ i. The
xp,2 and are not connected to any of the yp,i. This term alone does not create any new clique but highly
connects x and y variables.
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xB,2 xB,3 xB,4

xC,2 xC,3 xC,4

xD,2 xD,3 xD,4

yA,3

yB,3

yC,3

yD,3

yA,4

yB,4

yC,4

yD,4

Fig. 7.4: Example of the connectivity between yp,i and xp,j elements, due to the fourth term. ConsiderG = {V,E}
with V = {A,B,C,D} and vertex A = root.

As written before, the term of Eq. 7.4 does not give any contribution in the case of complete graphs.
For sparse graphs, it becomes highly important.

The ∆-Degree constraint expressed by Eq. 7.5 connects each yp,i to all the yp,j with different i and
same p but also to all the zp,i with same p. This creates a cliques like the one shown below

zp,1 zp,2yp,3 yp,4

Fig. 7.5: Assume ∆ = 3. Example of the connectivity between yp,i and zp,i elements (for a generic p), due to the
sixth term. Consider G = {V,E} with V = {A,B,C,D} and vertex A = root.

Finally the cost term that minimizes the total edge weights generates connections between each xv,i
and all the yp,i with same i and different p for which it exists the edge (p, v) in G.
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sxB,2 sxB,3 sxB,4

sxC,2 sxC,3 sxC,4

sxD,2 sxD,3 sxD,4

syA,3

syB,3

syC,3

syD,3

syA,4

syB,4

syC,4

syD,4

Fig. 7.6: Example of the connectivity between yp,i and xv,i elements, due to the last term of Eq. 7.7. Consider a
complete graph G = {V,E} with V = {A,B,C,D} and vertex A = root.

In general, the maximum qubit degree appearing in the QUBO is 4n − 7 while the total number of
edges is given by 1

2 (−10 + (29− 5∆+∆2)n+ 2(−13 +∆)n2 + 7n3). The table shown below report
those connectivity properties.

n ∆ logical qubits nL connections density δ max degree
4 2 21 89 0.42381 9
5 2 36 215 0.34127 13
5 3 41 240 0.292683 13
6 2 55 424 0.285522 17
6 3 61 460 0.251366 17
6 4 67 502 0.227047 17
7 2 78 737 0.245421 21
7 3 85 786 0.220168 21
7 4 92 842 0.201147 21
7 5 99 905 0.186559 21

Table 7.1: Comparison between different instances for complete graphs. Here δ indicates the density of connections
in the QUBO.

7.1.3 Embedding

In order to use the D-Wave quantum annealer to solve our optimization problem, it is necessary to embed
the QUBO structure into the D-Wave architecture.

As we have seen in the previous section, our QUBO for the MST problem with ∆-Degree constraint
contains clusters of cliques which are highly connected to each other. This make it impossible to directly
embed our problem on the D-Wave Chimera architecture. An appropriate embedding technique is there-
fore needed. Two different embeddings were taken into consideration: the fully_connected deterministic
embedding [159] where each logical qubit is mapped to a fixed number of physical qubits and the find_-
embedding heuristic algorithm [51] which tries to find the best representation of the original problem
minimizing the number of physical qubits.
Results obtained using this two embeddings strategies are shown in the following table where: nfullyp is



88 7 Machine Learning with the D-Wave

the number of physical qubits required by the fully_connected embedding; nfindp is the median number
of physical qubits found by find_embedding algorithm;min(nfindp ) andmax(nfindp ) are respectively the
best and worst case scenario obtained with find_embedding and finally nchain tells us the length of the
largest chain in the best embedding.

n ∆ nL nfullyp nfindp # trials min(nfindp ) max(nfindp ) nchain
3 / 7 20 11 10 11 13 2
4 / 17 90 62 100 51 155 4
4 2 21 132 85 100 69 156 5
5 / 31 272 188 100 148 264 8
5 2 36 360 274.5 50 242 327 10
5 3 41 462 323 50 260 394 11
6 / 49 650 468.5 50 407 567 15
6 2 55 812 732.5 20 633 918 20
6 3 61 992 780 20 598 1002 19
6 4 67 / 820.5 20 748 987 A 22
7 / 71 / 1112 20 919 1373 26
7 2 78 / 1570.5 10 1481 1629 33
7 3 85 / 1578 10 1420 1678 36
7 4 92 / 1618.5 10 1522 1671 36
7 5 99 / 1639 10 1591 1675 36

Table 7.2: Fully connected embedding and find_embedding comparison for different instances for complete graphs.

