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SYNOPSIS OF THE STUDY 

 

Background:  

Psoriasis is a multifactorial disorder caused by inherited susceptibility alleles and environmental 

factors. In the current pathogenic mechanisms model, the cross-talk between autoreactive T-

cells and resident keratinocytes plays a central role for the initiation and progression of disease. 

Early upstream events occurring in psoriasis include induction of innate immunity responses 

triggered by keratinocyte-derived autoantigens, which can activate dendritic cells (DC). DC, in 

turn, drive expansion of T lymphocytes, typically T helper 17 in the initial phase and IFN--

producing T cells during the chronic phase of the disease, by releasing IL-23 and IL-12, 

respectively. T cells present in active psoriatic skin establish a cytokine milieu, responsible for 

the local aberrant inflammatory responses and the impaired differentiation and cornification 

processes in the epidermis. 

Genetic epidemiologic studies put in evidence that the disease inheritability is up to 60-90%, 

which is one of the major reported for multifactorial diseases. In support of this, studies carried 

out on genome-wide genotyping platforms have now identified 63 psoriasis susceptibility loci. 

Specific single-nucleotide polymorphisms (SNPs) were, thus, identified in genes involved in 

inflammatory pathways, epidermal differentiation functions, as well as in innate and adaptive 

immune responses. However, the major genetic determinant of psoriasis resides in PSORS1 

locus, mapping to the MHC region on chromosome 6p21. This locus spans the MHC class I 

region and encompasses nine genes, including HLA-C, CDSN and CCHCR1, that are highly 

polymorphic. In particular, HLA-Cw6 allele is known as the strongest psoriasis susceptibility 

genetic factor and supposed to be involved in antigen presentation to CD8+ T cells. 

Immunomodulation with biologics targeting pathogenic molecules are highly effective in the 

treatment of psoriasis, as well as of various immune-mediated inflammatory diseases. 

Nowadays, a variety of biological therapies are available for psoriatic patients. These agents are 

potentially highly effective, and include the anti-TNF biologics, the anti-IL-12/23 inhibitor, the 

newer class of biologicals targeting IL-17 and its receptor, and the lastly identified anti-IL-

23p19 drugs. These agents are potentially highly effective, even though they may differ in time 

until a clinically satisfactory response is reached. In addition, a variable percentage of patients 

does not or only partially respond to biological therapies or develops cutaneous reactions, 

namely paradoxical psoriasis, as side effects. These often requires the interruption of the 

imputable drug and switching to other therapies.   

Several evidences have related the mechanisms underlying drug response variability to the 

presence of specific genetic variants. To date, SNPs located in HLA-C, TNFAIP3, TNFA, 
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TNFRSF1B, IL-12B and IL-23A genes have been associated to different response to anti-TNF 

and anti-IL-12/IL-23 drugs. Genetic factors have also been postulated to play a pivotal role in 

the development of paradoxical psoriasiform reactions to anti-TNFs. 

 

Research hypothesis and aims:  

Considering the variable response to biological drugs, the possible undesirable side-effects and, 

not least, the high cost of biological therapies, the identification of genetic biomarkers to predict 

treatment response of psoriatic patients to biological drugs, either in terms of efficacy/inefficacy 

or safety improvement of the drugs, could greatly impact clinical decisions. We hypothesize 

that the variability of response of psoriatic patients to biologics, in particular to anti-IL-17A or 

to anti-IL-12/IL-23 drugs, as well as of patients treated with TNF blockers and developing 

psoriasis-like paradoxical reactions, can be attributed to their genetic background.  

Therefore, the present research aimed at identifying: i) the genetic variants of psoriasis-related 

risk loci associating with clinical responsiveness to anti-IL17A or anti-IL12/IL-23 drugs in two 

large cohorts of patients affected by mild-to-severe plaque psoriasis; ii) the genetic variants or 

SNPs and the immunological profiles, associating with the development of paradoxical 

psoriasis in patients undergone anti-TNF therapy for hidradenitis suppurativa (HS) condition.  

 

Materials and Methods: 

A panel of SNPs associated with psoriasis-related risk loci were analyzed in two cohorts of 

patients diagnosed with moderate-to-severe chronic plaque-type psoriasis, treated with 

secukinumab (n = 63) or ustekinumab (n = 150). The severity of psoriasis and response to 

treatment were evaluated using the Psoriasis Area and Severity Index (PASI) score and then 

at follow-up visits on weeks 8, 16, 24, 40, 56, 64, 72, 88, 100 (secukinumab) or on weeks 4, 

12, 28, 40, 52, 64, 76, 88, 100 (ustekinumab). The selected SNPoma, composed of n = 44 

SNPs, highly represented in the psoriatic populations (minor allele frequency > 0.3) and 

potentially implicated in immune responses (T-cell signaling, antigen presentation), as well 

as inflammatory pathways and skin barrier function, were evaluated by a Next-Generation 

Sequencing (NGS) technology. Differences between the groups based on the clinical 

response to anti-ILs (≥ 75% reduction of PASI score, PASI75; ≥ 90% reduction of PASI, 

PASI90; 100% reduction of PASI, PASI100) were evaluated by statistical test and univariate 

logistic regression analysis.  

SNP analysis was also performed on three HS patients, who developed paradoxical psoriasis 

following adalimumab therapy for HS condition. Immunological profiles were examined by 
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immunohistochemistry and real-time PCR in skin biopsies kept from paradoxical skin 

lesions, as well as by flow cytometry on blood and skin-derived T cells. The immunological 

patterns of paradoxical psoriasis were compared with those present in canonical psoriasis.  

 

Results:  

A panel of SNPs in HLA-C region were found to associate to a better response to secukinumab 

treatment. In particular, a significant association between four SNPs in HLA-C region, namely 

HLA-Cw6 v1 (classical HLA-Cw6), HLA-Cw6 v2, HLA-Cw6 v3, HLA-Cw6 LD, and response 

to the drug was found. Psoriatic patients carrying HLA-Cw6 v1 reached PASI100 faster than 

HLA-Cw6-neg patients, and maintained this result up to week 24. HLA-Cw6-pos patients also 

showed a tendency to greater respond to secukinumab, in terms of achievement of PASI90 and 

PASI100. However, the most significant associations were observed for HLA-Cw6 v2 and 

HLA-Cw6 LD variants, whose presence in psoriatic patients was associated to the achievements 

of PASI75 or PASI 90 starting from week 16 or week 4, respectively, up to week 56. 

Interestingly, the absence of HLA-Cw6 v3 allele in psoriatic population guaranteed a better 

response to secukinumab, in terms of achievement of PASI75 at different time-points of 

evaluation (weeks 24, 40, 56, 64, 72, 88, 100). 

Differently from secukinumab-treated patients, ustekinumab-treated cohort was strongly 

influenced by HLA-Cw6 v1 allele status, but not by HLA-Cw6 LD, HLA-Cw6 v2, or HLA-Cw6 

v3 variants. The association between HLA-Cw6 v1 allele presence and response to ustekinumab 

was significant for patients reaching PASI90 or PASI100, starting from week 12 up to week 

100. In addition, two SNPs in TNFA gene determined a greater and long-lasting response to 

ustekinumab. Similarly, the presence or absence of two SNPs in CDSN gene, respectively, 

strongly associated with a good response to ustekinumab (PASI90), which was maintained up 

to 100 weeks. PASI90 was also reached by the majority of ustekinumab-treated patients 

carrying SNP in CCHCR1 gene. 

The SNP analysis of the three HS patients with paradoxical reactions showed that they carried 

out allelic variants in genes predisposing to psoriasis. Among them, SNPs in ERAP1, NFKBIZ 

and TNFAIP genes and in the HLA-C genomic region were found. Moreover, paradoxical 

psoriasiform skin reactions showed immunological features common to acute psoriasis, 

characterized by cellular players of innate immunity. In addition, type I IFNs typical of acute 

psoriasis were highly expressed in paradoxical skin reactions, concomitantly to other innate 

immunity molecules, such as the catheledicin LL37 and lymphotoxin (LT)- and LT-

Differently from classical psoriasis, psoriasiform lesions of HS patients showed a reduced 
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number of IFN- and TNF--releasing T lymphocytes. On the contrary, IL-22 

immunoreactivity significantly augmented together with the IL-36 staining. 

 

Implication of the study /Conclusions:  

SNPs in HLA-C region, including HLA-Cw6 psoriasis allele, and in CDSN, CCHCR1 and 

TNFA genes, all mapping in PSORS1 locus, were found to associate to a better response to 

secukinumab or to ustekinumab treatments in two large cohorts of psoriatic patients. Thus, 

determination of these SNP status could be useful to predict the clinical response to 

secukinumab or ustekinumab therapies. 

The present research also identified a panel of allelic variants present in HLA-C region, as well 

as in ERAP1, NFKBIZ and TNFAIP3 genes in three patients showing paradoxical psoriasis 

reactions after anti-TNF- therapy. Investigations on the immunological profiles of patients 

with paradoxical psoriasis permitted to unveil new pathogenic mechanisms involving innate 

immunity pathways, and in common with acute psoriasis.  

As a whole, these data are potentially of great interest since very few studies investigated the 

association between polymorphisms and paradoxical psoriasis. In the future, it will be necessary 

to extend the analysis of SNPs predisposing to psoriasis in larger cohorts of patients manifesting 

paradoxical skin reactions to anti-TNF drugs, but also in a population successfully responding 

to anti-TNF treatment to identify possible difference in the genetic background of the patients. 

Considering the increased incidence of paradoxical psoriasiform reactions, it becomes 

increasingly necessary to investigate the immunological and genetic profiles of patients 

developing these reactions, in order to understand the pathogenic mechanisms and to predict 

the risk of developing paradoxical effects.  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Clinical features of psoriasis 

 

Psoriasis is a chronic, relapsing immune-mediated disease involving the skin of genetically 

predisposed individuals. It affects approximately 2-3% of the general population and can 

develop nearly equally in women and men, across all socioeconomic groups and at any age, 

following a bimodal age of onset. In > 50% of patients it presents in the first three decades of 

life, in particular, the mean age for the first presentation can range from 15 to 22 years of age, 

with a second peak occurring at 57-60 years [1]. 

Individual lesions vary from pinpoint to large plaque, or even generalized erythroderma. More 

specifically, the clinical spectrum of psoriasis includes several variants, such as plaque, guttate, 

inverse, erythrodermic, pustular, palmo-plantar, and drug-associated psoriasis. Plaque-type 

psoriasis, occurring in 85–90% of affected patients, is the most common and well-recognized 

morphologic presentation of psoriasis and can be fairly easily diagnosed as characteristic red 

colored plaques with well-defined borders and silvery-white dry scale, located on the scalp, 

extensor surfaces of the elbows and knees (Fig. 1a), trunk, limbs and lumbosacral area (Fig. 

1b), although it can be more extensive. In approximately one-third of patients, more than 10% 

of the body is covered, and this is termed moderate-to-severe psoriasis. Clinical disease can 

also be assessed by a trained health-care practitioner, using the Psoriasis Activity and Severity 

Index (PASI) score. This tool ranks severity and area of erythema (redness), induration 

(thickness), and desquamation (scale) of the plaques in different body sections, with 72 as the 

maximal score. A baseline PASI score is assigned, the score is then re-evaluated at various time 

points in subsequent visits to estimate the efficacy of the assigned treatment. In this way, the 

progress of psoriasis is calculated, and most clinical studies consider that a 75% improvement 

from baseline is required for the treatment to be considered successful (reported as PASI75).  

Evidence shows an association of psoriasis with arthritis, depression, inflammatory bowel 

disease and cardiovascular diseases. Several other co-morbidity conditions have been proposed 

as related to the chronic inflammatory status of psoriasis, such as metabolic syndrome, 

atherosclerosis, nonalcoholic fatty liver disease, chronic obstructive pulmonary disease, 

osteoporosis and celiac disease. Co-morbidities related to lifestyle (i.e. smoking habit, alcohol 

consumption, anxiety) or treatments (i.e. dyslipidemia, nephrotoxicity, hypertension, 

hepatotoxicity, skin cancer) are also notable [2]. 

The classic histological features of psoriasis can help explain the clinical appearance (Fig. 1c). 

The epidermis is greatly thickened (acanthosis), as the keratinocytes move through the 
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epidermis over 4–5 days, a ten-folds acceleration, but the rate of desquamation remains the 

same, thus leading to epidermal hyperplasia. There is a loss of the normal granular layer, 

thickened stratum corneum (hyperkeratosis), and retention of nuclei in the upper layers and 

stratum corneum (parakeratosis). The epidermis is infiltrated by neutrophils which are collect 

in Kogoj pustules and Munro’s microabscesses. In the dermis, an inflammatory infiltrate 

composed mainly by CD3+ T cells, dendritic cells, macrophages, mast cells and neutrophils are 

observed. The erythema of psoriasis lesions is due to a greater number of dilated dermal blood 

vessels in the dermal papillae. 

Figure 1. Clinical and histological features of psoriasis. (a) Clinical appearance of chronic psoriasis vulgaris, 

showing well-defined erythematous scaly plaques of psoriasis on elbows and knees. (b) Back showing more 

extensive psoriasis lesions. (c) Histology of nonlesional and lesional skin biopsy at the same magnification, with 

hematoxylin and eosin stain (H&E). The epidermis is seen as a dark layer due to keratinocyte nuclei and forms an 

undulating border with the pink dermis below. Nuclei of resident structural and immune cells are seen in the 

dermis. Lesional psoriasis skin shows a greatly thickened epidermis (acanthosis) with elongations into the dermis 

(rete ridges). Retention of nuclei (parakeratosis) can be seen in the thickened stratum corneum. There is a dramatic 

increase in the number of cells in the dermis, composed predominantly of DCs and T cells. All images 10x 

magnification. From figure 3 of ref [3].  
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Lesions can spontaneously resolve, although rarely. Resolving lesions after therapy can be 

encased by a distinctive rim of blanching (Woronoff’s ring), predictive of clearing and 

histologically characterized by orthokeratosis, that is thickening of the stratum corneum without 

parakeratosis and restoration of the stratum granulosum. 

 

1.2 Pathogenic mechanism and genetic predisposition to psoriasis 

 

Initiation of complex diseases, such as psoriasis, takes place in genetically predisposed 

individuals in which a dysregulated immune response occurs following exposure to certain 

environmental triggers. In particular, psoriasis can be triggered by many environmental factors 

that can induce psoriasis de novo or exacerbate skin lesions. Trigger factors range from 

nonspecific stimuli including injury and trauma (termed the Koebner effect) to more specific 

triggers such as infection by pathogens (i. e. streptococci) or drugs (i. e. lithium, interferon 

(IFN)-). Altough the exact mechanisms of the induction of psoriasis are not fully elucidated, 

all of these factor generate a pathogenetic cascade involving dynamic interactions between 

multiple cell types and numerous cytokines, that culminates in the expansion of lesional and/or 

circulating T cells in the psoriatic skin [3].  

The epidermis and derma of the psoriatic skin have a central role in the reaction of the stimuli 

previously listed, as they are being able to participate in both innate or adaptative immune 

responses. Specifically, different cell types can participate such as Langerhans cells (LCs), 

myeloid dendritic cells (mDCs), plasmacytoid dendritic cells (pDCs), macrophages, T 

lymphocytes and neutrophils [4,5]. Among all, a key role is played by keratinocytes which can: 

1) proliferate in response to cytokines such as IL-22, to accelerate loss of surface and eliminate 

pathogens; 2) increase synthesis of innate effector molecules such as antimicrobial peptides 

(AMPs), and 3) direct migration of new T-cell subsets and other immune effector cells into the 

skin through production of chemokines [6,7]. In particular, injury to the skin causes cell death 

and the production of the endogenous AMPs, such as LL37, by keratinocytes. DNA 

fragment/LL37 complexes bind to intracellular Toll-like receptor 9 (TLR9) in pDCs, which 

causes induction of type I interferons (IFN-α and -β). In parallel, RNA fragments/LL37 

complexes activate pDCs through TLR7, and mDCs through TLR8. Specifically, DCs increase 

the production of IL-12 and IL-23, essential for T-cell differentiation towards Th1/Th17 cells, 

respectively, and consequent T lymphocytes accumulation into the skin. Concomitantly, 

epidermal injury can trigger high-level production of CC chemokine ligands20 (CCL20) in 

keratinocytes, which in turn has the ability to attract CD11c+ mDCs into the dermis, as well as 

CC chemokine receptor6 (CCR6+) IL-17-producing T cells. Alternatively, infection may 
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activate innate immune pathways leading to production of tumor necrosis factor (TNF)- or 

IFN- in the skin. These cytokines, then, have the ability to induce chemokines, which would 

control recruitment of specific leukocyte effector population. In particular TNF- serves to 

induce CCL20, which leads to mDC, Th17 and neutrophil recruitment, and IFN-leads to 

maturation of mDCs with the ability to drive Th1 responses [8].  

At this point, the switch from innate immune response of early disease to adaptative immune 

response of chronic disease takes place. Hence, activated mDCs migrates into regional lymph 

nodes and drive T-cell activation with consequence production of the principal cytokines found 

in psoriasis (Fig. 2a) [9].  

 

 

 

 

 

Figure 2. Pathways for initiation and maintenance of psoriasis. (a) Early disease: Imiquimod (IMQ), a TLR7 

agonist, can activate plasmacytoid dendritic cells (pDCs) to produce interferons (IFN). LL37, a peptide derived 

from cathelicidin, may have an important role in the initiation of psoriasis lesions via this pathway. LL37 released 

from keratinocytes (KCs) can bind to nucleic acids to activate pDCs to release IFN-α/β. LL37/RNA complexes 

can also activate resident myeloid DCs to produce IL-12 and IL-23, key psoriatic cytokines. (b) Chronic disease: 

The major pathogenic pathway in psoriasis occurs when (I) mature dermal DCs and inflammatory myeloid DCs 

produce cytokines such as IL-23 and IL-12. (II) These cytokines activate T17 (Th17 and Tc17), Th1, and Th22 

cells to contribute to the cytokine milieu and further act on keratinocytes. (III)  From figure 4 of ref [3]. 



13 
 

In this manner, Th1 activation, leads to an increased production of IFN- that induces synthesis 

of chemokines (CXCL9, CXCL10 and CXCL11) and can recruit more Th1 cells. Likewise, 

Th17 activation, leads to IL-17 release that activates CCL20, CXCL1, CXCL2 and CXCL8 

synthesis, as well as the recruitment of more IL-17 and neutrophils into the skin. Activation of 

Th22 cells results in increased production of IL-22, which induces keratinocyte hyperplasia, 

with increased synthesis of S100 proteins and other AMPs, with consequent accelerated loss of 

surface keratinocytes and elimination of pathogens. In parallel, CD8+ T-cell populations make 

the same range of cytokines, so these have been termed Tc1, Tc17, and Tc22, respectively [10–

12]. 

These different subsets of T cells have a different hierarchical role in the T cell-mediated 

inflammatory cascade of psoriatic skin, and it is possible to distinguish the subsets that initiate 

the disease, those involved in the establishment of the self-sustaining amplification loop that 

leads to the cutaneous clinical manifestation [13]. Of note, the development of chronic disease 

activity may also be supported by mature DCs (DC-LAMP+) that form cellular clusters with T 

cells in the dermis, and this structure can be considered as a form of induced skin-association 

lymphoid tissues (iSALT) or tertiary lymphoid tissue. Psoriasis could also results from failure 

to turn-off inflammation, which is perpetuated by this cutaneous tertiary lymphoid tissue (Fig. 

2b) [3]. 

Finally, the inflammatory cytochine milieu also influences the immune functions of fibroblasts 

and endothelium, with the latter being critical for leukocyte trafficking and extravasation [14]. 

While the associations linking environmental triggers with dysregulated immune processes is 

well documented in psoriasis, epidemiological studies have repeatedly demonstrated that this 

condition has an important genetic component (Fig. 3).  

The genetic basis of psoriasis has long been recognized, since family members of patients with 

psoriasis are at greater risk of developing the disease. That a genetic component may account 

for this finding is supported by studies among twins where the concordance rate of psoriasis is 

approximately 70% in monozygotic twins and 20% in dizygotic twins, depending on the study 

and population [15]. 

It is known that three billion base pairs exist in the human genome, and only 3-5% of these 

sequences code for proteins. A disease-causing mutation is usually quite rare (< 1%) and is 

commonly found in the coding or regulatory region. Although the psoriasis in mainly linked to 

polymorphisms within the human leukocyte antigen (HLA) locus, particularly HLA-Cw6 [16], 

the genetic factors of psoriasis is complex. It is assumed that there is no single disease gene, 

but, rather, a complex set of gene variants, resulting in an aberrant response to environmental 
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factors, and also in an intricate mode of inheritance, not explained by simple Mendelian 

genetics.  

 

Several psoriasis single nucleotide polymorphisms (SNPs) have been identified and thanks to 

classic genome-wide association study (GWAS) and linkage analysis, many other loci and 

polymorphism have emerged as imparting some susceptibility to psoriasis as well, and has 

identified at least 34 chromosomal loci with statistically significant linkage to psoriasis; these 

loci are called psoriasis susceptibility 1 through 34 (PSORS1 through PSORS34) [17,18]. 

The genes identified from GWAS can be grouped into four pathways (Fig. 4) [19]. Firstly, skin 

barrier function pathways have been strongly associated with psoriasis, with several studies that 

identified the LCE (late cornified envelope) gene cluster (LCE3A, LCE3C and LCE3D) higly 

expressed in psoriatic skin. Candidate gene studies have also implicated -defensin gene cluster 

(DEFB) on chromosome 8 and interferon induced with helicase C domain 1 (IFIH1), as 

involved, the first one in protection against microbial invasion and the latest in induction of 

interferon response to viral RNA. A significant association was found between rs2740091 and 

rs2737532 in DEFB4 and predisposition to psoriasis in Caucasian patients [20]. A similar 

association was reported for rs17716942 in IFIH1 and rs4085613, rs4845454, rs1886734, 

rs4112788, rs6701216, rs4112788 in LCE gene.  

The second and potentially the largest pathway, in terms of numbers of genetic loci implicated 

in psoriasis, consist on T-cell signaling, i. e. ZNF313 (zinc finger protein 313), SOCS1 

(suppressor of cytokine signaling1), STAT3/5A/5B (signal transducer and activator of 

Figure 3. Psoriasis etiopathogenesis. Disease takes place in genetically predisposed individuals, carrying one or 

more psoriasis susceptibility genes (either skin specific or of immunological function) in which a dysregulated 

immune response (involving DC, T cells, and KCs) occurs, following exposure to certain environmental triggers. 

From figure 2 of ref [15]. 
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transcription3/5A/5B), IL12B, IL23A and IL23R, gene involved in the regulation of driving of 

Th17 responses. Variants within the genes IL12B, IL23R and IL23A, involved in the IL-23 

signalling pathway, are all strongly associated with psoriasis susceptibility along with 

ZNF313/RNF114, which is also involved in T-cell activation. In particular, GWAS showed the 

combination of rs3212227 and rs6887695 in IL12B as a risk haplotype in psoriasis, and an 

association between rs11209026 and rs7530511 in IL23R gene and predisposition to psoriasis 

[21,22]. Other IL12B and IL23R susceptibility loci, identified in caucasian patients, include 

rs2201841-rs2066808 and rs2082412-rs2546890, respectively [23,24]. Also in CTLA4 

(cytotoxic T-lymphocyte antigen), encoding a protein that downregulates activation of T 

lymphocytes, an association with the GG haplotype of rs3087243-rs231775 was observed [25]. 

On the other side, T-cell activation and the ZNF313/RNF114 SNPs rs2235617 and rs495337) 

were found associated with psoriasis in a Caucasian cohort of patients.  

Thirdly, the candidate genes identified from GWAS were found within the nuclear factor κB 

(NF-κB) pathway, and in a genetic region that is potentially involved in the modulation of Th2 

immune responses.  

Antigen 

Presentation 
ERAP1 

HLA-C 

Skin Barrier 

Function 
LCE3A- LCE3C 

LCE3D  DEFB4 

NFkB Pathway 

NFKBIA 

TYK2 

TNFAIP3 

TNIP1 

TRAF3IP2  

T-cell Signalling 

IL12B 
IL13 

IL23A 
IL23R 

ZNF313 

CTLA4 

Figure 4. The psoriasis genetic pathway. A schematic representation of genetic variants within psoriasis-related 

risk loci, highly represented in the psoriatic population (allele frequency ≥ 0.3), involved in four broad 

immunological intersected processes, such as those involved in skin barrier function, inflammatory pathways 

(NFkB Pathway) and immune responses (T-cell signaling and antigen presentation). Notes: LCE3A/3C/3D, late 

cornified envelope 3A/3C/3D; DEFB4, defensin beta 4; NFKBIA, NFkB inhibitor alpha; TYK2, tyrosine kinase 

2; TNFAIP3, TNF alpha-induced protein3; TNIP1, TNFAIP3 interacting protein 1; TRAF3IP2, TNF receptor-

associated factor 3 interacting protein 2; IL12B/13/23A/23R, interleukin-12B/13/23A/23R; ZNF313, zinc finger 

protein 313; CTLA4, cytotoxic T-lymphocyte associated protein 4; ERAP1, endoplasmic reticulum 

aminopeptidase 1; HLA-C, human leukocyte antigen-C. Modified from figure 1 of ref [19]. 
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In several studies, a number of evidences of susceptibility genes on TNF-–induced protein 3 

(TNFAIP3) (rs610604, rs6920220, rs10499194, rs5029939) and TNFAIP3-interacting protein 

1 (TNIP1) (rs17728338) were found. TNFAIP3 encodes a protein interacting with the products 

of TNIP1, that regulates the activity of NF-B and also induces keratinocyte hyperproliferation 

[26]. In another GWAS, TNF receptor-associated factor 3- interacting protein 2 (TRAF3IP2) 

(rs13210247, rs339805500, rs240993), a gene encodes a protein that interact with v-rel 

reticuloendothelialiosis viral oncogene (NF-B/REL) complexes, was associated with psoriasis 

in Caucasian cohort of patients [24]. In the same study, an association with the nuclear factor 

of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (NF-BIA, rs2145623) was 

also identified. 

Nevertheless, the pathway implicated in antigen presentation to the adaptive immune system, 

and involving HLA-C and ERAP1 genes, has been associated with psoriasis pathogenesis. This 

pathway will be extensively described in the next section.  

 

1.2.1 PSORS1 locus 

The first genetic association studies in psoriasis were carried out in 1972 and were focused on 

the major histocompatibility complex (MHC) region, on chromosome 6p21.3 [27]. But it is in 

1997, when the first linkage studies to map psoriasis susceptibility to the HLA region were 

conducted [28].  

The first region spanning 250 kb within the MHC, designated just PSORS1, was identified by 

genome-wide linkage scans, and has the highest odds ratio (OR) of any PSORS loci 

(approximately 3.0) [29]. Four genes within the region have been the major focus of 

investigation because of the strong association of polymorphic coding-sequence variants with 

psoriasis vulgaris. HLA-C (associated variant, HLA-Cw6) encodes a class I MHC protein, 

CDSN (associated variant, allele 5) encodes corneodesmosin, CCHCR1 (associated variant, 

*WWCC) encodes the coiled-coil, x-helical rod protein 1 and TNF-. However, the absolute 

identification of the causative gene at this locus has proven to be challenging because of the 

extensive linkage disequilibrium (i.e. the tendency for particular alleles at two or more loci to 

be inherited together more often than would be predicted by chance) present within the MHC.  

HLA-C plays a central role in the immune system by presenting pathogenic proteins derived 

from cytosol and its gene contains 8 exons. Exon one encodes the leader peptide, exons 2 and 

3 encode the alpha1 and alpha2 domain, which both bind the peptide, exon 4 encodes the alpha3 

domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic 
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tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity 

of each class I molecule. Over one hundred HLA-C alleles have been described. Nevertheless, 

the analysis of high-density polymorphism, have indicated several SNPs within the minimal 

promoter region of HLA-C result in differential expression of various alleles and also contribute 

by affecting HLA-C expression [30,31]. In particular, a significantly higher frequency of HLA-

Cw6 is associated with early-onset (type I), compared with late-onset (type II) psoriasis. 

Recently, exciting evidence has emerged for an interaction between the HLA-C and ERAP1 

(involved in trimming peptides to enable effective loading and processing onto MHC class I) 

loci in psoriasis [32]. Even so, despite the strong genetic evidence and the obvious 

immunological function of HLA-C to regulate both innate and adaptative response, functional 

studies addressing the precise mechanism by which HLA-Cw6 alleles predispose to psoriasis 

are still missing and no HLA-Cw6-specific antigen or interacting protein has been identified to 

date.  

The other proposals for the causative gene of PSORS1, the CDSN (a protein that is uniquely 

expressed in the granular and cornified layers of the epidermis and up-regulated specifically in 

psoriasis) with non-parametric study yielded significant linkage and association of allele 5 of 

the gene (CD*5) with psoriasis and found that 38% of haplotypes containing this allele did not 

contain the HLA-Cw6 allele.  

Furthermore, CCHCR1 (ubiquitously protein overexpressed in psoriatic epidermis that has a 

role in keratinocyte proliferation) was first proposed as a potential candidate-gene when 12 

coding variants were discovered within its [33]. These variants were tested for association along 

with CD*5 and HLA-Cw6 and the results showed significant association for an Arg-Arg 

synonymous SNP in the CCHCR1 gene. Four SNP haplotype of CCHCR1 has been found to 

be significantly associated with psoriasis at a level similar to those obtained for HLA-Cw6 [34], 

and supposed to be transmitted in LD. 

