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1. SUMMARY 
 

Nonostante il tessuto adiposo sia stato considerato per molti anni un prodotto di 

scarto, è stato recentemente riconosciuto il suo ruolo come agente rigenerativo. Il 

tessuto adiposo è un tessuto connettivo costituito da adipociti interspersi in fibre di 

collagene e dalla frazione vasculo-stromale (SVF), composta da cellule stromali 

multipotenti adipose (ASCs), pre-adipociti, fibroblasti, cellule vascolari endoteliali 

e cellule del sistema immunitario. Il ruolo rigenerativo è svolto principalmente 

dall’SVF e, in esso, specialmente dalle ASCs, secernendo fattori di crescita 

angiogenetici, anti-apoptotici, anti-infiammatori e immunomodulatori.  

I chirurghi usano diverse strategie per ricostruire o riparare i tessuti e gli organi 

danneggiati attraverso il tessuto adiposo. Tra esse, le più efficienti sono il 

trasferimento autologo di tessuto adiposo e l’ingegneria tissutale. Nel trasferimento 

autologo di tessuto adiposo, il tessuto adiposo autologo è prelevato da una parte del 

corpo, purificato attraverso alcune tecniche di processazione e ri-iniettato dove 

necessario. Nell’ingegneria tissutale, alcuni scaffold fatti di materiali naturali o 

sintetici sono usati in combinazione con le ASCs e, talvolta, con fattori di crescita, 

per riparare o ricostruire tessuti. 

La prima parte sperimentale di questa tesi di dottorato analizza le performance in 

vitro di un dispositivo medico automatizzato e di due diversi kit monouso per 

processare il tessuto adiposo a confronto con la digestione enzimatica, che è la 

tecnica gold-standard. Tutti tre i metodi producono microinnesti ricchi di ASCs. 

Parametri come il fenotipo, la vitalità, la crescita e la replicazione delle ASCs sono 

stati osservati.  

La seconda parte sperimentale di questa tesi analizza le performance in vitro e in 

vivo di differenti formulazioni di acido ialuronico, un materiale naturale e molto 

promettente per rigenerare i tessuti, quando combinato con le ASCs. Parametri 

come la vitalità delle ASCs, la loro interazione con le formulazioni di acido 

ialuronico e l’adipogenesi sono stati osservati.  
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2. ABSTRACT 
 

Beside adipose tissue had been considered a discard product for many years, 

recently its role as regenerative agent has been widely recognized. Adipose tissue 

is a connective tissue constituted of adipocytes interspersed with collagen fibers 

and stromal vascular fraction (SVF), composed of adipose-derived multipotent 

stromal cells (ASCs), pre-adipocytes, fibroblasts, vascular endothelial cells and 

immune cells. The regenerative role is played specifically by the SVF and, inside 

it, especially by the ASCs, by secreting angiogenetic, anti-apoptotic, anti-

inflammatory and immunomodulatory growth factors.  

Surgeons use different strategies to reconstruct or repair damaged tissues and 

organs through adipose tissue. Among them, the most effective are the autologous 

fat transfer and tissue engineering. In the autologous fat transfer, autologous 

adipose tissue is harvested from one part of the body, purified through some 

processing techniques and reinjected where necessary. In tissue engineering, some 

scaffolds made of natural or synthetic materials are used in combination with ASCs 

and, sometimes, growth factors to repair or reconstruct tissues.  

The first experimental part of this doctoral thesis analyzes the in vitro performances 

of one automated closed device and two different disposable kits to process adipose 

tissue in comparison with the enzymatic digestion, which is the gold-standard 

technique. All three methods produce micrografts rich of ASCs. Parameters such 

as ASCs phenotype, viability, growth and replicative rate have been observed.  

The second experimental part of this thesis analyzes the in vitro and in vivo 

performances of different formulations of hyaluronic acid, a natural and very 

promising material to regenerate tissues, when combined with ASCs. Parameters 

such as ASCs viability, interaction with the hyaluronic acid material and 

adipogenesis have been observed.  
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3. INTRODUCTION 
 

3.1. The biology of adipose tissue 

 

Adipose tissue is a connective tissue constituted of adipocytes interspersed with 

collagen fibers and stromal vascular fraction (SVF), composed of multipotent 

stromal cells (MSCs), pre-adipocytes, fibroblasts, vascular endothelial cells and 

immune cells. It plays a central role in lipid storage, cushioning and isolating body 

and endocrine function, secreting hormones such as leptins and adipokines [1], [2].   

 

                Fig. 1. Schematic representation of adipose tissue structure [3]. 

 

Adipose tissue can be classified in three groups: white (WAT), brown (BAT) and 

beige (BeAT). WAT is the most common one. It represents a storage of lipids and 

source of adenosine triphosphate (ATP) derived from the release of fatty acids 

during the β-oxidation process. It is also a secretory organ having a high metabolic 

activity. For instance, it secretes cholesterol, retinol, steroid hormones, 

prostaglandins and adipokines, like leptin, adiponectin, interleukin-6, tumor 

necrosis factor-α. Leptin is mainly involved in regulation of energy balance and 

food intake. Tumor necrosis factor-α is a proinflammatory cytokine. It is 

responsible of the inflammation, apoptosis, synthesis of interleukin-1 and 
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interleukin-6 and adipocyte metabolism. It induces insulin resistance. Instead, 

adiponectin is inversely correlated with obesity. IL-6 is also correlated with obesity 

and inflammation.  

BAT is mainly present in fetuses and newborns and tends to reduce with the growth. 

In adults, it is only found in limited areas of the body like in the upper trunk. Its 

main role is thermogenesis. Indeed, its mitochondria express uncoupling protein 1 

(UCP1), a protein which stimulates the uptake of lipids and glucose from circulation 

for thermogenesis. In obese and elderly people, its amount is reduced.  

Finally, BeAT has intermediate features between WAT and BAT. Beige adipocytes 

have multilocular lipid droplets in the cytoplasm and numerous mitochondria. It is 

visible in the process of differentiation of WAT in BAT, after stimuli, such as cold 

and exercise [4]–[8]. 

 

     Fig. 2. Histology of white, beige and brown adipose tissue [9] 

 

Human adipose tissue can be also classified in visceral (VAT) and subcutaneous 

(SCAT). VAT, representing around 10% of the total body fat, is present in the 

abdominal cavity, mainly in the mesentery and omentum and drains directly to the 

liver. Compared to SCAT, it is more cellular, vascular, innervated and it also 

contains more inflammatory and immune cells, less preadipocytes and more large 

adipocytes. VAT is also more metabolic active. [10]  
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3.2. Adipose Stromal Vascular Fraction (SVF) 

 

Stromal Vascular Fraction (SVF) is an heterogeneous population of mono-

nucleated cells, including endothelial cells, fibroblasts, erythrocytes, lymphocytes, 

macrophages, pericytes and adipose-derived mesenchymal stem cells (ASC). It is 

made in laboratory from lipoaspirate, enzymatically or non-enzymatically digesting 

or disrupting it and, then, centrifuging to separate cells from collagen, adipocytes, 

oil and cellular debris [11]. 

 

3.2.1. Multipotent stromal cells (MSCs) 

 

Multipotent stromal cells (MSCs) are plastic-adherent adult stem cells, which 

constitute the mesenchymal tissues, such as bone marrow, adipose tissue, amniotic 

fluid, periosteum and fetal tissues. They were discovered by Friedstein in 1960. 

They have two important properties: self-renewal and multipotency [12]–[14]. 

Differently from other stem cells, like IPs and embryonic stem cells, they do not 

cause teratoma and no ethical or law restrictions on their use is applied [15]. They 

express specific mesenchymal markers, including CD105, CD90, CD73, CD44, 

CD29, CD166 and do not express hematopoietic markers, like CD45, CD34, CD14 

and CD81. In 2006, the International Society for Cellular Therapy (ISCT) 

established, as a minimum criteria to define them, their ability to differentiate into 

cells belonging to the same mesodermal lineage, such as osteocytes, adipocytes and 

chondrocytes at least in vitro [14]. Actually, scientists observed in many cases they 

can also differentiate into cells of other mesenchymal lineages (i.e. skeletal muscle 

cells and cardiomyocytes) [16] and also endodermal (i.e. hepatocytes and insulin-

producing cells) and ectodermal ones (i.e. neuronal and peripheral glial cells) [17]. 

In 2007, it was recognized the importance of the perivascular niche for regeneration, 

the microenvironment in which the cells reside in quiescence until it receives a 

stimulus of differentiation [18]. The therapeutic and regenerative action of MSCs 

is due to their release of angiogenetic and anti-apoptotic growth factors. Some 

example are epidermal growth factor (EGF), vascular endothelial growth factor 
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(VEGF) and transforming growth factor-beta (TGF-β). Moreover, they release 

cytokines, like interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), tumor 

necrosis factor-alpha (TNF-α) with anti-inflammatory and immunomodulatory 

functions. They mainly act though paracrine mechanisms [19], [20]. 

 

3.2.1.1. Adipose-derived stromal cells (ASCs) 

 

Adipose-derived stromal cells (ASCs) are mesenchymal stem cells first isolated by 

Zuk in 2002 [21]. They have a similar gene expression profile of the more known 

bone marrow stromal cells (BMSCs). Indeed, they both express genes involved in 

homeostasis and tissue repair, such as cytokines and growth factors [22] and differ 

only in the growth rate, differentiation ability and molecular signature [23]. If 

compared to BMSCs, their use has some advantages: they can be harvested without 

invasive procedures, they are around 500 times more abundant and they can be 

expanded with minimal risk [24], [25].  

 

3.2.1.2. Multipotent stress-enduring stem cells (MUSE) 

 

Multipotent stress-enduring stem cells (MUSE) are a subpopulation of MSCs, 

double-positive for the mesenchymal marker CD105 and the pluripotency marker 

stage-specific embryonic antigen-3 (SSEA-3). They were discovered by Kuroda in 

2010. They are known to be pluripotent, or they are able to differentiate into cells 

belonging to the three germ layers and able to endure stress like oxygen deprivation. 

They are the main responsible of regeneration and reparation [26]–[28].  
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4. REGENERATION AND RECONSTRUCTION 

THROUGH ADIPOSE TISSUE 
 

Adipose tissue has started to be considered not more only a dermal filler but also a 

regenerative agent after stromal cells have been discovered inside [29], [30]. 

 

4.1. Autologous fat grafting 

 

Autologous fat grafting is a surgical technique consisting in a transfer of adipose 

tissue from one area of the body to another. Autologous fat is an ideal filler, because 

it is readily available, biocompatible, inexpensive, easily harvestable, do not cause 

any allergic reactions or rejection. Furthermore, it is rich of ASCs, which have high 

regenerative capability and paracrine effects. Some of the clinical applications of 

fat grafting are breast, buttocks and lips augmentation, facial and hands 

rejuvenation, tissue regeneration (i.e. following scars, wounds and burns) [31], [32] 

[33].  