Comparison between fully_connected and find_embedding becomes clearer in the following plot that
show the behaviour of nfullyp and nfindp with respect to the number of logical qubits.
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As we can see, the median obtained with find_embedding is always lower than fully_connected,
moreover for nL > 61, it is impossible to find a fully_connected embedding because the number of
qubits needed would exceed the physical qubits available in the current version of the D-Wave.

For this reason we decided to run our instances only using the find_embedding heuristic algorithm,
whose median number of physical qubits are displayed in the histogram below, varying (n,∆). As we
can see, fixing ∆, the nfindp medians scale approximately as n4, where n is the number of vertices of the
input graph G.

Fig. 7.7: number of physical qubits varying (n,∆). Bars in the same group have the same ∆, bars of same colour
have the same n.

7.1.4 Experimental Results and Comments

We used the D-Wave 2000Q quantum annealer to solve the ∆-Degree MST for complete graphs of the
following sizes:

• n = 4 with ∆ = 2
• n = 5 with ∆ = 2, 3
• n = 6 with ∆ = 2, 3

where different values of the QUBO parametersA = 2, 3, 4, 5 andB = 1 have been used for each (n,∆)
in order to study which one leads to better performances.
We generated 200 random instances with edge weights randomly chosen among the set [0.5, 0.7, 0.9, 0.11, 0.13, 0.15]
and used the best embedding (i.e. with the minimum number of physical qubits) found by find_embed-
ding after 20 trials.
Moreover, the new D-Wave feature extended_j_range was employed in the embedding. Such tool en-
ables chains of physical qubits representing a single logical qubit to have a ferromagnetic coupling
Jchain = −2, while all the problem coupling strengths are scaled in the range [−1, 1].

When running the D-Wave there should be a trade-off between finding the solution with a high
probability in a single long run and running the algorithm multiple times with a shorter runtime and a
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smaller single-run success probability. This trade-off is reflected in the time-to solution (TTS) metric,
which measures the time required to find the ground state at least once with some desired probability
(here taken to be 0.99)

T99 =
ln(1− 0.99)

ln(1− p) TAnneal (7.10)

where p is the probability of finding the optimal solution, checked via an MST exact classical solver.
The following results show the median of the TTS (with probability T99) with error bars that indicate

the 35 and 65 percentiles. We used 100000 annealing runs for each instance and an annealing time of
TAnneal = 1µs per run. The

Fig. 7.8: TTS as function of parameter A. Other annealing parameters: auto_scale: False (Required when using
extended j range. Manual rescaling needed); flux_drift_compensation: True (Required when using extended j range,
it automatically compensate for biases introduced by strong negative couplings); gauges: None (gauges are incom-
patible with extended j range)

The improvement obtained with extended_j_range is remarkable in the cases where n = 4, 5. For
n = 6 the improvement is small because the typical length of the chains (around 20) is way above the
optimal range (5-7 qubits) where extended_j_range does its best.

From the graphs shown before it is possible to see that the D-wave is able to solve problems of small
size involving up to 5 nodes and a ∆ = 3 degree constraint. Solutions for n=6 and ∆ = 2 is also found,
but with a very low probability. This lead us to the two following conclusions: first, despite the D-Wave
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has more the 2000 working qubits, it starts to fail when the ∆ degree MST problem involves around
700 physical qubits; secondly the low density of connections in the physical hardware produces a large
increase in the number of binary variables (and therefore qubits) being used.

Performances of the quantum annealer could be improved applying reverse annealing techniques for
local refinement of the solution [160] or adding a pause in the annealing schedule for each run of D-
Wave [161]. Moreover it could be interesting to study a hybrid approach [162] where a classical solver
decompose a QUBO problem by splitting it into sub-problems. Each one of them is solved using the
quantum annealer. Such approach is able to deal with larger problems which are inaccessible by the
D-Wave alone.

7.2 Quantum Annealing Approach to Edit Distance Calculation

The purpose of this project is to analyse, study and implement the graph edit distance problem using a
Quantum Annealer, specifically the D-Wave. A QUBO formulation of the problem was created and then
implemented; this formulation was tested on graphs with different number of nodes and edges. By the
results achieved, it has been noted that the correct solution is obtained with a fairly high probability for
small graphs; instead, increasing in the number of nodes, the probability of obtaining correct solutions
decreases until it reaches zero. This happens because the number of physical qubits required for the
problem increases with the number of nodes, and consequently, grows the difficulty of mapping the
logical problem into the physical and hence the creation of a correct embedding becomes a hard task.