Finally, among the genes enconded within PSORS1 region, the TNF- showed a strong 

association with early-onset psoriasis in Caucasian patients, in particular the rs361525 *A allele 

was more frequent and the rs1800629 *A allele was less frequent in patient with type I psoriasis 

than in controls, although no differences were found between these polymorphism and type II 

psoriasis [35,36]. 
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1.3 Pharmacological treatments and possible outcomes 

 

Management of psoriasis in daily clinical practice is highly variable, although there is no cure, 

there are multiple effective treatment options, mainly targets different aspects of the 

inflammatory pathway. Depending on the severity of psoriasis, location of disease, relevant 

comorbidities, and patient preference, the appropriate treatment can be chosen. According to 

the guidelines, for mild disease (defined by PASI levels equal or less than 10), topical agents 

are commonly used [37]. Among these, emollients keep the skin moist and soft, mid- to high-

potency topical corticosteroids reduce inflammation, vitamin D analogues calcipotriol reduce 

the proliferation of keratinocytes and modulate T cell and DCs function. These topical 

treatments are efficacious and can be safely initiated and prescribed. Instead, for moderate-to-

severe psoriasis (defined by PASI levels exceeding 10), along with these topical treatment, 

phototherapy and different systemic therapy can be used. Usually, narrow band (311nm 

wavelength) UVB phototherapy and PUVA photochemotherapy are a good treatment options. 

For patients with more severe skin involvement and refractory symptoms, conventional oral 

systemic therapies are usually initiated, wich include retinoids (derivative of vitamin A with 

anti-proliferative and anti-inflammatory effect), methotrexate (folic acid antagonist, which 

inhibits purine synthesis), or cyclosporine (calcineurin inhibitor, which inhibits T cell activation 

and IL-2 cytockine production) [37–39].  

When systemic agents are unable to control the lesions, then biologic agents are considered, 

which generally demonstrate greater efficacy than oral systemic agents.  

Biological drugs are a relatively new type of treatment that can be designed to target specific 

immune pathways. Specific cytokines pertinent to the development of disease have been 

selected as drug targets in the hope of effective suppression of pathogenic immune responses, 

whilst reducing the risk of global suppression of protective immunity. As the pathogenic 

mechanisms have become better defined, there has been a shift towards the design of more 

targeted treatments in psoriasis [9]. 

Biological agents are recombinant molecules that are designed on the basis of genetic sequences 

from various organisms and that are often similar or identical to proteins produced by human 

beings. They include fusion proteins, recombinant proteins (i.e, cytokines, selective receptors) 

and monoclonal antibodies [39]. 

The first biologic agent developed specifically for a dermatologic disease was alefacept (which 

has been withdrawn from the market), a T-cell-targeted biologic agent. Dermatologists have 

subsequently moved from serendipitous choices among the available therapeutic options to 

targeted intervention based on increased insights into the pathogenesis of psoriasis. There was 
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therefore a development of antibody or fusion protein selective targeting of key cytokines 

mediators of inflammation. These latest biologic therapies in psoriasis, with cytokines-targeted 

agents, are highly effective and well tolerated overall [40].  

Right now, the three most frequently used classes of biologics for the treatment of psoriasis 

include anti-TNF- agents, anti-IL-12/IL-23 agent, anti-IL-17, and anti-IL-23 inhibitors [41].  

 

1.3.1 Biologic treatments: anti-TNFs, anti-ILs 

 

More than 1-2 million patients have been treated with TNF- inhibitors over the past 10 years 

for inflammatory diseases, such as Crohn’s disease, inflammatory arthritis, ankylosing 

spondylitis, and ulcerative colitis. The experience with psoriasis and psoriatic arthritis (PsA) is 

less extensive, even if they can be prescribed as monotherapies, or in combination with 

traditional systemic agents. TNF- inhibitors comprehend adalimumab, etanercept, infliximab, 

certolizumab pegol and golimumab drugs [42,43]. 

 Adalimumab is a recombinant, fully human, immunoglobulin G1 (IgG1) monoclonal 

antibody, self-administered subcutaneously in a dose of 80 mg at week 0, 40 mg at week 

1 and then 40 mg on alternate weeks. In a 24-week study, adalimumab substantially 

improved joint and skin manifestations of psoriasis, with 54% of patients achieving 

PASI75. Real-life study showed that adalimumab, in the aforementioned dose, 

significantly improved psoriasis, with 58% of patients reaching PASI 75 at 60 weeks 

[44]. Patients had substantial improvements in their quality of life [39]. It is currently 

the only biologic labelled for the specific indication of pediatric and severe fingernail 

psoriasis, as well as for other immune-mediated inflammatory conditons, such as 

hidradenitis suppurativa (HS). A predictive response biomarker was recently identified: 

HLA-Cw6 negative patients were more likely to respond to adalimumab than to 

ustekinumab [45]. 

 Etanercept is a recombinant fusion protein formed by the extracellular domain of TNF-

 receptor 2 and the Fc portion of human IgG1. It is self-administered subcutaneously 

at a dose of 50 mg twice weekly for 3 months and then weekly. Pivotal trials with this 

dose, showed an achievement of PASI75 in 49% of patients by 12 weeks. Etanercept is 

highly effective in PsA, with a reduction in the signs and symptoms of joint disease in 

73–87% of patients at 12 weeks of treatment [39]. Recent meta-analysis of real-life 

evidence highlights etanercept as the anti-TNF- with the lowest survival rate (66% at 
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year 1, 41% at year 4) compared to adalimumab, infliximab and ustekinumab. In 

addition, it was the most discontinued due to the loss of efficacy [46].  

 Infliximab is a monoclonal chimeric antibody comprising a murine variable region and 

human IgG1 (heavy and kappa light) chain constant domain regions. Infliximab is given 

as an intravenous infusion, optimally in a dose of 5 mg/kg over 2–3 h at weeks 0, 2, and 

6, and at regular 8-week intervals thereafter. It is the only TNF- inhibitor with weight 

base dosing. This regimen gives rapid and marked improvement as an induction therapy, 

with 82% of patients achieving PASI75 improvement at week 10 [39]. Real-life data 

indicate a drug survival dropping from 61% at year 1 to 42% at year 4 (it is most 

frequently discontinued for adverse effects) [46].  

Recently, there has been increasing comprehension of the value of the Th17 lineage of T cells 

and related cytokines, such as IL-17 and IL-23, particularly in the pathogenesis of inflammatory 

skin diseases. New drugs that are designed to inhibit steps in this pathway, have shown 

meaningful effectiveness in treatment of PsA and moderate-to-severe plaque psoriasis.  

Among them, IL-12/IL-23 inhibitor directs towards the homonymous pathway by binding and 

inhibiting p40 subunit shared by both IL-12 and IL-23 [11,47]. The latter are produced by 

antigen-presenting cells, such as macrophages and dendritic cells, and the p40 subunit binds to 

the IL-12 receptor β1 (IL-12Rβ1), located on the surface of Th1 and NK immune cells. The 

second subunits of IL-12 and IL-23 are p35 and p19, respectively, through which the ILs can 

bind to the specific IL-12Rβ2 and IL-23R receptors. Recently, three biological drugs targeting 

specifically p19 subunit of IL-23 have been developed and resulted to be particularly effective 

in the treatment of exacerbations of psoriatic skin and joint symptoms. This novel class of IL-

23 inhibitors includes guselkumab, risankizumab and tildrakizumab [42].  

 Ustekinumab is a fully human monoclonal IgG1 antibody that binds to the common p40 

subunit of IL-12 and IL-23, thus inhibiting their activity and presumably, the T-cell 

pathways that they influence, Th1 and Th17, respectively. Ustekinumab is approved for 

the treatment of psoriasis, PsA and paediatric psoriasis, in a weight-based regimen: 45 

mg for patients less than 100 kg and 90 mg for those who are greater, administered 

subcutaneously at an interval of 4 weeks after the first injection, and then every 12 

weeks. Real-world highlights that ustekinumab was associated the highest drug survival 

compared with anti-TNF- and was also the least likely to be discontinued due to 

adverse effects [46].  

Efficacy and long-term safety of ustekinumab in the treatment of moderate-to-severe 

real-life chronic plaque psoriasis was demonstrated in a cohort of adult patients, 
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observed retrospectively over a time period of 8 years. Efficacy was observed in 378 

patients, among which >80% achieved a PASI score of <3 and PASI 75, 90 and 100 

response in 76.2%, 61.9% and 57.1% of patients, respectively. Of note, predictor 

variables for improved PASI response (after 2 years) were HLA-Cw6-positive patients, 

female gender and BMI <30 Kg/m2. Ustekinumab was generally well-tolerated without 

evidence of cumulative toxicity or organ toxicity [44,48]. 

 Guselkumab is a fully human IgG1 monoclonal antibody and was the first directed 

against the p19 subunit of IL-23. In phase-III studies, VOYAGE 1 and 2, 73.3% and 

70% of patients achieved PASI90 at 16 weeks. Notably, in both studies, clinical 

response to guselkumab was maintained after 100 weeks of treatment. Moreover, in 

NAVIGATE phase-III study, guselkumab proved to be effective in patients who did not 

respond to ustekinumab [49,50].  

On the other side, two IL-17A inhibitors and one IL-17 receptor (IL-17R) blockers have been 

developed for the treatment of psoriasis, PsA and axial spondyloarthritis, as well as other 

immune-mediated inflammatory conditions. The efficacy of the IL-17A inhibitors has elevated 

the standard care for patients with severe psoriasis to the extent that PASI90, instead of PASI75, 

should now be considered as the criterion for assessment of treatment response. IL-17 class of 

inhibitors encompasses secukinumab, ixekizumab, and brodalumab [11,42,47]. Other two anti-

IL-17A/F inhibitors, namely bimekizumab and netakimab, have been also recently developed. 

 Secukinumab is a fully human monoclonal IgG1 antibody that targets IL-17A, blocking 

its binding with IL-17R. Secukinumab is administered subcutaneously at doses of 300 

or 150 mg once weekly for 5 weeks, and then every 4 weeks. Secukinumab introduced 

a new era in the management of psoriasis, shifting possible psoriasis treatment outcomes 

from PASI75 to PASI90 or PASI100, which are now recognized goals for the treatment 

of psoriasis in Italian guidelines [51]. A multicenter retrospective real-life study on 324 

secukinumab treatment patients have been conducted. This study revealed the 

achievement of PASI90 from week 24 to week 84, confirming the results of clinical 

trials, in terms of effectiveness, in a more complicated set of psoriatic patients (with 

comorbidities, polypharmacy, multi-drug failure) [52]. These results are in agreement 

with the extension phase of the SUPREME study, which demonstrated efficacy in 

psoriatic patients achieving PASI100 from week 16 to week 72. In parallel, although 

HLA-Cw6-positive and -negative patients have distinct clinical features, the SUPREME 

study showed that secukinumab achieved similar clinical responses in both cohorts after 
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72 weeks of treatment, underlined also the unnecessary determination of HLA-Cw6 

status for this therapy [53,54].  

Secukinumab had the highest number of PASI 100 responders, but also the lowest drug 

survival among all the biologics [55].  

 Ixekizumab is a high-affinity, humanized monoclonal IgG4 antibody that binds IL-17A, 

used for psoriasis and PsA, 160 mg subcutaneously at week 0 and then 80 mg at week 

2, 4, 8, 10, 12 and every 4 weeks thereafter. The efficacy of ixekizumab in a cohort of 

real-life psoriasis patients, has been evaluated by two multicenter retrospective studies 

[56,57]. The percentage of patients achieving PASI 75/90/100 at 12-16 weeks of 

treatment was 87.5%, 50.0% and 39.6%, respectively. These rates were generally 

maintained at weeks 24 and 52, whit PASI75, PASI90 and PASI100 responses between 

83-88%, 58-59% and 42-27%, respectively. The percentage of patients who achieved 

PASI75 and PASI90 at week 52 was higher in patients who were naïve to biologic 

agents. Overall, this agent appears to have a similar good effect of secukinumab in 

psoriasis [58].  

 Brodalumab is a fully human monoclonal IgG2 antibody that blocks the IL-17A 

receptor activity, that has been approved (210 mg s.c. at weeks 0, 1, 2 and every 2 weeks 

thereafter) for the treatment of psoriasis vulgaris, Psa, and pustular psoriasis. The drug 

inhibits the biological activity of IL-17A, IL-17F and other IL-17 isoforms, by impeding 

their binding to the IL-17RA subunit. Brodalumab is highly efficacious in the treatment 

of psoriasis, as demonstrated in three phase III study, patients showing PASI75/90/100 

response at week 12 in 83.3%, 70.3% and 37%, respectively [59]. 

 

1.3.2 Undesirable and paradoxical effects of biologics 

 

Targeted biological agents have dramatically changed the treatment landscape of immune-

mediated inflammatory diseases showing to be very effective in treating various 

dermatological, rheumatological, and systemic diseases [60,61].  

Although the overall safety and tolerability profile is acceptable, some patients develop adverse 

reactions that are not expected according to the mechanism of action. Such reactions have been 

denoted as paradoxical reactions and comprise a de novo or worsening immune-mediated 

condition that would normally respond to the biologic agent that causes them.  

The hypotheses proposed to explain the pathogenesis of such reactions include one or more of 

the following mechanisms as primum movens: (a) an imbalance in cytokine production, with an 

overproduction of IFN- (by inhibiting pDC maturation), (b) a shift in cutaneous immune 
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response pattern, with altered lymphocyte recruitment and migration, in part mediated by 

CXCL10, (c) a spatial shift of activated innate immune cells to the skin, and (d) an imbalance 

or dysfunction of regulatory T-cells [62]. Importantly, chronic immune responses are absent in 

paradoxical psoriasis induced by TNF- blockers, with innate inflammatory processes 

predominant and not followed by expansion of autoreactive T cells. These processes are 

concomitant to dermal accumulation of immature pDC and type I IFN overexpression [63] (Fig. 

5).  

Some biologic therapies also favor granulomatous reactions, traditionally, because the role of 

TNF- in granuloma formation and infections, such as tuberculosis. The incidence of infections 

is slightly greater with the two antibodies infliximab and adalimumab than with the fusion 

protein etanercept [39]. 

Most paradoxical reactions have been reported in association with anti-TNF- therapy, but this 

is not solely involved and other cytochine and T-cell pathways are potential key players, in the 

pathogenesis of this paradoxical effect, explaining the appearance of psoriasiform lesions, 

although rarely, in patients treated with different biological therapy such as rituximab, anakinra 

and tocilizumab, as well as cases associated with biologic therapies, such as ustekinumab, 

secukinumab and ixekizumab, are increasingly reported in the literature (Fig. 5).  

Figure 5. Pathogenic mechanisms proposed to explain paradoxical reactions. In normal conditions, TNF- 

inhibits pDCs, which produce IFN-. Use of anti-TNF- molecules leads to an excess of IFN- which, in turn, 

promotes expression of CXCR3 in T cells, thereby allowing migration to the inflamed tissue. The use of other 

biologic agents with different mechanisms of action such as ustekinumab (anti-IL-12/23) and secukinumab and 

ixekizumab (anti-IL-17A) indirectly leads to a decrease in TNF- concentrations, with the aforementioned 

consequences. Notes: CXCR3, CXC3 chemokine receptor; IFN, interferon; IL, interleukin; pDC, plasmacytoid 

dendritic cell; Th cell, T helper cell; TNF, tumor necrosis factor. From figure 1 of ref [68]. 
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The skin is frequently involved and, even if considered rare to uncommon, these cutaneous 

manifestations are an important cause of biologic agent discontinuation. In fact, management 

of these reactions consists of topical or systemic skin-directed therapies, depending on the 

severity and extension of the cutaneous picture, and it is generally associated with switching 

over to other disease-modifying regimens for treating the underlying rheumatologic condition. 

But in most cases, these reactions may require the interruption of the imputable drug, and no 

other biologics are approved for diseases like in HS. Therefore, it is important to understand 

the pathogenesis of these reactions, and the genetic susceptibility in these patients. 

The 2–5% of patients treated with TNF- antagonists can develop paradoxical psoriasiform 

skin lesions [64–66], whereas other reactions, such as eczematous and lichenoid eruptions, HS, 

pyoderma gangrenosum, Sweet’s syndrome and granulomatous skin diseases, occur much more 

rarely. As well as from a clinical point of view, these cutaneous paradoxical reaction represent 

an intriguing immunological dilemma, whose unraveling may improve our knowledge of the 

pathogenesis of chronic inflammatory diseases [62,67–69].  

Of note, preliminary studies support the role of specific polymorphisms in paradoxical psoriasis 

induced by anti-TNF- therapy [70]. It is thus likely that paradoxical reactions occur in patients 

with an underlying genetic predisposition and that advances in this field will enable 

identification of those individuals at risk of developing such reactions. 
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1.4  Pharmacogenetics of psoriasis 

 

Pharmacogenetics is a term used to describe the study of the association between genetic 

polymorphism and response to a drug. Pharmacogenetic findings have potential to greatly 

impact clinical decisions, to minimize costs of treatment, as well as to improve treatment safety 

by reducing adverse events [17].  

The most common pharmacogenetic approach utilized to assess the variability in the efficacy 

and toxicity of psoriasis treatments has been the evaluation of SNPs present in genes encoding 

drug-metabolizing enzymes, drug transporters, and receptors. Then, genetic variants have been 

associated with response to traditional systemic agents and response to biologic drugs used for 

the therapy of psoriasis.  

 

1.4.1 Genetic influence on responsiveness to anti-TNFs 

 

A number of studies have been performed to study the genetic influence on responsiveness to 

anti-TNFs. TNF--related genes were the most frequently investigated in the pharmacogenetic 

studies, especially in associations with responses to etanercept. It was found that patients with 

the G/G, but not with the A/A genotype on rs1800629 may predict a better response to 

etanercept. This polymorphism gained attention because it was also associated with TNF- 

secretion and circulating levels [71]. Futhermore, patients with G/G or G/A genotype on 

rs1800610 had a better response to etanercept (p = 0.001) [72]. Gallo et al. reported that the 

rs361525 *GG, rs1799724 *CT/ TT, and rs1799964 *TT genotypes in TNF- were all 

correlated with an increased therapeutic response to anti-TNFs (p = 0.049; p = 0.004; p = 0.041, 

respectively) [73]. SNPs in TNF- were also evaluated by studies by De Simone et al., 

confirming the association of good drug response with rs361525 *G allele and rs1800629 *GG 

genotype (p = 0.03; p = 0.001, respectively) [74]. Among polymorphisms in TNF- promoter, 

the G/G genotype on rs361525 had a better response to TNF- inhibitors (p = 0.049) [73], and 

the carriage of TNF-857C was associated with positive response to drug treatment in patients 

treated with etanercept (p = 0.002 and p = 0.001, respectively). None of these SNPs were 

associated with responsiveness to treatment with infliximab or adalimumab [68].  

Researchers expanded their interests also to polymorphisms in genes codifying TNF- 

receptors and involved in the TNF- intracellular signaling. Individuals with polymorphisms -

676 and -196 were reported to favor response to etanercept [72]. In a study on psoriatic arthritis 

(PsA), it was found that the TNFR1A, a member of the TNF-receptor superfamily, contributed 

to response to anti-TNF- treatment, specifically, SNP rs767455 [75]. TNFRSF10A, also 
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known as TRAIL1, is a receptor that mediates the signaling cascade for cellular apoptosis. The 

CC genotype of SNP rs20575 was associated with response to infliximab at 6 months in patients 

with PsA. Murdaca et al. reported that the A/A genotype of this SNP was also associated with 

a decreased response to etanercept [72]. The polymorphism 676 T/G in TNFRSF1B, that 

encodes for the TNF receptor II, is associated with higher whole blood TNF- production and 

was associated with positive response to etanercept (p = 0.001) [76]. The TNFRSF1B 

rs1061622 G allele was increased in frequency among HLA-Cw6 positive psoriasis patients 

[77]. This finding seems to conflict the results in another study, which stated that the 

TNFRSF1B SNP rs1061622 can predict good response to etanercept, but not to infliximab or 

adalimumab [78].  

Individuals with the G allele of TNFAIP3 SNP rs610604 were associated with good response 

to therapy with all TNF- inhibitors (p = 0.05) and etanercept (p = 0.016) [78,79]. The T allele 

of TNFAIP3 SNP rs2230926 was associated with good response to therapy of all TNF- 

inhibitors [78,79]. 

Collectively, these studies demonstrate a prominent role of genetic variants involved in TNF-α 

signaling with response to TNF-α inhibitors. 

Treatment Gene Variation Ref/Alt Locus Efficacy 
Adverse 

events 
Ref. 

TNF 

inhibitors 
TNFpromoter SNP G/A rs361525 ↑ Efficacy none [73,76] 

 TNFpromoter SNP T/C rs1799964 ↑ Efficacy none [73] 

 TNFpromoter SNP G/A rs1800629 
↑ Efficacy 

(etanercept) 
none [72] 

 TNFpromoter SNP G/A rs1800610 
↑ Efficacy 

(etanercept) 
none [72] 

 TNFpromoter SNP C/T rs1799724 
↑ Efficacy 

(etanercept) 
none [76] 

 TNFpromoter SNP C/T T/T rs1799724 ↓ Efficacy none [76] 

 TNFRSF1B SNP T/G rs1061622 
↑ Efficacy 

(etanercept) 
none [77] 

 TNFRSF1B SNP T/G rs1061622 ↓ Efficacy none [78] 

 TNFAIP3 SNP G/T rs610604 ↑ Efficacy none [78,79] 

 TNFAIP3 SNP T/C rs2230926 ↑ Efficacy none [78,79] 

 

 

Table 1. Pharmacogenetic findings related to TNF- antagonists in psoriasis treatment. Summary of 

variations in TNF- signaling associated with efficacy and adverse events of TNF inhibitors in psoriasis patients. 

Note: SNP: single-nucleotide polymorphism; Ref/Alt: Reference base/Alteration base; Locus: SNP identification 

number at NCBI; rs, reference SNP ID number; TNF: tumor necrosis factor; TNFRSF1B: Tumor Necrosis Factor 

Receptor Subfamily, Member 1B; TNFAIP3: Tumor Necrosis Factor-Alpha-Induced Protein 3.  
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In addition to genetic variants involved in TNF-α signaling, genes involved in Th17 signaling 

also appear to affect response to TNF-α inhibitors. The IL-23R (rs11209026) GG genotype was 

reported as being correlated with an increased therapeutic response at 6 months to TNF-α 

inhibitors (p = 0.006) [73]. Variants in IL- 17F were examined for an association with response 

to anti-TNF-α agents. A positive association was found between rs763780 in IL-17F and a 

positive response to infliximab at 3 and 6 months (p = 0.023; p = 0.020, respectively), and at 

the same locus, a negative response to adalimumab at 6 months was reported (p = 0.004) [80]. 

 

 

 

Treatment Gene Variation Ref/Alt Locus Efficacy 
Adverse 

events 
Ref. 

TNF 

inhibitors 
IL-23R SNP G/A rs11209026 ↑ Efficacy none [73] 

 IL-23R SNP G/A rs11209026 none 
↑ Adverse 

events 
[81] 

 IL-17F SNP T/C rs763780 
↑ Efficacy 

(infliximab) 
none [80] 

 IL-17F SNP T/C rs763780 
↓ Efficacy 

(adalimumab) 
none [80] 

 PDE3A SNP G/A rs3794271 ↑ Efficacy none [82] 

 MyD88 SNP A/G rs7744 
↑ Efficacy 

(etanercept) 
none [72] 

 FBXL19 SNP G/A rs10782001 none 
↑ Adverse 

events 
[81] 

 CTLA4 SNP G/A rs3087243 none 
↑ Adverse 

events 
[81] 

 SLC12A8 SNP G/A rs651630 none 
↑ Adverse 

events 
[81] 

 TAP1 SNP T/C rs1800453 none 
↑ Adverse 

events 
[81] 

 HLA Cw6+   ↓ Efficacy  none [73] 

 HLA Cw6-   ↑ Efficacy none [83] 

 HLA Cw6+   ↑ Efficacy none [84] 

 HLA-C SNP C/T rs10484554 ↑ Efficacy none [85] 

 
HLA-DRB1 

encoding SE 

Allele 

*04:04 
  

↑ Efficacy 

(etanercept) 
none [72] 

 
HLA-DRB1 

encoding SE 

Allele 

*01:01 
  

↑ Efficacy 

(etanercept) 
none [72] 

Table 2. Pharmacogenetic findings related to TNF- antagonists in psoriasis treatment. Summary of 

variations associated with efficacy and adverse events of TNF inhibitors in psoriasis patients. Notes: SNP, single-

nucleotide polymorphism; Ref/Alt, Reference base/Alteration base; Locus, SNP identification number at NCBI; 

rs, reference SNP ID number; IL23R, interleukin-23 receptor; IL17F, interleukin-17F; PDE3A, Phosphodiesterase 

3A; MyD88, Myeloid differentiation primary response 88; FBXL19, F-Box And Leucine Rich Repeat Protein 19; 

CTLA4, Cytotoxic T-Lymphocyte Antigen 4; SLC12A8, Solute carrier family 12 member 8; TAP1, Transporter 

1 ATP Binding Cassette Subfamily B Member; HLA-C, human leukocyte antigen-C; HLA-DRB1, human 

leukocytes antigen-DRB1. 
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Furthermore, phosphodiesterase 3A (PDE3A) and related proteins are associated with active 

transport of different organic molecule, toxins and drugs and also shown to be constitutively 

expressed in human keratinocytes. Concerning PDE3A, the SNP rs3794271 AA genotype was 

significantly associated with higher TNF- inhibitor efficacy in patients with psoriasis (p = 

0.0031) [82]. Another gene that have a central role in the immune response, both innate and 

adaptive, is myeloid differentiation primary response gene 88 (MyD88), and patients with 

rs7744 were associated with good response to etanercept [72].  

Regarding HLA-Cw6, positive patients were found to have a poor response to TNF- inhibitor 

and negative patients were reported as having a higher response to anti-TNF- [73,83]. 

However, a more recent study conflicts these findings and showed a trend toward better 

response amongst HLA-Cw6 positive patients and TNF- inhibitor [84]. In particular, none of 

the HLA haplotypes were associated with adalimumab response, but Masouri et al. found an 

HLA-C SNP rs10484554, that was related to the efficacy of all anti-TNF agents, especially 

adalimumab (p = 0.007) [85]. And lastly, HLA-DRB1 encoding SE alleles *01:01 and *04:04 

were both associated with good response to etanercept [72]. 

 

1.4.2 Genetic influence on responsiveness to anti-IL-12/IL-23 and anti-IL-17 drugs 

 

Fewer pharmacogenetic studies on anti-IL-12/IL-23 and anti-IL-17 drugs have been performed, 

as compared to TNF- blockers.  

Ustekinumab has demonstrated high efficacy and acceptable safety profile in psoriasis 

treatment by inhibiting IL-12/IL-23 inflammatory pathways [86]. However, it has been reported 

that genes involved in the IL-12/23 signaling pathway doesn’t play a head role in patient 

response to anti-IL-12/IL-23 treatment. None of the SNPs studied in IL-12 or IL-23 were 

associated with ustekinumab response [85,87]. Only in a study, IL-12B polymorphism 

(rs3213094) has been associated with response to ustekinumab, and CT genotype was 

recognized as a predictor of better response to the drug (p = 0.017) [88]. In the same study, GG 

genotype of rs610604 (TNFAIP3) has been associated with poor response to ustekinumab (p = 

0.031). Two TNF-related SNPs were investigated for an association with ustekinumab 

response, but no associations were found [83,85,87].  

Regarding IL-17 gene, Prieto-Perez et al. demonstrated that in a cohort of 70 psoriasis patients 

the rs763780 SNP in IL-17F gene associated a no response to ustekinumab at both 3 and 6 

months of treatment (p = 0.022 and p = 0.016, respectively) [80]. 
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Moreover, few studies focused on associations with different HLA-C genes [17,41]. Three of 

five studies found higher response rates to ustekinumab among patients who were positive for 

HLA-Cw6 [83,87,89]. The favourable response among HLA-Cw6-positive patients persisted 

after 1 year of treatment in two studies [87,89]. Differences between HLA-Cw6 positive and 

negative patients decreased after 2 and 3 years of treatment [89]. These data partly contrast with 

results of Masouri et al. revealing an association between HLA-Cw6 (rs10484554) and a good 

response to anti-TNF therapy but not to ustekinumab treatment, even though the ustekinumab-

treated group was smaller (n = 22) than the anti-TNF-a-treated one (n = 250) [85].  

 

 

In addition, the SNPs rs151823 and rs26653 in the ERAP1 gene were found to be associated 

with ustekinumab efficacy [85], and the carriage of SNPs in both HLA-C (HLA-Cw6) and 

TNFRSF1B (rs1061622) genes increased the risk for negative response to the anti-IL-12/IL-23 

drug (p = 0.05) [77]. Finally, a cohort of 51 patients with psoriasis treated with ustekinumab 

has been evaluated in association studies with HLA-Cw6 and TNFAIP3 rs610604 

polymorphisms, as well as LCE3B/3C gene deletion. Better and faster response to ustekinumab 

was observed in HLA-Cw6 positive patients (p = 0.008), whereas no significant association 

Treatment Gene 
Variati

on 
Ref/Alt Locus Efficacy 

Adverse 

events 
Ref. 