 

4.1.1. History of fat grafting  

 

Fat grafting after oncological surgery was first introduced by Neuber in 1893. Two 

years later, Czerny transferred a lipoma to the breast to establish symmetry after a 

unilateral mastectomy. The technique of liposuction was invented by Fischer in 

1975. It consists of a fat removal procedure under anesthesia using blunt cannulas 

and negative pressure. In 1977, it was used for the first time as a filling product by 

Illouz. The father of lipofilling was Fourier, who introduced a new technique to 

infiltrate lipoaspirate. In 1985, Klein described the tumescent technique, also called 

“wet” method, a liposuction under local anesthesia injected with small cannulas. 

Specifically, large volumes of a solution constituted by 0.9% NaCl, the 

vasoconstrictor epinephrine and the local anesthetic lidocaine is administered 

during the fat harvesting.  In 1994, Coleman proposed a less traumatic and 
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standarized method, consisting of three steps: manual lipoaspiration under low 

pressure, centrifugation for 3’ at 3400 rpm in 10 ml syringes and reinjection. 

Through centrifugation, the lipoaspirate can be separed into three different layers: 

the supernatant layer containing lipids that is poured off, the lower layer containing 

blood, tissue fluid and anesthetic, which is removed from the syringe and the middle 

layer constituted by the SVF, which is reinjected in the patient. In 2007, Rigotti 

treated damages caused by radiotherapy with fat, a process mediated by ASCs. In 

2013, Tonnard introduced the concept of nanofat, consisting of an emulsified fat 

suspension rich of ASCs and lacking in viable adipocytes, which was observed to 

be useful in skin rejuvination. [29], [30], [34]. 

  

                      Fig. 3. Coleman’s fat grafting after the centrifugation step [35] 

 

4.1.2. Complications and limitations 

 

Fat grafting is considered a safe procedure, since the complications are infrequent. 

However, the most common ones relative to the donor-site are haematoma, 

swelling, paraesthesia, pain and hypertrophic scarring. On the contrary, the 

complications in the recipient-site include infection, fat necrosis, calcification and 
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oil cyst formation. The reabsorption rate, ranging between 20 and 90%, represents 

also an important issue, since, so far, the outcomes of fat grafting can be hardly 

predicted. Indeed, they are influenced by a too large number of variables depending 

on the technique, but also on patient factors, such as the smoking habit and 

anticoagulant therapies. Finally, another limitation is that the feasibility of the fat 

graft procedure is linked to the amount of adipose tissue available in the patient 

[30], [34], [36]. 

 

4.1.3. Cell-assisted lipotransfer (CAL) 

 

A recent procedure was introduced to improve the graft viability and limit the 

resorption rate. It is named cell-assisted lipotransfer (CAL) and it consists in fat 

grafting enriched with SVF cells. However, the improved outcomes were observed 

only for small volume of fat (<100 mL) and this technique seems not to be 

completely devoid of risks and to not reduce the number of surgical procedures 

needed after the first fat graft. Therefore, CAL efficacy and especially safety are 

still matters of debate and would require further clinical studies [32], [37]–[39]. 

 

4.1.4. Platelet-rich plasma (PRP) 

 

Platelet-rich plasma (PRP) is another method to increase the graft viability. It 

consists in a small amount of plasma concentrated of autologous platelets, which 

are rich in growth factors. Also PRP efficacy and safety are still controversial [40]–

[43].  
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4.1.5. Fat grafting technique 

 

Fat grafting is constituted by three steps: harvesting, processing and reinjection.  

 

4.1.5.1. Fat harvesting 

 

Less traumatic techniques are generally preferred because they better preserved the 

adipocytes viability and graft survival. Usually, adipose tissue is harvested though 

aspiration and vacuum-assisted, water-assisted, or ultrasound-assisted lipectomy. A 

higher graft viability and a lower fibrosis were observed using low-pressure 

techniques. Moreover, cell viability is better preserved with larger cannulas. 

Commonly, a tumescent solution such as a vasoconstrictor are used. The most 

frequent local anesthetic is lidocaine [44], [45].  

 

4.1.5.2. Fat processing 

 

The reason of fat processing is to eliminate contaminants, including cellular debris, 

oil, dead cells, collagen fibers and erythrocytes from lipoaspirates, in order to avoid 

inflammation and, thus, poor graft retention. Furthermore, it allows to optimize the 

number of ASCs, that, according some theories, improves graft viability. The 

processing methods can be classified into two big groups:  

1. Enzymatic methods 

2. Non-enzymatic methods  

Figure 4 briefly summarizes the pros and cons of enzymatic and non-enzymatic 

methods.  
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Fig. 4. Comparison between enzymatic and non-enzymatic method to isolate the SVF [46]. 

 

 

4.1.5.2.1. Enzymatic methods 

 

Enzymatic methods like using collagenase or trypsin are the gold-standard ones in 

the laboratory. The final products are the cells. They are very efficient, but the 

whole ASCs isolation procedure is time-consuming and expensive. Although slight 

differences among the protocols, they are generally constituted by a fat washing 

step, incubation with the enzyme, centrifugation to separate cells from the oil and 

the enzyme, erythrocytes lysis, another optional washing step and cell culture and 

expansion. Moreover, the use of enzymes is forbidden in clinical practice. Indeed, 

according to Good Manufacturing Practice regulations of the European Parliament 

and Council (EC regulation no. 1394/2007), only minimal cell manipulation is 

allowed in clinical setting. Indeed, the original biological, physiological and 

structural characteristics of cells and tissues cannot be modified. Enzymes 

substantially manipulate tissues disrupting the cell-cell interactions and cleaving 

some cell membrane receptors [47]–[50]. 
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4.1.5.2.1.1. Mechanical methods  

 

The most common fat processing mechanical methods are: centrifugation, filtration, 

washing in physiologic solutions, decantation, Telfa rolling, emulsification.  

They can be performed manually or through automated devices.  

 

4.1.5.2.1.2. Manual methods 

 

According to various studies, the ideal fat processing technique should fulfill these 

requirements:  

1) to preserve the maximum number of intact adipocytes. They are responsible 

of the graft volume and survival. 

2) to remove the maximum number of contaminants, including the unnecessary 

fluid volume, blood and lipids in order to avoid inflammatory cytokines release and 

fat graft resorption over time.  

3) to preserve the maximum number of MSCs. In fact, these cells are 

responsible of angiogenesis and regeneration. [13] 

Unfortunately, none of the mechanical techniques fully possesses each of these 

characteristics and therefore none is uniformly recognized by the scientific 

community as the best one.  

Different studies have been performed in order to evaluate the safety and efficacy 

of mechanical methods. Some of them compare the results achieved from different 

methods. In the following tables, the main general and histological features of the 

different methods are summarized:  
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Fig. 5. Pros and cons of the different mechanical methods: general features. 

 

 

 

General features 

Method Pros Cons References 

Centrifugation  Collection of a 
great number 
of 
mesenchymal 
stem cells 

 Optimal 
removal of 
contaminants 

 Disruption of 
adipocytes 
 

[51]–[58] 

Filtration  Good removal 
of 
contaminants 

 [52], [53], [57] 

Washing  Collection of a 
modest 
number of 
mesenchymal 
stem cells 

 Reduction of 
adipocytes 
number 

[52]–[55], [57] 

Decantation  Adipocytes 
preservation 

 Poor removal 
of 
contaminants 

[52], [54], [57] 

Telfa-rolling  Collection of a 
great number 
of 
mesenchymal 
stem cells 

 Optimal 
removal of 
contaminants 

 Adipocytes 
preservation 

 

 Quite labor 
intensive and 
more suitable 
for small 
areas 
 

[51]–[53], [58] 
 
 
 
 
 
 

Emulsification  Collection of a 
great number 
of 
mesenchymal 
stem cells 

 Significant 
reduction of 
adipocytes 
number 

[46] 
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Histological evaluation 

Methods  Pros Cons References 

Centrifugation   High volume 
retention 

 Low viability 

 Possible 
areas of 
fibrosis and 
calcification 

[51]–[58] 

Filtration  High viability  [52], [53], [57] 

Washing  High viability 
 High 

vascularity 

 [52]–[55], [57] 

Decantation   Low volume 
retention 

 Severe cists 
 Low fat graft 

viability 
 

[52], [54], [57] 

Telfa-rolling  High volume 
retention 

 [51]–[53], [58] 

Emulsification  High viability 
 High 

vascularity 

 [46] 

 

 

Fig. 6. Pros and cons of the different mechanical methods: histological evaluation.  
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As shown in table 5, decantation preserves an high number of viable adipocytes. 

However, it does not remove enough contaminants, resulting in low graft viability. 

Telfa rolling produces a fat graft free of contaminants, with a higher number of 

alive ASCs, with high graft retention. However, this technique is time-consuming 

and, therefore, can be used only for small areas. Centrifugation is the most widely 

used method for fat processing. It removes contaminants and preserve ASCs, but 

disrupt the adipocytes. However, low centrifugation speeds better preserve the 

adipose tissue integrity and the cell viability and differentiation potential. Washing 

is generally considered a good technique, since it preserves a large number of both 

ASCs, but the number of adipocytes is reduced. Finally, filtration is an efficient 

method since it eliminates contaminants and maintains viable adipocytes and a large 

portion of ASCs. Also considering the histological evaluation, as shown in table 6, 

filtration and washing seem to be the best techniques since the viability is preserved 

and no fibrosis, calcification or cists are visible [52], [56], [58]–[60]. 

 

 

 

4.1.5.2.1.3. Closed devices and single-use kits 

 

The advantage of the use of closed automated devices is that they can perform 

perfectly standardized processes, do not require specific skills and, in addition, they 

guarantee the sterility. This last characteristic is also preserved even if the device 

requires the operator manual skills, but reproducibility is surely lower. Recently, a 

large plethora of devices and disposable kits have been patented and 

commercialized. Some of them make use of enzymes, whereas others use 

mechanical methods. For instance, Celution® 800/CRS (Cytori Therapeutics, 

USA), Sepax® 2 (Biosafe SA, Italy), Stempeutron® (Stempeutics Research, India), 

Unistation® (NeoGenesis, South Korea) and Icelletor® (Tissue Genesis, USA) 

belong to the first group. Revolve® (GD Medical Pharma, Netherlands), 

Lipogems® (Lipogems International SpA, Italy), Rigenera® (Human Brain Wave, 
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Italy), Puregraft® (Cytori Therapeutics, USA), StromaCell® system (MicroAire 

Aesthetic, USA) belong to the second group. Puregraft® (Cytori Therapeutics, 

USA) and Revolve® (GD Medical Pharma, Netherlands) are based on filtration and 

washing, Lipogems® is based on filtration and beads microfracture, StromaCell® 

system is based on centrifugation, Rigenera® is based on microfracture.  