7.2.1 QUBO Formulation

Consider two undirected simple graphs G1(V1, E1) and G2(V2, E2), where Vi is the number of nodes
and Ei is the number of edges of graph Gi. The graph edit distance (GED) allows us to understand how
different is the graph G1 from G2, i.e. the number of operations of node insertion, node elimination or
edge insertion and elimination that are necessary to make one graph isomorphic to the other. The question
of whether two graphs are isomorphic is believed to be hard, but its classification into a complexity class
is still not clear, in fact it is an NP-intermediate problem [163]. Calculating the GED is based on the
concept of graph isomorphism and therefore it is at least as difficult as the isomorphism problem.

The QUBO formulation that will be given for this problem does not solve the general GED, but it
implements a more restrictive form where only edges are manipulated. Thus, by construction, the number
of nodes of G1 and G2 must be the same.

Given two graphsG1(V1, E1) andG2(V2, E2) we define a binary variable xv,i that realize a bijection
between V1 and V2

xv,i =

{
1 if vertex v ∈ V2 gets mapped to vertex i ∈ V1
0 otherwise

We are now introducing the initial Hamiltonian, i.e. the hard constraints, which must necessarily be
satisfied in order to obtain a solution. To guarantee such bijective mapping it is necessary to formulate
HA as follows:

HA = A
∑
v

(1−
∑
i

xv,i)
2 +A

∑
i

(1−
∑
v

xv,i)
2

(7.11)

As said before the number of nodes of the two graphs are the same, in this case HA must be zero in the
optimal case. At this stage we also need a second termHB which penalize a bad mapping i.e. when two
vertices i and j in G1 that are connected by and edge, (i, j) ∈ E1, are mapped into vertices u and v in
G2 which are not connected, (u, v) /∈ E2 and vice versa.

HB = B
∑
i,j /∈E1

∑
u,v∈E2

xu,ixv,j +B
∑
i,j∈E1

∑
u,v/∈E2

xu,ixv,j (7.12)
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Summarizing,HA represent the hard constraints which must be inevitably satisfied i.e.HA = 0. This
is due to the fact that having a bijection between V1 and V2 is a necessary requirement for the calculation
of the GED. The HB term represent the quantity that we want to optimize and whose minimum value
corresponds to the GED.

The complete QUBO formulation is:

HQubo =A
∑
v

(1−
∑
i

xv,i)
2 +A

∑
i

(1−
∑
v

xv,i)
2+

+B
∑
i,j /∈E1

∑
u,v∈E2

xu,ixv,j +B
∑
i,j∈E1

∑
u,v/∈E2

xu,ixv,j
(7.13)

So if the result of Eq. 7.13 is equal to 0, then the two graphs are isomorphic and their GED is 0. If
the result is greater than 0, the minimum of HQubo will be also the minimum distance between the two
graphs, i.e.HQubo will return the GED.

Since HA is a hard constraint, parameter A should be much higher than B if we want HA to be
surely satisfied. However, since in the D-Wave quantum annealer all the QUBO coefficients (both linear,
hi, and quadratic, Jij) get normalized in the range [−1, 1], it is important to choseA andB in such a way
that the normalized coefficients do not become too small. For this reason, a good choice for parameters
A and B is the one where

min
i,j,k

(hAi , J
A
jk) ≥ max

i,j,k
(hBi , J

B
jk) (7.14)

where hAi and JAjk are respectively the linear and quadratic coefficients appearing in HA while hBi and
JBjk are linear and quadratic coefficients ofHB .

7.2.2 Resources

Number of Logical Qubit

From the binary variable xv,i result n2 logical qubits, where n is the number of vertices of bot G1 and
G2. In the histogram of Fig.7.9 it is shown how the number of logical qubits varies as the nodes of the
graphs n increase.

Fig. 7.9: Number of logical qubits used when the number of nodes varies
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Connectivity

Each QUBO term in Eq. 7.13 is responsible for the creation of different couplings (i.e. connections)
between logical qubits. As an example, in the case of graphs with 3 nodes, terms HA and HB give the
following qubit connectivity:

Fig. 7.10: Connectivity between logical qubits generated byHA
(on the left) and byHB (on the right).