IL-12/23 

inhibitor 
IL-12B SNP G/C rs6887695 ↑ Efficacy none [87] 

 IL-12B SNP C/G,T rs3213094 
↑ Efficacy 

(ustekinumab) 
none [88] 

 IL-12B SNP T/G rs3212227 ↓ Efficacy none [87] 

 TNFAIP3 SNP G/T rs610604 
↓ Efficacy 

(ustekinumab) 
none [88] 

 LCE3B/3C DEL    none [83] 

 IL-6 SNP C/G rs1800795 ↓ Efficacy none [87] 

 HLA Cw6  6p21.33 ↑ Efficacy none [83] 

 HLA-C SNP C/T rs10484554 ↓ Efficacy none [85] 

 ERAP1 SNP A/C rs151823 ↑ Efficacy none [85] 

 ERAP1 SNP C/A,G,T rs26653 ↑ Efficacy none [85] 

 IL-17F SNP T/C rs763780 ↓ Efficacy none [80] 

 TNFRSF1B SNP T/G rs1061622 ↓ Efficacy none [77] 

IL-17  

inhibitor 
HLA Cw6  6p21.33 no difference  none [53] 

Table 3. Pharmacogenetic findings related to ILs antagonists in psoriasis treatment. Summary of variations 

associated with efficacy and adverse events of IL-12/23 and IL-17 inhibitors in psoriasis patients. Notes: SNP, 

single-nucleotide polymorphism; Ref/Alt, Reference base/Alteration base; Locus, SNP identification number at 

NCBI; rs, reference SNP ID number; IL12B, interleukin-12B; TNFAIP3, Tumor Necrosis Factor-Alpha-Induced 

Protein 3; LCE3B/3C, Late Cornified Envelope 3B/3C; IL-6, interleukin-6; HLA-C, human leukocyte antigen-C; 

ERAP1, Endoplasmic Reticulum Aminopeptidase 1; IL-17F, interleukin-17F; TNFRSF1B, Tumor Necrosis 

Factor Receptor Subfamily Member 1B. 
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with response was observed for the other two investigated genes [83]. On the other hand, 

Galluzzo et al. suggested that a combination of genetic factors predicts response to ustekinumab 

better than a single factor. Multiparameter logistic regression analysis revealed that HLA-Cw6 

was a better predictor of positive response to ustekinumab in the absence of the IL-12B AA 

genotype (i.e. rs3212227) or the IL-6 GG genotype (i.e. rs1800795), and in the presence of the 

IL-12B GG (i.e. rs6887695) genotype [87]. 

So far, very few pharmacogenetic studies on anti-IL-17 drugs has been performed. No SNPs 

has been associated with a positive response to the treatment, and the SUPREME group study 

concluded that secukinumab was equally effective in both Cw6-positive and Cw6-negative 

patients reaching PASI90 up to week 72 [53].  

 

1.5 Pharmacogenomics of psoriasis 

 

The evolution of biotechnology and the sequencing of human DNA have allowed the creation 

of pharmacogenomics, a branch of genetics that analyzes human genes, the RNAs and proteins 

encoded by them, and the inter-and intra-individual variations in expression and function in 

relation to drug response. Differently from pharmacogenetic studies, few pharmacogenomic 

associations have been carried out in psoriatic patients. This could be mainly attributed to the 

high costs of high-throughput genomic investigations, such as Next-Generation Sequencing 

(NGS), even though in recent years, they have consistently declined, making pharmacogenomic 

investigations more feasible. 

Thus, studies analyzing psoriasis transcriptome after 4-month treatment with methotrexate 

found that responders to methotrexate showed a decrease of mRNA expression of Th-related 

genes (i.e., Th1,Th17, and Th22) compared with non-responders [41]. Similarly, a recent study 

showed that most biomarkers in lesional skin returned to near nonlesional levels after 3-month 

therapy with etanercept. However, a subset of 248 genes did not reach 75% improvement, 

including IL-12, IL-17, IL-22, IFN-, and CXCL8 [90]. Other studies have uncovered that 

mRNA expression levels of TLR2 and 9, as well as key notch signaling pathway genes (i.e. 

NOTCH1, NOTCH2, and JAGGED1) were significantly reduced in etanercept-treated patients 

[91,92]. TLR2 and 9 expression was found to decrease in psoriasis lesional skin also after 

treatment with infliximab [91,92]. Microarray analysis demonstrated different patterns of gene 

expression in blood and lesional skin of patients after treatment with infliximab, in particular 

of genes related to cell differentiation, proliferation, and apoptosis [93]. 

Finally, Ovejero-Benito MC et al. conducted the first pharmacoepigenetic study in patients with 

moderate-to-severe psoriasis treated with anti-TNF drugs but failed to find differences in DNA 
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methylation between excellent responders and partial responders to anti-TNF drugs [94]. 

Nevertheless, three CpGs (cytosines bound to guanines by phosphates) were differentially 

methylated between excellent responders and partial responders to adalimumab [94].  
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2. MATERIALS AND METHODS 

 

2.1 Patients 

 

2.1.1 Psoriatic patients  

 

In this retrospective study we reviewed data of 213 subjects affected by moderate-to-severe 

plaque-type psoriasis, who started biologic treatments at the University of Rome “Tor Vergata”, 

Department of Dermatology/Fondazione Policlinico Tor Vergata (in collaboration with Dr. M. 

Talamonti, Prof. L. Bianchi and Dr. M. Galluzzo) and at IDI-IRCCS of Rome, Centro di 

Ricerche Integrate per la PSOriasi/ Laboratory of Experimental Immunology (in collaboration 

with Dr. C. Albanesi and Dr. S. Pallotta). N = 63 patients undergone secukinumab treatment 

(150 mg) and n = 150 received ustekinumab (45 mg for patients < 100kg and 90 mg for patients 

>100kg), all administered following AIFA criteria. The inclusion criteria were the following: 

PASI score >10, Body Surface Area (BSA) >10%, Dermatology Life Quality Index (DLQI) 

>10. Of note, both biologic drugs were used in monotherapy and was not combined with 

conventional systemics or topical therapies to improve or maintain efficacy.  

For each patient enrolled (aged 18- to 65- year-olds), personal data, as well as anthropometric 

and clinical data were collected in accordance with the guidelines of the Declaration of Helsinki 

and were annotated in an electronic database specifically programmed and created ad hoc for 

the study. 

Concerning clinical data, for each patient was reported: age of onset of the disease, localization, 

familiarity, co-morbidities of the endocrine-metabolic, cardiocirculatory, genitourinary, 

gastoinstestinal, respiratory and osteomuscular system, as well as lifestyles (consumption of 

alcohol and/or tobacco). The presence of an articular involvement was also reported. The 

severity of psoriasis and response to treatment were evaluated using the PASI score at baseline 

and, then, at follow-up visits on weeks 8, 16, 24, 40, 56, 64, 72, 88, 100 (secukinumab) or on 

weeks 4, 12, 28, 40, 52, 64, 76, 88, 100 (ustekinumab). Clinical efficacy of anti-ILs was 

assessed in terms of the 75%, 90% and 100% improvement of PASI score compared to baseline 

(PASI75, PASI90 and PASI100).  

 

2.1.2 Patients with paradoxical psoriasis 

 

Three subjects affected by HS and developing paradoxical psoriasis after treatment with 

adalimumab were included in the study. The HS patients developed psoriasiform skin lesions 

after 3-6 months treatment with adalimumab (40 mg, weekly). Patients were recruited at IDI-

IRCCS of Rome (in collaboration with Dr. L. Fania and Dr. C. Mazzanti). For each patient, 
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clinical data were collected. In particular, HURLEY and Sartorius score, and response to 

adalimumab therapy have been annotated together with clinical data concerning paradoxical 

psoriasis, including PASI, clinical subtype, localization of illness, familiarity for psoriasis, 

other concomitant manifestations, infections and lifestyles.  

 

2.1.3 Blood and skin samples  

 

Two-ml blood samples were collected from each psoriatic patient or from patients developing 

paradoxical psoriasis, to isolate DNA. 20-ml blood samples were also collected from patients 

developing paradoxical psoriasis to isolate peripheral blood monuclear cells (PBMC). Eight-

mm skin biopsies were taken from psoriasiform lesions and divided into two parts for 

immunohistochemistry and isolation of skin-infiltrating T lymphocytes. Clinical data, as well 

as skin biopsies and blood were collected from patients after written informed consent. The 

study was conducted in accordance with the guidelines of the Declaration of Helsinki. 

Blood and skin samples were also obtained from three patients affected by classical plaque-

type psoriasis (PASI8, 11,5 and 10). 

 

2.2 SNP analysis 

 

DNA was extracted from blood of patients by QIAcube system with QIAmp DNA kit (Qiagen, 

Hilden, Germany) and sequenced by NGS technology. SNPs were selected based on an 

extensive review of articles on the association between psoriasis and SNPs or response to 

biologics [24,95–99]. The selected SNPoma is composed of n = 44 SNPs, highly represented 

in the psoriatic populations (minor allele frequency > 0.3), and potentially implicated in 

immune responses (T-cell signalling, antigen presentation), as well as inflammatory pathways 

(cytokine-dependent signalling) and skin barrier function (Table 4-6). 

SNP array was analysed by targeted sequencing, using NGS TruSeq Custom Amplicon (TSCA) 

Low-Input kit and was performed on MiSeq platform using a V2 Nano kit (Illumina, San Diego, 

USA), according to manufacturer’ instructions. Amplified libraries were quantify using Qubit 

Fluorometer and Agilent 2100 Bioanalyzer with dsDNA HS assay and High Sensitivity DNA 

kit, respectively. Sequencing data were collected, aggregated and filtered by using a set of ad 

hoc bioinformatics script. Basically, a top-down approach was applied to select all positive calls 

with a read depth > 50x and allelic frequency of 0.3. Moreover, variant’s functional annotations 

were verified with the latest version of ANNOVAR and IGV was used to check peculiar 

variants of interest.  
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Skin barrier function 

Genome position Gene REF/ALT SNP name 

Chr6:31084163 CDSN A/G CDSN_v1 

Chr6:31084170 CDSN A/C CDSN_v2 

Chr6:31084191 CDSN T/C CDSN_v3 

Chr6:31084288 CDSN T/C CDSN_v4 

Chr6:31084435 CDSN G/A CDSN_v5 

Chr6:31084787 CDSN A/G CDSN_v6 

Chr6:31084792 CDSN C/T CDSN_v7 

Chr6:31110391 CCHCR1 G/C CCHCR1_v1 

Chr6:31112737 CCHCR1 C/A CCHCR1_v2 

Chr6:31114182 CCHCR1 A/G CCHCR1_v3 

Chr6:31122482 CCHCR1 G/A CCHCR1_v4 

Chr6:31122500 CCHCR1 GCC/ACC,GCT CCHCR1_v5 

Chr6:31122502 CCHCR1 C/T CCHCR1_v6 

Chr6:31122564 CCHCR1 C/G CCHCR1_v7 

Antigen presentation 

Genome position Gene REF/ALT SNP name 

Chr5:96101944 ERAP1 A/G ERAP1_v1 

Chr5:96101959 ERAP1 C/T ERAP1_v2 

Chr5:96124330 ERAP1 T/C ERAP1_v3 

Chr5:96124447 ERAP1 G/C ERAP1_v4 

Chr5:96124453 ERAP1 A/G ERAP1_v5 

Chr5:96139250 ERAP1 C/G ERAP1_v6 

Chr6:31252925 HLA-C region C/T HLA-Cw6_LD 

Chr6:31252951 HLA-C region G/T HLA-Cw6_v5 

Chr6:31253034 HLA-C region T/G HLA-Cw6_v6 

Chr6:31266085 HLA-C region C/G HLA-Cw6_v7 

Chr6:31266090 HLA-C region G/A HLA-Cw6_v1 

Chr6:31266117 HLA-C region A/C HLA-Cw6_v8 

Chr6:31266151 HLA-C region G/T HLA-Cw6_v9 

Chr6:31266189 HLA-C region AA/TG,AG HLA-Cw6_v10 

Chr6:31266190 HLA-C region A/G HLA-Cw6_v11 

Chr6:31266207 HLA-C region CA/TG HLA-Cw6_v3 

Chr6:31274380 HLA-C region T/C HLA-Cw6_v4 

Chr6:31274449 HLA-C region C/A HLA-Cw6_v12 

Chr6:31274513 HLA-C region A/G HLA-Cw6_v13 

Chr6:31274518 HLA-C region 
T/TCGGGGAGTCCAGCAGGTCC, 

   TCCGGGAGTCCAGCAGGTCC 
HLA-Cw6_v14 

Chr6:31274555 HLA-C region C/T HLA-Cw6_v2 

Chr6:31274580 HLA-C region CAGCCAA/GAGCCAA,CAACCAG HLA-Cw6_v15 

Chr6:31274582 HLA-C region GCCAA/ACCAG,GCCAG HLA-Cw6_v16 

Chr6:31274584 HLA-C region CA/C HLA-Cw6_v17 

Chr6:31274586 HLA-C region A/G HLA-Cw6_v18 

Chr6:31274619 HLA-C region A/G HLA-Cw6_v19 

Chr6:31274634 HLA-C region T/C HLA-Cw6_v20 

Chr6:31431780 HLA-B region T/G HLA-Cw6_v21 

Chr6:31431820 HLA-B region C/T HLA-Cw6_v22 

Chr6:31431874 HLA-B region G/T HLA-Cw6_v23 

Table 4. List of the analyzed SNPs involved in antigen presentation. Notes: Genome position, UCSC Genome 

Browser; REF/ALT, reference base/alteration base; Chr, chromosome; ERAP1, endoplasmic reticulum 

aminopeptidase 1; HLA-C, human leucocyte antigen-C. 

Table 5. List of the analyzed SNPs involved in skin barrier. Notes: Genome position, UCSC Genome Browser; 

REF/ALT, reference base/alteration base; Chr, chromosome; CDSN, corneodesmosin; CCHCR1, coiled-coil 

alpha-helical rod protein 1. 
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2.3 Immunohistochemistry 

 

Five-μm paraffin-embedded skin sections were stained with H&E or processed for 

immunohistochemistry. The primary Abs used were as follows: anti-BDCA2 (DDX0043-TDS, 

Dendritics, Lyon, France), anti-CD15 (#347420, BD Biosciences, Milan, Italy), anti-IL-17A 

(#AF-317-NA, R&D Systems, Abingdon, UK), anti-lymphotoxin (LT)- (#SC8302, Santa 

Cruz Biotechnology, Dallas, TX), anti-IL-22 (#NB100-733, Novus Biologicals, Centennial, 

CO), anti-IFN- (#H00056832-M01, Abnova, Taiwan), anti-CD117 and anti-CD11C 

(#MONX10234 and #MON3371, Monosan, Uden, Netherlands), anti-CD68 and anti-CD3 

(#P02246IT and #A0452, Dako, Glostruk, Denmark). The following Abs came from Abcam 

(Cambridge, UK): anti-IFN- (#AB218426), anti-IL-36 (#AB156783), anti-IFN- 

NF-kB pathway and T-cell activation 

Genome position Gene REF/ALT SNP name 

Chr1:67658803 IL23R G/A IL23R_v1 

Chr1:67670213 IL23R G/A IL23R_v2 

Chr1:67705900 IL23R G/A IL23R_v3 

Chr1:67705958 IL23R G/A IL23R_v4 

Chr2:113820124 IL1F5 C/T IL1F5 

Chr3:101576029 NFKBIZ T/TACTTTTAGAAAGCTTTAATAACC NFKBIZ_v1 

Chr3:101663555 NFKBIZ A/G NFKBIZ_v2 

Chr5:150467189 TNIP1 G/C TNIP1 

Chr5:158742950 IL12B T/G IL12B_v1 

Chr5:158759900 IL12B A/G IL12B_v2 

Chr6:31543031 TNF G/A TNFv3 

Chr6:31543101 TNF G/A TNFv4 

Chr6:31543827 TNF G/A TNF_v1 

Chr6:31543943 TNF G/GTGAA TNFv2 

Chr6:52101739 IL17F T/C IL17F_v1 

Chr6:52101758 IL17F C/T IL17F_v2 

Chr6:52101844 IL17F T/C IL17F_v3 

Chr6:111577761 Act1 A/G Act1_v1 

Chr6:111913262 Act1 C/T Act1_v2 

Chr6:111922720 Act1 A/G Act1_v3 

Chr6:138196066 TNFAIP3 T/G TNFAIP3_v1 

Chr6:138199417 TNFAIP3 G/T TNFAIP3_v2 

Chr17:78157811 CARD14 T/G CARD14 

Chr19:10469975 TYK2 A/C TYK2_v1 

Chr19:10472933 TYK2 A/G TYK2_v2 

Chr22:17565035 IL17RA G/A IL17RA 

Table 6. List of the analyzed SNPs potentially implicated in immune responses activation of T-cell signalling, 

as well as cytokine-dependent signalling. Notes: Genome position, UCSC Genome Browser; REF/ALT, 

reference base/alteration base; Chr, chromosome; NFKBIZ, NF-B inhibitor zeta; TRAF3IP2, TRAF3 interacting 

protein 2; TNFAIP3, TNF alpha induced protein 3; TYK2, tyrosine kinase 2; IL17RA, IL-17 receptor A.  
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(#AB180616), and anti-LT- (Cat#AB64835). Secondary biotinylated mAbs and staining kits 

(Vector Laboratories, Burlingame, CA, USA) were used to develop immunoreactivity. Sections 

were counterstained with Mayer’s hematoxylin. 

 

2.4 RNA analysis 

 

In vivo expression analysis of immunological profile of HS patients was evaluated by real-time 

PCR analysis performed on RNA extracted from 80-μm paraffin-embedded skin sections by 

RecoverAll Total Nucleic Acid Isolation kit (Life technologies, Carlsbad, CA, USA). mRNA 

was reverse-transcribed into cDNA using Superscript IV reverse transcriptase (Invitrogen, 

Carlsbad, CA, USA). Relative gene expression was quantified using specific Sybergreen assays 

and analysed using QuantStudio5 Real-Time PCR System (Thermo-Fisher Scientific, Waltham, 

MIT, USA).  Gene expression levels were determined by normalizing to GAPDH mRNA 

expression. 

 

 

 

 

 

 

 

 

 

 

  

 

 

2.5 T skin isolation and flow cytometry analysis 

 

T lymphocytes were isolated from skin biopsies as previously described [100]. In brief, skin 

biopsies were placed in culture in RPMI 1640 supplemented with 2 mM glutamine, 1 mM 

Gene Sequence 

IFN-2A Fw 5’ TCTGCTATGACCATGACACGAT 3’ 

 Rv 5’ CAGCATGGTCCTCTGTAAGGG 3’ 

IFN- Fw 5’ CAGCAATTTTCAGTGTCAGAAGC 3’ 

 Rv 5’ TCATCCTGTCCTTGAGGCAGT 3’ 

IFN- Fw 5’ AGGCTTCTCCAGGTGAGGGA 3’ 

 Rv 5’ TCCAGGACCTTCAGCGTCAG 3’ 

IFN- Fw 5’ GGGCCTGTATCCAGCCTCAG 3’ 

 Rv 5’ GAGCCGGTACAGCCAATGGT 3’ 

IFN- Fw 5’ GGGCCTGTATCCAGCCTCAG 3’ 

 Rv 5’ GGTGCAGCCAATGGTGGAG 3’ 

LL-37 Fw 5’ TTTTGCGGAATCTTGTACCCA 3’ 

 Rv 5’ TCTCAGAGCCCAGAAGCCTG 3’ 

GAPDH Fw 5’ TGGACCTGACCTGCCGTCTA 3’ 

 Rv 5’ CCCTGTTGCTGTAGCCAAATTC 3’ 

Table 7. List of the primer sequences used for Real-time PCR analysis on human samples. Notes: IFN-2A, 

interferon-2A; IFN-, interferon-; IFN-1, interferon-1; IFN-2, interferon-; IFN-3, interferon-3; LL-

37, cathelicidn antimicrobial peptide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Fw, forward; Rv, 

reverse.  
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sodium pyruvate, 1% nonessential amino acids, 0.05 mM 2-mercaptoethanol, 1% 

penicillin/streptomycin (all Invitrogen; RPMI complete), and 5% human serum (Sigma-

Aldrich) supplemented with 60 U/ml IL-2. After 7-12 days, T cells emigrated from tissue 

samples were collected and phenotypically characterized.  

In parallel, PBMC were isolated form 20-ml sample of peripheral blood samples by gradient 

centrifugation with Ficoll-Hypaque (Lymphoprep, Nycomed-Pharma, Oslo, Norway). T skin 

and PBMC were phenotypically characterized by staining with the following mAbs: anti-IFN-

γ-FITC (#B27), -CD4-PE (#RPA-T4), -CD8-PeRcP (#SK1), -CD3-FITC (#HIT3a) (BD 

Biosciences); anti-TNF-α-FITC (#6n1E7, Miltenyi Biotec, Bergisch, Germany), -IL-17-PE 

(#eBio64DEC17, EBiosciences, Frankfurt, Germany); anti-IL-22-PeRcP (#142928, R&D 

Systems). Acquisitions were performed using an Attune Nxt (Life Technologies, Carlsbad, CA, 

USA). Analyses were performed using Flow logic software (Miltenyi).  

 

2.6 Statistical analysis 

 

Drug response data were analysed by last‐ observation‐ carried‐ forward (LOCF) method, 

where if a patient dropped out of the study the last value available was “carried forward” until 

the next observation point of the treatment. Differences between the groups (allele-pos- or -neg 

patients) based on the clinical response to anti-ILs was evaluated by χ2‐ test. Univariate logistic 

regression analysis was also performed to combine genetic data of single SNP and clinical 

responses to biologic therapy, expressed as PASI75 90 or 100. The association between drug 

response and genetic data was estimated calculating the odds ratio (OR), its standard error and 

95% confidence interval (CI), using the STATA 14.2 software (StataCorp, College Station, TX, 

USA). Deviation from null hypothesis was considered significant at p-value < 0.05.  

The significance of differences in the numbers of immunoreactive cells in skin biopsies were 

calculated using the unpaired Student’s t-test. Unpaired non-parametric Mann-Whitney U-test 

was used to compare differences in mRNA content in skin biopsies of HS and psoriatic patients. 

Statistical analysis was performed with Prism v.5.0 (GraphPad company, St Diego, CA, USA), 

and values are expressed as the mean + SD. All testing was two-sided, and values of p < 0.05 

was considered significant.   

 

  

https://www.sciencedirect.com/topics/medicine-and-dentistry/t-cell


38 
 

3. RESULTS 

 

3.1 Pharmacogenomic studies on psoriatic populations 

 

3.1.1 Clinical classification of psoriatic patients 

 

In the subgroup of patients undergone Secukinumab’s treatment, 42 males and 21 females aged 

between 22 and 76 years, with a baseline PASI score > 10.0 were included. Patient 

demographics and disease characteristics at baseline are described in Table 8.  

In the subgroup of patients undergone Ustekinumab’s treatment, 95 males and 55 females aged 

between 18 and 85 years affected by moderate-to-severe chronic plaque psoriasis, were 

included. Patient demographics and disease characteristics at baseline are described in Table 9.  

 

Characteristic  N = 63 

Male/female, n 42/21 

 Mean ± Standard deviation (range) 

Age, years 45.0 ± 13.1 (22-76) 

BMI, Kg/m2 31.1 ± 9.2 (18.9-41.8)   

   Male 32.7 (18.9-41.3) 

   Female 27.6 (20.4-41.80) 

Age at disease onset, years 22.8 ± 12.1 (3-62) 

PASI 18.9 ± 12.1 (8.0-56.7) 

Biologics before anti-IL-17A therapy, n (%)  

    0 prior biologics 47 (74.5) 

    1 prior biologics 6 (9.5) 

    2 prior biologics 4 (6.5) 

    ≥ 3 prior biologics 6 (9.5) 

Comorbidities, n 29 

   Hypertension 17 

   Type 2 diabetes mellitus 6 

   Hyperlipidemia 3 

   Psychiatric diseases 1 

      Bipolar disorder 0 

      Depressive disorder 1 

      Anxiety disorder 0 

   Obesity 19 

      Class I (BMI 30.0-34.9 kg/m2) 12 

      Class II (BMI 35.0-39.9 kg/m2) 4 

      Class III (BMI ≥40.0 kg/m2) 3 

 

Table 8. Patient demographics and disease characteristics at baseline-Secukinumab’s treatment. Table 

indicates number of Caucasian patients undergone secukinumab treatment include on the sudy. Anthropometric 

and clinical data were shown as Mean ± Standard deviation (range). Notes: BMI, body mass index; PASI, psoriasis 

area severity index. 
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Characteristic  N = 150 

Male/female, n 95/55 

 Mean ± Standard deviation (range) 

Age, years 51.2 ± 13.7 (18-85) 

BMI, Kg/m2 29.4 ± 18.0 (18.4-51.1)   

   Male 28.1 (19.7-51.1) 

   Female 27.2 (18.4-39.8) 

Age at disease onset, years 29.6 ± 16.1 (1-72) 

PASI 19.1 ± 10.9 (5.0-62) 

Biologics before anti-IL-12/23 therapy, n (%)  

    0 prior biologics 84 (56) 

    1 prior biologics 36 (24) 

    2 prior biologics 23 (15.3) 

    ≥ 3 prior biologics 7 (4.7) 

Comorbidities, n 23 

   Hypertension 46 

   Type 2 diabetes mellitus 7 

   Hyperlipidemia 10 

   Psychiatric diseases 8 

      Bipolar disorder 0 

      Depressive disorder 3 

      Anxiety disorder 5 

   Obesity 40 

      Class I (BMI 30.0-34.9 kg/m2) 26 

      Class II (BMI 35.0-39.9 kg/m2) 10 

      Class III (BMI ≥40.0 kg/m2) 4 
 

Table 9. Patient demographics and disease characteristics at baseline-Ustekinumab’s treatment. Table 

indicates number of Caucasian patients undergone ustekinuamb treatment include on the sudy. Anthropometric 

and clinical data were shown as Mean ± Standard deviation (range). Notes as in table 8.  

 

3.1.2 Association analysis between SNPs and response to the anti-IL-17A biologic 

secukinumab 

 

In order to evaluate whether response to the anti-IL-17A depended on allele variants presence 

or absence, we analyzed 44 SNPs predisposing to psoriasis. We studied the efficacy of the drug 

by calculating the 75%, 90% and 100% improvement of the PASI score (PASI75, PASI90 and 

PASI100), respectively up to 2 years of treatment with secukinumab. A logistic regression 

analysis evaluating the relationship between single independent variables (SNP status) and 

dependent variables (PASI75, PASI90 and PASI100 response at weeks 8, 16, 24, 40, 56, 64, 

72, 88 and 100), was performed.  

We found a significant association between four SNPs present in the HLA-C region, namely 

HLA-Cw6 LD, HLA-Cw6 v1, HLA-Cw6 v2, HLA-Cw6 v3, and response to secukinumab 

(Figg. 6-9). Concerning the HLA-Cw6 LD variant, the PASI75 end-point was significantly 

reached by the majority of psoriatic patients carrying out the SNP at week 8 (81.7%, 36 of 44), 

at week 16 (97.7%, 42 of 43), at week 24 (95.5%, 42 of 44), at week 40 (88.6%, 39 of 44), at 
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week 56 (85.7%, 36 of 42), as compared to SNP-negative patients (Fig. 6a and d). Starting from 

week 64, the association between the achievement of PASI75 and presence of HLA-Cw6 LD 

variant was not statistically significant, even if the  between the curves relative to the 

percentage of positive and negative patients increased starting from week 88 to week 100 (Fig. 

6a). Similar results were observed when the PASI90 end-point was evaluated, with the 86% (37 

of 43), 86.4% (38 of 44), 81.8% (36 of 44) and 80.9% (34 of 42) of psoriatic patients carrying 

HLA-Cw6 LD variant being responsive to secukinumab at week 16, 24, 40 and 56, respectively 

(Fig. 6b and d).  
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Figure 6. Clinical response to secukinumab between week 8 and week 100 on patients carrying or not HLA-

Cw6 LD variant. Proportion of HLA-Cw6 LD -positive and -negative patients achieving PASI75 (a), PASI90 (b), 

PASI100 (c). Univariate logistic regression for association analysis between HLA-Cw6 LD and response to 

secukinumab (d). Notes: PASI75, ≥ 75% reduction of PASI score; PASI90, ≥ 90% reduction of PASI; PASI100, 

100% reduction of PASI; OR, odds ratio; CI, confidence interval; p values for categorical variables were calculated 

using the logistic model, * p < 0.05  
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In contrast, PASI100 was significantly reached only by SNP-positive patients at week 16 

(69.8%, 30 of 43) and 24 (68.2, 30 of 44) (Fig. 6c and d). 

Univariate logistic regression analysis also revealed a significant association between HLA-

Cw6 v1 and response to secukinumab. In particular, we observed the achievement of PASI75, 

PASI 90, or PASI 100 by patients carrying out the HLA-Cw6 v1 at weeks 16 and 56, at weeks 

24 and 40, or at weeks 8, 16 and 24, respectively. At these time points and for the indicated 

PASI, differences between HLA-Cw6 v1 positive and negative patients were statistically 

significant, as evaluated by chi2 tests (Fig. 7).  
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Figure 7. Clinical response to secukinumab between week 8 and week 100 on patients carrying or not HLA-

Cw6 v1 variant. Proportion of HLA-Cw6 v1-positive and -negative patients achieving PASI75 (a), PASI90 (b), 

PASI100 (c). Univariate logistic regression for association analysis between HLA-Cw6 v1 and response to 

secukinumab (d). Notes as in Figure 7. p values for categorical variables were calculated using the logistic model, 

* p < 0.05.   
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Moreover, a new association was found between HLA-Cw6 v2 variant in the HLA-C region 

and response to secukinumab. In particular, a significant proportion of HLA-Cw6 v2 positive 

patients experienced PASI75 at different time points: 97.6% (40 of 41), 95.2% (40 of 42), 

88.1% (37 of 42) and 85% (34 of 40) at week 16, 24, 40 and 56, respectively (Fig 8a and d).  