Generally, automated devices have been demonstrated giving better results than 

manual methods. [61] 

 

Puregraft® Revolve® Lipogems® StromaCell® 

 

 

 

 

 

     Fig. 7. Some exempla of closed devices, which do not make use of enzymes.  

 

 

4.1.5.3. Fat delivery  

 

Fat injection represents the crucial step of the whole process. The best results were 

obtained when the recipient-site vascularity was good. Fat injection can be executed 

using blunt or sharp cannulas, in absence or presence of fibrosis, respectively. 

Indeed, fibrosis needs to be removed to avoid damage to other anatomical 

structures. Small-gauge cannulas are less traumatic toward the recipient site. 
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Usually, small amount of fat are injected to avoid resorption, to preserve the graft 

viability and to allow integration with the surrounding recipient site. A good 

distribution of fat is also important to avoid accumulation.  

 

 

4.1.6. How does the fat grafting occur? 

 

Different theories about the fat grafting mechanism have followed each other over 

time. For instance, Peer described the “graft survival theory”, which supports the 

fat graft survival until neovascularization in the recipient site. On the contrary, Eto 

proposed the “graft replacement theory”, asserting that three different zones can be 

identified from the periphery to the centre of the graft: an area in which adipocytes 

survive, an area of regeneration in which adipocytes dies and are replaced by new 

ones differentiated from ASCs and an area in which both adipocytes and ASCs die. 

Finally, Neuhof and Hirshfeld described the “host cell replacement theory”, which 

states that all the donor-site adipocytes die and are replaced by recipient-site cells. 

Most probably, all these theory contribute to correctly explain the mechanism. 

Briefly, adipocytes survive if the transplantation site is well vascularized and attract 

the recipient cells, which also contribute to regeneration through paracrine stimuli 

and structural support, as well as the injected SVF cells present in the fat graft. [36]  
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4.1.7. Characterization of ASCs-rich micrografts obtained from 

different devices 

 

4.1.7.1. General introduction 

 

In this chapter, one closed automated device, based on mechanical disaggregation 

and filtration, named Rigenera® and two disposable manual kits, based on filtration 

and emulsion, named Hy-Tissue SVF® and Hy-Tissue Nanofat® have been tested 

in vitro. Specifically, parameters such as cell phenotype, viability and replication 

rate have been observed. They have been analysed separately and their results have 

been always compared with the gold-standard enzymatic method. In the general 

conclusion, in the end of this chapter, only a brief comparison between the three 

methods is presented, because, unfortunately, experiments referring to the three 

techniques were executed following different timetables and protocols.  

 

4.1.7.2. Rigenera® (Human brain Wave, Turin) 

 

4.1.7.2.1. Introduction  

 

Rigenera® is a closed automatic device for tissue processing composed by an 

engine and disposable sterile capsules. It mechanically disaggregates the tissue 

though steel blades rotating at 80 r.p.m. Afterwards, the product of disaggregation 

is filtered through pores of 70-80 µm. It has many advantages, such as it is non-

invasive, rapid and easy to use, automatic and, therefore, standardized, sterile and 

safe and the process is completely autologous. The utilization fields are many: 

esthetic surgery [62], dermatology [63], [64], vulnology [65], [66], orthopedics 

[67], [68], odontostomatology [69], [70] and in the heal of the androgenetic alopecia 

[67], [71]  

The general aim of the present study was to deeply analyze the efficacy of the 

Rigenera® procedure in vitro. 
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Specifically, three objectives have been pursued:  

1. Method optimization. The best processing timing among 30’’, 45’’ and 60’’ 

was established 

2. Comparison with the gold-standard collagenase digestion 

3. Comparison between two different harvesting sites: thigh and abdomen. 

 

Fig. 9. Rigenera® capsule and device. 

 

4.1.7.2.2. Material and methods  

 

4.1.7.2.2.1. Adipose tissue samples collection   

 

Adipose tissue was harvested by 9 women subjected to liposuction, aging between 

41 and 69 years old. Patients signed the informed consents before the tissue 

collection. The water-assisted liposuction named BEAULI® protocol was used. It 

is described in detail in [72]. 

 

4.1.7.2.2.2. Cell isolation and culture  

 

Each adipose tissue sample was divided in 2 portions. 4 mL of lipoaspirate were 

placed in a Rigenera® capsule and other 4 mL of complete culture medium 

Dulbecco Minimum Essential Medium (DMEM) (Sigma-Aldrich, Italy) containing 

10% of Fetal Bovine Serum (FBS), 1% of a mix of penicillin/streptomycin 1:1 

(GIBCO Life Technology, Italy) and 0.5 % amphotericin B (GIBCO Life 

Technology, Italy) were added. The Rigenera® device was operated for 30’’, 45’’ 
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or 60’’. The collected SVF was withdrawn from the capsule by a syringe, filtered 

through a 70-µm nylon mesh and centrifuged at 3000 rpm for 7’. The supernatant 

was discarded and SVF was resuspended in 6 mL of complete medium, plated in a 

25 cm2 flask (BD FalconTM, Becton Dickinson, Italy) and incubated at 37°C and 

5% CO2. The second portion of lipoaspirate was digested with collagenase 

following the collagenase protocol, as reported in [23]. Briefly, 4 mL were digested 

with 1 mg/mL type I collagenase (GIBCO life technology, USA) in Hank’s 

Balanced Salt Solution (HBSS) and 2% bovine serum albumin (BSA) at 37°C for 

45’. The enzymatic action was neutralized adding complete medium. Then, the 

sample was centrifuged at 3000 rpm for 7’, the supernatant was discarded and the 

SVF pellet was incubated with 3 mL of 160 mM NH4Cl at room temperature for 

10’ to lyse the erythrocytes. After centrifugation, the SVF was resuspended in 6 mL 

of complete medium, filtered through a 70-µm nylon mesh, plated in a 25 cm2 flask 

with complete culture medium and incubated at 37°C and 5% CO2. The medium 

was first changed after 72 hours and, successively, every 24 hours. At confluence, 

cells were detached incubating them with trypsin-EDTA 1% (GIBCO Life 

Technology, USA) at 37°C for 5’ and re-plated in a 75 cm2 flask.  

 

 

Fig.10. Rigenera® procedure. 

 

4.1.7.2.2.3. Morphological analysis and cell viability test  

 

At confluence, the cells were observed under a light microscope (Optika 

Microscopes Italy) furnished with a Leica camera at 20x magnification. Pictures of 

cells obtained with the three different Rigenera® operating timings, enzymatic 

method and from the two different harvesting sites were taken.   
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Cell viability and growth rate were evaluated by the cell viability test with trypan 

blue exclusion method. Cell suspension and trypan blue were mixed 1:1. The 

solution was put in a Bürker chamber and cells were counted under a light 

microscope at 20x magnification, excluding the blue non-viable cells. The growth 

rate was determined by the growth curve.   

 

4.1.7.2.2.4. Immunophenotyping   

 

At confluence, the cells were detached with trypsin-EDTA. Around 200000 cells 

were placed in each Eppendorf tube. The pellet was washed with 1 mL of 1% FBS 

in PBS and then labelled with fluorescent-dye conjugated antibodies in a final 

volume of 100 µL of 1% FBS in PBS and incubated for 30’ in ice. The herein 

examined antibodies were: APC-conjugated CD90 (dilution 1:5), PerCP-Cyt5.5-

conjugated CD105 (dilution 1:20), BV421-conjugated CD73 (dilution 1:20); 

BV785-conjugated CD44 (dilution 1:20), PE-conjugated CD34 (dilution1:5), 

FITC-conjugated CD29 (dilution 1:20), BV650-conjugated CD45 (dilution 1:20). 

All the antibodies were purchased from BD Biosciences, Becton Dickinson Italy 

S.p.A., Milan. Alexa Fluor-488-conjugated SEEA3 (dilution 1:20) was purchased 

from Aurogene S.R.L, Rome. After the incubation, the pellet was rinsed, 

resuspended in 300 µL of 1% FBS in PBS and transferred in flow cytometry tubes. 

The immunophenotyping was performed through a FACS canto II (BD, Becton 

Dickinson, Italy).  

 

4.1.7.2.2.5. Statistical analysis    

 

Data were expressed as mean ± standard deviation. Unpaired samples student’s t-

tests were performed and differences between two groups were considered 

statistically significant, when p-value<0.05.  
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4.1.7.2.3. Results  

 

4.1.7.2.3.1. Rigenera® method optimization 

 

In order to determine the best processing timing among 30’’, 45’’ and 60’’, in terms 

of number of ASCs and growth rate, the cell viability test and microscopic analysis 

were performed. First, the cells were counted at passage 0 (fig. 10). Due to the 

strong presence of erythrocytes, at this level, the count of ASCs results not to be 

reliable. However, a first datum can be derived: the number of cells with 60’’ 

treatment was much higher than with 45’’ and 30’’ (data shown in the table, fig. 

10). After one week, only cells capable of forming fibroblast-like colonies, attached 

to the flask and were countable. The number of ASCs collected from thigh was 

almost three times higher with the 60’’ treatment than with the 45’’ and 18 times 

higher than with the 30’’ one. In addition, the mean time of confluence resulted to 

be 8 days lower with 60’’ treatment than with the 45’’ and 30’’ treatment. The 

number of ASCs collected from abdomen was two times higher with the 60’’ 

treatment than with the 45’’ and almost 5 times higher than with the 30’’ one and 

the mean time of confluence was 7 days lower with 60’’ treatment than with the 

45’’ and 30’’ treatment. Therefore, 60’’ can be considered the most efficient timing. 

(fig. 10).  
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Figure 10. Rigenera® method optimization. Cell viability test with trypan blue exclusion 

method. At passage 0, the number of total cells was much higher with the 60’’ Rigenera® 

treatment compared to the other timings (data shown in the table). After one week, the 

number of the pure ASCs was still higher with the 60’’ Rigenera® treatment in both thigh 

and abdomen.  