Therefore the QUBO, which is the sum ofHA and ofHB , is represented by the following graph:

Fig. 7.11: Graph structure associated to the QUBO in the case of problems involving three-nodes graphs.

7.2.3 Embedding

In order to use the D-Wave for solving the problem, it is necessary to match the structure created by
the QUBO formulation (Fig.7.11) to the physical structure of the quantum annealer, i.e. find the correct
embedding. In order to do so, we used the heuristic algorithm find_embedding which tries to find the
best representation of the original problem by minimizing the number of physical qubits [51]. As it is
possible to see in the histogram of Fig.7.12, the number of physical qubits grows rapidly with the number
of nodes.
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Fig. 7.12: Number of physical qubits used varying the number of nodes

Comparing the two histograms as shown in Fig. 7.13, the increase in the gap between logical and
physical qubits becomes evident. This is mainly due to the fact that, since the topology of the QUBO
problem is highly connected, long chains of physical qubits are required to represent a single logical
qubit.

Fig. 7.13: Difference between logical and physical qubits

7.2.4 Experimental Results and Comments

The D-Wave 2000QTM System has been employed in order to calculate the GED between graphs of the
following dimensions:

• Number of edges equal to 3; QUBO parameters: A = 1, 1.5, 2 and B = 1
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• Number of edges equal to 4; QUBO parameters: A = 1, 1.5, 2 and B = 1
• Number of edges equal to 5; QUBO parameters: A = 1, 1.5, 2 and B = 1
• Number of edges equal to 6; QUBO parameters: A = 1, 1.5, 2 and B = 1

Different values for the QUBO parameters have been set. The A parameter is modified in the various
cases in order to find the best configuration that leads to the optimum, while the parameter B is left
unchanged. Moreover, the D-Wave schedule has been set so that the annealing time is constant and equal
to 1µsec per anneal. Since the D-Wave returns probabilistic results, it is necessary to repeat the run a
high number of times (one thousand in this case) in order to obtain a sample of correct solutions from
which it is possible to calculate the probability of success. The D-Wave solutions were checked via an
exact GED classical solver.

The graphs selected for testing the QUBO on the D-Wave quantum annealer are the following:

a) b)

c) d)

Fig. 7.14: Graphs selected in the case of : a) three nodes, b) four nodes, c) five nodes, d) six nodes.

The values of the GED for the selected graphs, varying the number of nodes n, are the following

GED(G1, G2) =


1 for n = 3

2 for n = 4

5 for n = 5

7 for n = 6

The histograms below show the number of times the optimal solution was found when the parameter A
was changed. In the case of graphs with six nodes, the correct solution has never been found.
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a) b)

c)

Fig. 7.15: Number of occurrences of the solution in the cases of: a) three nodes, b) four nodes, c) five nodes.

With the present study, a QUBO formulation of the GED problem between undirected and unlabelled
graphs with same number of nodes was presented. A quantum annealing approach to solve the GED
QUBO on few test graphs was performed using the D-Wave 2000Q device.

Results on test graphs have shown that an exact solution has been found by the D-Wave up to graphs
with five nodes. Moreover, among the three values selected for the QUBO parameter A, the intermediate
one (A = 1.5) has reached the best performances in all cases.

Results obtained using the quantum annealer could be improved applying reverse annealing tech-
niques for local refinement of the solution [160] or adding a pause in the annealing schedule [161]. A
hybrid approach [162] could be explored for dealing with graphs with more nodes. Finally, a possible
evolution of the QUBO formulation for GED could be directed to take into account graphs with different
number of nodes. A further expansion of this study could consider weighted and direct graphs.
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Machine Learning with IBM Quantum Computer

Graphs are discrete objects that allow us to schematise a large variety of problems and processes spanning
among many research areas [165].

In ML, facial expressions recognition is an application that employs graph theory to construct a math-
ematical model of a human face and usually a supervised algorithm to identify the correct expression.

Here we propose the use of a quantum computer, in particular the architecture developed by IBM
[166], in order to obtain a classification of graphs, and thereby of human facial expressions. In this
endeavour we will use some techniques that have been developed in the new growing field of Quantum
Machine Learning [15]. We introduce a method for representing graphs as quantum states, that make use
of the amplitude encoding technique. In order to define a graph classification we use quantum circuit to
train a model that performs a classification similar to the nearest neighbours classification algorithm.