Similar results were obtained when PASI90 and PASI100 achievement was considered, with 

the exception of weeks 40 and 56 (Fig. 8b-c-d).  
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Figure 8. Clinical response to secukinumab between week 8 and week 100 on patients carrying or not HLA-

Cw6 v2 variant. Proportion of HLA-Cw6 v2-positive and -negative patients achieving PASI75 (a), PASI90 (b), 

PASI100 (c). Univariate logistic regression for association analysis between HLA-Cw6 v2 and response to 

secukinumab (d). Notes as in Figure 7. p values for categorical variables were calculated using the logistic model, 

* p < 0.05. 
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Finally, differently from the other SNPs of the HLA-C region, HLA-Cw6 v3 variant was found 

to be associated to a worse response of psoriatic patients to secukinumab. In fact, the majority 

of HLA-Cw6 v3-negative patients reached PASI75 at week 24 (94.7%, 36 of 38), at week 40 

(89.5%, 34 of 38), at week 56 (86.1%, 31 of 36) at week 64 (88.6%, 31 of 35), at week 72 (90%, 

27 of 30), at week 88 (90.9%, 20 of 22), at week 100 (88.9%, 16 of 18), as compared HLA-

Cw6 v3-positive patients (Fig. 9).  
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Figure 9. Clinical response to secukinumab between week 8 and week 100 on patients carrying or not HLA-

Cw6 v3 variant. Proportion of HLA-Cw6 v3-positive and -negative patients achieving PASI75 (a), PASI90 (b), 

PASI100 (c). Univariate logistic regression for association analysis between HLA-Cw6 v3 and response to 

secukinumab (d). Notes as in Figure 7. p values for categorical variables were calculated using the logistic model, 

* p < 0.05. 
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No significant associations were found for the other analyzed SNPs and response to 

secukinumab (data not shown), thus suggesting that only the allele variants in HLA-C region 

could have a predominant role in the response to biological drugs targeting IL-17. 

 

3.1.3 Association of SNPs and response to ustekinumab, a blocker of IL-12/IL-23 p40 

subunit 

 

The analysis of 44 SNPs predisposing to psoriasis was also conducted on a subgroup of psoriatic 

patients undergone treatment with the anti-IL-12/IL-23 p40 ustekinumab biological, and the 

response to the drug was evaluated up to 2 years.  

We found a significant association between SNPs in TNFA (TNFA v1, TNFA v2), CDSN 

(CDSN v2, CDSN v3) and CCHCR1 (CCHCR1 v5) genes, as well as SNPs in the HLA-C 

region (HLA-Cw6 LD, HLA-Cw6 v1, HLA-Cw6 v2) and positive response to the drug. 

Concerning the allele variants in TNFA gene, we observed a significant association between 

TNFA v1 and achievement of PASI100 after ustekinumab treatment at weeks 64 (63.2%, 12 of 

19), 76 (70.6%, 12 of 17), 88 (80.0%, 12 of 15) and 100 (68.7%, 11 of 16) (Fig. 10c and d). 

Similar results were observed for TNFA v2, present in an intron variant of TNFA, with the 

PASI90 being reached by 72.7% of TNFA v2-negative psoriatic patients at week 64 (Fig. 11b, 

c and d). PASI100 achievement was observed in the 50.7%, 55.1% or 52.3% of TNFA v2-

negative patients at weeks 76, 88 or 100, respectively (Fig. 11b, c and d). 

Moreover, we also found a significant association between the CDSN v2 variant in CDSN gene 

and response to ustekinumab. SNP absence in psoriatic patients was significantly associated 

with the achievement of PASI75 at week 64 (92.5% 62 of 67), and PASI90 at week 64 (76.1%, 

51 of 67), week 76 (79%, 49 of 62), week 88 (80%, 48 of 60), and week 100 (82.1%, 46 of 56). 

Similar results were obtained when PASI100 achievement was considered. In particular, the 

majority of SNP-negative patients obtained an improvement of PASI score of 100% at week 52 

(50%, 36 of 72), 64 (49.3%, 33 of 62), 76 (51.6%, 32 of 62), 88 (56.7%, 34 of 60), 100 (53.6%, 

30 of 56) (Fig. 12). Regarding CDSN v3 variant, the PASI75 was reached by 92.3% (24 of 26) 

and 92% (23 of 25) of positive patients at week 12 and 28, respectively (Fig. 13 a and d). The 

achievement of PASI90 by patients carrying out SNP was observed at week 12 (65.4%, 17 of 

26), 64 (82.6%, 19 of 23), 76 (86.9%, 20 of 23), 88 (90.9%, 20 of 22) and 100 (90.5%, 19 of 

21) (Fig. 13 b and d). PASI100 was instead significantly reached only at week 28 by 60% of 

positive patients (15 of 25) (Fig. 13 c and d). 
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Figure 10. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not TNFA 

v1 variant. Proportion of TNFA v1-positive and -negative patients achieving PASI75 (a), PASI90 (b), PASI100 

(c). Univariate logistic regression for association analysis between TNFA v1 and response to ustekinumab (d). 

Notes: PASI75, ≥ 75% reduction of PASI score; PASI90, ≥ 90% reduction of PASI; PASI100, 100% reduction of 

PASI; OR, odds ratio; CI, confidence interval; p values for categorical variables were calculated using the logistic 

model, * p < 0.05 
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Figure 11. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not TNFA 

v2 variant. Proportion of TNFA v2-positive and -negative patients achieving PASI75 (a), PASI90 (b), PASI100 

(c). Univariate logistic regression for association analysis between TNFA v2 and response to ustekinumab (d). 

Notes as in Figure 11.  p values for categorical variables were calculated using the logistic model, * p < 0.05. 
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Figure 12. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not CDSN 

v2 variant. Proportion of CDSN v2-positive and -negative patients achieving PASI75 (a), PASI90 (b), PASI100 

(c). Univariate logistic regression for association analysis between CDSN v2 variant and response to ustekinumab 

(d). Notes as in Figure 11. p values for categorical variables were calculated using the logistic model, * p < 0.05. 
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Figure 13. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not CDSN 

v3 variant. Proportion of CDSN v3-positive and -negative patients achieving PASI75 (a), PASI90 (b), PASI100 

(c). Univariate logistic regression for association analysis between CDSN v3 variant and response to ustekinumab 

(d). Notes as in Figure 11. p values for categorical variables were calculated using the logistic model, * p < 0.05. 
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Logistic regression analysis also revealed a significant association between the CCHCR1 v5 

variant in the CCHCR1 gene and response to ustekinumab. In particular, we found that the 

association between the achievement of PASI90 and presence of CCHCR1 v5 was statistically 

significant, starting from week 12 to 88 for the all time points examined, with the exception of 

week 28 and 40 (Fig.14 b and d). A significant association was also observed between the 

achievement of PASI100 at week 12 (35.1%, 27 of 77) and presence of CCHCR1 v5 variant 

(Fig. 14 c and d).  
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Figure 14. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not 

CCHCR1 v5 variant. Proportion of CCHCR1 v5-positive and -negative patients achieving PASI75 (a), PASI90 

(b), PASI100 (c). Univariate logistic regression for association analysis between CCHCR1 v5 variant and response 

to ustekinumab (d). Notes as in figure 11. p values for categorical variables were calculated using the logistic model, 

* p < 0.05. 
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Finally, accordingly to previously published results [89], we found a significant association 

between HLA-Cw6 classical variant (v1) presence in patients and response to ustekinumab 

treatment. In particular, HLA-Cw6 allele presence was significantly associated to the 

achievement of PASI90 at week 12 (60.3%, 41 of 68 patients), 28 (76.9%, 50 of 65), 64 (74.1%, 

40 of 54), 76 (82%, 41 of 50), 88 (85.7%, 42 of 49) and 100 (82.9%, 39 of 47) (Fig. 15).  
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Figure 15. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not HLA-

Cw6 v1 variant. Proportion of HLA-Cw6 v1-positive and -negative patients achieving PASI75 (a), PASI90 (b), 

PASI100 (c). Univariate logistic regression for association analysis between HLA-Cw6 v1 variant and response to 

ustekinumab (d). Notes as in Figure 11. p values for categorical variables were calculated using the logistic model, 

* p < 0.05. 
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Importantly, HLA-Cw6 allele presence was significantly associated with a complete remission 

of the disease, being PASI100 reached by a significant proportion of psoriatic of patients 

(41.2% at week 12, 50.8% at week 40, 53.6% at week 52, 54% at week 76, and 57.1% at week 

88) (Fig. 15). 

Differently from secukinumab studies, the other HLA-C allele variants studied (HLA-Cw6 LD 

and HLA-Cw6 v2) only occasionally have been found significantly associated with 

responsiveness to ustekinumab (Fig. 16 and 17).  
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Figure 16. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not HLA-

Cw6 LD variant. Proportion of HLA-Cw6 LD-positive and -negative patients achieving PASI75 (a), PASI90 (b), 

PASI100 (c). Univariate logistic regression for association analysis between HLA-Cw6 LD variant and response to 

ustekinumab (d). Notes as in Figure 11. p values for categorical variables were calculated using the logistic model, 

* p < 0.05. 
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Figure 17. Clinical response to ustekinumab between week 4 and week 100 on patients carrying or not HLA-

Cw6 v2 variant. Proportion of HLA-Cw6 v2-positive and -negative patients achieving PASI75 (a), PASI90 (b), 

PASI100 (c). Univariate logistic regression for association analysis between HLA-Cw6 v2 variant and response to 

ustekinumab (d). Notes as in Figure 11. p values for categorical variables were calculated using the logistic model, 

* p < 0.05. 
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3.2 Studies on the paradoxical psoriasis-like manifestations induced by the anti-TNF- therapy 

 

SNP analysis was in parallel conducted on three patients affected by HS, who developed 

psoriasiform reactions following anti-TNF- therapy with adalimumab. In parallel to the 

genetic profiles, the immunological profiles of these patients have also been investigated.  

 

3.2.1 Clinical characterization of patients manifesting paradoxical psoriasis reactions after 

adalimumab treatment 

 

We analyzed three patients affected by severe HS developing paradoxical reactions following 

a therapy with the anti-TNF adalimumab. Adalimumab was administered following AIFA 

criteria for HS condition. After paradoxical psoriasis manifestation, adalimumab was 

discontinued.  

Patient 1, a 48-year-old Caucasian woman, showed nodules, fistulas and sinus tracts in the 

inguinal and perianal region (Hurley III, Sartorius score: 41.5). After three months of therapy 

with anti-TNF-, patient 1 developed psoriasiform eruptions (PASI 6.8), with pustular lesions 

and erythemato-scaly lesions on the plantar region and lower limbs, respectively (Fig. 18). 

A similar pattern of HS severity was observed in patient 2 (Hurley III, Sartorius score: 41.5), a 

40-year-old Caucasian man, showing erythematous-pustular lesions in the palmo-plantar region 

and erythemato-scaly plaques on the legs and scalp, ascribed to psoriasiform dermatitis (PASI 

5.2), arisen after two months with adalimumab (Fig. 18). Patient 2 concomitantly showed 

alopecia areata on the scalp and some eczematous-like skin lesions. Patient 3, a 27-year-old 

Caucasian man, was affected by severe HS (Hurley III, Sartorius score: 61.5) characterized by 

comedones, nodules, and fistulas in the inguinal, gluteal and abdominal region. Patient 3 

developed pustular lesions on palmo-plantar regions, and erythemato-scaly plaques on the legs, 

scalp, elbows and trunk (PASI 5.6) after three months of biological therapy (Fig. 18). He 

refused to undergo a punch biopsy, and, therefore, we could not perform the histological and 

immunological exams.  

Histological examinations of psoriasiform lesions of patient 1 and 2, showed epidermal 

hyperplasia with parakeratosis, papillary vessel ectasia and perivascular infiltrate compatible 

with a psoriasiform dermatitis, with different amounts of intraepidermal or subcorneal 

neutrophilic infiltration (Fig. 18). Interestingly, some eczematiform spongiotic areas 

overlapping with the psoriasis-like histological pattern were present in skin lesions of patient 

2.  
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Of note, paradoxical psoriasis regressed in all patients, when adalimumab was discontinued. 

These finding suggests that paradoxical psoriasis is a transient side-effect induced by TNF 

blockade, with clinical and histological presentations resembling psoriasis.  

 

 

 

 

Figure 18. Clinical and histological presentation of paradoxical psoriasis induced by anti-TNF- therapy in 

HS patients. Cutaneous lesions of patient 1, 2 and 3 affected by severe HS, presenting paradoxical psoriasiform 

reaction after anti-TNF- treatment. Patient 1 panels shows paradoxical erythemato-squamous plaques localized 

on lower limbs (i and iii) and pustular lesions on the plantar region (ii). Patient 2 similarly shows erythemato-

squamous plaques on the limbs (i), pustular lesions on the palmo-plantar region and severe form of alopecia areata 

involving part of the scalp (ii-iv). Patient 3 panels reveals an erythematosus patches, with mild desquamation on 

the elbows and trunk (i-iii). H&E staining for the corresponding histopathology of patients 1 (iv) and patient 2 (v) 

was also performed. Bars, 200 M. 
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3.2.2 SNP analysis of patients developing paradoxical psoriasis 

 

In order to understand whether paradoxical reactions had a genetic basis, the presence or 

absence of 44 SNPs predisposing to psoriasis in the DNA of the three patients have been 

analyzed by using NGS technology. To this end, the same SNP array used for the 

pharmacogenomic studies on secukinumab and ustekinumab has been employed.  

Allelic variants in genes predisposing to classical psoriasis, including SNPs in ERAP1 and HLA-

C region, were detected in all the HS patients with paradoxical reactions, either in homozygosis 

or in heterozygosis condition (Table 10). Three SNPs in ERAP1 (rs30187, rs30186, rs26653) 

and nine variants in HLA-C (HLA-Cw6 LD, rs9264942, rs10484554, rs2524095, rs28383849, 

rs9264944, rs2853922, rs147538049, rs9264946) were, in fact, found in all patients, with SNPs 

differently distributing in the three patients. None of them showed classical HLA-Cw6 allele, 

even though patient 1 and 3 carried out three-point SNPs (rs2524095, rs2853922, rs386698994) 

mapping nearby HLA-Cw6 SNP position (rs17192540) (Table 10). On the contrary, patient 2 

showed mostly genetic polymorphisms (rs9264942, rs10484554, rs28383849, rs9264944, 

rs147538049, rs9264946) present in the genomic region containing a second variant of HLA-

Cw6 (Table 10). All HS patients carried out SNPs in NFKBIZ (rs3217713) and TNFAIP3 

(rs610604) genes, codifying IKB and A20 protein, respectively. Interestingly, patient 3 

showed the higher number of psoriasis-related SNPs, sharing a number of SNPs with patient 2 

(rs7637230 /rs4819554 /rs3132554 /rs10542126 /rs3130983) and rs280519 with patient 1 

(Table 2). Patient 3 also carried out other two SNPs in CDSN (rs1062470 /rs707913) and three 

SNPs in CCHCR1 (rs1576 /rs130079 /rs746647) (Table 10).  

Although rs11209026 in IL23R gene has been previously associated with paradoxical 

psoriasiform reactions to anti-TNFs [81], we could not find this SNP in none of HS patients. 

Other two SNPs in IL23R, rs72676067 and rs1004819, were instead detected in patient 2 and 

1, respectively. 
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Antigen presentation 
dbSNP ID Gene Patient 1 Patient 2 Patient 3 

rs30187 ERAP1  
  

rs30186 ERAP1 
 

 

 

rs11743410 ERAP1 
   

rs26653 ERAP1 
 

 

 

rs114395371 HLA-C region 
   

rs17192540  HLA-C region  
   

rs2524095  HLA-C region 
 

 

 

rs2853922  HLA-C region 
 

 

 

rs386698994  HLA-C region 
 

  

rs79709508  HLA-C region 
  

 

rs28383849  HLA-C region 
   

rs10484554   HLA-C region 
   

rs147538049  HLA-C region 
   

rs9264944  HLA-C region 
   

rs9264946  HLA-C region 
   

NF-B pathway and T-cell activation 

dbSNP ID Gene Patient 1 Patient 2 Patient 3 

rs72676067 IL23R 
   

rs1004819 IL23R 
   

rs41313262 IL23R 
   

rs11209026 IL23R 
   

rs3217713 NFKBIZ 
   

rs7637230 NFKBIZ 
  

 

rs2546890 IL12B 
   

rs1800610 TNF 
   

rs2397084 IL17F 
   

rs71562288 TRAF3IP2 
   

rs33980500 TRAF3IP2 
   

rs610604 TNFAIP3 
  

 

rs12720356 TYK2 
   

rs280519 TYK2 
  

 

rs4819554 IL17RA 
  

 

Skin barrier function 

dbSNP ID Gene Patient 1 Patient 2 Patient 3 

rs3132554 CDSN 
   

rs1042127 CDSN 
   

rs1042126 CDSN 
   

rs1062470 CDSN 
   

rs707913 CDSN 
   

rs3130983 CDSN 
   

rs1576 CCHCR1 
  

 

rs130079 CCHCR1 
   

rs746647 CCHCR1 
  

 

rs130075 CCHCR1 
   

Table 10: SNPs carried out by HS patients developing paradoxical psoriasis after anti-TNF- therapy. 

SNP-carrying genes were classified accordingly to their functions (i. e. control of antigen presentation, NF-B 

pathway and T-cell activation, skin barrier). Note: dbSNP ID, data base SNP identification number at NCBI; 

rs, reference SNP ID number; ERAP1, endoplasmic reticulum aminopeptidase 1; NFKBIZ, NF-B inhibitor 

zeta; TRAF3IP2, TRAF3 interacting protein 2; TNFAIP3, TNF alpha induced protein 3; TYK2, tyrosine kinase 

2; IL17RA, IL-17 receptor A; CDSN, corneodesmosin; CCHCR1,  coiled-coil alpha-helical rod protein 1. 

rs17192540 and rs79709508 were relative to HLA-Cw6 and HLA-Cw6 2nd allelic variant (HLA-Cw6 2v).  

: homozygotic variant; : heterozygotic variant; : wild type.  
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3.2.3 Immunohistochemical and molecular characterization of psoriasiform skin lesions 

 

Next, leukocyte subpopulations were characterized in paradoxical psoriasiform lesions, and 

compared to those present in classical plaque-type psoriasis. The contribution of innate 

immunity pathways, in particular the presence of innate immunity cells subpopulations was 

characterized by immunohistochemistry. In line with previous studies [63,101], BDCA2+ pDC 

in the dermis were significantly more abundant than in classical psoriasis (~ 2.7-fold increase). 

In parallel, the increase of CD15+ neutrophils, c-kit/CD117+ mast cells, CD68+ macrophages 

and monocytes in the dermis of both paradoxical skin reactions was observed (~ 3.8-, 3.5- and 

1.8-fold increase, respectively), if compared with LS and NLS plaque-type psoriasis (Fig. 19). 

On the contrary, CD11c+ DC immunoreactivity substantially decreased in both the dermis and 

epidermis of paradoxical lesions, as compared to plaque-type psoriasis (~ 1.5-fold-decrease). A 

similar number of CD3+ cells were detected in paradoxical skin lesions and classical psoriasis 

(Fig. 19). 

In parallel, the local expression of psoriasis-related cytokines, namely IL-17A, IFN-, IL-22, 

and IL-36 , were evaluated by immunohistochemistry [102]. A local overproduction of these 

cytokines has been revealed. As shown in Figure 20, IFN- immunoreactivity decreased in 

psoriasiform reactions of patients 1 and 2, as compared to classical psoriasis. In contrast, 

psoriasiform lesions showed an increased number of infiltrating IL-22+ leukocytes, in particular 

in cells having a macrophage-like morphology (~ 2.1-fold increase). Due the numerous 

neutrophils present in the dermis of paradoxical reactions, IL-36 positivity also enhanced, as 

compared to classical psoriasis. However, IL-36 expression in the epidermal compartment was 

similar (Fig. 20).  

Furthermore, since the inflammatory infiltrate pattern in paradoxical psoriasis strongly 

resembles that present in acute psoriasis, selected innate immunity molecules potentially 

involved in triggering of psoriasis has been also investigated. The type I IFN- was expressed 

in paradoxical skin lesions, mainly in keratinocytes, at levels significantly higher than classical 

psoriasis (~ 1.9-fold increase). IFN- expression was also detected in cells with a T-cell- and 

DC-like morphology, as well as in endothelial cells. Epidermis of psoriasiform reactions was 

also immunoreactive for IFN-, another keratinocyte-derived type I IFN [103]. IFN- 

expression was similar in the two psoriasis conditions, even if it showed different subcellular 

localization within keratinocytes, being it cytoplasmic in psoriasiform lesions and membrane-

bound in classical psoriasis (Fig. 21). IFN- staining was also present in cells with a monocyte- 

or DC-like morphology, at comparable levels in classical and unclassical psoriasis (Fig. 21).  
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Figure 19. Innate immunity cells highly infiltrate paradoxical psoriasis skin lesions. Immunohistochemistry 

analysis of paradoxical skin reactions obtained from patient 1 (Pt1) and 2 (Pt2) shows an increase of positive 

BDCA2, CD15, CD117, CD68 cells, a reduction of CD11c cells and similar values of CD3 cells, when compared 

with psoriasis. Lesional (LS) and nonlesional (NLS) skin of the same psoriatic patient (n = 3) was analyzed. Slides 

were analyzed by two pathologists with experience in dermatology field. Positive cells were counted in five adjacent 

fields at a magnification of 200X. Graphs show the mean of number of positive cells ± SD per three sections. One 

out of three representative stainings is shown. *p < 0.01, **p < 0.05 vs classical psoriasis. Bars, 200 M. 
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Figure 20. Expression of psoriasis-related cytokines in paradoxical psoriasiform reactions. 

Immunohistochemistry analysis performed on paradoxical skin lesions obtained from patients 1 (Pt1) and 2 (Pt2) 

shows similar values of IL-17A+ cells, a reduction of dermal IFN-+ cells and an increase of IL-22+ or IL-36+ cells, 

when compared with psoriatic skin lesions. Lesional (LS) and nonlesional (NLS) skin of the same psoriatic patient 

(n = 3) was analyzed. Graphs show the mean of number of positive cells ± SD per three sections. One out of three 

representative stainings is shown. *p < 0.01, **p < 0.05, vs classical psoriasis. Bars, 200 M. 
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Finally, LT- and LT-, two members of the TNF family cytokine, also known as TNF- and 

TNF-C, were investigated, as possibly deregulated by anti-TNF- therapy. Conversely, both 

lymphotoxins were strongly overexpressed in paradoxical skin reactions, especially in 

keratinocytes of the basal layer epidermis (Fig. 21), suggesting an important role in the early 

phase of psoriasis, not investigated yet.  

 

 

 

 

 

Figure 21. Innate immunity molecules are overexpressed in the skin of HS patients after TNF- treatment.  

Immunohistochemistry analysis of paradoxical skin reactions obtained from patients 1 (Pt1) and 2 (Pt2) shows an 

increase of IFN-, LT-, LT-, and similar IFN- positivity, when compared with psoriatic skin lesions. Lesional 

(LS) and nonlesional (NLS) skin of the same psoriatic patient (n = 3) was analyzed. Graphs show the mean ± SD of 

semiquantitative, four-stage scoring, ranging from negative immunoreactivity (0) to strong immunoreactivity (4+) 

and relative to the epidermal expression of the indicated molecules. One out of three representative stainings is 

shown. *p < 0.01, vs classical psoriasis. Bars, 200 M. 
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Innate immunity molecules potentially involved in the pathogenesis of psoriasis were then 

analyzed at mRNA expression levels. Type I IFN- mRNA was expressed in paradoxical skin 

lesions, at levels higher than classical psoriasis. Similarly, IFN-2a and IFN-1, but not IFN-

2 and IFN-3, were greatly increased in paradoxical psoriasis, as compared to plaque psoriasis 

(Fig. 22 and data not shown). Of note, LL-37 mRNA was also strongly expressed in 

psoriasiform skin lesions, at levels higher than classical psoriasis (Fig. 22). 

 

 

3.2.4 Immunological profile analysis of patients developing paradoxical reactions 

 

Next, immunophenotypical characterization of T-skin and PBMC isolated from HS patients 

developing paradoxical psoriasiform reaction, was performed. FACS analysis of the T-cells 

isolated from skin biopsies showed a significant reduction of IFN-+ CD3+ cells in patients 1 

and 2, when compared to CD3+ cells isolated from classical psoriasis (~ 7- and 1.7-fold 

decrease, respectively) (Fig. 23). The reduction of IFN- positivity was also observed in 

circulating CD3+ cells of patients 1 and 2 (Fig. 23). Similarly, TNF- positivity was lower in 

Figure 22: Innate immunity molecules are overexpressed in the skin of HS patients after TNF- treatment. 

mRNA expression of IFN2a, IFN, IFN1 and LL37 was analyzed by real-time PCR in skin lesions of patients 

1 (Pt1) and 2 (Pt2) and in skin biopsies from LS and NLS skin of three psoriatic patients. mRNA values were 

normalized to GAPDH mRNA. Values obtained from triplicate experiments were averaged, and data presented as 

means of 2^-CT ± SD. *p < 0.01, **p < 0.05.  
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T-skin lymphocytes of patients 1 and 2. TNF- positivity of circulating CD3+ cells was instead 

lower only in patient 1, as compared to patient 2 and patients with classical psoriasis (Fig. 23). 

Moreover, IL-17A positivity was comparable in patient 1 and psoriatic patients, whereas it was 

very high in T cells isolated from skin of patient 2, where a mixed population of T cells, either 

responsible for the psoriasiform or eczematous reactions, is likely present (Fig. 20). IL-22 was 

similar in T cells of psoriasiform lesions and classical psoriasis, whereas it was substantially 

reduced in PBMC (Fig. 23). CD3+ cells from skin biopsies of HS patients were enriched in 

CD8+, but not in CD4+ cells, when compared to PBMC isolated from the same patients. CD3+ 

T-skin cells of classical psoriasis showed instead an enrichment of both CD4+ and CD8+ 

subpopulations (Fig. 24). 

 

 

Figure 23: Immunophenotypical characterization of T-skin and PBMC isolated from HS patients with 

psoriasiform lesions. T-skin cell lines (left panel) and PBMCs (right panel) were isolated from biopsies and blood, 

respectively, of patients 1 and 2 and from psoriatic patients (n = 2). Co-expression of IL-17, IL-22, TNF- or IFN-

γ on gated CD3+ cells, were analyzed by flow cytometry. Percentage of positive fluorescent cells is shown in each 

quadrant. Results show the mean values of data obtained for one representative experiment out of three 

experiments. 
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Figure 24: Immunophenotypical characterization of T-skin and PBMC isolated from HS patients with 

psoriasiform lesions. T-skin cell lines (left panel) and PBMCs (right panel) were isolated from biopsies and blood, 

respectively, of patients 1 and 2 and from psoriatic patients (n = 2). Surface CD4, CD8 and CD3, were analyzed by 

flow cytometry. Percentage of positive fluorescent cells is shown in each quadrant. Results show the mean values of 

data obtained for one representative experiment out of three experiments. 



64 
 

DISCUSSION 

 

Most inflammatory skin disorders, such as psoriasis, are multifaceted diseases, as they are 

polygenic, clinically and pathogenically complex, as well as multifactorial, meaning that 

multiple genetic, epigenetic, lifestyle, and environmental factors play a role in the manifestation 

of the disease.  

Identification of robust biomarkers that reflect the various clinical psoriasis phenotypes, and 

which eventually form the basis for stratification of endotypes, can help in making diagnosis 

(diagnostic biomarkers) and for prognosis indication (prognostic biomarkers). Also predictive 

biomarkers, having the potential to identify the individuals that are more or less likely to 

respond to a given drug, could be differentially carried out by patients based on the 

complexity/heterogeneity of their disease status.  

Among predictive biomarkers, a number of pharmacogenetic markers, namely variations of 

DNA or RNA characteristics as related to drug response, have been identified for several 

disease conditions, including psoriasis. In particular, polymorphisms in genes encoding drug-

metabolizing enzymes, transporters and drug targets, accounting for up to 95% of interpatient 

variability, were found to be the most frequent type of variations identified in relation to 

response to systemic drugs used for psoriasis treatment, in particular to methotrexate and 

cyclosporine [17]. On the other hand, in the last decade, some SNPs in psoriasis susceptibility 

genes have been related to response to the biological drugs [17,104].  

However, until now, pharmacogenomic studies in psoriasis have been underpowered to produce 

reliable results and the majority have not recorded treatment response or toxicities prospectively 

in an objective and reproducible manner [105]. Many of the published studies to date have 

adopted a candidate gene approach, focusing on single gene polymorphisms based on existing 

knowledge of the metabolic or immune pathways of psoriasis treatments producing conflicting 

or nonsignificant results for the most part. Therefore, a validation of these results in adequately 

powered patient cohorts would be essential before the pharmacogenomic markers can be used 

to predict treatment response in the clinical setting. In addition, the discovery of new 

pharmacogenomic biomarkers, simultaneously present in different genes involved in 

intersected pathogenic pathways, and which could be predictive for the responsiveness of 

psoriatic patients to biological drugs, including drugs of more recent identification and 

employment, such as the newer class of biologicals targeting IL-17A and its receptor and the 

lastly identified anti-IL-23 drugs, would be important. 