Abdomen
Cell number p0 106 

± SD

Mean 105cells/ml 

(after 1week) ±SD

Mean time of 

confluence
Mean 105 

cells/ml (at 

confluence) ±SD

Mean 105 

cells/ml growth 

per day

% of cell 

growth

Rigenera 30 s 4,133±0,33 0,147± 0,05 >45 <0,5 1,134 2.43

Rigenera 45 s 6,84±0,19 0,305± 0,09 34±6,5 0,677±0,15 2,107 4.52

Rigenera 60 s 15,16±0,49 0,722± 0,13 27±3,7 1,93±4,20 7,272 15.61

Thigh

Cell number p0 106 

± SD

Mean 105cells/ml 

(after 1week) ±SD

Mean time of 

confluence

Mean 

105cells/ml (at 

confluence) ±SD

Mean 105 

cells/ml growth 

per day

% of cells 

growth 

Rigenera 30 s 7,2±0,28 0,127± 0,05 >45 <0,5 1,127 0.17

Rigenera 45 s 9±0,35 0,842± 0,04 29±1,4 2,10±0,33 7,488 1.13

Rigenera 60 s 21±0,16 2,320± 0,14 21±1,4 6,05±0,64 29,237 4.41
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ASCs images in fig. 11 clearly represent the number, disposition and cell 

morphology. Cells, seeded in flasks, formed clusters, thus high and low density 

regions were both present. Rigenera® treatment did not affect the cell morphology. 

Indeed, no signal of sufferance was observable and the membranes and the nuclei 

were preserved. The number of ASCs appeared lower after the 30’’ and 45’’ 

treatments compared to the 60’’ treatment. 

 

 

Fig. 11. Rigenera® method optimization (2) Microscopic images (10x) of ASCs from 

thigh (columns 1-2) and abdomen (columns 3-4). They were obtained from Rigenera® 

operating at different timings: 30’’ (raw 1), 45’’ (raw 2) and 60’’ (raw 3). High (column 1-

3) and low (column 2-4) density regions are both present. The morphology looks unaltered 

for all the treatments.   
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4.1.7.2.3.2. Comparison between Rigenera® and the 

enzymatic method 

 

After one week of culture, the number of ASCs collected with enzymatic method 

was almost two times higher than with Rigenera® for thigh and four times higher 

for abdomen. Therefore, they took a shorter time to reach the confluence (fig. 12). 

 

However, at high passages (i.e. 10), no statistically significant difference in number 

was observed (fig. 13). To determine it, a p-value test between the two groups was 

performed and the p-value resulted higher than 0.05. It means that at this level the 

growth rate was comparable. Fig. 14 shows that the ASCs morphology obtained 

with Rigenera® and enzymatic method is similar even at high passages.  
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Fig. 12. Comparison between Rigenera® and the enzymatic method. Growth rate 

comparison between ASCs from Rigenera® and enzymatic method. ASCs harvested from 

the last one growed more rapidly.  
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Fig. 13. Comparison between Rigenera® and the enzymatic method (2). Growth rate and 

microscopic images of ASCs. The histogram shows the ASCs number from thigh and 

abdomen with Rigenera® and collagenase method at passages 2 (p2), 6 (p6). At low 

passages (p2 and p6), the differences between Rigenera® and collagenase method are 

significant (p<0.05). These differences become not significant at higher passages (p10) 

(p>0.05), thus the growth rate becomes comparable. 
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Fig. 14. Comparison between Rigenera® and the enzymatic method. The microscopic 

images demonstrate that the phenotype does not change at high passages (p10). 

 

The immunophenotypic analysis at p0 confirmed the much higher yield of ASCs 

for enzymatic method (12.7% of ASCs from thigh and 4.36% of ASCs from 

abdomen) (fig.15) compared to Rigenera® (0.92% of ASCs from thigh and 0.15% 

of ASCs from abdomen) (fig. 16). Specifically, single antigens or combinations of 

two antigens were tested. As the ASCs isolated by the gold-standard method, they 

strongly express CD105, CD90, CD73 and CD29 and do not express the 

haematopoietic marker CD45. Instead, a different expression of the haematopoietic 

marker CD34 was observed between the two techniques. Indeed, this antigen was 

higher expressed after collagenase digestion, probably meaning that Rigenera® 

method allowed isolating a purer cell population. At higher passage (p10), the 

antigens pattern was similar, confirming the phenotype maintenance. We also 

identified a generally low presence of the Multi-lineage differentiating stress 

enduring cells (MUSE cells), an interesting subpopulation of ASCs, double-

positive for CD105 and SSEA3, which are stress-tolerant, non-tumorigenic, 

pluripotent (they can differentiate into cells of the three germ layers) and with the 

ability of tissue repair [12–14].  
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Fig. 15. Flow cytometry after collagenase digestion. Immunophenotyping analysis of ASCs 

from abdomen and thigh at passages 0 and 10 obtained from collagenase digestion.  
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Fig. 16. Flow cytometry after Rigenera® processing. Immunophenotyping analysis of 

ASCs from abdomen and thigh at passages 0 and 10 obtained from Rigenera® method. The 

marker expression profile was comparable to the one of ASCs from collagenase and 

preserved over passages. 
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4.1.7.2.3.3. Comparison between thigh and abdomen 

 

From microscopic analysis, a first difference between thigh and abdomen was 

detectable: cells from abdomen were less abundant and grow more slowly. In 

addition, the morphology was slightly different: they are more flattened and 

spreaded. (fig.15) From the cell count, ASCs obtained from thigh resulted three 

times more abundant than ASCs from abdomen and they reached the confluence 6 

days before (fig.13). However, the differences were not statistically significant after 

a long period of culture and many passages. (i.e. 10) (p>0.05) (fig.14) The 

immunophenotypic analysis showed that the surface marker expression profile 

between ASCs from thigh and abdomen was comparable and preserved over time. 

(fig.14). 

 

 

4.1.7.2.4. Discussion  

 

The enzymatic method, which has been used for 40 years in the laboratory in order 

to isolate cells, although to be the best, is definitely not compatible with clinics, due 

to the long-lasting procedure and to the laws restrictions. Furthermore, it destroys 

the stem-cell niche, that microenvironment, which surrounds the stem cell, allowing 

interactions with the neighbouring ones and promoting cell survival, proliferation 

and differentiation. Many efforts have been done to establish a mechanical method 

having a yield comparable to the one of collagenase. Unfortunately, so far, none of 

them has the same performance. In addition, in order to use it in vivo, a closed 

device is needed and the method has to be fast, safe, standardized and autologous. 

Rigenera® reply to all this requirements. Herein, we optimised the Rigenera® 

operating timing demonstrating that the best one is 60’. We also proved that 

Rigenera® treatment does not affect the cell morphology, since the cell appearance 

under microscope was not altered and was also preserved over time (passages 

higher than the ninth). Unfortunately, the cell yield and thus, the mean time of 

confluence, was lower, but the replication rate was comparable at higher passages 
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(from the tenth passage). The antibody expression of the typical mesenchymal stem 

cell markers (CD105, CD90, CD73, CD44 and CD29) and the haematopoietic 

markers (CD45 and CD34) was similar to collagenase method and preserved over 

time. Thus, no alteration in the ASCs phenotype was observed. An average 

expression of MUSE SSEA3 antigen was also detected. Surgeons commonly 

harvest adipose tissue from thigh and abdomen. We demonstrated that the ASCs 

yield from thigh was higher, such as the cell replicative rate, which however became 

very similar at high passages (passages higher than the tenth one). On the contrary, 

the marker expression was very similar, also over time. This should lead surgeons 

to prefer thigh as a harvesting site, whenever possible.   

  

 

4.1.7.2.5. Conclusion   

 

The efficacy of the enzymatic method is well-known, but the procedure time is not 

compatible with the clinics and it is forbidden by the law.  

Herein, we demonstrated that Rigenera® can be a valid clinical alternative, since, 

although the yield is lower, the cell phenotype is preserved, also over time, such as 

the ASCs replication rate.   

Furthermore, we showed that the thigh is a preferable harvesting site compared to 

the abdomen, due to the higher ASCs yield having better replicative rate.   

Our future perspective will be to better characterize, through biomolecular analysis, 

both the final product of Rigenera® and the ASCs at passage 1. In particular, in 

order to further validate Rigenera® method, we aim to determine the expression 

level of genes involved in stemness, adipogenic, osteogenic and chondrogenic 

differentiation, angiogenesis, inflammation and cell aging.   



38 
 

4.1.7.3. Hy-tissue SVF® (Fidia Farmaceutici, Abano Terme, Padua, 

Italy) 

 

4.1.7.3.1. Introduction  

 

Hy-tissue SVF® is a disposable kit constituted by a 250 mL homogenization bag 

with a 120 µm filter and a Teflon insert, 20 mL removable plunger syringes and 

syringe caps. The syringe is screws to the bag and the lipoaspirate is injected inside, 

homogenized by massaging for 4’ and aspired though another syringe. Then, the 

product of homogenization is centrifuged at 400 g for 10’’ [73].   

The general aim of the present study was to deeply analyze the efficacy of the Hy-

tissue SVF® procedure in vitro and the results were compared with the gold-

standard collagenase digestion.  

 

 

 

Fig. 17. Hy-Tissue SVF® device [73]. 
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4.1.7.3.2. Material and methods 

 

4.1.7.3.2.1. Adipose tissue samples collection 

 

Adipose tissue was harvested by 11 women subjected to liposuction, aging between 

43 and 65 years old. Patients signed the informed consents before the tissue 

collection. The water-assisted liposuction named BEAULI® protocol was used. It 

is described in detail in [72]. 

 

4.1.7.3.2.2. Cell isolation and culture  

 

Each adipose tissue sample (35 mL) was divided in 2 portions. 5 mL of lipoaspirate 

were digested with collagenase following the collagenase protocol, as reported in 

[23]. The remaining part was processed with the Hy-Tissue SVF® device. 

Specifically, the solution, which exit before massaging (the Klein discard solution) 

was collected in a 50 mL tube separately from the product obtained after massaging 

(post-massage). All the samples were centrifuged at 3000 rpm for 7’. By this step, 

the pellets were separated from the condensed fat. The condensed fat was 

enzymatically digested and the obtained cells were counted and cultured. Instead, 

the pellets were incubated with 10 mL of Red Blood Cell Lysis Solution (Miltenyi 

Biotec, Germany) for 10’ at room temperature, to lyse the erythrocytes. For the 

Fibloblastic-Colony-Forming Unit (CFU-F) assay, 3000 cells were resuspended in 

2 mL of complete medium, plated in a 6-well plate (BD FalconTM, Becton 

Dickinson, Italy) and incubated at 37°C and 5% CO2. Other 10000 cells were 

resuspended in 6 mL of complete medium, plated in a 25 cm2 flask (BD FalconTM, 

Becton Dickinson, Italy) and incubated at 37°C and 5% CO2. The media were first 

changed after 72 hours and, successively, every 24 hours. At confluence, cells were 

detached incubating them with trypsin-EDTA 1% (GIBCO Life Technology, USA) 

at 37°C for 5’ and re-plated respectively in a 25 cm2 or 75 cm2 flask.  
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Fig. 18. Flow chart of the experimental procedure for the Hy-Tissue SVF® study. 
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Fig. 19. Hy-Tissue SVF® product after centrifugation. 