8.1 Dataset and Preprocessing

The dataset used is the freely available Extended Cohn-Kanade (CK+) database which is composed of
multiple photos of people labelled with their facial expression, an example is shown below in Fig.8.1

Fig. 8.1: Examples of elements of the dataset: happy face on the left and sad face on the right.

Furthermore, each photo is identified with a point cloud of 68 point of the kind (x, y), i.e. vi ∈ R2

from which we select only those 20 points associated to the mouth as shown in Fig.8.2. The idea is to
associate a weighted graph to each point cloud and the use a graph classifier to distinguish different
human expressions.
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Fig. 8.2: Landmark points (left) and selected mouth points (right) in the (x,y) plane.

In order to obtain such graphs, we opted for two different strategies. The first one considers the
weighted complete graph whose vertices are the n landmark points of the mouth and whose edge-weights
wi,j are equal to the Euclidean distance between vertices i and j. The second strategy used the Delaunay
triangulation between points of the mouth in order to obtain a meshed weighted graph, where weights
are the same used for the previous method. The complexity of the triangulation algorithm is O(n log n).
Given a mouth landmark point cloud as in Fig.8.2, the output of these two strategies is shown below in
Fig.8.3

Complete graph

Meshed graph

Fig. 8.3: Complete graph and meshed graph obtained from the mouth landmark points, using all the 20 nodes that
identify the mouth
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8.2 Encoding Graphs into Quantum States

Consider an undirected simple graph G = (VG, EG), where VG is the set of vertices and EG the set
of edges in G. By fixing an ordering of the vertices {vi}i=1,..n, a graph G is uniquely identified by its
adjacency matrix AG with generic element

aij =

{
1 if eij ∈ EG,
0 if eij /∈ EG.

(8.1)

Therefore if the cardinality of VG is n, i.e. the graph G has n vertices, then AG is a n×n square matrix
with zeros on the diagonal. Since we are dealing with undirected simple graphs, AG is also symmetric
and this means that the meaningful information about graph G is contained in the d = n2−n

2 elements of
upper triangular part of AG. We can now vectorize those elements and rename them as follows

aG = (a1,2 a1,3 .. a1,n a2,3 a2,4 .. a2,n .. an−1,n)
T

=
(
g
(G)
1 g

(G)
2 g

(G)
3 .. g

(G)
d

)T
, (8.2)

where
g
(G)

n(i−1)− i(i+1)
2 +j

≡ ai,j (8.3)

From vector aG we can construct a quantum state |G〉 associated to graph G by encoding the elements
of the adjacency vector into the amplitudes of the quantum state, as done in [118]:

|G〉 =
1

γ

d∑
k=1

gk|k〉 (8.4)

where γ is a normalization constant given by

γ =

√ ∑
{k s.t. gk 6=0}

|gk|2 (8.5)

This encoding can be extended to the case of weighted graphs G = (VG, EG, wij) where wij ∈ R≥0
is the weight associated to the edge eij . In this case, the adjacency matrix is defined as

aij =

{
wij if eij ∈ EG,
0 if eij /∈ EG.

(8.6)

Quantum state encoding is then performed as in Equations 8.2-8.4-8.5. This allows us to represent a
classical vector of d elements into a quantum state of N = dlog(d)e qubits via amplitude encoding.

On the IBM Qiskit framework [166], states expressed by Equation 8.4 are realized following the
method proposed by Shende et al. [167]. The purpose of the algorithm is to find an initialization circuit
that takes a qubit register to an arbitrary target state specified by a vector of amplitudes. In our case this
target state is |G〉. The basic idea lays in the assumption that the quantum register already starts in the
desired target state, and then we construct a circuit that takes it to the |00...0〉 state. The initialization
circuit is then the reverse of such circuit. In our case such initialization circuit is identified by the unitary
G and it is such that

|G〉 = G|00...0〉 (8.7)

where G has the form

G =


Ry(−θ0)Rz(−φ0)

Ry(−θ1)Rz(−φ1)
. . .