The advent of biological agents has significantly improved the clinical management of 

psoriasis, although these treatments have been so far associated with variable response degrees, 
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in terms of efficacy and safety. Nowadays, a variety of biological therapies are available for 

psoriatic patients. These agents are potentially highly effective, even though they may differ in 

time until a clinically satisfactory response is reached [48,87,89,106]. In addition, a variable 

percentage of psoriatic patients does not or only partially respond/s to biological therapies 

(primary failure) or even, after an initial response, loses responsiveness over time (secondary 

failure). This often requires switching to other biological drugs, with increased healthcare costs.  

Of note, biological drugs, in particular the anti-TNFs, can even worsen psoriasis condition by 

inducing paradoxical cutaneous reactions and other side effects [66]. These paradoxical events, 

in particular the psoriasis-like reactions also occur in patients with severe immune-mediated 

inflammatory conditions, including HS [64–66]. The reason why anti-TNFs induce paradoxical 

psoriasiform reactions only in a portion of subjects affected by different autoimmune 

conditions, and mostly with a similar phenotype is still unknown. A growing number of 

scientific evidence supports the influence of the genetic background in predisposing to 

paradoxical psoriasis or other skin inflammatory conditions, together with certain 

environmental factors [81]. In addition, the presence of specific haplotypes associated with a 

hyperactivation of innate immunity pathways, in particular with pDC activation and/or type I 

IFN and TNF- signaling could lead to paradoxical manifestations. 

Therefore, the discovery of genetic biomarkers to predict treatment response of psoriatic 

patients to biological drugs, either in terms of efficacy/inefficacy or safety improvement of the 

drugs, have potential to greatly impact clinical decisions and, eventually, in the development of 

individually tailored treatment. 

On this subject, only few SNPs in HLA-Cw6, TNFAIP3, TNFA, TNFRSF1B, IL12B and IL-23A 

or in  IL-23R, FBXL19, CTLA4, SLC12A8 and TAP1 genes have been found to influence the 

therapeutic response of psoriatic patients to anti-TNFs and ustekinumab biologics 

[24,65,109,76,79,96–99,107,108], or to associate with paradoxical psoriasiform reactions 

induced by anti-TNFs, respectively [81]. To date no genetic associations influencing the clinical 

response to anti-IL-17A or anti-IL-23 are known. 

The present research identified a set of SNPs in genes psoriasis-related risk loci in two large 

cohorts of patients affected by mild-to-severe plaque psoriasis undergone therapy with IL17A 

(n = 63 patients), or IL-12/IL-23 (n = 150 patients) blockers, associating with clinical 

responsiveness to anti-ILs drugs. Concerning secukinumab-treated patients, a significant 

association between four single SNPs in the HLA-C genomic region, namely HLA-Cw6 v1, 

HLA-Cw6 LD, HLA-Cw6 v2, or HLA-Cw6 v3 and response to the drug was found. Importantly, 

psoriatic patients carrying HLA-Cw6 classical variant (v1) reached PASI100 faster (week 8) 
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than HLA-Cw6-neg patients, and maintained this result up to week 24. HLA-Cw6-pos patients 

also showed a tendency to greater respond to secukinumab, in terms of achievement of PASI90 

and PASI100. These data partly contrast with previous findings of the SUPREME study 

demonstrating that secukinumab has high efficacy irrespective of HLA-Cw6 status in psoriatic 

patients [53,54]. However, these studies linked HLA-Cw6 allele presence and responses of 

psoriatic patients to secukinumab in terms of achievements of PASI90.  

In the present study, the most significant associations were observed for HLA-Cw6 v2 and 

HLA-Cw6 LD variants, whose presence in psoriatic patients was associated to the achievements 

of PASI75 or PASI 90 starting from week 16 or week 4, respectively, up to week 56. 

Interestingly, the absence of HLA-Cw6 v3 allele in psoriatic population guaranteed a better 

response to secukinumab, in terms of achievement of PASI75 at different time-points of 

evaluation (weeks 24, 40, 56, 64, 72, 88, 100).  

Although, no functional evidence correlating the presence or absence of HLA-Cw6 variants and 

response to secukinumab exist, it is plausible that these alleles allow or not the presentation of 

epitopes present in different putative antigens, such as the disintegrin and metalloprotease 

domain containing thrombospondin type I motif-like 5 (ADAMTSL5), a protein identified as 

autoantigen presented by melanocytes in a HLA-Cw6-restricted fashion [97], and recently 

localized in keratinocytes throughout the psoriatic epidermis [110,111]. Among autoantigens 

possibly presented by HLA-Cw6 allele, the cathelecidin LL37 can be recognized by circulating 

CD8+ T cells with a cytokine and skin-homing receptor profile (IFN-high, IL-17high, CLA+, 

CCR6+, and CCR10+) typical of psoriatic skin T cells [112,113]. Most recently, phospholipase 

A2 group IVD (PLA2G4D) was also identified in psoriatic keratinocytes as important player in 

the generation of psoriasis autoantigens [113]. The latter include nonprotein neolipids that are 

recognized by CD1a-restricted T cells, thereby inducing the production of IL-22 and IL-17A 

[114]. These lipid antigens could be transferred from keratinocytes to neighboring antigen-

presenting cells through released exosomes, similarly to what observed for tryptase+ mast cells 

of psoriatic lesions [114]. 

Differently from secukinumab-treated patients, ustekinumab-treated cohort was strongly 

influenced by HLA-Cw6 v1 allele status, but not by HLA-Cw6 LD, HLA-Cw6 v2, or HLA-Cw6 

v3 variants. The association between HLA-Cw6 v1 allele presence and response to ustekinumab 

was significant for patients reaching PASI90 or PASI100, starting from week 12 up to week 

100. These results extend previous findings by Talamonti et al. showing that HLA-Cw6 status 

can predict the efficacy of ustekinumab treatment, in terms of achievement of PASI50 and 

PASI75 up to 52 weeks [89], and phase III studies reporting that a higher percentage of HLA-
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Cw6-pos patients achieved PASI, 50, 75, 90 and 100 up to week 28 compared to of HLA-Cw6-

neg patients [115–117]. The efficacy of ustekinumab, thus, would depend on the presence HLA-

Cw6 allele possibly as activator of antigen-specific CD8+ T cell-mediated lymphocyte immune 

responses driven by IL-12/IL-23 signaling. However, differently from secukinumab-regulated 

immune responses, which are uniquely dependent on IL-17A action, the ustekinumab-regulated 

immunity pathways are dependent on IL-12 and IL-23, and thus on both IFN- and IL-17A 

action. Of note, the presence of TNFA v1 variant or absence of TNFA v2 in TNFA gene 

determined a greater and long-lasting response to ustekinumab. Similarly, the presence or 

absence of CDSN v2 or CDSN v3 variants of CDSN gene, respectively, strongly associated 

with a good response to ustekinumab (PASI90), which was maintained up to 100 weeks. 

PASI90 was also reached by the majority of ustekinumab-treated patients carrying CCHCR1 

v5 variant in CCHCR1 gene. It is noteworthy that HLA-C, TNFA, CDSN and CCHCR1 genes 

all map in PSORS1 locus on chromosome 6p21.3, which remains the strongest susceptibility 

locus for psoriasis. That PSORS1 region have a predominant effect on psoriasis manifestation 

is also suggested by the findings of the present study showing that no statistically significant 

associations between allele variants of genes mapping in other locus or PSORS and response 

to secukinumab or ustekinumab were found. Indeed, univariate logistical regression analysis is 

not appropriate to highlight possible association between group of SNPs, maybe transmitted in 

linkage (for instance HLA-Cw6 v1 and other HLA-Cw6 alleles), and response to drugs. 

Therefore, multivariate logistical regression analysis could unveil additional significant 

associations, as in the case of IL12B rs3212227 SNP and response to ustekinumab, that was 

found to be more successful in HLA-Cw6-pos/IL12B rs3212227-pos than in HLA-Cw6-

neg/IL12B rs3212227-neg psoriatic patients [87].  

Several evidences showed that treatment with anti-TNFs is also influenced by the genetic 

background of psoriatic patients, which thus can show variable responses, including adverse 

side-effects, such as exacerbation of psoriasis or manifestation of other skin pathological 

conditions. In addition, anti-TNF therapy can induce psoriasiform manifestations in patients 

affected by immune-mediated inflammatory diseases unrelated to psoriasis. Among the genetic 

variants influencing the clinical response to anti-TNF therapy, those relative to IL-23R, 

FBXL19, CTLA4, SLC12A8 and TAP1 genes have been found to associate with paradoxical 

psoriasis [81]. For instance, three SNPs in IL23R gene (rs10489628, rs10789229, and 

rs1343151) associated with paradoxical reactions in patients affected by Crohn’s disease 

undergone therapy with infliximab [118]. Moreover, patients with inflammatory bowel disease 

developing severe psoriasiform skin lesions and/or anti-TNF-induced alopecia, carried out the 
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rs7530511 SNP in the IL23R gene, as well as the rare coding IL23R variant rs11209026 [119], 

known to be associated with decreased IL-23 signal transduction and Th17 cytokine production 

[120,121]. The rs11209026 allele was not instead found in none of the three HS patients 

analyzed for this study [122]. On the contrary, HS patients carried out numerous allelic variants 

in the HLA-C. None of patients showed the major HLA-Cw6 psoriasis allele, even though other 

SNPs in the proximity of HLA-Cw6 and neighboring to other HLA-C variants were found. 

Concomitantly, HS patients carried out allelic variants in ERAP1 gene. However, due to the 

lack of antigen-specific CD8+ T-cell responses in HS patients, the link between the presence of 

SNPs in HLA-C region/ERAP1 gene and susceptibility to paradoxical psoriasis is apparently 

missing. Indeed, other than having a role in MHC class I antigen presentation, ERAP1 is 

involved in the activation of innate immunity pathways, by inducing inflammasome and 

production of cytokines and chemokines (i. e. IL-6, TNF- and CCL2) [123]. Importantly, 

allelic variants of ERAP1 leading to missense mutation increases ERAP1 capability to induce 

inflammation in autoimmune diseases [124]. HS patients also carried out polymorphisms in 

NFKBIZ and TNFAIP3, which could be responsible for an NF-B hyperactivation, as 

demonstrated for other pathological conditions [125,126].   

A growing number of scientific evidence supports the influence of specific haplotypes 

associated with a hyperactivation of innate immunity pathways, in particular with pDC 

activation and/or type I IFN and TNF- signaling, leading to paradoxical manifestations [81]. 

Consistently, allelic variants in NFKBIZ and TNFAIP3 might determine the enhanced type I 

IFN expression observed in paradoxical lesions, as both IKB and A20 can transcriptionally 

regulate IFNs expression, respectively, via activation and inhibition of NF-B [127]. Variants 

in TNFAIP3, in particular those imparting lower A20 expression, might be responsible for an 

uncontrolled IFN- expression, as demonstrated by silencing TNFAIP3 mRNA expression in 

vascular model of inflammation [128]. 

Although no functional evidence correlating the presence of SNPs and anti-TNF drug responses 

exist, it is plausible that the allelic variants could predispose to paradoxical psoriasis by 

determining an amplification of the innate skin immunity circuits that are overactive in 

psoriasiform lesions. In this study, we observed, in fact, a marked dermal accumulation of 

innate immunity cells, including pDC, neutrophils, mast cells, and macrophages, together with 

impressive expression levels of innate immunity molecules. Among them, IFN-2a, IFN- and 

IFN-1 are overexpressed in the skin of HS patients following anti-TNF- therapy.  
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Also LT- and LT-, as well as LL37 were detected at very high levels in paradoxical psoriasis, 

when compared to classical psoriasis.  

Transient type I IFN upregulation has already been described in classical psoriasis, during the 

acute phase of disease development, as well as in paradoxical psoriasis [81,129]. 

Concomitantly, IFN- is known to be expressed by pDC in both conditions [129]. We found 

that IFN-, together with IFN- and lymphotoxins were impressively expressed in the 

epidermal compartment of paradoxical skin reaction, other than in pDC and leukocytes 

infiltrating the dermis. Type I IFNs and lymphotoxins released by keratinocytes might have a 

fundamental pathogenic role in paradoxical psoriasis. However, the mechanisms by which these 

molecules promote psoriatic skin phenotype are not yet known, neither in paradoxical nor in 

classical psoriasis. On the contrary, the immunological function of IFN- has been extensively 

studied, especially in classical psoriasis, where it is known to induce Th17 responses [130]. In 

paradoxical psoriasis, IFN- could have a different role, being antigen-specific Th17 responses 

absent. It could induce chemokines at the epidermal level, such as CXCL10 and CXCL9, 

responsible for the recruitment of DC and nonspecific T cells. These inflammatory cells could 

in turn sustain and amplify local inflammatory responses in paradoxical reactions [131].  

The induction of innate immunity processes in paradoxical psoriasis is dependent on the loss of 

TNF- function in limiting the innate immune responses in the skin, as previously demonstrated 

[129]. In fact, TNF- blocking determined the accumulation of pDC and inhibition of their 

maturation. As a consequence, pDC could release very high levels of the type I IFN-6 and 

IFN-, being, thus, responsible for paradoxical psoriasis. Together with pDC, we found other 

innate immunity cells present in psoriasiform lesions of HS patients. Among them, CD15+ 

neutrophils, c-kit/CD117+ mast cells, CD68+ macrophages and monocytes abundantly infiltrate 

the dermis of paradoxical skin reactions. This pattern of leukocyte subpopulations is very 

similar to that found in early psoriasis, and is consistent with the overactive innate immunity 

processes present during the initial phase of inflammation, as previously shown [5]. Similarly 

to pDC, innate immune cells could be recruited by chemokines released by keratinocytes, 

fibroblasts and endothelial cells (i. e. CCL20, chemerin), whose expression depends on type I 

IFNs produced by resident skin cells themselves. In fact, other than controlling the expression 

of type I IFNs in pDC, TNF- might negatively regulate these molecules in keratinocytes, 

which notoriously also contribute to the induction of innate immunity pathways in acute 

psoriasis [6]. This hypothesis is supported by the findings that type I IFNs are induced in 

keratinocytes of paradoxical psoriasis and vice versa are present at low levels in chronic plaque 
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psoriasis. It would be important to confirm the high expression of innate immunity mediators 

following TNF- blocking in vitro, in primary keratinocyte cultures, as demonstrated for 

cultured pDC [63]. 

Analysis of T-cell infiltrate of paradoxical skin reactions demonstrated a significant reduction 

of IFN-- or TNF--producing CD3+ cells in paradoxical psoriasis, when compared to chronic 

psoriasis. However, CD8+ and IL-17+ lymphocytes were present in paradoxical psoriasiform 

reactions, at levels comparable to psoriasis, even if it is conceivable that they were 

nonspecifically recruited. The absence of bursting of type-I T-cell response in paradoxical skin 

reactions was not surprising, if we consider that it is typical of the chronic phase in classical 

psoriasis [6,7,132]. On the contrary, IL-22-producing cells increased in psoriasiform reactions 

of HS patients, even though positive cells showed mostly a macrophage-like morphology. IL-

22 overexpression could be responsible for hyperproliferation and de-differentiation of 

keratinocytes typical of the epidermis of paradoxical psoriasiform lesions. Finally, although an 

inflammatory cytokine milieu, inducing the local production of chemokines and cytokines by 

resident skin cells, can be effectively established in paradoxical psoriasis, it seems to be not 

sufficient to induce the chronicization of psoriasiform reactions in HS patients, possibly for the 

lacking of DC and T-cell activation by causative antigen(s) of psoriasis. 

In conclusion, this study identified new genetic predictors for response to secukinumab and to 

ustekinumab, as well as associated new psoriasis susceptibility polymorphisms potentially 

predictive for the development of paradoxical psoriasiform reactions evoked by anti-TNF 

therapy. This study also identified for the first time the immunological mediators whose 

expression is influenced by TNF- blocking and likely responsible for paradoxical psoriasis 

development, even though an extension of analysis in a larger cohort of patients will be 

necessary.  

Considering the high drug response interpatient variability and the augmented incidence of 

paradoxical psoriasiform reactions among anti-TNF-treated patients, it is becoming 

increasingly necessary to investigate the genetic profiles, together with cutaneous 

immunological profiles of patients undergoing to therapies with biologics. However, the 

analysis of genetic polymorphisms could, in the future, be used not only to predict response to 

biological therapy but also to improve resource allocation and reduce exposure of patients to 

unnecessary toxicity and adverse effects. 
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Abstract
Immunomodulation with anti-TNF-α is highly effective in the treatment of various immune-mediated inflammatory
diseases, including hidradenitis suppurativa (HS). However, this may be responsible for unexpected paradoxical
psoriasiform reactions. The pathogenic mechanisms underlying the induction of these events are not clear, even
though the involvement of innate immune responses driven by plasmacytoid dendritic cells (pDC) has been
described. In addition, the genetic predisposition to psoriasis of patients could be determinant. In this study, we
investigated the immunological and genetic profiles of three HS patients without psoriasis who developed paradoxi-
cal psoriasiform reactions following anti-TNF-α therapy with adalimumab. We found that paradoxical psoriasiform
skin reactions show immunological features common to the early phases of psoriasis development, characterized by
cellular players of innate immunity, such as pDC, neutrophils, mast cells, macrophages, and monocytes. In addition,
IFN-β and IFN-α2a, two type I IFNs typical of early psoriasis, were highly expressed in paradoxical skin reactions.
Concomitantly, other innate immunity molecules, such as the catheledicin LL37 and lymphotoxin (LT)-α and LT-β
were overproduced. Interestingly, these innate immunity molecules were abundantly expressed by keratinocytes, in
addition to the inflammatory infiltrate. In contrast to classical psoriasis, psoriasiform lesions of HS patients showed
a reduced number of IFN-γ and TNF-α-releasing T lymphocytes. On the contrary, IL-22 immunoreactivity was sig-
nificantly augmented together with the IL-36γ staining in leukocytes infiltrating the dermis. Finally, we found that
all HS patients with paradoxical reactions carried allelic variants in genes predisposing to psoriasis. Among them,
SNPs in ERAP1, NFKBIZ, and TNFAIP genes and in the HLA-C genomic region were found.

Keywords: psoriasis; hidradenitis suppurativa; anti-TNF-α therapy; paradoxical psoriasis; skin inflammation; innate immunity; type I IFN;
lymphotoxin
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Introduction

TNF-α blockers are efficaciously utilized in the treat-
ment of various immune-mediated diseases, such as
psoriasis, rheumatoid arthritis and, more recently,
hidradenitis suppurativa (HS) [1,2]. However, cutane-
ous reactions, such as eczematous and psoriasiform
lesions, and other side effects have been reported
[3–5]. Some of these adverse reactions are considered

as paradoxical effects and, in particular, 2–5% of
patients treated with TNF-α antagonists develop para-
doxical psoriasiform skin lesions [6–9]. These reac-
tions may require the interruption of the imputable
drug, and no other biologics are approved for dis-
eases like in HS. Therefore, it is important to under-
stand the pathogenesis of these reactions, and a
possible genetic susceptibility should be examined in
these patients.
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Psoriasis is a chronic inflammatory skin disease
mediated by autoreactive T cells, which produces epi-
dermal keratinocyte hyperproliferation with aberrant
differentiation and senescence [10,11]. Early upstream
events occurring in psoriasis include induction of
innate immunity responses, primarily depending on
keratinocytes activated by mechanical trauma, patho-
gens or drugs. At this initial phase, keratinocytes
establish innate immunity circuits involving neutro-
phils, mast cells and macrophages and, importantly,
enable plasmacytoid dendritic cell (pDC)- and myeloid
DC (mDC)-driven responses [12–14]. Local produc-
tion of type I IFN, as well as TNF-α and IL-6, by
pDC and mDC unleashes adaptive immune responses,
with expansion of T lymphocytes, typically Th17 and
Th22 in the initial phase and Th1 cells during the
chronic phase of the disease [10,11,15]. Hence, lym-
phokines released in skin lesions, in particular IL-17,
IL-22, and IFN-γ, further amplify local immune
responses [10,16–18]. Chronic immune responses are
absent in paradoxical psoriasis induced by TNF-α
blockers, with innate inflammatory processes predomi-
nant and not followed by expansion of autoreactive T
cells [19]. These processes are concomitant with der-
mal accumulation of immature pDC and type I IFN
overexpression [19].
Several studies have shown that intrinsic defects in

genes controlling T-cell commitment and keratinocyte
inflammatory activation are associated with psoriasis
[20,21]. Among them, the HLA-Cw6 allele represents
the strongest genetic risk variant associated with psori-
asis [22]. The HLA-Cw6 haplotype might influence
antigen presentation and immune responses, especially
when associated with variants in the ERAP1 gene,
encoding an aminopeptidase involved in the formation
of the peptides loaded on MHC class I molecules [23].
Interestingly, a number of allelic variants were found
in genes encoding signal transducers associated with
IL-17 or TNF-α, such as NFKBIZ and TNFAIP3,
encoding IKBζ and A20 proteins, respectively [24].
Both IKBζ and A20 proteins regulate IL-17- and
TNF-α-induced molecular signaling, being an activator
and a negative regulator of NF-κΒ respectively [25].
Here, we report the immunological and genetic pro-

files of HS patients who developed psoriasiform reac-
tions following anti-TNF-α therapy with adalimumab.
We found that paradoxical psoriasiform skin predomi-
nantly shows immunological features common to early
psoriasis, characterized by a massive infiltrate of
innate immunity cells and local overproduction of
innate immunity molecules. In contrast to classical
psoriasis, psoriasiform lesions showed an increased
number of infiltrating IL-22+ leukocytes. Finally, we

found that all the HS patients with paradoxical reac-
tions carried allelic variants in genes predisposing to
classical psoriasis, including SNPs in the HLA-C geno-
mic region.

Material and methods

Patients and samples
Three patients affected by HS, who developed
psoriasiform skin lesions after treatment with adalimumab
(40 mg, weekly), and three patients affected by classical
plaque-type psoriasis (PASI 8, 11.5, and 10) were
included in the study. Clinical data, as well as skin biop-
sies and blood, were collected from patients with the per-
mission of the IDI-IRCCS Local Ethics Committee (Prot.
CE 475/2016).
8-mm skin biopsies were taken from psoriasiform

lesions arising in HS patients or from 1.5-month old
psoriatic plaques. Biopsies were divided into two parts
for immunohistochemistry and isolation of skin-
infiltrating T lymphocytes. A 2-ml sample of periph-
eral blood was used to extract DNA, whereas a 20-ml
sample was used to isolate peripheral blood mononu-
clear cells (PBMCs).

Immunohistochemistry
5-μm paraffin-embedded skin sections were stained
with H&E or processed for immunohistochemistry. The
primary antibodies used were as follows: anti-BDCA2
(DDX0043-TDS, Dendritics, Lyon, France), anti-CD15
(#347420, BD Biosciences, Milan, Italy), anti-IL-17A
(#AF-317-NA, R&D Systems, Abingdon, UK), anti-
lymphotoxin (LT)-α (#SC8302, Santa Cruz Biotechnol-
ogy, Dallas, TX, USA), anti-IL-22 (#NB100-733,
Novus Biologicals, Centennial, CO, USA), anti-IFN-
κ (#H00056832-M01, Abnova, Taiwan), anti-CD117
and anti-CD11C (#MONX10234 and #MON3371,
Monosan, Uden, Netherlands), anti-CD68 and anti-
CD3 (#P02246IT and #A0452, Dako, Glostruk, Den-
mark). The following antibodies came from Abcam
(Cambridge, UK): anti-IFN-γ (#AB218426), anti-IL-36γ
(#AB156783), anti-IFN-β1 (#AB180616), and anti-LT-β
(Cat#AB64835). Immunoreactivities were developed
using the 3,30-diaminobenzidine HRP substrate. Sections
were counterstained with Mayer’s hematoxylin.

T-cell isolation from skin biopsies and FACS
analysis
T lymphocytes were isolated from skin biopsies as
previously described [26]. After 4–7 days, cells that
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had emigrated from biopsies were collected and char-
acterized phenotypically. Lymphocytes were stained
with the following monoclonal antibodies (mAbs):
anti-IFN-γ-FITC (#B27), -CD4-PE (#RPA-T4), -CD8-
PeRcP (#SK1), -CD3-FITC (#HIT3a) (BD Biosci-
ences); anti-TNF-α-FITC (#6n1E7, Miltenyi Biotec,
Bergisch, Germany), -IL-17-PE (#eBio64DEC17,
EBiosciences, Frankfurt, Germany); anti-IL-22-
PeRcP (#142928, R&D Systems). Acquisitions were
performed using an Attune Nxt (Life Technologies,
Carlsbad, CA, USA). Analyses were performed
using Flow logic software (Miltenyi Biotec).

Real-time PCR analysis
Total RNA was extracted from skin biopsies using
RecoverAll Total Nucleic Acid Isolation (Life Tech-
nologies), and analyzed by real-time PCR [27]. The
primer sets were as follows:

IFN-α2A, 50TCTGCTATGACCATGACACGAT30/50
CAGCATGGTCCTCTGTAAGGG30;
IFN-β, 50CAGCAATTTTCAGTGTCAGAAGC30/50
TCATCCTGTCCTTGAGGCAGT30;
IFN-λ1, 50AGGCTTCTCCAGGTGAGGGA30/50TCC
AGGACCTTCAGCGTCAG30;
IFN-λ2, 50GGGCCTGTATCCAGCCTCAG30/50GAG
CCGGTACAGCCAATGGT30;
IFN-λ3, 50GGGCCTGTATCCAGCCTCAG30/50GGT
GCAGCCAATGGTGGAG30/;
LL-37, 50TTTTGCGGAATCTTGTACCCA30/50TCT
CAGAGCCCAGAAGCCTG30;
GAPDH, 50TGGACCTGACCTGCCGTCTA30/50CCC
TGTTGCTGTAGCCAAATTC30.

Samples were analyzed using the QuantStudio5 Real-
Time PCR System (Thermo-Fisher Scientific, Wal-
tham, MA, USA).

SNP analysis
DNA was extracted from blood using the QIAcube®

system (Qiagen, Hilden, Germany). SNPs were
selected based on an extensive review of articles on
the association between psoriasis and SNPs or
response to biologics [23,24,28–32]. The SNP panel
was analyzed by targeted sequencing, using NGS
TruSeq Custom Amplicon kit and the MiSeq platform
(Illumina, San Diego, CA, USA). SNPs are listed in
supplementary material, Table S1 together with addi-
tional SNPs near the investigated genomic regions.
Positive calls were selected applying a read depth
>50X and allelic frequency >0.3. Variants’ annotations
were verified with ANNOVAR on hg19.

Statistics
Wilcoxon’s signed rank test (SigmaStat; San Rafael, CA,
USA) was used to compare differences in mRNA content
in skin biopsies of HS and psoriatic patients. The signifi-
cance of differences in the numbers of immunoreactive
cells in skin biopsies was calculated using the unpaired
Student’s t-test. Statistical analysis was performed with
Prism v.5.0 (Graphpad, La Jolla, CA, USA), and values
are expressed as the mean + SD. Values of p < 0.05 were
considered significant.

Results

Clinical characterization of paradoxical psoriasis
We analyzed three patients affected by severe HS, and
who developed paradoxical psoriasiform reactions fol-
lowing treatment with adalimumab. Patient 1, a 48-year-
old Caucasian woman, showed nodules, fistulas and
sinus tracts in the inguinal and perianal regions (Hurley
III, Sartorius score: 41.5). After 3 months of therapy with
anti-TNF-α, she developed psoriasiform eruptions (PASI
6.8), with pustular lesions and erythemato-scaly lesions
on the plantar region and lower limbs, respectively
(Figure 1). A similar pattern of HS severity was
observed in patient 2 (Hurley III, Sartorius score:
41.5), a 40-year-old Caucasian man, showing
erythematous-pustular lesions in the palmo-plantar
regions and erythemato-scaly plaques on the legs and
scalp, ascribed to psoriasiform dermatitis (PASI 5.2),
arising after 2 months treatment with adalimumab
(Figure 1). He concomitantly showed alopecia areata on
the scalp and some eczematous-like skin lesions. Patient
3, a 27-year-old Caucasian man, was affected by severe
HS (Hurley III, Sartorius score: 61.5) characterized by
comedones, nodules, and fistulas in the inguinal, gluteal
and abdominal regions. He developed pustular lesions
in the palmo-plantar regions, and erythemato-scaly
plaques on the legs, scalp, elbows, and trunk (PASI
5.6) after 3 months of biological therapy (Figure 1). He
refused to undergo a punch biopsy and, therefore, we
could not perform the histological and immunological
analyses. Paradoxical psoriasis regressed in all patients
when adalimumab was discontinued. Interestingly, all
three patients examined had a positive family history
for psoriasis and, additionally, patient 1 reported other
cases of HS among first-degree relatives.
Histological examination of the psoriasiform lesions

of patients 1 and 2 showed epidermal hyperplasia with
parakeratosis, papillary vessel ectasia and perivascular
infiltrate compatible with a psoriasiform dermatitis
(Figure 1). A CD15+ neutrophilic infiltrate was
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abundant in the dermal compartment and present in
corneal abscesses (Figures 1 and 2). Interestingly,
some eczematiform spongiotic areas overlapping with
the psoriasis-like histological pattern were present in
the skin lesions of patient 2.