 

 

4.1.7.3.2.3. Morphological analysis and cell viability test 

 

At confluence, the cells were observed under a light microscope (Optika 

Microscopes Italy) furnished with a Leica camera at 20x magnification. Pictures of 

cells obtained with the three different Rigenera® operating timings, enzymatic 

method and from the two different harvesting sites were taken.   

Cell viability and growth rate were evaluated by the cell viability test with trypan 

blue exclusion method. Cell suspension and trypan blue were mixed 1:1. The 

solution was put in a Bürker chamber and cells were counted under a light 

microscope at 20x magnification, excluding the blue non-viable cells. The growth 

rate was determined by the growth curve.   

 

4.1.7.3.2.4. CFU-F assay  

 

3000 cells from each treatment were seeded in triplicate in 6-well plates and after 

7 days of culture the adherent cell colonies were counted.  
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4.1.7.3.2.5. Immunophenotyping   

 

At confluence, the cells were detached with trypsin-EDTA. Around 200000 cells 

were placed in each Eppendorf tube. The pellet was washed with 1 mL of 1% FBS 

in PBS. 5 µl of the dead cell dye propidium iodide (PI) were added to one sample 

and it was incubated for 10’. The other samples were labelled with fluorescent-dye 

conjugated antibodies in a final volume of 100 µL of 1% FBS in PBS and incubated 

for 30’ in ice. The herein examined antibodies were: PerCP-Cyt5.5-conjugated 

CD105 (dilution 1:20), BV421-conjugated CD73 (dilution 1:20), PE-conjugated 

CD34 (dilution1:5). All the antibodies were purchased from BD Biosciences, 

Becton Dickinson Italy S.p.A., Milan. After the incubation, the pellet was rinsed, 

resuspended in 300 µL of 1% FBS in PBS and transferred in flow cytometry tubes. 

The immunophenotyping was performed through a FACS canto II (BD, Becton 

Dickinson, Italy).  

 

4.1.7.3.2.6. Scanning electron microscopy (SEM) 

 

Specimens of lipoaspirates and Hy-Tissue SVF® product were fixed with 

glutaraldehyde 2% in 0.1 M PB, post-fixed in 1% osmium tetraoxide (OsO4)  in the 

same buffer for 1h, dehydrated in concentrations of acetone, critical point dried 

(CPD 030, Balzers, Vaduz, Liechtenstein), fixed to stubs with colloidal silver, 

sputtered with gold by an MED 010 coater (Balzers), and examined with a FEI 

XL30 scanning electron microscope (FEI Company, Eindhoven, Netherlands). 
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4.1.7.3.3. Results 

 

After three days of culture, the attached cells from Hy-Tissue SVF® treatment 

appeared to have a morphology similar to the control, represented by the 

collagenase digestion. Indeed, their shape was long and thin, with a large and round 

nucleus. However, their number was much lower. Furthermore, it was possible to 

observe that more cells grew in the flask of post-massage compared to the one of 

Klein discard solution (fig. 20). 

 

 

Fig. 20. Microscopic images (10x) of ASCs from collagenase (line 1), Hy-Tissue SVF® 

post-massage (line 2) and Hy-Tissue SVF® Klein discard solution (line 3). The cell 

morphology looked similar for all the flasks, but the number of attached cells was lower in 

the last one. 

 

 

The first count was performed immediately after isolation and refers to both ASCs 

and the other cells belonging to the SVF. On average, the Hy-Tissue SVF® (post-
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massage) yield resulted to be 25% compared to collagenase, the Klein discard 

solution yield resulted to be 8% of collagenase (fig. 21).  

 

 

Fig. 21. SVF cells count after isolation. Hy-Tissue SVF® cells were around 25% of 

collagenase digestion cells and Klein discard solution cells were about 8% of cells from 

collagenase digestion.  

 

Once the isolated cells were put in culture, only ASCs attached to the plastic flasks 

and therefore, were selected. ASCs from collagenase digestion reached the 

confluence (around 11000 cells) in 5 days, whereas the Hy-Tissue SVF® cells in 

almost the double of the time. Finally, the growth of ASCs from Klein waste 

solution was extremely slow and they did never reached the confluence and were 

discarded after 18 days, when the growth had almost stopped (fig. 22).  
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Fig. 22. Proliferation rate of cells from collagenase digestion, Hy-Tissue SVF® processing 

and Klein discard solution. The first ones grew slightly faster than the second ones. The 

last ones grew extremely slowly and were discarded.  

 

The number of CFU after 7 days from cells seeding was more than three times 

higher with the collagenase digestion than with the post-massage and six times 

higher than with the pre-massage (fig. 23).  
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Fig. 23. CFU counting after 7 days. CFU after collagenase were much more than after Hy-

Tissue SVF® processing.  

 

At passage 0, the immunophenotypic analysis of Hy-Tissue SVF® cells after 

marking cells with propidium iodide (PI), a mortality marker, revealed that the 

percentage of alive cells was closed to 100% (fig. 24).  

 

 

 

 

 

 

 

Fig. 24. Cell viability test at passage 0. Cells after Hy-Tissue SVF® processing resulted to 

be alive.  

 

 

Negative control (no 

marked cells) 

PI-labelled cells  
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At passage 0, the percentage of positive cells for both the mesenchymal markers 

CD105 and CD73 and the haematopoietic marker CD34 was 2,1% for Hy-Tissue 

SVF® and 5,9% for collagenase digestion (the data evidencing the different 

percentages are not shown). The control, represented by the no marked cells, were 

all negative for these antibodies (fig.25).  

 

 

 

  

 

 

 

 

 

 

Fig. 25. Immunophenotyping at passage 0 of negative control, Hy-Tissue SVF® processing 

and collagenase digestion.  

The immunophenotyping was also performed at higher passages of culture (p=10) 

and cells resulted to be positive for the mesenchymal markers (CD105 and CD73) 

and negative for the hematopoietic one (CD34) (data not shown).  

 

Optical microscopy and SEM of lipoaspirates, before processing, revealed the 

presence of adipocytes aggregates having a diameter ranging from 1 to 2 mm. 
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Instead, the diameter of condensed fat aggregates, obtained after Hy-Tissue SVF® 

processing, was smaller (around 500 µm) (fig. 26). 

 

 

 

 

 

Fig. 26. Optical microscopy and SEM of adipocytes aggregates before (A) and after 

processing (B). 

Optical microscopy SEM 
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4.1.7.3.4. Discussion  

 

Hy-Tissue SVF® was invented to undergo the European restriction concerning the 

clinical use of enzymatic methods to process adipose tissue. Therefore, the two 

techniques have been compared in vitro in the present study. The cell morphology, 

viability and phenotype were not affected by the Hy-Tissue SVF® technique. 

Unfortunately, the cell yield and the replication rate resulted much lower than with 

collagenase digestion. Optical microscopy and SEM demonstrated that the 

processing was able to produce micrografts with diameter of around 500 µm 

constituted by aggregates of adipocytes. Instead, in the Klein discard solution only 

a small number of cells was present. A limitation of Hy-Tissue SVF® technique 

was that the entire procedure needed to be performed manually, so it was too much 

dependent on the operator, with a consequent large variability among the samples. 

 

 

4.1.7.3.5. Conclusion 

 

Hy-Tissue SVF® technique could have been a valid clinical alternative to 

collagenase digestion, if the procedure had been completely automatized.  

Anyway, further work needs to be performed to validate the method. First, some 

molecular analysis should be executed to determine the expression level of genes 

involved, for instance, in stemness, adipogenic, osteogenic and chondrogenic 

differentiation, angiogenesis, inflammation and cell aging. Secondly, the 

experiments should be translated in vivo in an animal model in order to reproduce 

the biological pathways occurring in the human species.  
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4.1.7.4. Hy-tissue Nanofat® (Fidia Farmaceutici, Abano Terme, 

Padua, Italy) 

 

4.1.7.4.1. Introduction  

 

Hy-tissue Nanofat® is a disposable kit constituted by a 10 mL collection bag with 

a 120 µm filter and a Teflon insert, three 10 mL removable plunger syringes and 

syringe caps. Two syringes are screwed to the bag and the lipoaspirate is injected 

inside. The fat is mechanically emulsified shifting it 30 times between the two 

syringes. Afterwards, the emulsion is transferred to the bag. The final product is 

aspired by another 10 mL syringe from the bottom of the collection bag [74], [75]. 

The general aim of the present study was to deeply analyze the efficacy of the Hy-

tissue Nanofat® procedure in vitro and the results were compared with the gold-

standard collagenase digestion.  

 

 

Fig. 27. Hy-Tissue Nanofat® device [75]. 
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4.1.7.4.2. Material and methods 

 

4.1.7.4.2.1. Adipose tissue samples collection 

 

Adipose tissue was harvested by 5 women subjected to liposuction, aging between 

48 and 55 years old. Patients signed the informed consents before the tissue 

collection. The water-assisted liposuction named BEAULI® protocol was used. It 

is described in detail in [72]. 

 

4.1.7.4.2.2. Cell isolation and culture  

 

Each adipose tissue sample (15 mL) was divided in 2 portions. 5 mL of lipoaspirate 

were digested with collagenase following the collagenase protocol, as reported in 

[23]. The remaining 10 mL were processed with the Hy-Tissue Nanofat® device. 

All the samples were centrifuged at 3000 rpm for 7’. Afterwards, they were 

incubated with 10 mL of Red Blood Cell Lysis Solution (Miltenyi Biotec, 

Germany) for 10’ at room temperature, to lyse the erythrocytes. For the 

Fibloblastic-Colony-Forming Unit (CFU-F) assay, 3000 cells were resuspended in 

2 mL of complete medium, plated in a 6-well plate (BD FalconTM, Becton 

Dickinson, Italy) and incubated at 37°C and 5% CO2. Other 10000 cells were 

resuspended in 6 mL of complete medium, plated in a 25 cm2 flask (BD FalconTM, 

Becton Dickinson, Italy) and incubated at 37°C and 5% CO2. The media were first 

changed after 72 hours and, successively, every 24 hours. At confluence, cells were 

detached incubating them with trypsin-EDTA 1% (GIBCO Life Technology, USA) 

at 37°C for 5’ and re-plated respectively in a 25 cm2 or 75 cm2 flask.  
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4.1.7.4.2.3. Morphological analysis and cell viability test  

 

At confluence, the cells were observed under a light microscope (Optika 

Microscopes Italy) furnished with a Leica camera at 20x magnification. 

Cell viability and growth rate were evaluated by the cell viability test with trypan 

blue exclusion method. Cell suspension and trypan blue were mixed 1:1. The 

solution was put in a Bürker chamber and cells were counted under a light 

microscope at 20x magnification, excluding the blue non-viable cells. The growth 

rate was determined by the growth curve.   