Ry(−θ2N−1−1)Rz(−φ2N−1−1)


†

(8.8)

and can be decomposed (not efficiently, with a runtime ofO(2N+1)) as a circuit constituted by a sequence
of the elementary gates CX , Ry(θ) and Rz(φ).
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8.2.1 Example

Imagine to select n = 4 random vertices among those belonging to the mouth landmark points. The
complete graph constructed using those points is shown in Fig.8.4

Fig. 8.4: Complete graph constructed using 4 randomly selected mouth landmark points

Such graph is encoded into the quantum state |G4〉

|G4〉 =
1

γ
(g1|000〉+ g2|001〉+ g3|010〉+ g4|011〉+ g5|100〉+ g6|101〉)

where γ is a normalization constant. The quantum circuit G4 that realizes |G4〉 i.e. G4|000〉 = |G4〉 and
that is obtained as explained in the previous section using the method proposed by Shende et al. [167] is
shown below in Fig.8.5.

Fig. 8.5: Quantum circuit realizing the state G4. Three qubits identified as 0, 1 and 2 are employed in the circuit.
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As claimed before this algorithm is exponential in the number of qubits used and represent a bot-
tleneck to the speed of the whole algorithm that could be in principle be overcome both with a faster
algorithm and with a more complex connection between physical qubits in the hardware.

A Quantum Random Access Memory (QRAM) could in principle construct efficiently a quantum

state like |G〉 =
1

γ

∑d
k=1 gk|k〉, provided that the classical vector (g1, g2, ..., gd) is relatively uniform,

i.e. without a few gi’s that are vastly larger than the others [168]. This might be the case for states |G〉
associated to meshed graphs. For further considerations on the possible caveats of QRAM see [80].

8.3 Graphs Quantum Classifier

The first implementation of a quantum classifier realized on the IBM quantum computer is due to [164]
where input data is expressed in the form a single qubit state. Here we extend their circuit in order to
deal with a dataset whose elements are represented by states of multiple qubits.
Given a dataset D, e.g. coming from the facial expression recognition problem, consider the training set

Dtrain = {(G{1}, y{1}), ..., (G{M}, y{M})} (8.9)

of M pairs (G{m}, y{m}), where G{m} are graphs (e.g. representing the face of an individual) while
y{m} ∈ {cl}Ll=1 identify which of the L possible class labels is associated to the graph. Classes partition
graphs into groups sharing common features, in our case sad and happy faces.
Given a new unlabelled input Gtest, the task is to assign a label ytest to Gtest using the distance [169]

d(G1, G2) =
√
|aG1

− aG2
|2 =

√√√√ d∑
i=1

∣∣∣g(G1)
i − g(G2)

i

∣∣∣2 (8.10)

and then classifying according to

min
cl

 ∑
m s.t. y{m}=cl

d
(
Gtest, G

{m}
) (8.11)

Note that in the case of binary classification there are only two classes i.e. y{m} ∈ {+1,−1} and the
classifier of Equation 8.11 can be expressed as

ytest = −sgn

[
M∑
m=1

y{m}d
(
Gtest, G

{m}
)]

(8.12)

The quantum circuit that implements such a classification requires four multi-qubit quantum registers.
In the initial configuration:

• |0〉a is an ancillary qubit that is entangled to the qubits encoding both the test graph and training
graphs;

• |00..0〉m is a register of dlog(M)e qubits that stores the index m of the training graphs G{m};

• |00..0〉g is a register of dlog(d)e qubits used to encode both test and training graphs;

• |00..0〉c is a register of dlog(L)e qubits that stores the classes y{m} ∈ {cl}Ll=1 of the G{m}.
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In the case of a training set of two graphs, one per class, the circuit is implemented as shown in Fig.8.6.

|0〉a H • X • • H a

|0〉m H • X • •

|00..0〉g Gtest G{1} G{2}

|0〉c c

Fig. 8.6: Graph quantum binary classifier circuit

After the first two Hadamard gates the state of the circuit is the following

1

2
(|0〉a + |1〉a) (|0〉m + |1〉m) |00..0〉g|0〉c (8.13)

The Control-Gtest gate, followed by an X operator on the ancilla produces the state

|Gtest〉 =
1

γtest

d∑
k=1

gtestk |k〉 (8.14)

and entangles it with the |0〉a state of the ancilla. Then a G{1} gate is controlled by both the first qubit a
and by the second one m, which is also subjected to an X gate afterwards. This has the effect of creating
the state associated to the training graph G{1}

|G{1}〉 =
1

γ{1}

d∑
k=1

g
{1}
k |k〉 (8.15)

and entangle it with both |1〉a and |0〉m. Then, the double controlled G{2} gate has a similar effect
since it stores the second training graph state |G{2}〉 entangling it with |1〉a and |1〉m. At this stage, the
Control-X gate entangles the m index of the two test graphs with the correct class state |0〉c (or |1〉c).
The state of the circuit at this point can be written as