Innate immunity cells highly infiltrate paradoxical
psoriasiform lesions
Leukocyte subpopulations were characterized in para-
doxical psoriasiform lesions, and compared to those

present in classical plaque-type psoriasis. In line with
previous studies [19,33], paradoxical psoriasis exhibited
a prominent infiltrate of BDCA2+ pDCs in the dermis,
significantly more abundant than in classical psoriasis
(~2.7-fold increase). In parallel, a significant increase of
CD15+ neutrophils, c-kit/CD117+ mast cells, CD68+

macrophages and monocytes in the dermis of paradoxi-
cal skin reactions was observed (~3.8-, 3.5-, and
1.8-fold increase, respectively) (Figure 2). In contrast,
CD3+ cells were similar and CD11c+ DCs were less
abundant (~1.5 fold-decrease) (Figure 2).

Figure 1. Clinical and histological presentation of paradoxical psoriasis induced by anti-TNF-α therapy in HS patients. Cutaneous lesions of
patients 1–3 affected by severe HS, presenting paradoxical psoriasiform reaction after anti-TNF-α treatment. The patient 1 panels show par-
adoxical erythemato-squamous plaques localized on the lower limbs (i and iii) and pustular lesions in the plantar region (ii). Patient 2 simi-
larly shows erythemato-squamous plaques on the limbs (i), pustular lesions in the palmo-plantar region and a severe form of alopecia
areata involving part of the scalp (ii–iv).The patient 3 panels reveal erythematosus patches with mild desquamation on the elbows and trunk
(i–iii). H&E staining for the corresponding histopathology of patients 1 (iv) and patient 2 (v) was also performed. Scale bars, 200 μM.
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We next evaluated the local expression of psoriasis-
related cytokines, such as IL-17A, IFN-γ, and IL-22, as
well as IL-36γ which is highly released by neutrophils
[27]. As shown in Figure 3, IFN-γ immunoreactivity
decreased in psoriasiform reactions of patients 1 and
2, as compared to classical psoriasis, whereas IL-22

positivity was significantly augmented in the infiltrate,
in particular in cells with a macrophage-like morphol-
ogy (~2.1-fold increase). Due to the numerous neutro-
phils present in the dermis of paradoxical reactions,
IL-36γ positivity was also enhanced, compared to
classical psoriasis. However, IL-36γ expression in the

Figure 2. Innate immunity cells highly infiltrate paradoxical psoriasis skin lesions. Immunohistochemistry analysis of paradoxical skin
reactions obtained from patient 1 (Pt1) and 2 (Pt2) shows an increase of BDCA2, CD15, CD117, CD68 positive cells, a reduction of
CD11c cells and similar numbers of CD3 cells, when compared with psoriasis. Lesional (LS) and nonlesional (NLS) skin of the same psori-
atic patient (n = 3) was analyzed. Slides were analyzed by two pathologists with experience in dermatology. Positive cells were counted
in five adjacent fields at a total magnification of ×200. Graphs show the mean number of positive cells + SD per three sections. One out
of three representative stainings is shown. *p < 0.01, **p < 0.05 versus classical psoriasis. Scale bars, 200 μM.
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epidermal compartment was similar (Figure 3). FACS
analysis of the T-cells isolated from skin biopsies con-
firmed a significant reduction of IFN-γ+ CD3+ cells in
patients 1 and 2, when compared to CD3+ cells isolated
from classical psoriasis (~7- and 1.7-fold decrease,
respectively) (Figure 4). The reduction of IFN-γ positiv-
ity was also observed in circulating CD3+ cells of
patients 1 and 2. Similarly, TNF-α positivity was lower
in skin T-lymphocytes of patients 1 and 2. TNF-α posi-
tivity of circulating CD3+ cells was instead lower only
in patient 1, as compared to patient 2 and patients with
classical psoriasis (Figure 4). Moreover, IL-17A positiv-
ity was comparable in patient 1 and psoriatic patients,
whereas it was very high in T cells isolated from the
skin of patient 2, where a mixed population of T cells,
responsible for either the psoriasiform or eczematous

reactions, is likely present (Figure 1). IL-22 was similar
in T cells of psoriasiform lesions and classical psoriasis,
whereas it was substantially reduced in PBMCs
(Figure 4). CD3+ cells from skin biopsies of HS
patients were enriched in CD8+, but not in CD4+ cells,
when compared to PBMC isolated from the same
patients. CD3+ skin T cells of classical psoriasis
showed instead an enrichment of both CD4+ and CD8+

subpopulations (Figure 4).

Overexpression of innate immunity molecules in
paradoxical psoriasis
Since we found that the inflammatory infiltrate pattern
in paradoxical psoriasis strongly resembles that present
in acute psoriasis, we next analyzed selected innate

Figure 3. Expression of psoriasis-related cytokines in paradoxical psoriasiform reactions. Immunohistochemistry analysis performed on
paradoxical skin lesions obtained from patients 1 (Pt1) and 2 (Pt2) shows similar values of IL-17A+ cells, a reduction of dermal IFN-γ+

cells and an increase of IL-22+ or IL-36γ+ cells, when compared with psoriatic skin lesions. LS and NLS skin of the same psoriatic patient
(n = 3) was analyzed. Graphs show the mean of number of positive cells + SD per three sections. One out of three representative
stainings is shown. *p < 0.01, **p < 0.05, versus classical psoriasis. Scale bars, 200 μM.
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Figure 4. Immunophenotypic characterization of skin T cells (T-skin) and PBMCs isolated from HS patients with psoriasiform lesions. T-
skin cells (left panel) and PBMCs (right panel) were isolated from biopsies and blood, respectively, of patients 1 and 2 and from psoriatic
patients (n = 2). Co-expression of IL-17, IL-22, TNF-α, or IFN-γ on gated CD3+ cells (A), and surface CD4, CD8, and CD3 (B), were ana-
lyzed by flow cytometry. The percentage of positive fluorescent cells is shown in each quadrant. The results show the mean values of
data obtained for one representative experiment out of three experiments.
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immunity molecules potentially involved in the trig-
gering of psoriasis. As shown in Figure 5A, the type I
IFN-β was expressed in paradoxical skin lesions,
mainly in keratinocytes, at levels significantly higher
than classical psoriasis (~1.9-fold increase). IFN-β
expression was also detected in cells with a T-cell-
and DC-like morphology, as well as in endothelial
cells. The epidermis of psoriasiform reactions was also
immunoreactive for IFN-κ, another keratinocyte-
derived type I IFN [34]. IFN-κ expression was similar
in the two psoriasis conditions, even if it showed dif-
ferent subcellular localization within keratinocytes,
being cytoplasmic in psoriasiform lesions and
membrane-bound in classical psoriasis (Figure 5A).
IFN-κ staining was also present in cells with a
monocyte- or DC-like morphology, at comparable
levels in classical and nonclassical psoriasis
(Figure 5A). Similarly to IFN-β, IFN-α2a and IFN-λ1,
but not IFN-λ2 and IFN-λ3, were greatly increased in
paradoxical psoriasis, as compared to plaque psoriasis
(Figure 5B and data not shown). Of note, LL-37 was
strongly expressed in psoriasiform skin lesions, at
levels higher than classical psoriasis (Figure 5B). We
finally investigated LT-α and LT-β, two members of
the cytokine TNF family, also known as TNF-β and
TNF-C [35], possibly deregulated by anti-TNF-α ther-
apy. Both lymphotoxins were strongly overexpressed
in paradoxical skin reactions, especially in
keratinocytes of the basal layer epidermis.
As a whole, these data reveal the presence of an

overexpressed innate immunity pattern in the skin of
HS patients with paradoxical psoriasis.

SNP characterization in HS patients developing
paradoxical psoriasis
In order to understand whether paradoxical reactions
of HS patients had a genetic basis, we analyzed a
number of SNPs predisposing to psoriasis. Among
them, we studied SNPs frequent in the psoriatic popu-
lation, such as polymorphisms of the HLA-C and
HLA-B regions and the ERAP1 gene. We also ana-
lyzed genetic variants of pathogenic cytokines, recep-
tors and signal transducers (i.e. TNF-α, IL-17F,
IL-17RA, IL-23R, IL-12B, IKBζ, A20, A20 binding
protein, Tyk2), and of skin-barrier proteins (i.e. CDSN,
CCHCR1) (see supplementary material, Table S1). All
HS patients showed variants of ERAP1 and the HLA-C
region, either homozygosis or heterozygosis (Table 1).
Three SNPs in ERAP1 (rs30187/rs30186/rs26653) and
nine variants in HLA-C (rs114395371/rs9264942/
rs10484554/rs2524095/rs28383849/rs9264944/rs2853922/
rs147538049/rs9264946) were, in fact, found in all

patients, with SNPs distributed differently in the three
patients. None of them showed the classical HLA-Cw6
allele, even though patients 1 and 3 carried three point
SNPs (rs2524095/rs2853922/rs386698994) mapping near
the HLA-Cw6 SNP position (rs17192540) (Table 1). In
contrast, patient 2 mostly showed genetic polymorphisms
(rs9264942/rs10484554/rs28383849/rs9264944/
rs147538049/rs9264946) present in the genomic region
containing a second variant of HLA-Cw6 (Table 1). All
HS patients carried SNPs in NFKBIZ (rs3217713) and
TNFAIP (rs610604) genes, encoding IKBζ and A20 pro-
teins respectively. Interestingly, patient 3 showed the
higher number of psoriasis-related SNPs, and shared a
number of SNPs with patient 2 (rs7637230/rs4819554/
rs3132554/rs10542126/rs3130983), and rs280519 with
patient 1 (Table 1). Patient 3 also carried two other SNPs
in CDSN (rs1062470/rs707913) and three SNPs in
CCHCR1 (rs1576/rs130079/rs746647) (Table 1).
Although rs11209026 in the IL23R gene has been

previously associated with paradoxical psoriasiform
reactions to anti-TNFs [36], we could not find this
SNP in any of the HS patients. Two other SNPs in
IL23R, rs72676067, and rs1004819, were instead
detected in patients 2 and 1, respectively.

Discussion

Psoriasis pathogenesis involves both innate and adap-
tive immunity responses, overactive in different clini-
cal phases and characterized by specific patterns of
inflammation. While innate immunity processes pre-
dominate in early/acute phase, with immune cells such
as pDC, neutrophils, mast cells and macrophages
being abundant in skin lesions, adaptive immune
responses are typical of chronic psoriasis
[10,14,15,37]. Local overproduction of IFN-α and
other innate immune mediators, such as antimicrobial
peptides, also characterize early psoriasis [37,38].
Conversely, during the development of chronicity,
type I IFNs are no longer produced, in part due to the
inhibitory effects of TNF-α, which determines the
decline of innate immunity processes and the mount-
ing of adaptive immune responses [39]. During this
phase, TNF-α is important for immune activation of
mDC, which, after encountering the causative
antigen(s), are responsible for T-cell expansion.
In this study, we found that paradoxical psoriasis

evoked by anti-TNF-α therapy in patients affected by
HS strongly resembles early psoriasis. In fact, by com-
paring skin lesions of paradoxical psoriasis with classi-
cal psoriasis, we observed a marked dermal
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Figure 5. Innate immunity molecules are overexpressed in the skin of HS patients after TNF-α treatment. (A) Immunohistochemistry
analysis of paradoxical skin reactions obtained from patients 1 (Pt1) and 2 (Pt2) shows an increase of IFN-β, LT-α, LT-β, and similar IFN-
κ positivity, when compared with psoriatic skin lesions. LS and NLS skin of the same psoriatic patient (n = 3) was analyzed. Graphs show
the mean + SD of semiquantitative, four-stage scoring, ranging from negative immunoreactivity (0) to strong immunoreactivity (4+) and
relative to the epidermal expression of the indicated molecules. One out of three representative stainings is shown. *p < 0.01, versus
classical psoriasis. Scale bars, 200 μM. (B) mRNA expression of IFNα2a, IFNβ, IFNλ1 and LL37 was analyzed by real-time PCR in skin
lesions of patients 1 (Pt1) and 2 (Pt2) and in skin biopsies from LS and NLS skin of three psoriatic patients. mRNA values were normal-
ized to GAPDH mRNA. Values obtained from triplicate experiments were averaged, and data presented as means of 2 -̂ΔΔCT +
SD. *p < 0.01, **p < 0.05.
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accumulation of innate immunity cells, including
pDCs, neutrophils, mast cells, and macrophages. In
parallel, the expression levels of innate immunity mol-
ecules potentially involved in induction of the
psoriasiform phenotype, greatly increased in paradoxi-
cal reactions. Among them, IFN-α2a, IFN-β, and
IFN-λ1 are overexpressed in the skin of HS patients
following anti-TNF-α therapy. Also, LT-α and LT-β,

as well as LL-37, were detected at very high levels in
paradoxical psoriasis, when compared to classical pso-
riasis. A transient IFN-α upregulation has already been
described in classical psoriasis, during the early phase
of disease development, as well as in paradoxical pso-
riasis [19,37]. Concomitantly, IFN-β is known to be
expressed by pDCs in both conditions [19]. We found
that IFN-β, together with IFN-κ and lymphotoxins

Table 1. SNPs carried by HS patients developing paradoxical psoriasis after anti-TNF-α therapy
dbSNP ID Gene Patient 1 Patient 2 Patient 3

Antigen presentation
rs30187 ERAP1
rs30186 ERAP1
rs11743410 ERAP1
rs26653 ERAP1
rs114395371 HLA-C region
rs17192540 HLA-C region (HLA-Cw6)
rs2524095 HLA-C region
rs2853922 HLA-C region
rs386698994 HLA-C region
rs79709508 HLA-C region (HLA-Cw6 2v)
rs28383849 HLA-C region
rs10484554 HLA-C region
rs147538049 HLA-C region
rs9264944 HLA-C region
rs9264946 HLA-C region

NF-κB pathway and T-cell activation
rs72676067 IL23R
rs1004819 IL23R
rs41313262 IL23R
rs11209026 IL23R
rs3217713 NFKBIZ
rs7637230 NFKBIZ
rs2546890 IL12B
rs1800610 TNF-α
rs2397084 IL17F
rs71562288 TRAF3IP2
rs33980500 TRAF3IP2
rs610604 TNFAIP3
rs12720356 TYK2
rs280519 TYK2
rs4819554 IL17RA

Skin barrier function
rs3132554 CDSN
rs1042127 CDSN
rs1042126 CDSN
rs1062470 CDSN
rs707913 CDSN
rs3130983 CDSN
rs1576 CCHCR1
rs130079 CCHCR1
rs746647 CCHCR1
rs130075 CCHCR1

DNA was obtained from blood samples of HS patients 1–3, and SNPs analyzed by next-generation sequencing technology in MiSeq system, as described in ‘Material
and methods’ section. For each sample, a cDNA library of 44 amplicons potentially containing 71 SNPs located in genes predisposing to psoriasis was developed.
SNP-carrying genes were classified accordingly to their functions (i.e. control of antigen presentation, NF-κB pathway and T-cell activation, skin barrier).
dbSNP ID, data base SNP identification number at NCBI; rs, reference SNP ID number; ERAP1, endoplasmic reticulum aminopeptidase 1; NFKBIZ, NF-κB inhibitor
zeta; TRAF3IP2, TRAF3 interacting protein 2; TNFAIP3, TNF-α induced protein 3; TYK2, tyrosine kinase 2; IL17RA, IL-17 receptor A; CDSN, corneodesmosin; CCHCR1,
coiled-coil alpha-helical rod protein 1. : homozygotic variant; : heterozygotic variant; : WT. Rs17192540 and rs79709508 were relative to HLA-Cw6 and
HLA-Cw6 second allelic variant (HLA-Cw6 2v).
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were impressively expressed in the epidermal compart-
ment of paradoxical skin reaction, as well as in pDCs
and leukocytes infiltrating the dermis. Type I IFNs and
lymphotoxins released by keratinocytes might have a
fundamental pathogenic role in paradoxical psoriasis.
However, the mechanisms by which these molecules
promote a psoriatic skin phenotype are not yet known,
neither in paradoxical nor in classical psoriasis. On the
contrary, the immunological function of IFN-α has
been extensively studied, especially in classical psoria-
sis, where it is known to induce Th17 responses [40].
In paradoxical psoriasis, IFN-α could have a different
role, with antigen-specific Th17 responses being
absent. It could induce chemokines at the epidermal
level, such as CXCL10 and CXCL9, responsible for
the recruitment of DC and nonspecific T cells. These
inflammatory cells could in turn sustain and amplify
local inflammatory responses in paradoxical reac-
tions [41].
The induction of innate immunity players in para-

doxical psoriasis is dependent on the loss of TNF-α
function in limiting the innate immune responses in
the skin, as previously demonstrated [19]. In fact,
TNF-α blockade determined the accumulation of pDCs
and inhibition of their maturation. As a consequence,
pDCs could release very high levels of the type I IFN-
α6 and IFN-β, being, thus, responsible for paradoxical
psoriasis. Together with pDCs, we found other innate
immunity cells present in psoriasiform lesions of HS
patients. Among them, CD15+ neutrophils, c-kit/
CD117+ mast cells, CD68+ macrophages and mono-
cytes abundantly infiltrate the dermis of paradoxical
skin reactions. This pattern of leukocyte subpopula-
tions is very similar to that found in early psoriasis,
and is consistent with the high local production of IL-
36 cytokines and with the overactive innate immunity
processes present during the initial phase of psoriasis,
as previously shown [14,27]. Conversely, similarly to
paradoxical psoriasis, adverse HS in patients affected
by autoimmune disorders, including psoriasis and
Crohn’s disease, might be dependent on aberrant
innate immunity responses evoked by TNF-α blockade
[42,43]. Indeed, a number of pathogenic cytokines
common to psoriasis were found in HS skin, including
IL-36, together with inflammatory mediators active on
neutrophils and Th17 cells largely present in the
affected areas [27]. Other than pDCs, innate immune
cells could also be recruited by chemokines released
by keratinocytes, fibroblasts and endothelial cells
(i.e. CCL20, chemerin), whose expression depends on
type I IFNs produced by resident skin cells them-
selves. In fact, other than controlling the expression of
type I IFNs in pDCs, TNF-α might negatively regulate

these molecules in keratinocytes, which notoriously
also contribute to the induction of innate immunity
pathways in early psoriasis [10]. This hypothesis is
supported by our findings that type I IFNs are induced
in keratinocytes of paradoxical psoriasis and vice versa
are present at low levels in chronic plaque psoriasis. It
would be important to confirm the high expression of
innate immunity mediators following TNF-α blockade
in vitro in primary keratinocyte cultures, as demon-
strated for cultured pDCs. It would be also relevant to
analyze whether, similarly to paradoxical psoriasis,
acute psoriasis shows exaggerated expression of type I
IFNs and lymphotoxins in the epidermal compartment.
In that case, it can be supposed that TNF-α temporally
limits innate immunity processes evoked not only by
pDCs but also by keratinocytes to unleash adaptive
immune responses in psoriatic skin.
Concerning the unknown expression and role of

lymphotoxins in paradoxical reactions and in classical
psoriasis, a previous study confirmed the pivotal func-
tion of LT-α, together with TNF-α, in determining
NF-κB-mediated skin inflammatory reactions in
IκBα−/− mice [44]. In addition, patients affected by
psoriatic arthritis treated with etanercept showed
increased serum levels of LT-α [45]. Therefore,
lymphotoxins might be deeply involved in psoriasis
pathogenesis, and TNF-α could tightly control their
expression in both keratinocytes and lymphocytes.
Further studies are needed to evaluate LT-α and LT-β
expression and their role in the different phases of pso-
riasis development, and to understand the function of
keratinocyte-derived lymphotoxins.
Analysis of the T-cell infiltrate in paradoxical skin

reactions demonstrated a significant reduction of IFN-
γ- or TNF-α-producing CD3+ cells in paradoxical pso-
riasis, when compared to chronic psoriasis. However,
CD8+ and IL-17+ lymphocytes were present in para-
doxical psoriasiform reactions, at levels comparable to
psoriasis, even if it is conceivable that they were
nonspecifically recruited. The absence of bursting of a
type I IFN T-cell response in paradoxical skin reactions
was not surprising, if we consider that it is typical of
the chronic phase in classical psoriasis [10,11,15]. On
the contrary, IL-22-producing cells increased in
psoriasiform reactions of HS patients, even though posi-
tive cells showed mostly a macrophage-like morphol-
ogy. Our findings extend previous studies showing the
upregulation of IL-22 mRNA expression in paradoxical
psoriasis, and identifying innate immunity cells, and not
only T lymphocytes, as cellular sources of IL-22 [19].
IL-22 overexpression could be responsible for hyper-
proliferation and de-differentiation of keratinocytes typi-
cal of the epidermis of paradoxical psoriasiform lesions.
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Finally, although an inflammatory cytokine milieu,
inducing the local production of chemokines and cyto-
kines by resident skin cells, can be effectively
established in paradoxical psoriasis, it seems to be
insufficient to induce the development of chronic
psoriasiform reactions in HS patients, possibly through
the lack of mDC and T-cell activation by the causative
antigen(s) of psoriasis.
Despite the effective use of adalimumab in patients

with severe HS, 2–5% of treated patients develop para-
doxical psoriasis [6]. Anti-TNF-α treatment can induce
paradoxical psoriasis even in patients affected by other
diseases characterized by high levels of TNF-α
[8,46,47]. Notably, this side effect can also occur in
patients undergoing psoriasis treatment with anti-
TNFs. Guttate or pustular forms in palmo-plantar/scalp
areas frequently represent the subclinical types of pso-
riasis that develop in these reactive patients. The rea-
son why anti-TNF induces a similar psoriatic
phenotype (same subtype and localizations) only in a
portion of subjects affected by different autoimmune
conditions is still unknown. It is reasonable to specu-
late the influence of genetic factors predisposing to
paradoxical psoriasis, and specifically being involved
in innate immunity pathways, in particular in pDC
activation and/or type I IFN and TNF-α signaling.
Indeed, an association between polymorphisms in the
IL-23R, FBXL19, CTLA4, SLC12A8, and TAP1 genes
and paradoxical psoriasis has been found [36]. On the
other hand, there is a positive association between HS
and psoriasis, with the prevalence of HS increased in
patients with psoriasis, suggesting a common genetic
predisposition [48]. To date, no evidence correlating
the presence of SNPs and the development of
psoriasiform lesions in patients affected by HS exist.
In our study, we found that all HS patients carried
numerous allelic variants in HLA-C. None of the
patients showed the HLA-Cw6 susceptibility allele,
even though other SNPs in the proximity of the HLA-
Cw6 SNP and neighboring to other HLA-C variants
were found. Concomitantly, HS patients carried allelic
variants in the ERAP1 gene. However, due to the lack
of antigen-specific CD8+ T-cell responses in HS
patients, the link between the presence of SNPs in the
HLA-C region/ERAP1 gene and susceptibility to para-
doxical psoriasis is apparently missing. Indeed, other
than having a role in MHC class I antigen presenta-
tion, ERAP1 is involved in the activation of innate
immunity pathways, by inducing the inflammasome
and production of cytokines and chemokines (i.e. IL-6,
TNF-α, and CCL2) [49]. Importantly, allelic variants
of ERAP1 leading to missense mutation increase the
capability of ERAP1 to induce inflammation in

autoimmune diseases [50]. HS patients also carried
polymorphisms in NFKBIZ and TNFAIP3, which
could be responsible for NF-κB hyperactivation in HS
patients, as demonstrated for other pathological condi-
tions [51,52]. Importantly, allelic variants in NFKBIZ
and TNFAIP3 might determine the enhanced type I
IFN expression observed in pDCs and keratinocytes of
paradoxical lesions, as both IKBζ and A20 can tran-
scriptionally regulate IFN expression, respectively, via
activation and inhibition of NF-κB [53]. Finally,
genetic variants in TNFAIP3, in particular those
imparting lower A20 expression, might be responsible
for uncontrolled IFN-β expression, as demonstrated by
silencing TNFAIP3 mRNA expression in a vascular
model of inflammation [54]. All these SNPs in psoria-
sis susceptibility loci are likely genetically transmitted,
as all three patients examined had a positive family
history for psoriasis. In the future, it will be necessary
to extend the analysis of psoriasis-related SNPs to a
larger cohort of HS patients developing psoriasiform
reactions, but also in a population successfully
responding to anti-TNF-α treatment, to identify differ-
ences in the genetic background of the patients. The
identification of genetic biomarkers correlating with an
adverse response to anti-TNF-α therapy will be funda-
mental to predict the risk of developing paradoxical
psoriasis.
In conclusion, our study shows that paradoxical pso-

riasis induced by anti-TNF in patients affected by HS
has immunological features common to early phase
psoriasis, mainly characterized by cellular and molecu-
lar players of innate immunity. Among them, LT-α
and LT-β, as well as IFN-κ and IFN-λ1, have been
identified as new innate mediators potentially involved
in the induction of paradoxical psoriasis. Of note, we
found that, in addition to pDCs, keratinocytes are also
a source of type I IFNs, in particular IFN-β, likely as
consequence of TNF-α inhibition. It will be important
to evaluate the effects of anti-TNF-α therapy on
keratinocytes in paradoxical psoriasiform reactions,
especially in terms of type I IFN production, to iden-
tify new pathogenic mechanisms involved in the early
phase of psoriasis.
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IFN-γ and IL-22 are deeply involved in the pathogenesis of psoriasis, as they boost the expression of inflammatory genes and alter
proliferative and differentiative programs in keratinocytes. The JAK1/JAK2/STAT1 and JAK1/TYK2/STAT3 pathways triggered by
IFN-γ and IL-22, respectively, are aberrantly activated in psoriasis, as highlighted by the peculiar STAT1 and STAT3 signatures in
psoriatic skin lesions. To limit the detrimental consequences of IFN-γ and IL-22 excessive stimulation, psoriatic keratinocytes
activate suppressor of cytokine signaling (SOCS)1 and SOCS3, which in turn dampen molecular signaling by inhibiting JAK1
and JAK2. Thus, JAK targeting appears to be a reasonable strategy to treat psoriasis. Tofacitinib is an inhibitor of JAK proteins,
which, similarly to SOCS, impedes JAK phosphorylation. In this study, we evaluated the immunomodulatory effects of
tofacitinib on epidermal keratinocytes in in vitro and in vivo models of psoriasis. We demonstrated the selectivity of tofacitinib
inhibitory action on IFN-γ and IL-22, but not on TNF-γ or IL-17 proinflammatory signaling, with suppressed expression of
IFN-γ-dependent inflammatory genes, and restoration of normal proliferative and differentiative programs altered by IL-22 in
psoriatic keratinocyte cultures. Tofacitinib also potently reduced the psoriasiform phenotype in the imiquimod-induced murine
model of psoriasis. Finally, we found that tofacitinib mimics SOCS1 or SOCS3 activities, as it impaired the same molecular
pathways in IFN-γ or IL-22-activated keratinocytes.

1. Introduction

Psoriasis is an immune-mediated skin disease characterized
by epidermal abnormalities and prominent inflammatory
cell infiltrate [1–3]. Current opinion on the pathogenesis of
psoriasis emphasizes the role of cytokine signaling to drive
an inflammatory cycle, in which infiltrating dendritic cells
and autoreactive T lymphocytes, mainly represented by IL-
17-producing T cells, T-helper-1 (Th1), and Th22 cells,
release IL-17, IFN-γ, IL-22, and TNF-α. All these cytokines
induce keratinocyte expression of a plethora of immune

mediator determinant for recruitment and activation of addi-
tional dendritic cells and T lymphocytes, which in turn rein-
force the pathogenic cycle by perpetuating keratinocyte
activation [4–6]. Proinflammatory cytokines, in particular,
IL-22 and IL-17, are also responsible for hyperproliferation
and altered terminal differentiation of keratinocytes, as well
as impairment of the apoptotic pathways, all typical features
of psoriasis [4–6]. Thus, IFN-γ and IL-22 inflammatory cyto-
kines are deeply involved in the pathogenesis of psoriasis,
and their Janus Kinase (JAK)1/JAK2/signal transducers and
activators of transcription (STAT)1 and JAK1/tyrosin kinase
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(TYK)2/STAT3 proximal signaling are aberrantly activated,
as highlighted by STAT1 and STAT3 signatures in psoriatic
skin lesions [7–10]. Also, IL-17 and TNF-α proinflammatory
cytokines elicit immune responses in psoriatic keratinocytes,
through molecular pathways independent on JAK/STAT and
involving NF-κB, Act1, and ERK1/2 [11, 12].

To limit an excessive stimulation by inflammatory cyto-
kines, keratinocytes express suppressors of cytokine signaling
(SOCS) molecules, a family of endogenous inhibitors of
cytokine-dependent signaling [6, 13–16]. SOCS1 and SOCS3
function as potent suppressors of IFN-γ and IL-22 signaling
in keratinocytes, respectively. At molecular level, SOCS1
and SOCS3 inhibit JAK1–2 by functioning as pseudosub-
strates, hence impeding the activation of IFN-γ and IL-22
receptors and downstream STATs. As a consequence of the
loss of STAT1 activity, keratinocytes overexpressing SOCS1
can no longer express inflammatory molecules in response
to IFN-γ [13–15]. Similarly, IL-22-induced proliferative and
antidifferentiative effects on keratinocytes are efficiently
counteracted by SOCS3-dependent STAT3 inhibition [15,
17]. On the other hand, SOCS cannot influence JAK-
independent molecular pathways in keratinocytes, including
TNF-γ signaling [13].