 

4.1.7.4.2.4. CFU-F assay  

 

3000 cells from each treatment were seeded in triplicate in 6-well plates and after 

7 days of culture the adherent cell colonies were counted.  

 

4.1.7.4.2.5. Immunophenotyping   

 

At confluence, the cells were detached with trypsin-EDTA. Around 200000 cells 

were placed in each Eppendorf tube. The pellet was washed with 1 mL of 1% FBS 

in PBS and then labelled with fluorescent-dye conjugated antibodies in a final 

volume of 100 µL of 1% FBS in PBS and incubated for 30’ in ice. The herein 

examined antibodies were: PerCP-Cyt5.5-conjugated CD105 (dilution 1:20), 

BV421-conjugated CD73 (dilution 1:20), PE-conjugated CD34 (dilution1:5), 

BV650-conjugated CD45 (dilution 1:20). All the antibodies were purchased from 

BD Biosciences, Becton Dickinson Italy S.p.A., Milan. Alexa Fluor-488-

conjugated SEEA3 (dilution 1:20) was purchased from Aurogene S.R.L, Rome. 

After the incubation, the pellet was rinsed, resuspended in 300 µL of 1% FBS in 

PBS and transferred in flow cytometry tubes. The immunophenotyping was 

performed through a FACS canto II (BD, Becton Dickinson, Italy).  
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4.1.7.4.3. Results 

 

Images at optical microscope showed that cells from Hy-Tissue SVF® had the 

typical morphology of ASCs (fig. 28).  

 

Fig. 28. Image of ASCs obtained from Hy-Tissue SVF® processing technique.  

 

The first count was performed immediately after isolation and refers to both ASCs 

and the other cells belonging to the SVF. On average, the Hy-Tissue SVF® (post-

massage) yield resulted to be 10% compared to collagenase (fig. 29).  

 

Fig. 29. SVF cells count after isolation. Hy-Tissue SVF® cells were around 10% of 

collagenase digestion cells.  
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Once the isolated cells were put in culture, only ASCs attached to the plastic flasks 

and therefore, were selected. The proliferation rate of ASCs from Hy-Tissue 

Nanofat® was about half of those from collagenase digestion. (fig. 30).  

 

 

Fig. 30. Proliferation rate of cells from collagenase digestion and Hy-Tissue Nanofat® 

processing. The first one was the was around the double of the second one.  

 

 

The number of CFU after 7 days from cells seeding for Hy-Tissue Nanofat® was 

the 69% of the number of CFU for collagenase digestion (fig. 31).  
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Fig. 31. CFU counting after 7 days. CFU after Hy-Tissue SVF® processing were the 69% 

of CFU after collagenase digestion.  

 

At passage 0, the percentage of positive cells for both the mesenchymal markers 

CD105 and CD73 and the haematopoietic marker CD34 was 2,7% for Hy-Tissue 

SVF® (the data evidencing the percentage are not shown) (fig.32).  
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Fig. 31. Immunophenotyping at passage 0 of Hy-Tissue SVF® processing.  

 

 

At higher passages (p2 and p10), the mesenchymal markers (CD105 and CD73) 

were highly expressed, whereas the hematopoietic markers were almost no 

expressed (CD45 and CD34). The expression of SSEA3 antigen, identifying the 

MUSE population, was quite variable (fig. 32).  
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Fig. 32. Immunophenotyping of ASCs derived from Hy-Tissue Nanofat® at passages 2 

and 10.   
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4.1.7.4.4. Discussion  

 

Hy-Tissue Nanofat® was invented to undergo the European restriction concerning 

the clinical use of enzymatic methods to process adipose tissue. Therefore, the two 

techniques have been compared in vitro in the present study. The cell morphology, 

viability and phenotype were not affected by the Hy-Tissue Nanofat® technique, 

also over time at higher passages. Unfortunately, the cell yield and the replication 

rate resulted much lower than with collagenase digestion. As the previously 

analysed Hy-Tissue SVF®, a limitation of the present technique was that the entire 

procedure needed to be performed manually, so it was too much dependent on the 

operator, with a consequent large variability among the samples. 

 

 

4.1.7.4.5. Conclusion 

 

Hy-Tissue Nanofat® technique could have been a valid clinical alternative to 

collagenase digestion, if the procedure had been completely automatized.  

Anyway, further work needs to be performed to validate the method. First, some 

molecular analysis should be executed to determine the expression level of genes 

involved, for instance, in stemness, adipogenic, osteogenic and chondrogenic 

differentiation, angiogenesis, inflammation and cell aging. Secondly, the 

experiments should be translated in vivo in an animal model in order to reproduce 

the biological pathways occurring in the human species. 
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4.1.7.4. General conclusion 

 

Rigenera®, Hy-Tissue SVF® and Hy-Tissue Nanofat® are three different 

techniques to process adipose tissue after liposuction and before injection for 

autologous fat transfer. They are all able to isolate SVF and ASCs but with different 

yields, comparing them with the respective yield of collagenase digestion, which 

was considered 100%. Indeed, the SVF isolation yield of Hy-Tissue SVF® was 

around 25%, whereas the one of the other two procedures about 10%. Also, the cell 

replication rate for Hy-Tissue SVF® was around 60%, for Hy-Tissue Nanofat® 

about 45% and for Rigenera® about 40%. However, the standard deviation was 

much smaller, and thus the reproducibility was much higher with Rigenera® since 

it is automated and, therefore independent of the operator.  
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4.2. Adipose tissue engineering  

 

4.2.1. Introduction 

 

4.2.1.1. What is tissue engineering? 

 

Tissue engineering is the use of living cells, biocompatible materials and 

biochemical or physical factors to create human tissues, with the aim to replace the 

injured or damage original ones. It is considered a promising solution to overcome 

the present shortage of organ donor and the long transplant waiting list. In tissue 

engineering, different structures can be used: only cells, only scaffolds or a 

combination of both. Scaffolds can be classified in: autografts, which are built from 

the patient’s cells, allografts, deriving from another individual and xenografts, 

coming from animals. They can also be divided in natural (i.e. collagen, hyaluronic 

acid, chitosan, alginate), which derive from natural extracellular materials and 

synthetic (i.e. polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid 

(PGA)), which are built with artificial material, but miming the natural ones. 

Optimal scaffolds should have specific characteristics: promoting cell adhesion and 

proliferation, biocompatibility, biodegradability, mechanical integrity and porosity, 

adhesion motifs. Scaffolds can have a conductive role, when they simply fill the 

empty spaces, inductive role, when they deliver bioactive molecules and supportive 

role, when they deliver cells [76], [77].  
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Fig. 33. Supportive, conductive and inductive roles of scaffolds [77]. 

 

A further scaffold classification can be made on the basis of fabrication methods: 

hydrogels, which are 3D networks of polymers that absorb a large amount of water, 

fiber and nano-fiber scaffolds, which are made by electrospinning, 3D printed 

scaffolds, which are made by bioprinters and leached scaffolds, whose fabrication 

is template-guided [78], [79]. 

4.2.1.2. Hyaluronic acid  

 

Hyaluronic acid (HA) is a linear polysaccharide constituted of repeating 

disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine linked by β-

1-4.  
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Fig. 34. Chemical structure of hyaluronic acid [80]. 

It is the primary component of the extracellular matrix of the connective tissue. It 

is also abundant in the skin, in the synovial joint fluids, in hyaline cartilage and 

intervertebral disc nucleus.  

It plays important roles in the body, such as lubrication of arthritis joints and in 

some cell functions, such as cell motility and cell matrix adhesion. In human 

organisms, it is synthetized by membrane-bound synthases, can be obtained by 

enzymatic digestion from different tissue and is also produced by bacteria.  

Thanks to its biocompatibility, biodegradability, versatility and its unique chemical-

physical properties, such as the high viscoelasticity, it finds many applications in 

different fields of medicine. For instance, it can be used as a marker for certain 

cancers and liver diseases. Moreover, it can be injected in joints in case of 

osteoarthritis, reducing the inflammation and promoting the synthesis of cartilage 

and endogenous hyaluronic acid. In addition, it is used to lubricate and reduce 

irritation of eyes, being a component of artificial tears. Moreover, it is the most 

common cosmetic filler, since it elasticizes the skin and corrects esthetic defects. 

Finally, it is often used as a drug delivery polymer, improving the drug cellular 

uptake and efficacy.  

4.2.1.3. Hyaluronic acid hydrogels for tissue engineering 

 

In order to form a hydrogel, hyaluronic acid needs to be chemically modified. 

Esterification or crosslinking of carboxyl or hydroxyl group with other molecules, 

such as glutaraldehyde, represent the most used strategies to obtain it. Crosslinking 

strategies are also used to control the HA degradation rate, which naturally occurs 

in physiological environments through hyaluronidases. Small and medium chain 
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lengths of hyaluronic acid have pro-angiogenic and anti-apoptotic properties. [81] 

HA-based hydrogels have many applications in tissue engineering, among them 

cartilage repair, wound healing and skin regeneration, retinal regeneration, 

cardiovascular tissue engineering, brain and neural regeneration and lung 

regeneration. [77], [82]. 

4.2.1.4. Mechanism of cell behavior regulation by hyaluronic acid 

 

Hyaluronic acid directly interacts with many stromal cell surface receptors and 

activate some intracellular signals, influencing important cell functions, such as 

survival, motility or differentiation. The main receptor is Cluster determinant 44 

(CD44). Thanks to this association, an intracellular signal cascade is activated in 

response to extracellular matrix signals. CD44 is also involved in the maintenance 

of cartilage homeostasis and in the catabolism of hyaluronic acid. In addition, HA 

regulates chemokines, metalloproteinases and tissue inhibitors, which are essential 

for the building of an efficient scaffold. 

 

4.2.1.5. Application of HA-based scaffold pre-seeded with MSCs in 

regenerative medicine 

 

As amply described in the review [83], hyaluronic acid scaffolds, alone or in 

combination with other materials, can interact with MSCs and promote, both in 

vitro and in vivo, chondrogenesis, osteogenesis, adipogenesis, wound healing, 

regeneration of ligaments and tendons, muscles and also induce MSCs 

differentiation into insulin-producing cells, hepatocyte-like cells, neurons and glial 

cells.  
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4.2.2. In vitro interaction among hyaluronic acid and ASCs 

 

4.2.2.1. Introduction 

 

Scientific literature amply described the ability of hyaluronic acid to promote the 

differentiation of MSCs into different mature cell types, as summarized in [83]. 

However, very few researches focused on adipogenesis. 

The present study aims to investigate the interaction among hyaluronic acid and 

ASCs. Specifically, this first part shows some in vitro experiments, which had the 

following objectives: 

1. To test the cytotoxicity of three hyaluronic acid powders and three hydrogels 

all crosslinked and having different molecular weights and their ability to promote 

the adipogenesis of ASCs; 

2. to test the interaction between one hyaluronic acid sponge and ASCs.  