1√
2M

M−1∑
m=0

(
|0〉a|Gtest〉g + |1〉a|G{m}〉g

)
|m〉m |y{m}〉c (8.16)

Finally the Hadamard gate applied to the ancilla generates the state

1

2
√
M

M−1∑
m=0

[
|0〉a

(
|Gtest〉g + |G{m}〉g

)
+ |1〉a

(
|Gtest〉g − |G{m}〉g

) ]
|m〉m |y{m}〉c (8.17)

Measuring the ancilla to be in state |0〉a produces the state

1√∑
m

∑
i |g

(Gtest)
i + g

(G{m})
i |2

M−1∑
m=0

d∑
i=1

(
g
(Gtest)
i + g

(G{m})
i

)
|i〉g |m〉m |y{m}〉c (8.18)

a subsequent measurement of the class qubit |y{m}〉 in the state |0〉c is obtained with probability



8.4 Experimental Results and Comments 103

p(y{m} = 0) =
1∑

m

∑
i |g

(Gtest)
i + g

(G{m})
i |2

∑
m s.t. y{m}=0

d∑
i=1

∣∣∣g(Gtest)i + g
(G{m})
i

∣∣∣2 =

= 1−

 1∑
m

∑
i |g

(Gtest)
i + g

(G{m})
i |2

∑
m s.t. y{m}=0

d(Gtest, G
{m})2

 (8.19)

The probability of obtaining |y{m}〉 in the state |0〉c depends on the distance between the test graph
Gtest and all those training graphs belonging to the class c = 0. Therefore if it is valued to be lower than
0.5, then the test set is classified as yclass = −1 while if higher, yclass = +1. The quantum circuit hence
realizes the classification expressed in Eqn. 8.12 .

8.4 Experimental Results and Comments

The number of qubits used by the quantum classifier scales with n which is the number of vertices in
the graphs, selected randomly among those of the mouth landmark points, see the following table. The
number of elements in the adjacency matrix that identify the graphs is denoted as d = n(n−1)

2 .

n d ≈ O(n2) # qubits used by the algorithm
3 9 7
4 16 8
5 25 8
10 100 10
20 400 12
50 2500 15

100 10000 17
500 250000 21

1×107 1×1014 50

Therefore the encoding allows for an exponential compression of resources since only a number
O(log2(n2)) of qubits are needed to represent a complete graph of n nodes. The quantum classifier is
evaluated on both strategies using the qasm_simulator and the real 14 qubits quantum computer
ibmq_16_melbourne available through the IBM cloud platform. We compared the results with a
classical binary classifier based on the Frobenius norm between graph adjacency matrices defined as:

||A|| = [
∑
i,j

abs(ai,j)
2]1/2 (8.20)

so that the distance used in Eq. 8.12 becomes

d
(
Gtest, G

{m}
)

= [
∑
i,j

abs(gtesti − g{m}i )2]1/2 (8.21)

In more details, the dataset we used is composed of:

• 250 samples of the form
{
Gtest, G

{1}, G{2}
}

have been used for the classical classifier and the
quantum IBM simulator qasm_simulator
• 16 samples of the form

{
Gtest, G

{1}, G{2}
}

have been used for the real 14 qubits quantum computer
ibmq_16_melbourne
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Moreover, the number of vertices n used by the algorithm was gradually increased by randomly selecting
them among the 20 landmark points of the mouth.

The metric used to evaluate the correctness of the classifier is the accuracy which is calculated as the
number of samples correctly classified over the number of total samples.

accuracy =
correctly classified samples

total samples
(8.22)

An accuracy of 1 indicates that all samples were correctly classified, 0 indicates that no sample has been
classified correctly.