Because of the importance of inflammatory cytokines in
psoriasis, JAK targeting represents a logical strategy to treat
this disease. Various JAK inhibitors are in preclinical devel-
opment or have been tested in clinical trials. Among them,
tofacitinib is an oral JAK inhibitor with an intracellular
mechanism of action against JAKs, already in use for sys-
temic treatment of rheumatoid arthritis [18], and under
evaluation for the treatment of both plaque psoriasis [19]
and psoriatic arthritis [20]. Phase 3 studies in patients with
moderate-to-severe chronic plaque psoriasis have demon-
strated the efficacy of tofacitinib in improving clinical out-
comes [21]. JAK inhibition by tofacitinib strongly reduces
clinical signs of psoriasis, and, potently blocks signaling
through the common γ chain-containing receptors, includ-
ing IL-2, IL-4, IL-7, IL-9, and IL-15, or through canonical
receptors for cytokines, such as IFN-γ, IL-21, IL-6, and
to a lesser extent, IL-12 and IL-23 [22]. In preclinical
models, tofacitinib was shown to affect both innate and
adaptive immune responses and inhibited pathogenic T
helper (Th)17 cell differentiation by suppressing IL-23
expression [23].

While the mechanisms of T-cell activity inhibition and
modulation of differentiation by tofacitinib are well charac-
terized [23–25], few information on the immunomodulatory
effects on psoriasis-related pathways activated in resident
keratinocytes, or on its capability to mimic SOCS inhibitory
circuits exist for this drug. In this study, we evaluated the
immunomodulatory effects of tofacitinib on epidermal kera-
tinocytes in experimental in vitro and in vivo models of pso-
riasis. In particular, we studied the tofacitinib effect on JAK/
STAT pathway and downstream inflammatory molecules in
human keratinocyte cultures activated with proinflammatory
molecules related to psoriasis, including IFN-γ, IL-22, IL-17,
and TNF-γ, as well as in vivo in the imiquimod- (IMQ-)
induced murine model of psoriasis. We also investigated
the impact of tofacitinib on other protein targets induced

by IFN-γ or IL-22 signaling in keratinocytes and to mimic
SOCS1 or SOCS3 activities.

2. Materials and Methods

2.1. Keratinocyte Cultures and Treatments. Primary cultures
of human keratinocytes were obtained from skin biopsies
of psoriatic patients (n = 5) afferent to 5th Dermatology
Unit at IDI-IRCCS and prepared as previously described
[6]. Patients had definite plaque-type psoriasis diagnosed
according to standard criteria, and they had not received
any systemic or topical therapy for at least 1 month before
skin donation. Skin biopsies were obtained after patient’s
informed written consent, with the approval of the IDI-
IRCCS Local Ethics Committee (Prot. N. 474/1/2016; study:
“Studio delle chinurenine in pazienti affetti da psoriasi”).
Second- or third-passage keratinocytes were used in all
experiments, with cells cultured in the serum-free medium
KGM (Clonetics, San Diego, CA), for at least 3–5 days (at
60–80% confluence) before performing treatments. Some
experiments were performed on keratinocyte cultures
undergoing terminal differentiation, achieved by growing
cells at 100% of confluence (t0) and, thus, keeping them in
culture for another 4 d.

Stimulations with 200U/ml recombinant human (rh)
IFN-γ (R&D Systems, Minneapolis, MN, USA), as well as
50 ng/ml rh TNF-α, IL-22, or IL-17 (all from R&D Systems),
were performed in keratinocyte basal medium (KBM, Clo-
netics). Tofacitinib (CP 690,550 compound) was obtained
from Pfizer Inc. (Peapack, NJ) and administered by pretreat-
ing cultures for 1 h before cytokine stimulation. Cytotoxicity
of tofacitinib was previously tested by measuring the activ-
ity of lactate dehydrogenase (LDH) released from keratino-
cyte cultures, using Cytotoxicity Detection Kit Plus-LDH
(Roche Diagnostics, Milan, Italy), following the manufac-
turer’ instructions.

2.2. Immunoprecipitation, Immunoblotting, and Densitometry.
Protein extract preparation, immunoprecipitation, and immu-
noblotting were performed accordingly to standard proce-
dures [6]. The Abs used for the study were as follows:
anti-IFN-γRα subunit (C-20), anti-IL-22R1 (3-RE40), anti-
TYK2 (C-20) (all from Santa Cruz Biotechnology, Santa
Cruz, CA, USA), anti-phosphotyrosine (clone 4G10; Upstate
Biotechnologies, Temecula, CA), anti-JAK1, anti-JAK2
(Upstate Biotechnologies), anti-phosphotyrosine- (pTyr701-)
STAT1 (Santa Cruz Biotechnology), anti-phosphoserine-
(pSer727-) STAT1, anti-phosphotyrosine- (pTyr705-) STAT3
and anti-phosphoserine- (pSer727-) STAT3 (Cell Signaling),
anti-STAT1 and anti-STAT3 (C-20) (Santa Cruz Biotechnol-
ogy), anti-phospho-ERK1/2 (E4; Santa Cruz Biotechnology),
anti-ERK1/2 (C-16; Santa Cruz Biotechnology), anti-
phospho-p65 (Ser276), anti-IκBα, HRP-conjugated anti-c-
myc (9E10), anti-p63 (4A4), anti-β-actin (all from Santa
Cruz Biotechnology, Santa Cruz, CA, USA), anti-keratin
(KRT)1, and anti-loricrin (both from Covance, Meryville,
CA). Filters were properly developed with anti-mouse,
anti-goat, or anti-rabbit Ig Abs conjugated to HRP using
the ECL-plus detection system (Amersham, Dubendorf,
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Switzerland) or, otherwise, the SuperSignal West Femto kit
(Pierce, Rockford, IL, USA). Immunoblots of experiments
were subjected to densitometry using an Imaging Densitom-
eter model GS-670 (Bio-Rad) supported by the Molecular
Analyst Image software, and band intensities were evaluated
in three independent experiments. Data are expressed as fold
induction± SD in experimental time-course relative to
untreated or tofacitinib-treated samples, to which were given
a value of 1.

2.3. Transient Transfection and Luciferase Assay. Cultured
keratinocytes grown in six-well plates were transiently trans-
fected with the STAT3-responsive plasmid pLucTKS3 (a
generous gift of Prof. J. Turkson, University of Central
Florida, Orlando, FL) or pGASLuc plasmid by using Lipofec-
tin reagent (Invitrogen), according to the manufacturer’s
instructions. At 24 h post transfection, cells were pretreated
with tofacitinib for 1 h and then stimulated with IL-22 or
IFN-γ for 8 h. After cell lysis in an appropriate buffer (Pro-
mega Italia, Milan, Italy), Firefly luciferase activity was mea-
sured using Dual-Glo Luciferase Assay System (Promega).
To normalize the transfection efficiency, pRL-null plasmid
encoding the Renilla luciferase was included in each transfec-
tion. Luciferase activity was further normalized by total cellu-
lar protein content assayed using Bradford (Sigma-Aldrich,
Milan, Italy).

2.4. Intracellular Signaling Array. PathScan Intracellular
Signaling Array Kit was purchased from Cell Signaling Tech-
nology (Cell Signaling Technology, Beverly, MA; Catalog
#7323). This array allows the simultaneous detection of 18
signaling molecules when phosphorylated or cleaved. They
include ERK1/2, STAT1, STAT3, Akt (Thr308 and Ser473
phosphorylation), AMPKa, S6 ribosomal protein, mTOR,
HSP27, Bad, p70 S6 kinase, PRAS40, p53, p38, SAPK/JNK,
PARP, caspase 3, and GSK-3b. Whole protein lysates from
keratinocyte cultures treated with IFN-γ, IL-22, or TNF-α
in the presence or absence of tofacitinib were prepared using
lysis buffer that was provided in the kit and processed follow-
ing the manufacturers’ instructions. The Bio-Rad Gel Docu-
mentation System was used to take detailed pictures of the
array using the Quantity One software using the ChemiDoc
XRS function. Values of graphs are expressed as densitomet-
ric units and were normalized to internal positive control.

2.5. Proliferation Assays. 8× 104 cells were seeded in 12-well
plates and, the day after, starved in KBM. Culture stimulation
with IFN-γ, IL-22, or TNF-α was conducted either in the
presence or absence of tofacitinib. After 2 d of treatment, cells
were evaluated by Trypan blue exclusion test. Crystal violet
assays were also performed to evaluate proliferation. Thus,
2× 104 cells were grown for 48 h in 96-well plates and stained
with 0.5% crystal violet, whose incorporation was measured
at 540nm in an ELISA reader (model 3550 UV ELISA reader;
Bio-Rad, Hercules, CA).

2.6. Apoptosis Analysis. Apoptosis of keratinocytes was eval-
uated using the FITC Annexin V/propidium iodide (PI) apo-
ptosis detection kit (BD Biosciences, Milan, Italy). Viability,
necrosis, and apoptosis were analysed by flow cytometry.

Cells were analysed with a FACScan equipped with Cell
Quest software. The percentage of Annexin V+, PI+, and
Annexin V/PI+ cell populations were evaluated in keratino-
cyte cultures left untreated or treated with IFN-γ, IL-22, or
TNF-α in the presence or absence of tofacitinib.

2.7. RNA Isolation and Real-Time Polymerase Chain Reaction
(PCR). Total RNA from keratinocyte cultures was extracted
using the TRIzol reagent (Invitrogen); mRNA was reverse-
transcribed into cDNA and analysed by real-time PCR. The
expression of human SOCS3, S100A7, IL-20, HBD-2, LL-
37, and HPRT-1 mRNA was evaluated in the ABI Prism
SDS 7000 PCR instrument (Applied Biosystems, Branch-
burg, NJ), using SYBR Green PCR reagents or TaqMan
PCRMaster Mix. The same PCR tools were employed to ana-
lyse murine IL-17A, IL-22, IFN-γ, TNF-α, CXCL10, CCL2,
CCL20, CXCL16, and IL-6 mRNAs. The forward and reverse
primers employed for real-time PCR for SOCS3 were 5′-
AAGGACGGAGACTTCGATTCG-3′ and 5′-AAACTT
GCTGTGGGTGACCAT-3′, and for LL-37 5′-TTTTGC
GGAATCTTGTACCCA-3′ and 5′-TCTCAGAGCCCAGA
AGCCTG-3′. The sequences of the primers for β-defensin-
(HBD-) 2 mRNA have been previously described [26].
Primers for S100A7, IL-20, and HPRT-1 were provided by
Applied Biosystems (HS 00161488, HS 00218888, and HS
4333768, respectively). Primers used for the detection of
murine molecules were retrieved from previous studies
[27]. Human and murine mRNA level values were normal-
ized to HPRT-1 and β-2-microglobulin mRNA, respectively.
The values obtained from triplicate experiments were aver-
aged, and data presented as mean 2−ΔΔCT± SD.

2.8. Multiplex Immunoassay and ELISA. Media conditioned
for 48 h by psoriatic keratinocyte cultures stimulated with
IFN-γ or IL-22 in the presence or absence of tofacitinib were
harvested and filtered. The simultaneous quantitative mea-
surement of cytokines/chemokines in small amounts of
supernatants was achieved by using the xMAP multiplex
technology (Luminex) and a BioPlex 200 System equipped
with magnetic washer workstation Bio-Plex ProTM and
Manager Software version 6.1 (Bio-Rad Laboratories, Milan,
Italy). In particular, a Pro-Human Cytokine Panel (Bio-Plex,
Pro-Human Chemokine 40-plex Panel, cat # 171AK99MR2,
Bio-Rad) was used to measure the following analytes:
6Ckine/CCL21, BCA-1/CXCL13, CTACK/CCL27, ENA-78/
CXCL5, Eotaxin/CCL11, Eotaxin-2/CCL24, Eotaxin-3/CC
L26, Fractalkine/CX3CL1, GCP-2/CXCL6, GM-CSF, Gro-
α/CXCL1, Gro-β/CXCL2, I-309/CCL1, IFN-γ, IL-1β, IL-2,
IL-4, IL-6, IL-8/CXCL8, IL-10, IL-16, IP-10/CXCL10, I-
TAC/CXCL11, MCP-1/CCL2, MCP-2/CCL8, MCP-3/CC
L7, MCP-4/CCL13, MDC/CCL22, MIF, MIG/CXCL9, MIP-
1α/CCL3, MIP-1δ/CCL15, MIP-3α/CCL20, MIP-3β/CCL
19, MPIF-1/CCL23, SCYB16/CXCL16, SDF-1α+β/CXCL12,
TARC/CCL17, TECK/CCL25, and TNF-α, following the
manufacturers’ instructions. In parallel, CCL5 was measured
with a commercially available sandwich ELISA kit (R&D
Systems) and an ELISA reader model 3550 UV (Bio-Rad).
Psoriatic keratinocyte cultures were conducted in duplicate
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using two different keratinocyte strains. Data were expressed
as mean pg/ml or ng/ml± SD.

2.9. IMQ-Induced Psoriasiform-Like Model. 8 weeks old
female BALB/cJ mice (Harlan Laboratories, San Pietro al
Natisone, Italy) were employed in all the experiments.
Shaved mouse dorsal skin was treated daily for 5 consecutive
days with 50mg Aldara cream containing 5% IMQ (MEDA
AB, Solna, Sweden). On day 5, full-thickness skin biopsies
of the treated area were collected with an 8mm biopsy
puncher. Skin was fixed in neutral buffered formalin
(Sigma-Aldrich, St. Louis, MO, USA) for histopathological
analysis. In some experiments, 50μl Aldara cream was mixed
with tofacitinib (in DMSO solution) at a final concentration
of 10 and 0.5mM. A group of 10 mice was used for each
experimental condition. On day 5, full skin was fixed in neu-
tral buffered formalin (Sigma-Aldrich, St. Louis, MO, USA)
for histopathological analysis. Otherwise, full skin was frozen
in nitrogen liquid and further processed for RNA extraction,
which was performed by using TRIzol reagent (Invitrogen).
RNA from ten mice per experimental group were pooled,
reverse-transcribed into cDNA, and analysed by real-time
PCR, as previously described.

2.10. Histopathology and Immunohistochemistry. Fixed
murine skin was embedded in paraffin, and tissue sections
were deparaffinized and stained with H&E for histological
analysis. Epidermal and scale thickness and cell infiltrate
number were analysed as parameters of skin acanthosis and
inflammation. Average epidermal and scale thickness was
quantified by a researcher blind to the experimental groups
who took five measurements per three sections for each
mouse. Cells infiltrating dermis were also counted in three
skin sections for each mouse. Immunohistochemistry was
performed by using primary Abs against CD3 (Dako,
Glostrup, Denmark), Ly6G, CD11c, and CD11b (BD Biosci-
ences), Ki67 (Novocastra, Newcastle upon Tyne, UK),
KRT10 (Covance), phospho-STAT3 (Tyr705) and phospho-
STAT1 (Tyr701) (both from Cell Signaling), IL-17A (R&D
Systems) and IL-22 (Novus Biologicals, Oakdille, Canada),
and immunoreactivities developed with secondary biotinyl-
atedmAbs and staining kits (Vector Laboratories, Burlingame,
CA, USA). Sections were counterstained with Mayer’s hema-
toxylin and were visually analysed by two pathologists expe-
rienced in dermatology. Positivity was evaluated in 5 adjacent
fields at a magnification of 200x. A semiquantitative, four-
stage scoring system was applied, ranging from negative
immunoreactivity (0) to strong immunoreactivity (4+) for
KRT10 in the epidermis.

2.11. Stable Keratinocyte Transfectants.HaCaT cells were sta-
bly transfected with myc/SOCS1, myc/SOCS2, myc/SOCS3,
or empty pcDNA3 (mock) plasmids as previously reported
[6, 13]. HaCaT SOCS clones were treated with IFN-γ or IL-
22, whereas mock clones were pretreated with tofacitinib
and then stimulated with IFN-γ or IL-22 in DMEM.

2.12. Statistical Analysis. For in vitro studies, statistical signif-
icance was evaluated using Wilcoxon’s signed rank test (Sig-
maStat; Jandel, San Rafael, CA, USA). Values of p ≤ 0 05

were considered significant. For in vivo experiments, the sig-
nificance of differences between experimental groups (mice
treated with IMQ vs. mice treated with IMQ plus tofacitinb
100mM or 5mM) was calculated by unpaired Student’s
t-test. Statistical analysis was performed with Prism v.5.0
(GraphPad Software, La Jolla, CA, USA), and values are
expressed as the mean+ SD of n animals. Values of p < 0 05
were considered significant.

3. Results

3.1. Tofacitinib Efficiently Inhibits on JAK/STAT-Dependent
Pathways in IFN-γ- or IL-22-Activated Keratinocytes.We ini-
tially studied the impact of tofacitinib on intracellular path-
ways activated in human keratinocytes by proinflammatory
cytokines with a pathogenic role in psoriasis, including
IFN-γ, IL-22, TNF-α, and IL-17. To this end, primary kerati-
nocyte cultures were established from skin biopsies of psori-
atic patients (n = 5). The choice to employ psoriatic
keratinocyte cultures raised from the fact that these strains
are more responsive to triggering factors, as compared to ker-
atinocytes obtained from healthy donors, probably due to
their genetic background and different susceptibilities to pro-
inflammatory cytokines [4, 5]. Tofacitinib had no cytotoxic
effects on keratinocytes even at higher concentrations, as
tested by measuring the activity of lactate dehydrogenase
released by cultures (not shown). One hour pretreatment
with different doses of tofacitinib (0.1–10μM) was followed
by stimulation of keratinocyte cultures with rh IFN-γ
(200U/ml), IL-22 (50 ng/ml), TNF-α (50 ng/ml), or IL-17
(50 ng/ml) for different time periods (Figure 1, data not
shown). Tofacitinib efficiently inhibited IFN-γ and IL-22
proximal signaling, with reduced phosphorylation of IFN-γ
R, JAK1, and JAK2, as well as IL-22R1 and JAK1, but not
TYK2, respectively (Figures 1(a) and 1(b), left). As a conse-
quence of proximal signaling inhibition, downstream STAT1
and STAT3 phosphorylation was dose dependently inhibited
in IFN-γ-stimulated cultures (Figure 1(a), right). Interest-
ingly, phospho-ERK1/2 activation was also reduced by tofa-
citinib, even if less potently if compared to STATs
(Figure 1(a), right). Similarly to what we observed for IFN-
γ, IL-22 could not induce STAT3 or ERK1/2 phosphoryla-
tion in the presence of tofacitinib (Figure 1(b), right). In
order to evaluate the specificity of action of tofacitinib on
pathways dependent on JAKs, we analysed its effects on the
signaling of TNF-α or IL-17, cytokines which notoriously
can activate NF-κB and MAP kinases but not JAKs. As
shown in Figure 1(c), tofacitinib could not influence phos-
phorylation of IκBα or p65 NF-κB subunit, nor ERK1/2 in
response to TNF-α. In contrast, tofacitinib reduced STAT3
activation induced by TNF-α, even if at a lower degree if
compared to that observed for IFN-γ- or IL-22-treated sam-
ples. Of note, tofacitinib could not regulate signaling path-
ways activated by IL-17 in keratinocytes, including NF-κB
(data not shown). Finally, tofacitinib potently reduced the
IFN-γ- or IL-22-induced transactivation of STAT1- or
STAT3-binding promoters in keratinocytes, as assessed in
cultures transfected with the IFN-γ-inducible reporter plas-
mid, pGAS-Luc, or the IL-22-inducible reporter plasmid,
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Figure 1: Continued.
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pLucTKS3, respectively (Figure 1(d)). As a whole, these data
demonstrate that tofacitinib totally abrogated JAK/STAT
pathways activated by IFN-γ and IL-22 in human psoriatic
keratinocytes, whereas it could not influence JAK-
independent molecular pathways, such as those activated by
TNF-γ or IL-17.

3.2. Analysis of the Effect of Tofacitinib on Additional
Molecular Pathways Induced by IFN-γ or IL-22 in
Keratinocyte Cultures.We next determined the protein phos-
phorylation profiles of keratinocyte cultures undergoing
stimulation with IFN-γ, IL-22, or TNF-α for 20min, pre-
treated or not with tofacitinib. This analysis was performed
by using a commercial phospho-kinase array kit (see Mate-
rials and Methods), which detects intracellular kinases and
signaling node molecules, including Akt, AMPKα, mTOR,
HSP27, BAD, p53, JNK, p38, PARP, and caspase 3, other
than STAT1 and STAT3, specifically activated by IFN-γ
and IL-22. As shown in Figure 2, tofacitinib could signifi-
cantly reduce the IFN-γ-dependent upregulation of Akt
phosphorylation at both Thr308 and Ser473 residues,
AMPKα, p38, PARP, and caspase 3, other than STAT1 (data
not shown) and STAT3. In parallel, it decreased Akt phos-
phorylation at both Thr308 and Ser473 residues, AMPKα,
mTOR, HSP27, p38, JNK, and STAT3, activated by IL-22
treatment in keratinocyte cultures (Figure 2). However, tofa-
citinib inhibition of these additional molecular pathways was
weaker if compared to that observed on STAT. Again, TNF-
α-induced intracellular kinase pattern could not be influ-
enced by tofacitinib treatment, with the exception of STAT3
(Figure 2).

3.3. Effects of Tofacitinib on Keratinocyte Proliferation,
Differentiation, and Apoptosis Processes. We assessed
whether tofacitinib regulated keratinocyte growth and prolif-
eration, as well as differentiation and apoptosis in psoriatic
keratinocyte cultures (n = 3). Cells were pretreated with tofa-
citinib (5μM) for 1 h and then stimulated with IFN-γ, IL-22,
or TNF-α for 48 h. As previously reported [13, 17], IFN-γ
decreased proliferation of keratinocyte cultures whereas IL-
22 enhanced such process by inhibiting terminal differentia-
tion.When tofacitinib was coadministered, the effects of these
cytokines on keratinocyte proliferation were totally reverted
(Figure 3(a)). Similarly, tofacitinib could significantly abro-
gate IL-22-induced inhibition of differentiation, as well as
IFN-γ-induced apoptosis of keratinocytes (Figures 3(b) and
3(c)). In contrast, tofacitinib did not influence TNF-γ-
induced processes in keratinocytes, in particular apoptosis,
as shown in Figure 3(c).

3.4. Regulation by Tofacitinib of Expression of Psoriasis-
Related Inflammatory Molecules by Keratinocytes. We then
evaluated whether tofacitinib could influence keratinocyte
expression of proinflammatory genes induced by IFN-γ or
IL-22 via JAK/STAT pathway. To this end, the expression
of a variety of molecules involved in the induction or control
of skin inflammation was studied by cytofluorimetry, bioplex
multiplex immunoassays, and real-time PCR analysis of pso-
riatic keratinocyte cultures pretreated with tofacitinib and
then stimulated with rh IL-22 or IFN-γ. We found that tofa-
citinib substantially reduced IFN-γ-induced expression of
ICAM-1, HLA-DR and MHC class I membrane molecules,
and numerous inflammatory mediators, including CX3CL1,
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Figure 1: Tofacitinib inhibits IFN-γ- and IL-22- but not TNF-α-induced molecular signaling in psoriatic keratinocytes cultures. (a) Protein
extracts obtained from psoriatic keratinocytes pretreated or not with vehicle alone or the indicated doses of tofacitinib, and then stimulated or
not with IFN-γ for the indicated time periods, were subjected to immunoprecipitation for IFN-γRα, JAK1, or JAK2 and Western blotting
analysis by using anti-phosphotyrosine Ab to detect IFN-γRα, JAK1, or JAK2 phosphorylation. Filters were stripped and reprobed with
anti-IFN-γRα, JAK1, or JAK2 Abs. Phosphorylated and unphosphorylated forms of STAT1, STAT3, and ERK1/2 were monitored in
keratinocytes by WB analysis. (b) Protein extracts were obtained from keratinocytes pretreated or not with tofacitinib in the presence of
IL-22 for the indicated time periods and were subjected to immunoprecipitation for IL-22R1, TYK1, or JAK2 and, then, WB analysis by
using anti-phosphotyrosine Ab to detect IL-22R1, TYK1, or JAK2 phosphorylation. Filters were stripped and reprobed with anti-IL-22R1,
TYK1, or JAK2 Abs. Phosphorylated and unphosphorylated forms of STAT1, STAT3, and ERK1/2 were also monitored in keratinocytes
by WB analysis. (c) Protein extracts were obtained from keratinocytes pretreated or not with tofacitinib in the presence of TNF-α for
15min and then analysed by WB analysis to detect basal or phospho-IκBα, basal or phosphor-p65 subunit of NF-κB, and phosphorylated
and unphosphorylated forms of STAT3 and ERK1/2. Graphs in (a), (b), and (c) represent densitometric analyses of the indicated proteins
shown in representative WB. Data are expressed as mean± SD fold induction (F.I.) calculated relatively to the untreated samples, which
were given a value of 1. ∗p < 0 01, ∗∗p < 0 05. (d) Psoriatic keratinocyte cultures transiently transfected with a STAT1-, STAT3-, or
NF-κB-responsive plasmids, termed, respectively, pGAS-Luc, pLucTKS3, or pNF-κB-Luc were treated with 5 μM tofacitinib or vehicle
alone for 2 h and then stimulated with IFN-γ, IL-22, or TNF-α for 8 h prior to assay Firefly luciferase activity on cellular extracts. Data
are expressed as Firefly luciferase values normalized to Renilla luciferase and micrograms of proteins and are shown as mean + SD of
n = 6 samples pooled from two experiments. ∗p < 0 01.
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CXCL1, CXCL8, CXCL10, CCL1, CCL2, CCL5, MIF chemo-
kines, IL-6, and SOCS3 mRNA (Table 1). Similarly, tofaciti-
nib could downregulate IL-22-induced expression of
CX3CL1, CXCL8, CXCL12, and CCL2 chemokines, as well

as of IL-20 and SOCS3 in keratinocyte cultures (Table 2).
Inflammatory molecules induced by TNF-α or IL-17 could
not be regulated by tofacitinib (data not shown). Thus, tofa-
citinib treatment could influence the expression of genes that
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Figure 2: Tofacitinib regulates IFN-γ- and IL-22- but not TNF-α-induced signaling molecules in psoriatic keratinocytes. Protein extracts
obtained from psoriatic keratinocytes pretreated with 5 μM tofacitinib or vehicle alone and then stimulated or not with IFN-γ, IL-22, or
TNF-α for 20min were used on a PathScan intracellular signaling array, which allows the simultaneous detection of 18 signaling
molecules when phosphorylated or cleaved. They include ERK1/2, STAT1, STAT3, Akt (Thr308 and Ser473 phosphorylation), AMPKa,
mTOR, HSP27, Bad, p53, p38, SAPK/JNK, PARP, and caspase 3. Developed slides were acquired at ChemiDoc system. Graphs represent
densitometric analyses of the indicated proteins. Data are expressed as mean± SD fold induction (F.I.) calculated relatively to the
untreated samples, which were given a value of 1. Protein panel was analysed in two assays with two different keratinocyte strains. Each
value was normalized to an internal positive control. ∗p < 0 05 for samples treated with tofacitinib vs. untreated, in the presence of cytokines.
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Figure 3: Tofacitinib regulates proliferation, differentiation, and apoptosis of IFN-γ- and IL-22- but not TNF-α-treated keratinocytes.
Proliferation of keratinocyte cultures untreated or treated with 5μM tofacitinib, either in the presence or absence of IFN-γ, IL-22, or
TNF-α, was analysed by Trypan blue exclusion test (a), which was performed after 48 h of culture. Data are expressed as total cell number
± SD. ∗p < 0 05. (b) Keratin 1 (KRT1), loricrin, and p63 were analysed by WB by using protein lysates obtained from keratinocyte cultures
grown at 100% confluency (0 d) or for additional four days (4 d), in the presence or absence of tofacitinib and IFN-γ or IL-22. Graphs
show densitometric values± SD of KRT1, loricrin, or p63. Data are expressed as densitometric units, expressed as fold induction (F.I.) of
treated vs. untreated samples, which were given a value of 1. ∗p < 0 01. (c) Apoptosis of cultured keratinocytes treated with 5μM
tofacitinib in the presence or absence of IFN-γ, IL-22, or the proapoptotic stimulus TNF-α for 48 h was examined by measuring Annexin
(Ann V)/propidium iodide (PI) fluorescence through flow cytofluorimetry. A representative experiment of three performed with two
different psoriatic keratinocyte strains is shown, with numbers indicating the percentage of PI+ (upper left), Ann V+ (lower right), PI/Ann
V+ (upper right), or negative (lower left) cells.
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were regulated in a STAT-dependent manner at the tran-
scriptional level.

3.5. Analysis of the Effects of Tofacitinib on the IMQ-Induced
Murine Model of Psoriasis. IMQ-induced dermatitis in mice
can serve as a model for the analysis of pathogenic mecha-
nisms involved in psoriasis [28]. In this model, a major role
of the IL-23/IL-17/IL-22 axis has been demonstrated, with
IL-22-deficient mice being resistant to psoriasis development
induced by IMQ [29]. Thus, the effect of tofacitinib was stud-
ied in this model, with the drug being administered together
with IMQ for 5 days, at two different concentrations (0.5 and
10mM). As shown in Figure 4, tofacitinib substantially
reverted the psoriasiform phenotype in IMQ-treated mice
(Figure 4(a)) and, even at the lower dose, reduced psoriasi-
form signs, including epidermal and scale thickness, as
assessed by quantifying the average of these parameters on
images of skin sections stained by H&E (Figures 4(b)–4(d)).
Tofacitinib also reduced the widespread inflammatory infil-
trate in the dermis, as compared with control (Figures 4(b)
and 4(e)). Moreover, tofacitinib administration led to a
dose-dependent reduction of the number of CD3+ T lympho-
cytes, Ly6G+ neutrophils, CD11c+ dendritic cells, CD11b+

macrophages infiltrating the dermis, and of the keratinocyte
proliferation marker Ki67 (Figure 5). Conversely, comparti-
mentalization and expression of the marker of differentia-
tion, such as KRT10, rather weak in the suprabasal layer
epidermis of IMQ-treated mice, were restored by treatment
with the drug (Figure 5). Of note, tofacitinib dramatically
reduced the presence of phospho-STAT3 and phospho-
STAT1 in the nucleus of epidermal cells of mouse skin in a
dose-dependent manner (Figure 6(a)), with the higher drug
concentration responsible of almost total disappearance of
phospho-STAT3+ (~80% of reduction) and STAT1+ cells
(~95% of reduction) in IMQ-treated mice.