 

4.2.2.2. Material and methods 

 

4.2.2.2.1. Hyaluronic acid formulations  

 

Hyaluronic acid powders (50 kDa, 200 kDa and 1000 kDa), crosslinked hydrogels 

(Hyal-System, Hyal-ACP and Hyal-DUO) and FID-119 sponge (200 kDa), 

provided by Fidia Framaceutici SpA (Abano Terme, Padua, Italy) were tested in 

this in vitro study. 

4.2.2.2.2. Adipose tissue samples collection 

 

Adipose tissue was harvested by 10 women subjected to liposuction, aging between 

43 and 61 years old. Patients signed the informed consents before the tissue 
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collection. The water-assisted liposuction named BEAULI® protocol was used. It 

is described in detail in [72]. 

 

 

4.2.2.2.3. Cell isolation and culture  

 

5 mL of lipoaspirate were digested with collagenase following the collagenase 

protocol, as reported in [23]. Afterwards, they were centrifuged at 3000 rpm for 7’. 

Then, they were incubated with 10 mL of Red Blood Cell Lysis Solution (Miltenyi 

Biotec, Germany) for 10’ at room temperature, to lyse the erythrocytes. Cells were 

resuspended in 6 mL of complete medium, plated in a 25 cm2 flask (BD FalconTM, 

Becton Dickinson, Italy) and incubated at 37°C and 5% CO2. The medium was first 

changed after 72 hours and, successively, every 24 hours. At confluence, cells were 

detached incubating them with trypsin-EDTA 1% (GIBCO Life Technology, USA) 

at 37°C for 5’ and re-plated respectively in a 25 cm2 or 75 cm2 flask.  

 

4.2.2.2.4. Powders and fillers: citotoxicity assay 

 

To evaluate the cytotoxicity, 1000 ADAS were seeded in 24-well plates with 

DMEM+10%FBS+1%P/S. After 24 hours, the following HA concentration were 

administered in duplicate in the wells: 20 mg/ml medium, 10 mg/ml medium, 2 

mg/ml medium, 1 mg/ml medium, 500 µg/ml medium, 100 µg/ml medium, 2 µg/ml 

medium. After 3, 7 and 14 days, ADAS were detached with trypsin-EDTA 1% for 

5’ at 37°C, centrifuged for 5’ a 400 g and resuspended in sterile PBS. As a negative 

control, one sample was not treated, whereas, as a positive control, one sample was 

exposed to high temperature (59°C) for a long time (60’). 5 µl of the dead cell dye 

propidium iodide (PI) were added to all samples. The fluorescence was detected 

through the flow cytometer BD FACS Canto II (BD Bioscience). 
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4.2.2.2.5. Powders and fillers: adipogenesis evaluation 

 

To evaluate the adipogenesis, ADAS were seeded on glasses placed on the bottom 

of wells in 24-well plates with DMEM+10%FBS+1%P/S. After 24 hours, they were 

incubated with hyaluronic acid at 37°C for 3, 7 and 14 days. At every time-point, 

cells were fixed with a mix of glutaraldehyde 2% and paraformaldehyde 2% (1:1 

v/v) for 1 hour at 4°C and then glasses were removed from the wells. Afterwards, 

ADAS were incubated with the antibody Alexa Fluor 647-coniugated anti-GLUT4 

(Novus Bio), receptor of mature adipocytes, for 30’ at 4°C. Successively, glasses 

were washed to remove the unspecific labelling, and were put on microscope slides 

and fixed with a mounting medium containing DAPI and an antifade solution. The 

cells were observed using the confocal microscope Leica Confocal, equipped with 

a CCD camera and images were elaborated using the software LASX. 

 

4.2.2.2.6. FID-119 sponge: transmission electron microscopy 

(TEM) of ASCs after incubation with FID-119 

 

To evaluate the cell-scaffold interaction, ADAS were seeded on glasses placed on 

the bottom of wells in 6-well plates with DMEM+10%FBS+1%P/S and incubated 

at 37°C and 5% of CO2. After 48 hours, medium was changed and two specimen of 

FID-119 (0.5 cm3) were positioned in each well for 24 hours, 7 or 14 days. At each 

time point, the sponge and the medium were removed and ADAS were fixed with 

buffered formalin 10% for 1 hour. Afterwards, they were dehydrated in graded 

acetone, and impregnated with Epon 812 resin (Electron Microscopy Sciences, 

Hatfield, PA, USA). The glasses were placed on an aluminium foil and gelatin 

capsules were filled with the resin and turned upside-down onto the glasses. To 

induce resin polymerization, they were put in the oven at 60°C. Then, the resin 

blocks were detached from the glasses by dipping into liquid nitrogen for a few 

seconds. Ultrathin sections were cut with an UltraCut E ultramicrotome (Reichert-

Jung, Leica Microsystems, Wetzlar, Germany) and observed using a Philips 
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Morgagni TEM (FEI Company Italia Srl, Milan, Italy), operating at 80 kV and 

equipped with a Megaview II camera for digital image acquisition. 

 

 

4.2.2.2.7. FID-119 sponge: scanning electron microscopy 

(SEM) of ASCs after incubation with FID-119 

 

To evaluate the adipogenesis, ADAS were seeded on glasses placed on the bottom 

of wells in 6-well plates with DMEM+10%FBS+1%P/S and incubated at 37°C and 

5% of CO2. After 48 hours, medium was changed and two specimen of FID-119 

(0.5 cm3) were positioned in each well for 24 hours, 7 or 14 days. At the end of 

incubation times, specimens of sponges were fixed with glutaraldehyde 2% in 0.1 

M PBS, post-fixed in 1% osmium tetraoxide (OsO4) in the same buffer for 1h, 

dehydrated in concentrations of acetone, vacuum dried, fixed to stubs with colloidal 

silver, sputtered with gold by an MED 010 coater (Balzers), and examined with a 

FEI XL30 SEM (FEI Company, Eindhoven, Netherlands). 
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4.2.2.2.8. FID-119 sponge: histological analysis 

 

To evaluate the adipogenesis, ADAS were seeded on glasses placed on the bottom 

of wells in 6-well plates with DMEM+10%FBS+1%P/S and incubated at 37°C and 

5% of CO2. After 48 hours, medium was changed and two specimen of FID-119 

(0.5 cm3) were positioned in each well for 24 hours, 7 or 14 days. At each time 

point, after removal of the sponge and the medium, ADAS were washed with 0.1 

M PBS and then fixed with 4% formalin in 0.05 M PBS for 20’. After washing with 

distilled water and 60% isopropanol for 2’, cells were stained with a solution 0.35% 

of the lipid marker Oil Red O in isopropanol for 10’ at room temperature. Then, 

they were washed with distilled water, stained with Mayer’s Hematoxylin Bio-

Optica solution for 1’ at room temperature and washed again. Finally, Dako 

Faramount Aqueous Mounting Medium (Agilent) was added and the coverslip was 

applied. Samples were observed at light microscope Olympus BX-51, equipped 

with Nikon CCD camera and Image ProPlus 7.2 software. 
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4.2.2.3. Results 

 

4.2.2.3.1. Powders and fillers  

 

 

  

Fig. 35. Citotoxicity assay. HA powders (left panel) and hydrogels (right panel) 

cytotoxicity test. The cells were marked with PI (a fluorescent dye, which binds dead cells) 

and its fluorescence was measured by flow cytometry after 3, 7 and 14 days from HA 

incubation. Much lower fluorescence than positive controls (dead cells) was detected for 

each HA formulations and time point. 
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Fig. 35 shows the results of cytotoxicity analysis for HA powders (left panel) and 

hydrogels (right panel) at different time points (3, 7 and 14 days) from HA 

incubation. All these values were normalized, using negative controls, represented 

by non-treated normal-growing cells. For each condition, the respective positive 

control, represented by the maximum percentage of cell death, has been provided.  

Obtained values of fluorescence of dead cells for powders were, on average, 10% 

of positive controls (100%) after 3 and 7 days and 50% of positive controls after 14 

days (left panel). The fluorescence values of ASCs treated with hydrogels were 

around 10% of positive controls after 3 and 7 days of incubation and 15% of 

positive controls after 14 days (right panel). 
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Fig. 36. Immunostaining of ASCs treated with HA powders. Cells labelled with anti-

GLUT4 conjugated with Alexa Fluor 647 (red) and DAPI mounting medium (blue) were 

observed under confocal microscope after 3, 7 and 14 days from HA incubation. Images 

all refer to HA concentration equal to 20 mg/mL culture medium. A moderate red 

fluorescence was visible after 3 days of incubation (panels A, D, G), while higher 

fluorescence was visible after 7 (panels B, E, H) and 14 days of incubation (panels C, F, I).  
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Fig. 37. Immunostaining of ASCs treated with HA hydrogels. Cells labelled with anti-

GLUT4 conjugated with Alexa Fluor 647 (red) and DAPI mounting medium (blue) were 

observed under confocal microscope after 3, 7 and 14 days from HA incubation. Images 

all refer to HA concentration equal to 20 mg/mL culture medium. The highest level of 

fluorescence was visible after 3 and 7 days of incubation (panels A, D, G, B, E, H), while 

a less intense fluorescence was detectable after 14 days (panels C, F), being almost absent 

using Hyal-DUO hydrogel (panel I). 
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Fig. 36 and 37 show the results of the immunostaining of ASCs treated, 

respectively, with HA powders and hydrogels and labelled with anti-GLUT4 

antibody, a receptor expressed in mature adipocytes, conjugated with the 

fluorophore Alexa Fluor 647 (red) and DAPI mounting medium (blue), which binds 

to cell nuclei. They were incubated with the different HA formulations for 3, 7 and 

14 days and, afterwards, they were observed under confocal microscope.  

ASCs incubated with 50 kDa, 200 kDa HA and 1000 kDa powders showed a level 

of red fluorescence, and therefore a GLUT4 level of expression, generally 

dependent on time. In fact, the maximum level of fluorescence was detected after  

14 days of incubation (fig. 36).  

ASCs treated with HA-based hydrogels showed the highest level of fluorescence 

after 7 days of incubation. After 14 days of HA incubation, the red fluorescence 

was generally less intense and almost undetectable using the Hyal-DUO hydrogel 

(fig. 37). 
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4.2.2.3.2. FID-119 sponge 

 

 

Fig. 38. FID-119 ultrastructural microscopy. SEM performed on samples of FID-119 

evidenced a lamellar structure characterized by small alveoli and HA segments vertically 

oriented. FID-119 appeared as microporous material with smooth lamellar layers. 