The values of the accuracy obtained with qasm_simulator and a classical binary classifier are
shown in the plot below

4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

number of vertices

ac
cu

ra
cy

Simulated quantum, complete graph
Simulated quantum, meshed graph

Classical computation, complete graph
Classical computation, meshed graph

Quantum computation, complete graph
Quantum computation, meshed graph

Fig. 8.7: Accuracy varying number of vertices obtained with the qasm_simulator, the classical binary classifier
and the ibmq_16_melbourne quantum device

The highest accuracy is obtained with the classical classifier of Eq. 8.21, using the complete graph
strategy. After, we find the classical classifier with meshed graphs. For the quantum simulator, the meshed
strategy performs better than the complete one. This is due to the fact that the complete graph encoding
into a quantum state is much more complex since there are always n(n − 1)/2 amplitudes which are
different from zero. In the case of meshed graph, the graph is sparse and much less amplitudes are
needed in the quantum state encoding the graph.

The actual quantum computation was only possible for graphs with up to 8 vertices; after that we
couldn’t get any outcome from the quantum computer. One reason why this happened could be that
the number of gates used exceeded the coherence time of the qubits. Moreover, results of the accuracy
obtained on the quantum computer are biased by the fact that the dataset is composed only of 16 samples.

Finally it is worth noticing that both the classical and simulated meshed have a spike at n = 10 which
seems to be a good compromise between number of vertices used and sparsity of the graph.

Interesting extensions to this work are the study of different graph encodings into quantum states
[171], the usage of other quantum classification schemes [172], and finally the use of the latest 53 qubit
IBM quantum computing chip.





Conclusions

In recent years, quantum computing and machine learning have gained a lot of attention in their respec-
tive areas of research for their great potentials in solving hard computational tasks. This success pushed
towards the birth of a new interdisciplinary field called Quantum Machine Learning that merges in dif-
ferent ways quantum computing and machine learning techniques in order to achieve improvements in
both fields. It was the aim of this doctoral thesis to expand the range of applicability of QML to new
scenarios.

The first proposed idea involves the application of Topological Data Analysis in order to characterize
entanglement. In particular, we have introduced a homology-based technique for the analysis of multi-
qubit entangled state vectors. In this approach, a quantum state was associated to a dataset by introducing
a metric-like measure defined in terms of bipartite entanglement. Hence, by analysing the persistence of
homologies at different scales, we achieved a novel classification of multi-qubit entanglement.

Secondly, we have proposed two theoretical approaches for realizing quantum kernel methods on
device specific hardware have been proposed. The first one deals with Error Correcting Output Codes
(ECOC), which is a standard method in Machine Learning employing an ensemble of binary classifier,
such as Support Vector Machine, for a multi-class classification problem. Appropriate choice of error
correcting codes further enables incorrect individual classification decisions to be effectively corrected
in the composite output. We have proposed a quantum algorithm based on the quantum Support Vector
Machine that is able to reproduce the ECOC process with a speedup associated with efficient QRAM
calls. The other approach explores the relation between TQC (see Section 3.3) and kernel methods in
ML. We have presented a method for computing a Hamming distance based kernel between binary
strings via TQC. This is obtained by an encoding of binary strings as some special braiding and deriving
their Hamming distance as the Jones polynomial of a particular link. Another contribution of this thesis
is a proposal of using quantum annealing for solving

• Minimum Spanning Tree Problem with ∆-Degree Constraint, which is a hard subroutines involved
in the ML algorithm of minimum spanning tree clustering;
• Graph Edit Distance, which could be used to construct an edit distance based kernel function.

Both problems are formalized as combinatorial optimization problems in terms of QUBO and, after an
analysis of the structure of the model, solved using the D-Wave 200Q quantum annealing device. We
have shown that in both cases the quantum hardware is able to solve problems of small size and that
future improvements on the hardware density of connections is essential in order to claim any advantage
with respect to classical solvers.

Finally, we have considered the problem of graph classification in the context of facial expression
recognition and showed how to solve it using a fully quantum classifier implemented on the IBM quan-
tum computer available through the cloud platform IBM Quantum Experience. We have applied the
method introduced in [164] which consists in exploiting quantum interference to define an efficient clas-
sifier for a given dataset. The quantum circuit implementing our graph classifier is based on an encoding
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of a graph adjacency matrix into the amplitudes of a quantum state. A test on the IBM quantum hardware
revealed interesting properties of the quantum classifier with respect to a classical k-NN algorithm.

The results presented in this thesis all imply further investigation. In particular, improvements of the
experimental part are conditioned by the evolving progress of the physical devices currently in use or the
construction of new ones based on new and possibly more powerful approaches.
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