Since IL-17- and IL-22-producing leukocytes are impli-
cated in the pathogenic processes associated to IMQ-
induced psoriasiform reactions (28–30), and keratinocytes
are actively involved in recruiting these cells in lesional skin,
we investigated tofacitinib effect on the presence of IL-17-
and IL-22-producing cells into mouse skin and the expres-
sion of chemokines potentially involved in their recruitment.
Immunohistochemistry and real-time PCR of IL-17A and IL-
22, together with IFN-γ and TNF-α mRNA analyses
(Figure 6(b)), showed that tofacitinib decreased the number
of IL-17+ or IL-22+ cells in the IMQ-treated skin, consistently

Table 1: Tofacitinib effects on the expression of inflammatory molecules induced by IFN-γ in keratinocytes.

Untreated∗ TOF IFN-γ IFN-γ+TOF

Membrane molecules

ICAM1 2.4± 0.2 2.0± 0.18 75.5± 6.3 6.8± 0.56†
HLA-DR 1.4± 0.15 1.4± 0.12 3.5± 0.25 1.4± 0.13†
MHC-I 72± 5.2 63± 4.5 146± 11.2 84± 7.4†

Chemokines

CX3CL1 0.40± 0.05 0.36± 0.08 580.64± 55.06 26.20± 3.26†
CXCL1 0.80± 0.12 0.80± 0.07 69.00± 5.6 0.40± 0.08†
CXCL8 0.92± 0.11 2.60± 0.32 84.52± 7.45 5.04± 0.61†
CXCL10 29.08± 2.2 25.04± 0.14 2557.44± 150.2 29.08± 2.58†
CXCL12 107.20± 9.72 110.20± 2.43 141.52± 12.25 119.12± 10.61
CXCL16 2.92± 0.32 5.28± 0.68 18.48± 1.58 6.16± 0.81
CCL1 0.80± 0.1 0.80± 0.14 37.04± 2.94 0.60± 0.04†
CCL2 0.80± 0.95 0.76± 0.67 474.60± 49.46 0.80± 0.12†
CCL5 2.0± 0.4 1.9± 0.24 2305± 250.12 4.5± 0.6†
MIF 337.08± 35.71 637.04± 52.47 1745.88± 153.5 918.04± 85.8†

Cytokines, AMPs, SOCS

IL-6 5.92± .0.79 5.28± 0.48 17.40± 1.57 5.28± 0.65†
IL-20 1.00± 0.12 0.90± 0.10 0.98± 0.10 0.58± 0.04†
LL-37 1.00± 0.11 0.89± 0.09 0.85± 0.10 0.70± 0.08
HBD2 1.00± 0.12 0.66± 0.08 1.11± 0.12 0.67± 0.08
S100A7 1.00± 0.13 1.11± 0.2 2.61± 0.0.25 2.83± 0.3
SOCS3 1.00± 0.12 1.13± 0.10 25.59± 2.65 2.14± 0.20†

Note: IFN: interferon; TOF: tofacitinib; ICAM: intercellular adhesion molecule; HLA-DR: human leukocyte antigen-antigen D related; MHC: major
histocompatibility complex; CXCL: CXC-chemokine ligand; CL: chemokine ligand; MIF: macrophage migration inhibitory factor; IL: interleukin; LL37:
antimicrobial peptide; HBD: human-defensin; S100: S100 calcium-binding protein; SOCS: suppressor of cytokine signaling. ∗Keratinocyte cultures were left
untreated or treated with 5 μM of tofacitinib and stimulated or not with 100U/ml of IFN-γ. After 6 hours, IL-20, LL-37, HBD2, S100A7, and SOCS3
mRNA levels were analysed by real-time PCR and normalized to β-actin mRNA levels. Results are expressed as mean 2−ΔΔCT ± SD. After 24 hours, cells
were stained with ICAM1, HLA-DR, and MHC-I mAb followed by FITC-conjugated anti-mouse IgG and then analysed by flow cytometry. Data are
expressed as mean ΔMFI ± SD. At the same time, supernatants were collected and, chemokines and IL-6 were measured by Bioplex, except for CCL5 which
has been evaluated by ELISA. Results are expressed as mean pg/ml ± SD. †p < 0 05 compared to untreated or stimulated keratinocytes.
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with a significant reduction of IL-17 and IL-22 mRNA levels.
In contrast, neither IFN-γ nor TNF-α mRNA expression
could be significantly influenced by tofacitinib application
(Figure 6(b)). Of note, both IL-17+ and IL-22+ cell populations
had mostly a macrophage/dendritic cell-like morphology,
similar to that of CD11c- and CD11b-stained cells (Figure 5).
Finally, we analysed the expression of keratinocyte-derived
chemokines in mouse skin biopsies by real-time PCR analy-
sis. A significant reduction of chemokines, such as CCL2,
CXCL16, CCL20, and IL-6, was detected after the application
of tofacitinib (Figure 6(c)). The effect of tofacitinib was not
exerted on CXCL10 or other keratinocyte chemokines whose
expression was strictly dependent on IFN-γ (Figure 6(c) and
data not shown).

The effect of tofacitinib was dose-dependent (Figures 4–6),
and no change in all the analysed markers was observed by
treating mouse skin with tofacitinib alone (not shown).

3.6.TofacitinibandSOCS1orSOCS3Impair theSameMolecular
Pathways in IFN-γ- or IL-22-Activated Keratinocytes. In
psoriatic keratinocytes, SOCS1 and SOCS3 molecules act
as endogenous repressors of cytokine signaling and func-
tion by directly inhibiting JAK1 and JAK2 proteins, thus

impeding STAT activation [13, 16]. This part of the study
investigated whether tofacitinib could inhibit the same
molecular pathways suppressed by SOCS1 and SOCS3 in
keratinocytes. To this end, a comparison of the main molec-
ular pathways activated by IFN-γ and IL-22 was carried out
in keratinocyte overexpressing SOCS1 or SOCS3 and
tofacitinib-treated mock clones. SOCS2 clones were used as
negative control, as in these cells, IFN-γ or IL-22 signaling
is not influenced by SOCS2 transgene presence [13]. A num-
ber of keratinocyte clones stably expressing SOCS were previ-
ously generated in our lab, as previously described [6, 13–15].
SOCS1, SOCS3, and SOCS2 clones (n = 2 for each) were
tested for their levels of transgene contents and, then, acti-
vated with IFN-γ or IL-22 (Figure 7(a)). In parallel, mock
clones (n = 2) were treated with tofacitinib together with
IFN-γ or IL-22. The expression pattern of phosphorylated
STAT1, STAT3, and ERK1/2 in IFN-γ- or IL-22-treated
mock clones was identical to that induced in psoriatic kerati-
nocytes, with tofacitinib efficiently inhibiting these signal
transduction pathways (Figures 7(b) and 7(c)). Similarly to
tofacitinib, the presence of SOCS1 or SOCS3 transgene deter-
mined an impairment of STAT1 and STAT3 activation in
response to IFN-γ, and of STAT3 in response to IL-22,

Table 2: Tofacitinib effects on the expression of inflammatory molecules induced by IL-22 in keratinocytes.

Untreated∗ TOF IL-22 IL-22 + TOF

Membrane molecules

ICAM1 2.4± 0.2 2.0± 0.18 2.5± 0.24 1.8± 0.16
HLA-DR 1.4± 0.15 1.4± 0.12 1.4± 0.12 1.4± 0.11
MHC-I 72± 5.2 63± 4.5 57± 4.8 54± 5.2

Chemokines

CX3CL1 0.40± 0.05 0.36± 0.08 46.72± 4.57 19.72± 1.87†
CXCL1 0.80± 0.12 0.80± 0.07 0.80± 0.09 0.40± 0.035
CXCL8 0.92± 0.11 2.60± 0.32 83.04± 9.43 49.04± 4.85†
CXCL10 29.08± 2.2 25.04± 0.14 36.60± 3.57 43.28± 3.19
CXCL12 107.20± 9.72 110.20± 2.43 119.12± 12.91 111.16± 5.76
CXCL16 2.92± 0.32 5.28± 0.68 12.92± 1.39 10.52± 1.15
CCL1 0.80± 0.1 0.80± 0.14 10.60± 1.08 10.60± 1.10
CCL2 0.80± 0.95 0.76± 0.67 1.72± 0.08 0.72± 0.62
CCL5 2.0± 0.4 1.9± 0.24 1.95± 0.16 1.73± 0.13
MIF 337.08± 35.71 637.04± 52.47 1800.12± 105.9 1807.00± 135.7

Cytokines, AMPs, SOCS

IL-6 5.92± .0.79 5.28± 0.48 7.24± 0.84 6.24± 0.54
IL-20 1.00± 0.12 0.90± 0.10 3.17± 0.17 3.16± 0.05
LL-37 1.00± 0.11 0.89± 0.09 0.84± 0.11 1.51± 0.13
HBD2 1.00± 0.12 0.66± 0.08 3.62± 0.39 3.96± 0.56
S100A7 1.00± 0.14 1.11± 0.2 1.73± 0.16 1.71± 0.18
SOCS3 1.00± 0.12 1.13± 0.10 8.12± 0.95 0.64± 0.05

Note: IL: interleukin; TOF: tofacitinib; ICAM: intercellular adhesion molecule; HLA-DR: human leukocyte antigen-antigen D related; MHC: major
histocompatibility complex; CXCL: CXC-chemokine ligand; CL: chemokine ligand; MIF: macrophage migration inhibitory factor; LL37: antimicrobial
peptide; HBD: human-defensin; S100: S100 calcium-binding protein; SOCS: suppressor of cytokine signaling. ∗Keratinocyte cultures were left untreated or
treated with 5 μM of tofacitinib and stimulated or not with 75 ng of IL-22. After 6 hours, IL-20, LL-37, HBD2, S100A7, and SOCS3 mRNA levels were
analysed by real-time PCR and normalized to β-actin mRNA levels. Results are expressed as mean 2−ΔΔCT ± SD. After 24 hours, cells were stained with
ICAM1, HLA-DR, and MHC-I mAb followed by FITC-conjugated anti-mouse IgG and then analysed by flow cytometry. Data are expressed as mean
ΔMFI ± SD. At the same time, supernatants were collected and, chemokines and IL-6 were measured by Bioplex, except for CCL5 which has been evaluated
by ELISA. Results are expressed as mean pg/ml ± SD. †p < 0 05 compared to untreated or stimulated keratinocytes.
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Figure 4: Tofacitinib inhibits inflammatory responses in the IMQ-induced psoriasiform mouse model. (a) Representative pictures of back-
shaved mice left untreated (left), IMQ-treated (middle), or undergoing to cotreatment with IMQ and 10mM tofacitinib. (b) Representative
H&E staining of (i) untreated, (ii) treated with IMQ cream, and in the presence of 10mM (iii) or 0.5mM (iv) tofacitinib. Mouse skin treated
with IMQ reverted their condition after tofacitinib topical application of 0.5 and 10mM. The quantification of (c) epidermal, (d) scale
thickness, and (e) cell infiltrate number was analysed as parameters of skin acanthosis and inflammation. Graphs show means of microns
of epidermis and stratum corneum thickness and mean of number of cells infiltrating dermis per section, ±SD per group (n = 10 mice).
∗p < 0 001.
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Figure 5: Tofacitinib counteracts IMQ-induced leukocyte infiltration, proliferation, and dedifferentiation in mouse skin.
Immunohistochemistry analysis of mouse skin left untreated (i), IMQ-treated (ii), and IMQ-treated in the presence of tofacitinib (iii)
shows reduction of positive CD3, LY6G, Ki67, CD11c, and CD11b cells and an increase of KRT10 in the epidermis after tofacitinib
treatment. Sections were counterstained with Mayer’s hematoxylin and were visually evaluated by a pathologist experienced in
dermatology. Bars, 200 μM. One of four representative stainings is shown. Graphs show the mean of number of positive cells or of
semiquantitative, four-stage scoring values for KRT10± SD per three sections per experimental group (n = 10 mice). ∗p < 0 01, ∗∗p < 0 001.
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Figure 6: Tofacitinib counteracts IMQ effects in mouse skin. Immunohistochemistry analysis of mouse skin left untreated (i), IMQ-treated
(ii), and IMQ-treated in the presence of tofacitinib (iii) shows reduction of STAT1-, STAT3-, IL-17A-, and IL-22-positive cells (a) and (b)
after tofacitinib treatment. Sections were counterstained with Mayer’s hematoxylin and were visually evaluated by a pathologist
experienced in dermatology. Bars, 200 μM. One of four representative stainings is shown. Graphs show the mean number of positive cells
± SD per three sections per experimental group (n = 10 mice). ∗p < 0 01. In (b), graphs show real-time PCR analyses of IL-17A, IL-22,
IFN-γ, and TNF-α performed on pooled mRNA samples (n = 10) of mouse skin treated as indicated. ∗p < 0 01. In (c), graphs show real-
time PCR analyses of CXCL10, CCL2, CCL20, CXCL16, and IL-6 performed on pooled mRNA samples (n = 10) of mouse skin treated as
indicated. ∗p < 0 01, ∗p < 0 05.

13Journal of Immunology Research



M
oc

k 
4.

1

SO
CS

1 
3.

11

SO
CS

3 
6.

6

SO
CS

2 
3.

1

Myc-SOCS1
Myc-SOCS2
Myc-SOCS3

(a)

pY-STAT1

STAT1

IFN-�훾 (15 min):

pY-STAT3

STAT3

�훽-Actin

ERK1/2

p-ERK1/2

− − − − − + + + + +
− + − − − − + − − −Tofacitinib:

M
oc

k 
4.

1

M
oc

k 
4.

1

SO
CS

1 
3.

11

SO
CS

3 
6.

6

SO
CS

2 
3.

1

M
oc

k 
4.

1

M
oc

k 
4.

1

SO
CS

1 
3.

11

SO
CS

3 
6.

6

SO
CS

2 
3.

1 IFN-�훾 − − − − − + + + + +
Tofacitinib − + − − − − + − − −

D
en

sit
om

et
ric

 u
ni

ts

2

1

3

⁎
⁎

⁎

3

D
en

sit
om

et
ri 

un
its

2

1

3

D
en

sit
om

et
ri 

un
its

2

1

3

⁎
⁎

⁎

⁎⁎

(b)

pY-STAT3

STAT3

p-ERK1/2

ERK1/2

�훽-Actin

IFN-�훾 (15 min): − − − − − + + + + +
− + − − − − + − − −Tofacitinib:

M
oc

k 
4.

1

M
oc

k 
4.

1

SO
CS

1 
3.

11

SO
CS

3 
6.

6

SO
CS

2 
3.

1

M
oc

k 
4.

1

M
oc

k 
4.

1

SO
CS

1 
3.

11

SO
CS

3 
6.

6

SO
CS

2 
3.

1

D
en

sit
om

et
ri 

un
its

2

1

3

IL-22 − − − − − + + + + +
Tofacitinib − + − − − − + − − −

D
en

sit
om

et
ri 

un
its

2

1

3

⁎
⁎

⁎

⁎⁎

(c)

Figure 7: Tofacitinib inhibits the same IFN-γ- or IL-22-activated molecular pathways suppressed by SOCS1 or SOCS3. WB analysis was
performed on protein lysates of HaCaT keratinocyte clones overexpressing SOCS1, SOCS2, or SOCS3, stimulated with IFN-γ (a) or IL-22
(b) or left untreated. Analysis was also performed on MOCK-transfected cells left untreated or treated with IFN-γ (a) or IL-22 (b), in the
presence or absence of 5 μM tofacitinib. Both basal and phospho-STAT1, phospho-STAT3, and phospho-ERK1/2 were evaluated. Graphs
show densitometric analysis of WB bands, and data are expressed means of densitometric units, calculated using two and four different
keratinocyte clones for each transgene and mock clones to detect STATs and ERK1/2 proteins, respectively. ∗p < 0 01, ∗∗p < 0 05.
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respectively (Figures 7(b) and 7(c)). Finally, the finding that
phospho-ERK1/2 was efficiently inhibited in mock clones
by tofacitinib was consistent with the absence of its upregula-
tion in IFN-γ- or IL-22-treated SOCS1 and SOCS3 clones
(Figures 7(b) and 7(c)). As expected, SOCS2 could not regu-
late molecular pathways triggered by IFN-γ and IL-22 in ker-
atinocyte clones.

As a whole, these data demonstrate that tofacitinib
similarly to SOCS1 and SOCS3, by targeting JAKs, can
impair the same intracellular cytokine-dependent pathways
in keratinocytes.

4. Discussion

Increasing evidence suggests that JAK proteins are a potential
target for immunosuppressive drugs against psoriasis and
other immune-mediated skin diseases, especially those elic-
ited by epidermal keratinocytes exposed to massive amounts
of proinflammatory cytokines, including IFN-γ and IL-22
[15, 16, 30]. In recent years, small molecule JAK inhibitors
have been developed and extensively investigated for differ-
ent pathological conditions [22, 24, 30]. Among them, the
JAK inhibitor tofacitinib was shown to improve clinical out-
comes in patients with moderate-to-severe psoriasis [19, 21,
24]. A recent study on its effects in psoriatic patients showed
a dramatic and rapid shutdown of phospho-STAT1 and
phospho-STAT3 and downstream-regulated genes in the
epidermis and reduced pathologic T-cell and dendritic cell
number in lesional skin, as well as expression of IL-17, IL-
22, and IFN-γ [24].

The present study was aimed at understanding which
inflammatory molecular pathway(s) activated can be specifi-
cally inhibited by tofacitinib in psoriatic keratinocytes. We
found that this drug totally abrogated JAK/STAT pathways
activated by IFN-γ and IL-22, as evaluated in experimental
in vitro and in vivo models of psoriasis. These findings are
important since IFN-γ and IL-22 inflammatory cytokines
are deeply involved in the pathogenesis of psoriasis, as they
stimulate keratinocyte proliferation, impair their differentia-
tion, and promote a “feed-forward” inflammatory responses.
Tofacitinib inhibition was exerted specifically on JAK1 and
JAK2, but not on TYK2, and, as consequence, IFN-γ and
IL-22 receptor phosphorylation, as well as the proximal cyto-
kine signaling leading to STAT1 and STAT3 phosphoryla-
tion, were impaired. These effects were specific for IFN-γ
and IL-22 and could not be observed on TNF-α or IL-17 sig-
naling. This was not surprising, since TNF-α and IL-17 do
not signal intracellularly through JAK/STAT and activate
molecular pathways involving TRAF2/TRADD/NF-κB or
TRAF2/TRADD/MAPK and Act1/TRAF6/NF-κB [11, 12].
In contrast, we observed that TNF-α induced STAT3 activa-
tion in keratinocytes, an effect that was partially inhibited by
tofacitinib. This result could be explained by a direct action
of tofacitinib on JAK-dependent signaling activated by TNF-
α-induced cytokines (for instance IL-6), which could in turn
activate STAT3 in an autocrine loop. Interestingly, tofaciti-
nib also inhibited phosphorylation of ERK1/2 induced by
IFN-γ or IL-22, but not that promoted by TNF-α. This
dichotomy could depend by the fact that ERK1/2 activation

by IFN-γ or IL-22 is mediated by JAK, whereas TNF-α-
driven phosphorylation of ERK1/2 is downstream to
TRAF2/TRADD [12].

A number of dysfunctional intracellular signaling path-
ways have been found in psoriatic keratinocytes other than
STAT1 and STAT3, including NF-κB-, AP-1-, p38-, and
ERK1/2 kinase-activated pathways [4]. An analysis of addi-
tional intracellular kinases and signaling node molecules
demonstrated that tofacitinib also reduces the IFN-γ-depen-
dent upregulation of Akt, AMPKα, p38, PARP, and caspase 3
and the IL-22-dependent Akt, AMPKα, mTOR, HSP27, p38,
and JNK. However, tofacitinib inhibitory effects on these
molecular pathways were minimal if compared to those
observed on STAT1 and STAT3, indicating an ancillary or
indirect action of JAK in upregulating such pathways. Again,
TNF-α-induced intracellular kinase pattern could not be
influenced by tofacitinib, apart from those pathways that
were dependent on JAK and not by TRAF2/TRADD.

Another part of the study intended to evaluate the effects
of tofacitinib on those biological processes that are pro-
foundly altered in psoriatic epidermis (i.e., proliferation, dif-
ferentiation, and apoptosis) as a consequence of the
deleterious effects of IFN-γ and IL-22 [6, 17]. In this context,
we demonstrated that tofacitinib reduced proliferation and
dedifferentiation promoted by IL-22 in keratinocytes. These
results were confirmed in the IMQ in vivo murine psoriasis
model, in which epidermal hyperproliferation, altered dif-
ferentiation, and inflammation were mainly IL-22/STAT3-
dependent [29]. The concurrent treatment with tofacitinib
led to reduced expression of epidermal STAT3, proliferation
markers, and increased production of markers of differentia-
tion. Interestingly, tofacitinib also counteracted the cytostatic
and proapoptotic effects of IFN-γ on keratinocytes, likely via
inhibition of STAT1, known to mediate these effects. How-
ever, inhibition of IFN-γ-dependent antiproliferative effects
on keratinocytes might not be strategic in a hyperprolifera-
tive disorders, such as psoriasis, although IFN-γ can induce
massive proliferation of psoriatic stem cells, and its injection
into prelesional psoriatic skin causes epidermal hyperplasia
and plaque development [31, 32]. IFN-γ signaling and type
1T cells were shown to participate to the expression of psor-
iasiform phenotype in IMQ mice only partially [28]. None-
theless, we found phospho-STAT1 localized in the nuclei of
epidermal keratinocytes of IMQ-treated skin, with tofacitinib
totally inhibiting its expression. It is plausible that inhibition
of STAT1, together with STAT3, is indirectly responsible for
the reduction in inflammatory infiltrate, due to the decrease
of STAT1- and/or STAT3-dependent gene expression of che-
mokines in keratinocytes, such as CXCL10, CXCL1, CXCL8,
CCL2, and CCL5, and of immunomodulatory molecules,
including ICAM-1 and MHC class I and II. As result, T-cell,
neutrophil, dendritic cell, and macrophage subpopulations
could no longer accumulate in IMQ-treated skin in the pres-
ence of tofacitinib. Also IFN-γ-induced, but not IL-22-
induced IL-6 and IL-20, two psoriasis-related cytokines were
inhibited by this drug. It is noteworthy that the majority of
inflammatory molecules induced by IL-22 in keratinocytes
could not be downregulated by tofacitinib, with the exception
of CX3CL1 and CXCL8 chemokines. Also, IL-22-dependent
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antimicrobial molecules could not be influenced. In contrast,
SOCS3 mRNA expression was totally abrogated by tofaciti-
nib, accordingly with our previous findings that STAT3-
silenced keratinocytes were not able to upregulate SOCS3 in
response to IL-22 [17].

Importantly, IL-17- and IL-22-producing cells were
strongly reduced by JAK blockade in IMQ-treated skin, sim-
ilarly to what observed in human psoriasis, where improve-
ment of clinical and histologic signs by tofacitinib was
associated with an inhibition of IL-17 gene expression and
IL-23/Th17 pathway [24]. In contrast, neither IFN-γ nor
TNF-α mRNA expression was influenced by tofacitinib.
Immunohistochemistry analysis also showed that both IL-
17+ and IL-22+ cells present in mouse skin had mostly a mac-
rophage/dendritic cell-like morphology, accordingly with
recent findings showing the presence and pathogenicity of
IL-23-bearing and IL-17/IL-22-producing macrophage and
dendritic cell subpopulations in the IMQ model [33]. In
parallel, tofacitinib determined a strong reduction of
keratinocyte-derived chemokines involved in the recruit-
ment of pathogenic leukocyte populations via CCR2 or
CCR6, such as CCL2 and CCL20. Although tofacitinib
potently downregulated chemokine expression in keratino-
cytes and, in turn, leukocyte recruitment into mice skin, it
is likely that its effect could be explicated directly on type
17 and 22T-cell differentiation, by interfering with IL-23R
signaling and subsequent IL-17/IL-22 induction [23]. How-
ever, it is important to highlight the limited presence of IL-
17- and IL-22-producing cells with a T-cell-like morphology
in mouse skin at 5 days of IMQ application.

Finally, we demonstrated that tofacitinib and SOCS, in
particular SOCS1 and SOCS3, by targeting identical signal-
ing molecules, or JAK1 and JAK2, can impair the same
intracellular pathways in keratinocytes. In fact, STAT1,
STAT3, and ERK1/2 were not upregulated in keratinocyte
clones overexpressing SOCS1 or SOCS3 in response to
IFN-γ, nor STAT3 and ERK1/2 in response to IL-22, simi-
larly to tofacitinib that abrogated cytokine-induced STAT1,
STAT3, and ERK1/2 in control clones. These results are
due to the fact that both tofacitinib and SOCS1/3 act on
JAK with a high degree of kinome selectivity and display
the same final biochemical effects of JAK inactivation. In
fact, tofacitinib as well as SOCS1/3 impede auto- and trans-
phosphorylation of JAK, with the first blocking ATP binding
site of JAK1-2-3 and competing with ATP [34], and SOCS1/
3 by interacting with the –GQM-amino acidic residues of
JAK, determinant for its binding to substrates [35]. Impor-
tantly, while tofacitinib interacts with all JAKs but not with
TYK2, SOCS1 and SOCS3 can bind and inactivate JAK1,
JAK2, and TYK2 but not JAK3. Evidence that tofacitinib
and SOCS1/3 can have the same anti-inflammatory effects
on keratinocytes also comes from our recent studies per-
formed with two small peptides mimicking SOCS1 and
SOCS3 and sharing kinase inhibitory regions critical for
JAK1 and JAK2 inactivation. Similar to tofacitinib, these
two peptido-mimetics were able to switch off the IFN-γ-
and IL-22-dependent inflammatory/immune responses of
keratinocytes in cutaneous disease contexts characterized
by the presence of IFN-γ-releasing Th1 and IL-22-releasing

Th22 infiltrate, such as psoriasis and squamous skin cell car-
cinoma, respectively [15, 16].

5. Conclusions

As a whole, our study demonstrated the selectivity and
specificity of tofacitinib inhibitory action on intracellular
molecular pathways dependent on IFN-γ and IL-22 in ker-
atinocytes. The blockade of IFN-γ/JAK1/JAK2/STAT1/
STAT3 and IL-22/JAK1/STAT3 pathways had the impor-
tant consequence to inhibit the expression of many IFN-
γ-dependent inflammatory genes, as well as restore prolifer-
ative and differentiation programs altered by IL-22 in psori-
atic keratinocytes. Considering that epidermal keratinocytes
are the outermost component of the skin and that tofaci-
tinib has a potent inhibitory effect on inflammatory
responses evoked by these cells, it could be included in
formulations for the topical therapy of psoriasis. Application
of JAK inhibitors could be useful especially during the chron-
icization of the disease, where IFN-γ-dependent T-cell
responses predominate. Indeed, the efficacy of topical ther-
apy of tofacitinib and other JAK inhibitors in psoriasis has
been extensively demonstrated [36] and is also considered
for the treatment of other inflammatory skin conditions
characterized by JAK hyperactivation, such as lichen planus
and atopic dermatitis [37].

Importantly, tofacitinib inhibitory activity could also be
explicated directly on type 17 and type 1T-cells, by impeding
their differentiation and expansion. In fact, Th17 cell differ-
entiation is abrogated in the absence of STAT3, whereas
overexpression of a constitutively active STAT3 form results
in greatly increased numbers of IL-17-producing cells [38, 39].
Similarly, STAT1 is abundantly activated in Th1 cells, mainly
in response to IFN-γ, which is in turn critical to the genera-
tion and maintenance of Th1 immunity [23].

Due to the heterogeneity of pathogenic mechanisms
operating in psoriasis, and to the variety of molecular cas-
cades potentially activated by proinflammatory cytokines, a
combination of JAK inhibitors and TNF-α or IL-17 blockers
might elicit more favorable and efficacious therapeutic effects
in psoriatic patients, by intercepting and blocking inflamma-
tory responses at multiple levels.

Finally, local or systemic JAK/STAT inhibition by tofa-
citinib could be crucial for the development of optimized
therapeutics also for the treatment of skin tumors character-
ized by aberrant IL-22 signaling and STAT3 activation in
keratinocytes. The latter includes basalioma and squamous
cell carcinoma, where IL-22-producing T cells aberrantly
activate tumor growth and epithelial carcinogenesis through
STAT3 (16).

Data Availability

All the data used to support the findings of this study are
included within the article, with the exception of data con-
cerning (1) tofacitinib effects on IL-17 signal transduction
in cultured keratinocytes; (2) tofacitinib effect on phospho-
STAT1 expression, as detected by using phospho-kinase
array kit; (3) tofacitinib effects on TNF-alpha- or IL-17-
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induced expression of inflammatory molecules by kerati-
nocytes; and (4) tofacitinib effect on CD11c+ dendritic
cells infiltrating the dermis in IMQ-treated mouse skin.
The latter data are available from the corresponding author
upon request.
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