 

Fig. 39. SEM of FID-119 cultured with ASCs after 24 hours. The images clearly show the 

interaction between the ASCs and the hyaluronic acid fibers. ASCs are characterized by 

spherical shapes and rough membranes. Moreover, cells self-organize into clusters. 
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Fig. 38 shows the FID-119 ultrastructure obtained by SEM. The sponge appeared 

as a microporous material with small alveoli and smooth lamellar layers. 

24 hours after incubation numerous alveoli were populated by cells, as shown in 

Fig. 39. At SEM, cells appeared characterized by spherical shape and rough 

membrane and they organized in clusters. 

 

Fig. 40. TEM (A-D) and optical microscopy after staining with Red Oil O (E-F) after 24 

hours. Few lipid droplets were visible. 

 

Fig. 41. TEM (A-D) and optical microscopy after staining with Oil Red O (E-F) 

after 7 days. The lipid change incremented and also Golgi apparatus and 

endoplasmic reticulum were abundant and well detectable.     
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Fig. 42. TEM (A-B) and optical microscopy after staining with Oil Red O (C-D) after 14 

days. TEM images clearly shows that the cytoplasm was completely full of lipid droplets 

and the nucleus was flat and near the cytoplasmic membrane. The cell morphology was 

typical of a mature adipocyte. Optical microscopy images confirm the abundance of lipid 

droplets. 

 

After 24 hours from incubation with FID-119, at TEM, ADAS appeared 

characterized by irregular shape and by the presence of small lipid droplets in the 

cytosol (fig. 40. A). At higher magnifications numerous mitochondria and glycogen 

depots were detectable (fig. 40.B, 40.C, 40.D). 

At optical microscope after staining with Oil Red O (fig. 40.E, 40.F) few lipid 

droplets were visible. 

After 7 day from incubation with FID-119, Golgi apparatus and endoplasmic 

reticulum were more abundant and well-detectable at TEM (fig. 41.A, 41.B, 41.C, 

41.D)  

Observing Oil Red O stained cells through optical microscope, the lipid charge 

appeared incremented. (fig. 41.E, 41.F) 

After 14 days from incubation with FID-119, the nucleus was located in a peripheral 

position (fig. 42.A, 42.B) and the cell cytoplasm was richer of lipid droplets (fig. 

42.C, 42.D). 
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4.2.2.4. Discussion  

 

In the present study, different hyaluronic acid formulations, specifically three 

powders and three fillers of different molecular weights were tested for their safety 

and their ability to promote ASCs adipogenic differentiation in vitro.  

Since the resultant cell death rate of ASCs treated with all the hyaluronic acid 

powders and fillers was comparable with the negative control and much lower than 

the positive control, it was demonstrated that no formulation was cytotoxic. 

Furthermore, since the expression of GLUT4 was high, the hyaluronic acid powders 

and fillers generally promoted the adipogenesis of ASCs in vitro. 

Finally, ultrastructural and optical analysis showed that ASCs, once incubated with 

FID-119 hyaluronic acid sponge in vitro, interacted with and started to modify their 

morphology even after 24 hours, becoming mature adipocytes after 14 days. 

 

4.2.2.5. Conclusion 

 

The present study clearly evidences how different formulations of hyaluronic acid 

are safe and able to promote the adipogenic differentiation of ASCs. Biomolecular 

analysis will be performed in order to assess the level of expression of specific 

adipogenic markers.  

 

4.2.3. In vivo interaction among hyaluronic acid and fat 

 

4.2.3.1. Introduction 

 

The present study aims to investigate the effect of combination of hyaluronic acid 

and fat grafting in tissue reconstruction and regeneration. Specifically, some in vivo 

experiments are presented and they had the following objectives: 
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1. to evaluate the volume maintenance over time of the FID-119 sponge 

combined with fat grafting compared to the sponge alone and fat grafting alone; 

2. to evaluate the adipogenesis process, through histological analyses on the 

excised implants.  

4.2.3.2. Material and methods 

 

4.2.3.2.1. Hyaluronic acid formulations 

 

Hyaluronic acid FID-119 sponge (200 kDa), provided by Fidia Framaceutici SpA 

(Abano Terme, Padua, Italy) was tested in this in vivo study. 

4.2.3.2.2. Adipose tissue collection 

 

Adipose tissue was harvested by 8 women subjected to liposuction, aging between 

41 and 62 years old. Patients signed the informed consents before the tissue 

collection. The water-assisted liposuction named BEAULI® protocol was used. It 

is described in detail in [72]. 

 

4.2.3.2.3. Animals 

 

60 homozygote male nude mice, five weeks old, weighting 28-30 g, were purchased 

from Harlan Laboratories (Udine, Italy). They were housed in a temperature- and 

humidity- controlled environment, having free access to mouse chow and tap water, 

following the instruction of Interdepartmental Centre of Experimental Research 

Service (CIRSAL) of Verona University. Mice were randomly divided in three 

groups: 

1. control group: 20 mice undergoing subcutaneous injection of adipose tissue 

(fat grafting); 

2. control group: 20 mice undergoing subcutaneous implantation of the FID-

119 sponge; 
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3. experimental group: 20 mice undergoing fat grafting together with the 

implantation of the FID-119 sponge. 

For subcutaneous grafts, animals were anesthetized with a mixture of air and 

isofluorane 2%, positioned on heated bed in prone position, incised on the right 

flank and grafted with sponges and/or adipose tissue depending on the belonging 

group. 

4.2.3.2.4. Magnetic resonance imaging (MRI)  

 

MRI was performed using a spectrometer operating at 4.7 T and equipped with an 

actively shielded gradient system (Bruker, Germany) having a maximum gradient 

strength of 40 G/cm. The animals were anesthetized by inhalation of a mixture of 

air and oxygen containing 0.5% of isofluorane, and placed in supine position in a 

35 mm inner-diameter, birdcage coil. A sensor for breath monitoring was positioned 

at the level of the animal chest. The monitoring of subcutaneous implants was 

performed used axial and sagittal oriented T2-weighted sequences having the 

following parameters: TE= 56 ms; TR= 5000 ms; FOV= 4x4 cm2; slice thickness 

0.1 cm=; flip angle = 180°, MTX= 256x256 pixels, NEX=1.    

 

4.2.3.2.5. 3D reconstruction of subcutaneous implants 

 

The DICOM data acquired by MRI were imported into Amira 5.2.0. The 

segmentation was performed with semi-automatic software tools (mainly blow tool) 

and completed manually slice by slice. The display surface was rendered with high 

resolution and shading. 
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4.2.3.2.6. Histology of subcutaneous implants 

 

After 14 days from the implantation, mice were sacrificed and subcutaneous grafts 

were excised. Specimens were fixed in 10% buffered formalin for 2 hours, 

dehydrated by immersion in a graded ethanol series, clarified in xylene and paraffin 

embedded. Sections of 5 µm were obtained using a microtome equipped with 

rotating blade. Sections were stained with hematoxylin and eosin and then observed 

at light microscope Olympus BX-51, equipped with Nikon CCD camera and Image 

ProPlus 7.2 software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

4.2.3.3. Results 

 

Fig. 43. MRI of implanted volumes after 24 hours (A.1-B.1-C.1), 1 week (A.2-B.2-C.2) 

and 2 weeks (A.3-B.3-C.3). The implant is represented by the sponge and adipose tissue 

(A.1-A.2-A.3), the sponge alone (B.1-B.2-B.3) and adipose tissue alone (C.1-C.2-C.3). 

 

MRI show a good maintenance of volumes over time, when the implant is 

constituted by adipose tissue and FID-119 together (Fig. 43.A.1, 43.A.2, 43.A.3), 

and, to a lesser extent, adipose tissue alone (Fig. 43.C.1, 43.C.2, 43.C.3).  

On the contrary, FID-119 alone was more rapidly adsorbed and almost not more 

visible after two weeks from the implantation (Fig. 43.B.1, 43.B.2, 43.B.3). 
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Fig. 44. Histological analysis. It was performed on sections of excised implants of sponge 

and adipose tissue (A.5-A.6), sponge alone (B.5-B.6) and adipose tissue alone (C.5-C.6). 

 

The excised implants of adipose tissue and FID-119 show large portions of adipose 

tissue, probably of new formation, in the lamellar structure of HA-based scaffolds. 

Adipocytes were characterized by well-preserved membranes and circular shapes 

typical of mature adipocytes. A low-grade of inflammation was observable (fig. 

44.A.5, 44.A.6). 

The excised implants of FID-119 alone were characterized by lamellar aspect with 

some interposed adipocytes. Cells were characterized by unilocular aspect but had 

reduced dimensions of 40-50 µm. Moreover, adipocytes appeared stressed and their 

membranes were sometimes broken (fig. 44.B.5, 44.B.6). 

The excised implants of adipose tissue alone were characterized by the typical 

aspect of adipose tissue. Adipocytes were unilocular, had thin membranes and 

circular shape. The dimension of adipocytes ranged between 50 and 70 µm (fig. 

44.C.5, 44.C.6). 
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4.2.3.4. Discussion  

 

In the present study, a hyaluronic acid sponge was tested for its ability to promote 

adipogenic differentiation in vivo, when implanted together with the injection of 

some adipose tissue. Specifically, MRI for testing the maintenance of volume over 

time and histology were performed, using the sponge alone and the fat grafting 

alone as controls.  

The best results in terms of volume maintenance were obtained with the 

combination of sponge and fat. Also, the histology showed a good interaction 

between the sponge and the adipose tissue and the formation of new adipocytes.  

 

 

4.2.3.5. Conclusion 

 

The present study suggests that the hyaluronic acid sponge well interacts with fat 

grafting and is able to promote adipogenic differentiation. However, biomolecular 

analysis will be performed in order to assess the level of expression of specific 

adipogenic markers and confirm the qualitative data. 

  



84 
 

  

 

5. CONCLUSION 
 

Beside adipose tissue had been considered a discard product for many years, 

recently its role as regenerative agent has been widely recognized. It is especially 

played by its multipotent stromal cells, ASCs, cells characterized by self-renewal 

and multipotency properties.  

This thesis has presented two different strategies to reconstruct or repair damaged 

tissues and organs through adipose tissue: autologous fat transfer and adipose tissue 

engineering. In the autologous fat transfer, autologous adipose tissue is harvested 

from one part of the body, purified through some processing techniques and 

reinjected where necessary. In tissue engineering, some scaffolds made of natural 

or synthetic materials, in this case hyaluronic acid, are used in combination with 

ASCs and, sometimes, growth factors to repair or reconstruct tissues. Both the 

strategies have been demonstrated to be effective at least in vitro, but further studies 

both in vitro, but especially in vivo, need to be performed.  

The scientific community should intensify the study of adipose tissue, both in its 

theoretical and applied aspects, because this tissue surely hides other many 

interesting potentialities in reconstructive and regenerative surgery, but also in 

many other fields of medicine! 
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